当前位置:文档之家› 高中物理电磁学综合复习题目

高中物理电磁学综合复习题目

24.如图所示,在第一、四象限内有磁感应强度为B,方向垂直于坐标平面向里的匀强磁场;

在第二、三象限内有水平向右的匀强电场。A为固定在x轴上的一个放射源,内有放射性元素。放射源沿x轴正方向释放出的一个α粒子,恰好能打在y轴上的N点处。测得

A、N到原点O的距离分别是l和2l,α粒子的质量为m,电荷量为q。不考虑α粒子

的重力和射线粒子之间的相互作用。求:⑴该α粒子在匀强磁场中做圆周运动的轨道半径r;⑵该α粒子从放射源中射出时的动能E k;⑶已知该α粒子从N点穿出磁场后恰好能垂直于x轴打在x轴上,求匀强电场的场强大小E。

x

23.在坐标系xOy 平面的第一象限内,有一个匀强磁场,磁感应强度大小恒为B 0,方向垂

直于xOy 平面,且随时间作周期性变化,如同所示,规定垂直xOy 平面向里的磁场方向为正。一个质量为m ,电荷量为q 的正粒子,在0 t 时刻从坐标原点以初速度0v 沿x 轴正方向射入,不计重力的影响,经过一个磁场变化周期T (未确定)的时间,粒子到达第一象限内的某点P ,日速度方向仍与x 轴正方向平行同向。则 (1)粒子进人磁场后做圆周运动的半径是多大?

(2)若O 、P 连线与x 轴之间的夹角为45°,则磁场变化的周期T 为多大? (3)若粒子运动轨迹恰好与y 轴相切,试求P 点的坐标。

12.如图所示,用绝缘管制成的圆形轨道竖直放置,圆心与坐标原点重合,在1、2象限有

+,质量垂直于纸面向外的匀强磁场,在第4象限有竖直向下的匀强电场,一个带电量为q

+,质量也是m的小球A从图中位为m的小球C放在管中的最低点,另一个带电量也是q

置由静止释放开始运动。球A在最底点处与C相碰并粘在一起向上滑,刚好能通过最高点。不计一切摩擦,电量保持不变,轨道半径为R,R远大于轨道的内径,小球直径略小于管道内径,小球可看成质点。求

(1)在最低点碰后的共同速度;

(2)电场强度E:

(3)若小球第二次到最高点时,刚好对轨道无

压力,求磁感应强度B。

25.(18分)真空中有一半径为R的圆形匀强区域,圆心为O,磁场的方向垂直纸面向里,

磁感应强度为B,在距圆心R

2处有一屏MN,MN垂直于纸面放置,AO为平行于纸面的半径,其沿长线与屏交于C(如图所示),一个带负电的

粒子以初速度

v沿AC的方向进入该圆形磁场区域,最后打在

屏上的D点,D、C

相距,不计粒子的重力.

(1)求粒子在磁场中运动的轨道半径r和粒子的比荷;

(2)若该粒子仍以初速度

v从A点进入圆形磁场区域,但方向与

AC成600向右上方,粒子最后打在屏上的E点,求粒子从A到E所经历的时间.

18.(17分)真空中有一半径

为r的圆柱形匀强磁场区

域,磁场方向垂直于纸面

向里,Ox为过边界上O点

的切线,如图所示.从O点

在纸面内向各个方向发射速率均为V0的电子,设电子间相互作用忽略,且电子在磁场中的偏转半径也为r.已知电子的电荷量为e,质量为m.

(1)速度方向分别与Ox方向夹角成60°和90°的电子,在磁场中的运动时间分别为多少?

(2)所有从磁场边界射出的电子,速度方向有何特征?

(3)设在某一平面内有M、N两点,由M点向平面内各个方向发射速率均为V0的电子.请设计

一种匀强磁场分布,使得由M点发出的所有电子都能够会聚到N点.

17.(16分)如图甲所示,MN为竖直放置彼此平行的两块平板,板间距离为d,两板中央各有一个小孔OO′正对,在两板间有垂直于纸面方向的磁场。磁感应强度随时间的变化如图乙所示.有一群正离子在t=0时垂直于M板从小孔O射入磁场,已知正离子质量为m、带电荷量为q,正离子在磁场中做匀速圆周运动的周期与磁感应强度变化的周期都为了T0.不考虑由于磁场变化而产生的电场的影响,不计离子所受重力.求:

(1)磁感应强度B0的大小;

(2)要使正离子从O′孔垂直于N板射出磁场,正离子射入磁场时的速度v0的可能值.

18.(18分)如图所示,在xOy坐

标平面的第一象限内有沿-y

方向的匀强电场,在第四象限

内有垂直于平面向外的匀强

磁场.现有一质量为m,带电

荷量为+q的粒子(重力不计)以初速度V0沿-x方向从坐标为(3l,l)的P点开始运动,接着进入磁场后由坐标原点O射出,射出时速度方向与y轴方向夹角为45°.求:

(1)粒子从O点射出时的速度v和电场强度E;

(2)粒子从P点运动到O点过程所用的时间.

17.(15分)如图所示,MN为一竖直放置足够大的荧光屏,距荧光屏左边l的空间存在着一宽

度也为l、方向垂直纸面向里的匀强磁场.O′为荧光屏Array上的一点,OO′与荧光屏垂直,一质量为m、电荷量为

q的带正电的粒子(重力不计)以初速度V0从O点沿OO′

方向射入磁场区域.粒子离开磁场后打到荧光屏上时,

速度方向与竖直方向成30°角.

(1)求匀强磁场磁感应强度的大小和粒子打到荧光屏上

时偏离O′点的距离;

(2)若开始时在磁场区域再加上与磁场方向相反的匀强

电场(图中未画出),场强大小为正,则该粒子打到荧光

屏上时的动能为多少?

14.(22分)如图(甲)所示,两平行金属板的板长不超过0.2m ,板间的电压u 随时间t 变化的u —t 图线如图(乙)所示,在金属板右侧有一左边界为MN 、右边无界的匀强磁场,磁感应强

度B=0.01T ,方向垂直纸面向里.现有带正电的粒子连续不断地以速度v 0=105

m /s ,沿两板间的中线OO ′平行金属板射入电场中,磁场边界MN 与中线OO ′垂直.已知带电粒子的比荷

m

q =108

C /kg ,粒子的重力和粒子间相互作用力均可以忽略不计.

(1)在每个粒子通过电场区域的时间内,可以把板间的电场强度看作是恒定的.试说明这种处理能够成立的理由.

(2)设t=0.1s 时刻射入电场的带电粒子恰能从平行金属板边缘穿越电场射入磁场,求该带电粒子射出电场时速度的大小。

(3)对于所有经过电场射入磁场的带电粒子,设其射入磁场的入射点和从磁场射出的出射点间的距离为d ,试判断:d 的大小是否随时间而变化?若不变,证明你的结论;若变,求出d 的变化范围.

17.(15分)如右图所示,竖直平行直

线为匀强电场的电场线,电场方

向未知,A、B是电场中的两点,

AB两点的连线长为l且与电场

线所夹的锐角为θ.一个质量为

m,电荷量为-q的带电粒子以

初速度v0。从A点垂直进入电场,

该带电粒子恰好能经过B点.不考虑带电粒子的重力大小.

(1)根据你学过的物理学规律和题中所给的信息,对反映电场本身性质的物理量(例如电场方向),你能作出哪些定性判断或求得哪些定量结果?

(2)若仅知道带电小球的电荷量-q、初动能Ek0以及AB两点的连线与电场线所夹的锐角θ三

个量,对反映电场本身性质的物理量,你能求得哪些定量结果?

18.(16分)如右图,在

广阔的宇宙空间存

在这样一个远离其

他空间的区域,以

MN为界,上部分的

匀强磁场的磁感应强度为B1,下部分的匀强磁场的磁感应强度为B2,B1=2B2=2B0,方向相同,且磁场区域足够大.在距离界线为h的P点有一宇航员处于静止状态,宇航员以平行于界线的速度抛出一质量为m、带电荷量为-q的球,发现球在界线处速度方向与界线成60°角,进入下部分磁场,然后当宇航员沿与界线平行的直线匀速到达目标Q点时,刚好又接住球而静止.求:

(1)小球在两个磁场中运动的轨道半径大小(仅用h表示)和小球的速度;

(2)宇航员的质量(用已知量表示).

18.(17分)如右图所示,相距为d的L1和L2两个平行虚线是上下两个匀强磁场的边界.L1上方和L2下方都是垂直纸面向里的磁感应强度为B的匀强磁场.M、N两点都在L2上.M点有一放射源,其放射性元素衰变前原子核的质量为m,

放出一个质量为m1、带电荷量为-q的粒子,

产生的新原子核质量为m2.放出的粒子以初速

度v与L2成30°角斜向上射入,经过一段时

间恰好斜向上通过N点(不计重力).求:

(1)该原子核发生衰变过程中释放的核能;

(2)说明过N点的速度大小和方向,并求从M到N的时间及路程;

(3)若从M点射出的速度大小变为2v,粒子还能否经过N点?(计算说明)

的长木板B和质量m=2kg的小物体A

以相同的速度v0=5 m/s沿光滑水平

面向右运动,已知A、B间的动摩擦因

数μ=0.2,B的右端有一固定的竖直挡板,B与竖直挡板的碰撞时间极短,B碰后以原速率返回(设B板足够长),求:

(1)碰后A、B再次稳定后的速度;

(2)碰后到A、B速度不再发生变化的瞬间,

B板与竖直挡板的距离;

(3)若碰后A没从B上掉下来,则B的长度至少多长?

23.(17分)如图所示,在宽

L=10 cm的有界区域里存

在相互正交的匀强电场和

匀强磁场,MN为与电场线

平行且距匀强电、磁场右侧

边界d=15 cm的荧光屏.一束

带正电的粒子以垂直于电磁场的水平速度射入场中而不改变方向打在荧光屏上的O点.当去掉电场时粒子穿过磁场时运动方向偏离原方向5cm,不计粒子所受重力,求:

(1)粒子打在荧光屏上的点距O点多远?

(2)如果仅去掉磁场,粒子穿过电场时偏离原运动方向多远?最后打在荧光屏上的点距O点多远?

M=2 kg的导轨,放在光滑绝缘的水平

面上,另有一根质量m=0.6 kg的金

属棒PQ平行bc放在水平导轨上,PQ棒

左边靠着绝缘的竖直立柱e、f,导轨处

于匀强磁场中,场以OO′为界,左侧的磁场方向竖直向上,右侧的磁场方向水平向右,磁感应强度都为B=0.8T.导轨的bc段长l=0.5 m,其电阻r=0.4Ω,金属棒的电阻R=0.2Ω,其余电阻均可不计,金属棒与导轨间的动摩擦因数μ=0.2若导轨上作用一个方向向左、大小为F=2 N的水平拉力,设导轨足够长,g取10m/s2.试求:

(1)导轨运动的最大加速度;

(2)流过导轨的最大电流.

17.(13分)如右图所示,MN、PQ

是两条水平放置彼此平行的

金属导轨,匀强磁场的磁感线

垂直导轨平面.导轨左端接阻

值R=1.5 Ω的电阻,电阻两

端并联一电压表,垂直导轨跨接一金属杆ab,ab的质量m=0.1 kg,电阻r=0.5 Ω.ab与导轨间动摩擦因数μ=0.5,导轨电阻不计.现用F=0.7 N的恒力水平向右拉ab,使之从静止开始运动,经时间t=2 s后,ab开始做匀速运动,此时电压表示数U=0.3 V.重力加速度

g=10 m/s2.求:

(1)ab匀速运动时,外力F的功率;

(2)ab杆加速过程中,通过R的电荷量;

(3)ab杆加速运动的距离.

22.(12分)如右图所示,长为L的绝缘细

线两端各系一小球,球a带电荷量为

+q,固定于O点;球b带电荷量为

-q,质量为m.它们处在竖直向下的

匀强电场中.(静电力常量为k)

(1)已知b球能在竖直面内沿图中虚线所示轨道做匀速圆周运动,则它的速度至少应为多大?

(2)若将电场方向改为水平向左,场强大小保持不变,让b球在一条倾斜的且轨道平面与原来垂直的轨道上做变速圆周运动,则轨道平面与水平面的夹角为多大?若在此轨道上b球刚好做圆周运动,b球运动过程中的最大速度为多少?

高中物理电磁学总复习试题

物理总复习电磁学 复习容:高二物理(第十三章 电场、第十四章 恒定电流、第十五章 磁场、第十六章 电磁感应、第十七章 变交电流、第十八章 电磁场与电磁波) 复习围:第十三章~第十八章 电磁学 §.1 第十三章 电场 1. (1)电荷守恒定律:电荷既不能创造,也不能消灭,只能从一个物体转移给另一个物体或者从物体的一部分转移到另一部分. (2)应用起电的三种方式:摩擦起电(前提是两种不同的物质发生摩擦)、感应起电(把电荷移近不带电的导体(不接触导体),使导体带电)、接触带电. 注意:①电荷量e 称为元电荷电荷量C 1060.119-?=e ;②电子的电荷量e 和电子的质量m 的比叫做电子的比荷 C/kg 1076.111?=e m e . ③两个完全相同的带电金属小球接触时................电荷量分配规律:原带异种电荷的先中和后平分;原带同种电荷的总电荷量平分. 2. 库仑定律. ⑴适用对象:点电荷. 注意:①带电球壳可等效点电荷. 当带电球壳均匀带电时,我们可等效在球心处有一个点电荷;球壳不均匀带电荷时,则等效点电荷就靠近电荷多的一侧. ②库仑力也是电场力,它只是电场力的一种. ⑵公式:2 21r Q Q k F ?=(k 为静电力常量等于229/c m N 109.9??). 3.(1)电场:只要有电荷存在,电荷周围就存在电场(电场是描述自身的物理量...........),电场的基本性质是它对放入其中的电荷有力的作用,这种力叫做电场力. (2)ⅰ. 电场强度(描述自身的物理量........): E = F / q 这个公式适用于一切电场,电场强度E 是矢量,物理学中规定电场中某点的场强方向跟正电荷在该点的电场力的方向相同,即正电荷受的电场力方向,即E 的方向为负电荷受的电场力的方向的反向. 此外F = Eq 与2 21r Q Q k F ?=不同就在于前者适用任何电场,后者只适用于点电荷. 注意:①对检验电荷(可正可负)的要求:一是电荷量应当充分小;二是体积也要小. ②E = F / q 中F 是检验电荷所受电场力,q 为检验电荷的电量 ③凡是“描述自身的物理量”统统不能说××正此,××反比(下同). ⅱ. 点电荷的电场场强2 r kQ E =对象就必须是以点电荷Q 为场源电荷的电量,因此它只适用于点电荷形成的电场. 注意:若两个点电荷相距为r ,将两个点电荷移近至r 趋近于零,由2 r kQ E =知,这时的E 为无穷大.(×)(这时的 两个点电荷不能看作质点了,不符和2 r kQ E =的适用条件) 4. 电场线:电场线上每一点的切线方向与该点的场强方向一致(与电场线的走向方向相同的那一个方向). ①电场线的疏密程度表示场强的大小,电场线越密(疏)场强越大(小). ②电场线的分布情况可用实验来摸拟,而电场线都是假想的线. 相等的平行直线. 附:若电场线平行,但间距不等,则这样的电场不存在.[简证:假设存在,W AB = qES =U AB q ,因为E 不同(由于间距不同造成)且S 相同,所以S E U S E q q U AB AB ?=???=?] ④点电荷的电场线分布是直线型(如图).

高二物理电磁学综合试题

高二物理电磁学综合试题 第Ⅰ卷选择题 一.选择题:(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,有的小题只有一个 选项正确,有的小题有多个选项正确,全对得3分,漏选得1分,错选、不选得0分) 1、下列说法不符合 ...物理史事的是() A、赫兹首先发现电流能够产生磁场,证实了电和磁存在着相互联系 B、安培提出的分子电流假说,揭示了磁现象的电本质 C、法拉第在前人的启发下,经过十年不懈的努力,终于发现电磁感应现象 D、19世纪60年代,麦克斯韦建立了完整的电磁场理论,并预言了电磁波的存在 2、图1中带箭头的直线是某电场中的一条电场线,在这条直线上有a、b两点,若用 E a、E b表示a、b两点的场强大小,则() A、a、b两点的场强方向相同 B、电场线是从a指向b,所以有E a>E b C、若一负电荷从b点逆电场线方向移到a点,则电场力对该电荷做负功 D、若此电场是由一负点电荷所产生的,则有E a<E b 3、质量均为m、带电量均为+q的A、B小球,用等长的绝缘细线悬在天花板上的同一点,平衡后两线张角为2θ,如图2所示,若A、B小球可视为点电荷,则A小球所在处的场强大小等于() A、mgsinθ/q B、mgcosθ/q C、mgtgθ/q D、mgctgθ/q 4、如图3所示为某一LC振荡电路在某时刻的振荡情况,则由此可知,此刻()A、电容器正在充电 B、线圈中的磁场能正在增加 C、线圈中的电流正在增加 D、线圈中自感电动势正在阻碍电流增大 是() A、它的频率是50H Z B、电压的有效值为311V C、电压的周期是 002s D、电压的瞬时表达式是u=311 sin314t v 图3 -311 311 u/v 0 1 2 t/10-2s 图4 ab 图1 B 图2 A θθ q q

高中物理电磁学知识点

二、电磁学 (一)电场 1、库仑力:221r q q k F = (适用条件:真空中点电荷) k = ×109 N ·m 2/ c 2 静电力恒量 电场力:F = E q (F 与电场强度的方向可以相同,也可以相反) 2、电场强度: 电场强度是表示电场强弱的物理量。 定义式: q F E = 单位: N / C 点电荷电场场强 r Q k E = 匀强电场场强 d U E = 3、电势,电势能: q E A 电 =?,A q E ?=电 顺着电场线方向,电势越来越低。 4、电势差U ,又称电压 q W U = U AB = φA -φB 5、电场力做功和电势差的关系: W AB = q U AB 6、粒子通过加速电场: 22 1mv qU = 7、粒子通过偏转电场的偏转量:

20 2 2022212121V L md qU V L m qE at y === 粒子通过偏转电场的偏转角 20 mdv qUL v v tg x y ==θ 8、电容器的电容: c Q U = 电容器的带电量: Q=cU 平行板电容器的电容: kd S c πε4= 电压不变 电量不变 (二)直流电路 1、电流强度的定义:I = 微观式:I=nevs (n 是单位体积电子个数,) 2、电阻定律: 电阻率ρ:只与导体材料性质和温度有关,与导体横截面积和长度无关。 单位:Ω·m 3、串联电路总电阻: R=R 1+R 2+R 3 电压分配 2121R R U U =,U R R R U 2 111+= 功率分配 2121R R P P =,P R R R P 2 111+= 4、并联电路总电阻: 3 211111R R R R ++= (并联的总电阻比任何一个分电阻小) 两个电阻并联 2 121R R R R R += 并联电路电流分配 1221I R I R =,I 1=I R R R 2 12+ S l R ρ =

高中物理电磁学和光学知识点公式总结大全

高中物理电磁学知识点公式总结大全 来源:网络作者:佚名点击:1524次 高中物理电磁学知识点公式总结大全 一、静电学 1.库仑定律,描述空间中两点电荷之间的电力 ,, 由库仑定律经过演算可推出电场的高斯定律。 2.点电荷或均匀带电球体在空间中形成之电场 , 导体表面电场方向与表面垂直。电力线的切线方向为电场方向,电力线越密集电场强度越大。 平行板间的电场 3.点电荷或均匀带电球体间之电位能。本式以以无限远为零位面。 4.点电荷或均匀带电球体在空间中形成之电位。 导体内部为等电位。接地之导体电位恒为零。 电位为零之处,电场未必等于零。电场为零之处,电位未必等于零。 均匀电场内,相距d之两点电位差。故平行板间的电位差。 5.电容,为储存电荷的组件,C越大,则固定电位差下可储存的电荷量就越大。电容本身为电中性,两极上各储存了+q与-q的电荷。电容同时储存电能,。 a.球状导体的电容,本电容之另一极在无限远,带有电荷-q。 b.平行板电容。故欲加大电容之值,必须增大极板面积A,减少板间距离d,或改变板间的介电质使k变小。 二、感应电动势与电磁波 1.法拉地定律:感应电动势。注意此处并非计算封闭曲面上之磁通量。 感应电动势造成的感应电流之方向,会使得线圈受到的磁力与外力方向相反。 2.长度的导线以速度v前进切割磁力线时,导线两端两端的感应电动势。若v、B、互相垂直,则 3.法拉地定律提供将机械能转换成电能的方法,也就是发电机的基本原理。以频率f 转动的发电机输出的电动势,最大感应电动势。 变压器,用来改变交流电之电压,通以直流电时输出端无电位差。 ,又理想变压器不会消耗能量,由能量守恒,故 4.十九世纪中马克士威整理电磁学,得到四大公式,分别为 a.电场的高斯定律 b.法拉地定律 c.磁场的高斯定律 d.安培定律 马克士威由法拉地定律中变动磁场会产生电场的概念,修正了安培定律,使得变动的电场会产生磁场。e.马克士威修正后的安培定律为 a.、 b.、 c.和修正后的e.称为马克士威方程式,为电磁学的基本方程式。由马克士威方程式,预测了电磁波的存在,且其传播速度。 。十九世纪末,由赫兹发现了电磁波的存在。 劳仑兹力。 右手定则:右手平展,使大拇指与其余四指垂直,并且都跟手掌在一个平面内。把右手放入磁场中,若磁力线垂直进入手心(当磁感线为直线时,相当于手心面向N极),大拇指指向导线运动方向,则四指所指方向

高考物理电磁学大题习题20题Word版含答案及解析

高考物理电磁学大题习题20题 1.如图所示,虚线MO 与水平线PQ 相交于O ,二者夹角θ=30°,在MO 左侧存在电场强度为 E 、方向竖直向下的匀强电场,MO 右侧某个区域存在磁感应强度为B 、垂直纸面向里的匀强 磁场,O 点处在磁场的边界上。现有一群质量为m 、电量为+q 的带电粒子在纸面内以不同的速度(0≤v ≤ E B )垂直于MO 从O 点射入磁场,所有粒子通过直线MO 时,速度方向均平行于PQ 向左。不计粒子的重力和粒子间的相互作用力,求: (1)粒子在磁场中的运动时间。 (2)速度最大的粒子从O 开始射入磁场至返回水平线POQ 所用时间。 (3)磁场区域的最小面积。 【答案】(1)23m qB π(2))m t qB π=或23m qB π(3)22 24 4(12m E S q B π-?= 或22 24 (3m E q B π 【解析】 【详解】(1)粒子的运动轨迹如图所示,设粒子在匀强磁场中做匀速圆周运动的半径为R ,周期为T ,粒子在匀强磁场中运动时间为t 1, 则2 mv qvB R =,即mv R qB =,22R m T v qB ππ==,11233m t T qB π== (2)设粒子自N 点水平飞出磁场,出磁场后应做匀速运动至OM ,设匀速运动的距离为x ,匀速运动的时间为t 2,由几何关系知:

tan R x θ= ,2x t v =,2t =过MO 后粒子做类平抛运动,设运动的时间为t 3,则: 2 33122qE R t m = 又:E v B = ,3t = 则速度最大的粒子自O 进入磁场至重回水平线POQ 所用的时间123t t t t =++ 联立解得:t = (3)由题知速度大小不同的粒子均要水平通过OM ,其飞出磁场的位置均应在ON 的连线上,故磁场范围的最小面积S ?是速度最大的粒子在磁场中的轨迹与ON 所围成的面积。扇形 OO N '的面积21 3S R π= OO N ?'的面积为:22 cos30sin 30S R R =??= ' 又S S S ?=-' 联立解得2224m E S q B ?=或22 24(3m E q B π。 2.如图甲所示,两平行金属板接有如图乙所示随时间t 变化的电压U ,两板间电场可看作均匀的,且两金属板外无电场,两金属板长L =0.2 m ,两板间距离d =0.2 m .在金属板右侧边界MN 的区域有一足够大的匀强磁场,MN 与两板中线OO ′垂直,磁感应强度为B ,方向垂直纸面向里.现有带正电的粒子流沿两板中线OO ′连续射入电场中,已知每个粒子速度v 0=105 m/s ,比荷=108 C/kg ,重力忽略不计,在每个粒子通过电场区域的极短时间内,电场可视作是恒定不变的. (1)试求带电粒子射出电场时的最大速度; (2)任意时刻从电场射出的带电粒子,进入磁场时在MN 上的入射点和在MN 上出射点的距离是一确定的值s ,试通过计算写出s 的表达式(用字母m 、v 0、q 、B 表示). 【答案】(1)。方向:斜向右上方或斜向右下方,与初速

高中物理20种电磁学仪器

高中物理20 种电磁学仪器 1. 电视机原理 1. 电视机的显像管中,电子束的偏转是用磁偏转技术实现的. 电子束经过电压为U的加速电场后,进入一圆形匀强磁场区,如图所示. 磁场方向垂直于圆面. 磁场区的中心为O,半径为r. 当不加磁场时,电子束将通过O点而打到屏幕的中心M点. 为了让电子束射到屏幕边缘P,需要加磁场,使电子束偏转一已知角度θ,此时磁场的磁感应强度 B 应为多少? 解析:如图所示,电子在磁场中沿圆弧ab 运动,圆心为O,半径为R,以v 表示电子进入磁= 场时的速度,m、e 分别表示电子的质量和电荷量,则 1 2 eU mv 2 evB 2 mv R 又有tan 2 r R 由以上各式解得: B 1 2mv r e tan 2 2. 电磁流量计 2. 电磁流量计广泛应用于测量可导电液体(如污水)在管中的流量(在单位时间内通过管内横截面的流体的体积).为了简化,假设流量计是如图所示的横截面为长方形的一段管道.其中空部分的长、宽、高分别为图中的a、b、c.流量计的两端与输送流体的管道相连接(图中虚线).图中流量计的上下两面是金属材料,前后两面是绝缘材料.现于流量计所在处加磁感应强度 B 的匀强磁场,磁场方向垂直前后两面.当导电流体稳定地流经流量计时,在管外将流量计上、下两表面分别与一串接了电阻R 的电流表的两端连接,I 表示测得的电流值.已知流体的电阻率为ρ,不计电流表的内阻,则可求得流量为() A. I c bR B a B. I b aR B c

C. I cR a B b D. I R bc B a 2. 质谱仪 3. 如图是测量带电粒子质量的仪器工作原理示意图。设法使某有机化合物的气态分子导 入图中所示的容器 A 中,使它受到电子束轰击,失去 一个电子变成正一价的分子离子。分子离子从狭缝s1 以很小的速度进入电压为U 的加速电场区(初速不 计),加速后,再通过狭缝s2、s3 射入磁感强度为 B 的匀强磁场,方向垂直于磁场区的界面PQ。最后,分 子离子打到感光片上,形成垂直于纸面而且平行于狭 缝s3 的细线。若测得细线到狭缝s3 的距离为d,试 导出分子离子的质量m的表达式。 解析:以m、q 表示离子的质量电量,以v 表示离子从狭缝s2 射出时的速度,由功能关系可得 射入磁场后,在洛仑兹力作用下做圆周运动,由牛顿定律可得 式中R为圆的半径。感光片上的细黑线到s3 缝的距离d=2R 解得 4. 磁流体发电 3. 磁流体发电是一种新型发电方式,图1 和图 2 是其工作原理示意图。图1 中的长方体是发电导管,其中空部分的长、高、宽分别为l 、a、b,前后两个侧面是绝缘体,上下两个 侧面是电阻可略的导体电极,这两个电极与负载电阻R1相连。整个发电导管处于图 2 中磁

高中物理电磁学经典例题

高中物理典型例题集锦 (电磁学部分) 25、如图22-1所示,A、B为平行金属板,两板相距为d,分别与电源两极相连,两板 的中央各有小孔M、N。今有一带电质点,自A板上方相距为d的P点由静止自由下落(P、M、N三点在同一竖直线上),空气阻力不计,到达N点时速度恰好 为零,然后按原路径返回。若保持两板间的电压不变,则: A.若把A板向上平移一小段距离,质点自P点下落仍能返回。 B.若把B板向下平移一小段距离,质点自P点下落仍能返回。 C.若把A板向上平移一小段距离,质点自P点下落后将穿过 N孔继续下落。 图22-1 D.若把B板向下平移一小段距离,质点自P点下落后将穿过N 孔继续下落。 分析与解:当开关S一直闭合时,A、B两板间的电压保持不变,当带电质点从M向N 运动时,要克服电场力做功,W=qU AB,由题设条件知:带电质点由P到N的运动过程中,重力做的功与质点克服电场力做的功相等,即:mg2d=qU AB 若把A板向上平移一小段距离,因U AB保持不变,上述等式仍成立,故沿原路返回, 应选A。 若把B板下移一小段距离,因U AB保持不变,质点克服电场力做功不变,而重力做功 增加,所以它将一直下落,应选D。 由上述分析可知:选项A和D是正确的。 想一想:在上题中若断开开关S后,再移动金属板,则问题又如何(选A、B)。 26、两平行金属板相距为d,加上如图23-1(b)所示的方波形电压,电压的最大值为U0,周期为T。现有一离子束,其中每个 离子的质量为m,电量为q,从与两板 等距处沿着与板平行的方向连续地射 入两板间的电场中。设离子通过平行 板所需的时间恰为T(与电压变化周图23-1 图23-1(b)

高中物理电学实验习题大全(含答案)

电学实验 测定金属的电阻率 1.在“测定金属的电阻率”的实验中,所测金属丝的电阻大约为5,先用伏安法测出该金属丝的电阻,然后根据电阻定律计算出该金属材料的电阻率。用米尺测出该金属丝的长度L,用螺旋测微器测量该金属丝直径时的刻度位置如图所示。 (1)从图中读出金属丝的直径为______________mm。 (2)实验时,取来两节新的干电池、开关、若干导线和下列器材: A.电压表0~3 V,内阻10 k B.电压表0~15 V,内阻50 k C.电流表0~0.6A,内阻0.05 D.电流表0~3 A,内阻0.01 E.滑动变阻器,0~10 F.滑动变阻器,0~100 ①要较准确地测出该金属丝的电阻值,电压表应选_______________,电流表应选______________,滑动变阻器选_____________(填序号)。 ②实验中,某同学的实物接线如图所示,请指出该实物接线中的两处明显错误。 错误l:_____________________________;

错误2:_____________________________。 2.为了测量某根金属丝的电阻率,根据电阻定律需要测量长为L的金属丝的直径D.电阻R。某同学进行如下几步进行测量: (1)直径测量:该同学把金属丝放于螺旋测微器两测量杆间,测量结果如图,由图可知,该金属丝的直径d= 。 (2)欧姆表粗测电阻,他先选择欧姆×10档,测量结果如图所示,为了使读数更精确些,还需进行的步骤是。 A.换为×1档,重新测量 B.换为×100档,重新测量 C.换为×1档,先欧姆调零再测量 D.换为×100档,先欧姆调零再测量 (3)伏安法测电阻,实验室提供的滑变阻值为0~20Ω,电流表0~0.6A(内阻约0.5Ω),电压表0~3V(内阻约5kΩ),为了测量电阻误差较小,且电路便于调节,下列备选电路中,应该选择。 3.在测定金属电阻率的实验中,某同学连接电路如图(a)所示.闭合开关后,发现电路有故障(已知电源、电表和导线均完好,电源电动势为E):

高中物理电磁学基础知识

一、电场基本规律 2、库仑定律 (1)定律内容:真空中两个静止点电荷之间的相互作用力,与它们的电荷量的乘积成正比,与它们的距离的平方成反比,作用力的方向在它们的连线上。 (2)表达式:k=9.0×109N?m2/C2——静电力常量 (3)适用条件:真空中静止的点电荷。 1、电荷守恒定律:电荷既不会创生,也不会消灭,它只能从一个物体转移到另一个物体,或者从物体的一部分转移到另一部分,在转移过程中,电荷的总量保持不变。(1)三种带电方式:摩擦起电,感应起电,接触起电。 (2)元电荷:最小的带电单元,任何带电体的带电量都是元电荷的整数倍,e=1.6×10-19C ——密立根测得e的值。 二、电场能的性质 1、电场能的基本性质:电荷在电场中移动,电场力要对电荷做功。 2、电势φ (1)定义:电荷在电场中某一点的电势能Ep与电荷量的比值。 (2)定义式:φ——单位:伏(V)——带正负号计算 (3)特点: ○1电势具有相对性,相对参考点而言。但电势之差与参考点的选择无关。 ○2电势一个标量,但是它有正负,正负只表示该点电势比参考点电势高,还是低。 ○3电势的大小由电场本身决定,与Ep和q无关。 ○4电势在数值上等于单位正电荷由该点移动到零势点时电场力所做的功。 (4)电势高低的判断方法 ○1根据电场线判断:沿着电场线电势降低。φA>φB ○2根据电势能判断: 正电荷:电势能大,电势高;电势能小,电势低。 负电荷:电势能大,电势低;电势能小,电势高。 结论:只在电场力作用下,静止的电荷从电势能高的地方向电势能低的地方运动。 3、电势能Ep (1)定义:电荷在电场中,由于电场和电荷间的相互作用,由位置决定的能量。电荷在某点的电势能等于电场力把电荷从该点移动到零势能位置时所做的功。 (2)定义式:——带正负号计算 (3)特点: ○1电势能具有相对性,相对零势能面而言,通常选大地或无穷远处为零势能面。 ○2电势能的变化量△Ep与零势能面的选择无关。 4、电势差UAB (1)定义:电场中两点间的电势之差。也叫电压。 (2)定义式:UAB=φA-φB (3)特点: ○1电势差是标量,但是却有正负,正负只表示起点和终点的电势谁高谁低。若UAB>0,则UBA<0。 ○2单位:伏 ○3电场中两点的电势差是确定的,与零势面的选择无关 ○4U=Ed匀强电场中两点间的电势差计算公式。——电势差与电场强度之间的关系。 5、静电平衡状态

高中物理电磁学试题选

高中物理电磁学部分试题选 填空题(把答案填在题中的括号内)。 0.1.1如图3-51所示,在厚金属板M附近放置一个负点电荷Q,比较图中a、b、c三点的 场强E a、E b、E c大小关系为();电势U a、U b、U c高低关系为(). 图3-51 0.1.2带电量为q1、q2,质量分别为m1和m2的两带异种电荷的粒子,其中q1=2q2,m1= 4m2,均在真空中.两粒子除相互之间的库仑力外,不受其它力作用.已知两粒子到某固定点的距离皆保持不变,由此可知两粒子一定做()运动,该固定点距两带电粒子的距离之比L1∶L2=(). 0.1.3在一次雷雨闪电中,两块云之间的电势差均为109V,从一块云移到另一块云的电量 均为30C,则在这次闪电中放出的能量是()J. 0.1.4如图3-52所示,在电场为竖直方向的匀强电场中,质量为m、带电量为-q的质点P, 沿直线AB斜向下运动,直线AB与竖直方向间的夹角为θ,若AB长度为L,则A、B两点间的电势差为(). 图3-52 0.1.5用三个完全相同的金属环,将其相互垂直放置,并把相交点焊接起来成为如图3-53 所示的球形骨架,如整个圆环的电阻阻值为4Ω,则A、C间的总电阻阻值R AC=()。(A、B、C、D、E、F为六个相交焊接点,图中B点在外,D点在内) 图5-53

0.1.6电路如图3-54所示,R1=R3=R,R2=2R,若在b、d间接入理想电压表,读数为 ();若在b、d间接入内阻为R的电压表,读数为()。 图5-54 0.1.7如图3-55所示的图线,a是某电源的U-I图线,b是电阻R的U-I图线,这个电源 的内电阻等于( ),用这个电源和两个电阻R串联成闭合电路,电源输出的电功率等于( )。 图3-55 0.1.8如图3-56所示电路中,已知R1=100Ω,右边虚线框内为黑盒,情况不明,今用电 压表测得U AC=10V,U CB=40V.则A、B间总电阻R AB是( )。 图5-56 0.1.9电饭锅工作时有两种状态:一种是锅内水烧干前的加热状态,另一种是锅内水烧干 后的保温状态。如图3-57所示是电饭锅电路的示意图,S是感温材料制造的开关,R1是电阻,R2是加热用的电阻丝,那么当开关S接通时,电饭锅所处的工作状态为()。如果要使R2在保温状态时的功率是加热状态时的1/9,那么R1/R2=()。 图3-57

高考物理电磁学知识点之磁场知识点总复习含答案解析

高考物理电磁学知识点之磁场知识点总复习含答案解析 一、选择题 1.三根通电长直导线a、b、c平行且垂直纸面放置,其横截面如图所示,a、b、c恰好位于直角三角形的三个顶点,∠c=90?,∠a=37?。a、b中通有的电流强度分别为I1、I2,c受到a、b的磁场力的合力方向与a、b连线平行。已知通电长直导线在周围某点产生的磁 场的磁感应强度 I B k r =,k为比例系数,I为电流强度,r为该点到直导线的距离,sin37? =0.6。下列说法正确的是() A.a、b中电流反向,1I:216 I=:9 B.a、b中电流同向,1I:24 I=:3 C.a、b中电流同向,1I:216 I=:9 D.a、b中电流反向,1I:24 I=:3 2.如图所示,匀强磁场的方向垂直纸面向里,一带电微粒从磁场边界d点垂直于磁场方向射入,沿曲线dpa打到屏MN上的a点,通过pa段用时为t.若该微粒经过P点时,与一个静止的不带电微粒碰撞并结合为一个新微粒,最终打到屏MN上.若两个微粒所受重力均忽略,则新微粒运动的 ( ) A.轨迹为pb,至屏幕的时间将小于t B.轨迹为pc,至屏幕的时间将大于t C.轨迹为pa,至屏幕的时间将大于t D.轨迹为pb,至屏幕的时间将等于t 3.如图所示,一块长方体金属板材料置于方向垂直于其前表面向里的匀强磁场中,磁感应强度大小为B。当通以从左到右的恒定电流I时,金属材料上、下表面电势分别为φ1、 φ2。该金属材料垂直电流方向的截面为长方形,其与磁场垂直的边长为a、与磁场平行的边长为b,金属材料单位体积内自由电子数为n,元电荷为e。那么

A. 12IB enb ?? -=B. 12IB enb ?? -=- C. 12 IB ena ?? -=D. 12 IB ena ?? -=- 4.如图所示,一束粒子射入质谱仪,经狭缝S后分成甲、乙两束,分别打到胶片的A、C 两点。其中 2 3 SA SC =,已知甲、乙粒子的电荷量相等,下列说法正确的是 A.甲带正电B.甲的比荷小 C.甲的速率小D.甲、乙粒子的质量比为2:3 5.如图所示,在垂直纸面向里的匀强磁场边界上,有两个质量、电荷量均相等的正、负离子(不计重力),从O点以相同的速度射入磁场中,射入方向均与边界成θ角,则正、负离子在磁场中运动的过程,下列判断正确的是 A.运动的轨道半径不同 B.重新回到磁场边界时速度大小和方向都相同 C.运动的时间相同 D.重新回到磁场边界的位置与O点距离不相等 6.如图所示,ABC为与匀强磁场垂直的边长为a的等边三角形,比荷为e m 的电子以速度 v0从A 点沿AB边射出(电子重力不计),欲使电子能经过AC边,磁感应强度B的取值为

(完整版)高中物理电磁学知识点

二、电磁学 (一)电场 1、库仑力:2 2 1r q q k F = (适用条件:真空中点电荷) k = 9.0×109 N ·m 2/ c 2 静电力恒量 电场力:F = E q (F 与电场强度的方向可以相同,也可以相反) 2、电场强度: 电场强度是表示电场强弱的物理量。 定义式: q F E = 单位: N / C 点电荷电场场强 r Q k E = 匀强电场场强 d U E = 3、电势,电势能: q E A 电=?,A q E ?=电 顺着电场线方向,电势越来越低。 4、电势差U ,又称电压 q W U = U AB = φA -φB 5、电场力做功和电势差的关系: W AB = q U AB 6、粒子通过加速电场: 22 1mv qU = 7、粒子通过偏转电场的偏转量: 2 02 2022212121V L md qU V L m qE at y = == 粒子通过偏转电场的偏转角 20 mdv qUL v v tg x y = = θ 8、电容器的电容: c Q U = 电容器的带电量: Q=cU 平行板电容器的电容: kd S c πε4= 电压不变 电量不变

(二)直流电路 1、电流强度的定义:I = 微观式:I=nevs (n 是单位体积电子个数,) 2、电阻定律: 电阻率ρ:只与导体材料性质和温度有关,与导体横截面积和长度无关。 单位:Ω·m 3、串联电路总电阻: R=R 1+R 2+R 3 电压分配 2 12 1R R U U =,U R R R U 2 11 1 += 功率分配 2 12 1R R P P =,P R R R P 2 11 1+= 4、并联电路总电阻: 3 2 1 1111R R R R ++= (并联的总电阻比任何一个分电阻小) 两个电阻并联 2 121R R R R R += 并联电路电流分配 122 1 I R I R =,I 1= I R R R 2 12 + 并联电路功率分配 1 22 1R R P P =,P R R R P 2 12 1+= 5、欧姆定律:(1)部分电路欧姆定律: 变形:U=IR (2)闭合电路欧姆定律:I = r R E + Ir U E += E r 路端电压:U = E -I r= IR 输出功率: = IE -I r = (R = r 输出功率最大) R 电源热功率: 电源效率: =E U = R R+r 6、电功和电功率: 电功:W=IUt 焦耳定律(电热)Q= 电功率 P=IU 纯电阻电路:W=IUt= P=IU 非纯电阻电路:W=IUt > P=IU > S l R ρ=

高中物理电学经典试题

高中物理电学经典试题

实验:电表的改装 基础过关:如果某电流表内阻为R g Ω,满偏电流为I g uA ,要把它改装为一个UV 的电压表,需 要_____联一个阻值为________________Ω的电阻;如果要把它改装为一个IA 的电流表,则应____联一个阻值为_ ______________Ω的电阻. 1.电流表的内阻是R g =200Ω,满刻度电流值是I g =500微安培,现欲把这电流表改装成量程为1.0V 的电压表,正确的方法是 [ ] A .应串联一个0.1Ω的电阻 B .应并联一个0.1Ω的电阻 C .应串联一个1800Ω的电阻 D .应并联一个1800Ω的电阻 2.(2011年临沂高二检测)磁电式电流表(表头)最基本的组成部分是磁铁和放在磁铁两极之间的线圈,由于线圈的导线很细,允许通过的电流很弱,所以在使用时还要扩大量程.已知某一表头G ,内阻R g =30 Ω,满偏电流I g =5 mA ,要将它改装为量程为0~3 A 的电流表,所做的操作是( ) A .串联一个570 Ω的电阻 B .并联一个570 Ω的电阻 C .串联一个0.05 Ω的电阻 D .并联一个0.05 Ω的电阻 3.如图2-4-17所示,甲、乙两个电路,都是由一个灵敏电流表G 和一个变阻器R 组成,下列说法正确的是( ) A .甲表是电流表,R 增大时量程增大 B .甲表是电流表,R 增大时量程减小 C .乙表是电压表,R 增大时量程增大 D .乙表是电压表,R 增大时量程减小 4.用两只完全相同的电流表分别改装成一只电流表和一只电压表.将它们串联起来接入电路中,如图2-4-21所示,此时( ) A .两只电表的指针偏转角相同 B .两只电表的指针都不偏转 C .电流表指针的偏转角小于电压表指针的偏转角 D .电流表指针的偏转角大于电压表指针的偏转角 5.(2011年黄冈高二检测)已知电流表的内阻R g =120 Ω,满偏电流I g =3 mA ,要把它改装成量程是6 V 的电压表,应串联多大的电阻?要把它改装成量程是3 A 的电流表,应并联多大的电阻? 6、用相同的灵敏电流计改装成量程为3V 和15V 两个电压表,将它们串联接人电路中,指针偏角之比为______,读数之比________。用相同电流计改装成0.6A 和3A 的两个电流表将它们并联接入电路中,指针偏角之比_______,读数之比_________. 7.一只电流表,并联0.01Ω的电阻后,串联到电路中去,指针所示0.4A ,并联到0.02Ω的电阻后串联 到同一电路中去(电流不变),指针指示0.6A 。则电流表的内阻R A =_______Ω 8.在如图所示的电路中,小量程电流表的内阻为100Ω满偏 电流为 1mA,R 1=900ΩR 2=999100 Ω.(1)当S 1和 S 2均断开时,改装所成的表是什么表?量程多大?(2)当S 1和 S 2均闭合时,改装所成的表是什么表?量程多 大? 9.一电压表由电流表G 与电阻R 串联而成,如图所示,若在使用中发现此电压表计数总比准确值稍小一些,可以加以改正的措施是 10、有一量程为100mA 内阻为1Ω的电流表,按如图所示的电路改 装,量程扩大到1A 和10A 则图中的R 1=______ G R 2 R 1 S 1 S 2 R G G 公共 10A 1A R 1 R 2

高中物理电磁学公式总整理知识分享

高中物理電磁學公式總整理 電子電量為19106.1-?庫侖(Coul),1Coul=181025.6?電子電量。 一、靜電學 1.庫侖定律,描述空間中兩點電荷之間的電力 r r q kq r r q q F ??41221221012==περ,221221041r q kq r q q F ==πε,229/109Coul m Nt k ??≈ 由庫侖定律經過演算可推出電場的高斯定律kq q A d E E πε40 ==?=Φ??ρρ。 2.點電荷或均勻帶電球體在空間中形成之電場 r r kq q F E ?211==ρρ,21r kq q F E == 導體表面電場方向與表面垂直。電力線的切線方向為電場方向,電力線越密集電場強度越大。 平行板間的電場A kq A kq E ππ224== 3.點電荷或均勻帶電球體間之電位能r q kq U e 21= 。本式以以無限遠為零位面。 4.點電荷或均勻帶電球體在空間中形成之電位r kq q U V e 1==。 導體內部為等電位。接地之導體電位恆為零。 電位為零之處,電場未必等於零。電場為零之處,電位未必等於零。 均勻電場內,相距d 之兩點電位差θcos Ed d E V =?=?ρρ。故平行板間的電位差 d A kq Ed V π2= =?。 5.電容V C q V q C ?=?=,,為儲存電荷的元件,C 越大,則固定電位差下可儲存的電荷量就越大。電容本身為電中性,兩極上各儲存了+q 與-q 的電荷。電容同時儲存電能,C q CV U E 222 2==。 a.球狀導體的電容k r r kq q V q C ===,本電容之另一極在無限遠,帶有電荷-q 。

高中物理电磁学知识点梳理2

高中物理知识点梳理 电磁学部分: 1、基本概念: 电场、电荷、点电荷、电荷量、电场力(静电力、库仑力)、电场强度、电场线、匀强电场、电势、电势差、电势能、电功、等势面、静电屏蔽、电容器、电容、电流强度、电压、电阻、电阻率、电热、电功率、热功率、纯电阻电路、非纯电阻电路、电动势、内电压、路端电压、内电阻、磁场、磁感应强度、安培力、洛伦兹力、磁感线、电磁感应现象、磁通量、感应电动势、自感现象、自感电动势、正弦交流电的周期、频率、瞬时值、最大值、有效值、感抗、容抗、电磁场、电磁波的周期、频率、波长、波速 2、基本规律: 电量平分原理(电荷守恒) 库伦定律(注意条件、比较-两个近距离的带电球体间的电场力) 电场强度的三个表达式及其适用条件(定义式、点电荷电场、匀强电场) 电场力做功的特点及与电势能变化的关系 电容的定义式及平行板电容器的决定式 部分电路欧姆定律(适用条件) 电阻定律 串并联电路的基本特点(总电阻;电流、电压、电功率及其分配关系) 焦耳定律、电功(电功率)三个表达式的适用范围 闭合电路欧姆定律 基本电路的动态分析(串反并同) 电场线(磁感线)的特点 等量同种(异种)电荷连线及中垂线上的场强和电势的分布特点 常见电场(磁场)的电场线(磁感线)形状(点电荷电场、等量同种电荷电场、等量异种电荷电场、点电荷与带电金属板间的电场、匀强电场、条形磁铁、蹄形磁铁、通电直导线、环形电流、通电螺线管) 电源的三个功率(总功率、损耗功率、输出功率;电源输出功率的最大值、效率) 电动机的三个功率(输入功率、损耗功率、输出功率) 电阻的伏安特性曲线、电源的伏安特性曲线(图像及其应用;注意点、线、面、斜率、截

(完整版)高中物理电磁学优质习题整理

例3-1 【新课标全国Ⅰ】关于通电直导线在匀强磁场中所受的安培力,下列说法正确的是()。 A 安培力的方向可以不垂直于直导线 B 安培力的方向总是垂直于磁场的方向 C 安培力的大小与通电直导线和磁场方向的夹角无关 D 将直导线从中点折成直角,安培力的大小一定变为原来的一半 例3-2 图中装置可演示磁场对通电导线的作用.电磁铁上、下两磁极之间某一水平面内固定两条平行金属 导轨,是置于导轨上并与导轨垂直的金属杆。当电磁铁线圈两端、,导轨两端、, 分别接到两个不流电源上时,便在导轨上滑动。下列说法正确的是()。 A若接正极,接负极,接正极,接负极,则向右滑动B若接正极,接负极,接负极, 接正极,则向右滑动 C若接负极,接正极,接正极,接负极,则向左滑动D若接负极,接正极,接负极,接正极,则向左滑动 例3-3 如图所示,磁感应强度大小为的匀强磁场方向斜向右上方,与水平方向所夹 的锐角为45°。将一个34金属圆环置于磁场中,圆环的圆心为,半径为,两条半径 和0 相互垂直,且沿水平方向。当圆环中通以电流I时,圆环受到的安培力大小为()。 A 2 B 32 CD 2 例3-4 如图所示,边长为的等边三角形导体框是由3根电阻均为 3 的导体棒构成, 磁感应强度为的匀强磁场垂直导体框所在平面,导体框两顶点与电动势为,内阻为 的电源用电阻可忽略的导线相连,则整个线框受到的安培力大小为()。 A 0B3 C2 D 例4-1 如图所示,在倾角为的光滑斜面上,垂直斜面放置一根长为、质量为的直导体棒,当通以图示方向电流I时,欲使导体棒静止在斜面上,可加一平行于纸面的匀强磁场,当外加匀强磁场的磁感应强度的方向由垂直斜面向上沿逆时针方向转至水平向左的过程中,下列说法中正确的是()。 A 此过程中磁感应强度逐渐增大 B 此过程中磁感应强度先减小后增大 C 此过程中磁感应强度的最小值为sin D 此过程中磁感应强度的最大值为 tan 例4-2 【上海卷】如图所示,质量为、长度为的直导线用两绝缘细线悬挂于、′, 并处于匀强磁场中,当导线中通以沿正方向的电流,且导线保持静止时悬线与 竖直方向夹角为。磁感应强度方向和大小可能为()。 A 正向,tan B 正向, C 负向,tan D 延悬线向上,sin 例4-3 【新课标全国Ⅰ卷】如图,一长为10 的金属棒用两个完全相同的弹 簧水平地悬挂在匀强磁场中,磁场的磁感应强度大小为0.1 ,方向垂直于纸面向里;弹簧上端固定,下端 与金属棒绝缘。金属棒通过开关与一电动势为12 的电池相连,电路总电阻为2Ω。已知开关断开时两弹簧的伸长量均为0.5 ;闭合开关,系统重新平衡后,两弹簧的伸长量与开关断开时相比均改变了0.3 ,重力加速度大小取10 / 2。判断开关闭合后金属棒所受安培力的方向,并 求出金属棒的质量。 例5-1 如图所示,一个长方形线框静止放在同一平面内直导线附近,线框可以自由移动, 直导线固定不动。当直导线和线框中分别通以图示方向的恒定电流′和时,则线框的受 力情况和运动情况是()。 A 线框四个边受到安培力的作用 B 线框仅左边和右边受到安培力 C 线框向左运动 D 线框向右运动

高中物理复习电磁学知识高考前必看总结

高中物理电磁学公式、规律汇总 稳恒电流 1、电流:(电荷的定向移动形成电流) 定义式: I = Q t 微观式: I = nesv ,(n 为单位体积内的电荷数,v 为自由电荷定向移动的速率。) (说明:将正电荷定向移动的方向规定为电流方向。 在电源外部,电流从正极流向负极;在电源内部,电流从负极流向正极。) 2、电阻: 定义式:R U I = (电阻R 的大小与U 和I 无关) 决定式:R = ρ S L (电阻率ρ只与材料性质和温度有关,与横截面积和长度无关) 电阻串联、并联的等效电阻: 串联:R =R 1+R 2+R 3 +……+R n 并联: 121111n R R R R =++L 4、欧姆定律: (1)部分电路欧姆定律(只适用于纯电阻电路): I U R = (2)闭合电路欧姆定律:I = E R r + ①路端电压: U = E -I r = IR ②有关电源的问题: 总功率: P 总= EI 输出功率: P 总= EI -I 2 r = I R 2 (当R =r 时,P 出取最大值,为2 4E r ) 损耗功率: P I r r =2 电源效率: η= P P 出总 = U E = R R+r

5、电功和电功率: 电功:W =UIt 电功率:P =UI 电热:Q=I Rt 2 热功率:P 热=2I R 对于纯电阻电路: W= Q UIt=2 I Rt U =IR 对于非纯电阻电路: W >Q UIt >I Rt 2 U >IR (欧姆定律不成立) 电场 1、电场的力的性质: 电场强度:(定义式) E = q F (q 为试探电荷,场强的大小与q 无关) 点电荷电场的场强: E = 2 r kQ (Q 为场源电荷) 匀强电场的场强:E = d U (d 为沿场强方向的距离) 2、电场的能的性质: 电势差: U = q W (或 W = U q ) U AB = φA ?φB 电场力做功与电势能变化的关系:W = ? ?E P (说明:建议应用以上公式进行计算时,只代入绝对值,方向或者正负单独判断。) 3、静电平衡 (1) 处于静电平衡状态的导体,内部的场强处处为零。 (2) 处于静电平衡状态的导体是一个等势体,其表面为一个等势面。 (3) 处于静电平衡状态的导体,表面上任何一点的场强方向都跟该点的表面垂直。 (4) 处于静电平衡状态的导体,电荷只能分布在导体的外表面上。 4、电容 定义式:C =Q U =ΔQ ΔU (Q 是指每个极板所带电荷量的绝对值。) 决定式:C =εS 4πkd 注意:①平行板电容器充电后保持两极板与电源相连,U 不变, ②平行板电容器充电后两极板与电源断开, Q 不变

高中【物理】高中物理电磁学所有概念-知识点-公式

高中物理电磁学所有概念-知识点-公式 十、电场 1.两种电荷、电荷守恒定律、元电荷:(e=1.60×10-19C);带电体电荷量等于元电荷的整数倍 2.库仑定律:F=kQ1Q2/r2(在真空中){F:点电荷间的作用力(N),k:静电力常量k=9.0×109N?m2/C2,Q1、Q2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引} 3.电场强度:E=F/q(定义式、计算式){E:电场强度(N/C),是矢量(电场的叠加原理),q:检验电荷的电量(C)} 4.真空点(源)电荷形成的电场E=kQ/r2 {r:源电荷到该位置的距离(m),Q:源电荷的电量} 5.匀强电场的场强E=UAB/d {UAB:AB两点间的电压(V),d:AB两点在场强方向的距离(m)} 6.电场力:F=qE {F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)} 7.电势与电势差:UAB=φA-φB,UAB=WAB/q=-ΔEAB/q 8.电场力做功:WAB=qUAB=Eqd{WAB:带电体由A到B时电场力所做的功(J),q:带电量(C),UAB:电场中A、B两点间的电势差(V)(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m)} 9.电势能:EA=qφA {EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)} 10.电势能的变化ΔEAB=EB-EA {带电体在电场中从A位置到B位置时电势能的差值} 11.电场力做功与电势能变化ΔEAB=-WAB=-qUAB (电势能的增量等于电场力做功的负值) 12.电容C=Q/U(定义式,计算式) {C:电容(F),Q:电量(C),U:电压(两极板电 势差)(V)} 13.平行板电容器的电容C=εS/4πkd(S:两极板正对面积,d:两极板间的垂直距离,ω:介电常数) 常见电容器〔见第二册P111〕 14.带电粒子在电场中的加速(Vo=0):W=ΔEK或qU=mVt2/2,Vt=(2qU/m)1/2 15.带电粒子沿垂直电场方向以速度Vo进入匀强电场时的偏转(不考虑重力作用的情况下) 类平垂直电场方向:匀速直线运动L=Vot(在带等量异种电荷的平行极板中:E =U/d) 抛运动平行电场方向:初速度为零的匀加速直线运动d=at2/2,a=F/m=qE/m 注:

相关主题
文本预览
相关文档 最新文档