当前位置:文档之家› 同步发电机自动准同期并列综述(行业二类)

同步发电机自动准同期并列综述(行业二类)

同步发电机自动准同期并列综述(行业二类)
同步发电机自动准同期并列综述(行业二类)

同步发电机自动准同期并列综述

任治坪

(新疆大学电气工程学院,新疆乌鲁木齐 830008)

摘要:本文介绍的是同步发电机的自动准同期并列基本原理,其中包含了同期并列的基本基本条件,模拟式自动准同期装置的原理,微机型自动准同期装置的原理等内容。

关键字:同期并列整步电压恒定越前时间周期法解析法DFT类算法

Parallel synchronous generator

automatic synchronizing Summary

Ren Zhiping

(Electrical Engineering College,Xinjiang University,Urumqi,Xinjiang 830008)

Abstract:This article describes a synchronous generator automatic synchronizing the basic principles of a tie, which contains the basic fundamental conditions for the same period in parallel, analog principle of automatic synchronizing devices, computer-based automatic synchronizing device principle and so on.

Key word: Juxtaposition;Lockout V oltage;Echizen time constant;Cycle approach;Resolve approach;DFT-like algorithm

0、引言

随着工业社会的不断发展电力行业显得越来越重要,而同期并列是电力系统中经常进行的一项十分重要的操作。不恰当的并列会对发电机和系统产生巨大的冲击损坏电气设备影响电力系统的稳定性造成成本升高甚至造成人员伤亡。本文即针对发电机同期并列的原理及过程进行了阐述。

1、准同期装置的发展

电力系统中的同期并列方式主要有自同期并列和准同期并列两种,其中自同期并列主要用于水轮发电机组,作为处理系统事故的重要措施之一。但是由于自同期的使用不可避免地会出现较大的冲击电流并伴随母线电的下降,因此所使用的场合不多,相反应用最广泛的是准同期并列,我国是世界上微机准同期装置最早研制的国家之一,1982年在安徽陈村水电站成功投入了第一台微机同期装置。八十年代中期又陆续推出了一些类似装置。目前国内有许多科研、制造单位都在进行微机自动准同步装置的研制。准同期装置的发展经历了如下三代

产品:第一代,在二十世纪六十年代以前,我国大多采用“旋转灯光法”进行准同期并列操作14。这是最原始的准同期方法。后来改用指针式电磁绕组的整步表构成的手动准同期装置。这种方法仍然应用在常规的设计中。第二代准同期装置是以许继的zz03和ZZQS为代表的模拟式自动准同期装置。它用分立晶体管元件搭建硬件电路,对同期条件进行检测和处理。ZZQ3和ZZQS自动准同期装置的出现,极大的提高了并网速度和可靠性,但由于模拟式同期装置用模拟电子元件拟合,必然带来诸如导前时间不稳定、阻容电路作为微分电路的条件约束、构成装置元器件参数漂移不稳定等问题。模拟式的同期装置合闸准确度比较低,它无法指示装置的运行状态,不能进行故障自检等,现在已经基本被淘汰。第三代准同期装置是微机式自动准同期装置,微处理器的诞生对自动准同期装置技术指标的提升产生了质的飞跃,深圳市智能设备开发有限公司研制的SID·2系列多功能微机自动准同期装置比较具有代表性。它是我国最早从事微机准同期控制器研究、开发、生产的企业之一,相继推出了QSA 型、SID.I型、SID.2型、SID-2V系列发电机用微机准同期控制器及SID.2T系列线路用微机准同期控制器,具有高精度、高可靠性、人机界面友好、操作方便、接线简单等特点。在提高并网速度和可靠性的同时,大大提高了合闸准确度。

2、准同期并列的条件

发电机准同期并列时的电压向量图如图 1.1所示。发电机组在未投入系统运行之前,它的电压U。与系统电压U的状态量往往不等,须对待并发电机组进行适当的操作,使之符合并列条件后才允许断路器合闸作并网运行。发电机并网的同期条件保证了发电机投入到电网运行时,冲击电流比较小,减小系统对发电机组的冲击;迅速进入同步运行状态,减小对电力系统的扰动。

图1.1

发电机组同期并列的理想条件是:

(1) 并列断路器两侧电源电压的电压幅值相等;

(2) 并列断路器两侧电源电压的频率相等:

(3) 在并网合闸的瞬间,并列断路器两侧电源电压的相角差为零。

此时,并列合闸的冲击电流为零,而且并列后发电机组与电网立即进入同步运行,不会发生任何扰动现象。但实际并列操作时三个条件很难同时满足,而且这样势必延长并网时间,造成大量的空转能耗。其实在实际操作中也没有这样苛刻的必要。因为并列合闸时只要冲击电流较小,不危及电气设备,合闸后发电机组能迅速拉入同步运行,对待并发电机和电网运行的影响较小,不致引起任何不良后果。因此,在实际并列操作中,并列的实际条件允许有一定的偏差。我们称之为准同期条件。发电机实际并网时的准同期条件是:

(1) 并列断路器两侧电源电压的电压差必须在允许的范围内;

(2) 并列断路器两侧电源电压的频率差必须在允许的范围内;

(3)在并网合闸的瞬间,并列断路器两侧电源电压的相角差在允许的范围内。以上三条分别是准同期并列的电压条件、频率条件和相位条件。发电机并网的准同期条件要求待并发电机合闸开关的主触头在相位差为零的瞬间闭合,也就是在脉动电压包络线的过零点闭合。在此情况下,发电机可以平滑地并入电网,而不会有任何冲击。

3、发电机自动准同期并列装置

3.1 同期并列基本原理

自动准同期装置一般由电源部分合闸部分均频部分和均压

部分组成,如图2.1 所示

图 3.1自动准同期的基本构成

系统电压和发电机电压分别经过电压互感器降压后送入自动准同期装置自动同期装置由均频控制单元均压控制单元和合闸控制单元三部分组成均频控制单元自动检测发电机电压与系统电压频率差的方向发出增速或减速信号送到机组调速器的频率给定环节自动调节发电机电压的频率使频率差减小均压控制单元自动检测发电机电压与系统电压的幅值差的方向发出升压或降压信号送到发电机励磁调节器的电压给定环节自动地调节发电机电压的幅值使幅值差减小合闸控制单元自动检测发电机电压与系统电压之间的频率差和幅值差在频率差和幅值差均小于整定值时在相角差σ=0 前一个发电机断路器的合闸时间(恒定越前

时间)发出合闸信号送到发电机断路器的控制回路使断路器合闸。

3.2 模拟式自动准同期装置的原理

在微处理器问世之前自动准同期装置多由分立元件或少量集成块构成的模

拟电路来实现现在电力系统中运行的模拟式自动准同期装置大都利用线性整步

电压通过线性整步电压来获得恒定越前时间而且线性整步电压使频率差的检

测也不受电压幅值的影响可以提高并列装置的控制性能线性整步电压形成电

路一般由降压变压器整形电路相敏电路和滤波电路组成整步电压zb U 和时

间t 成线性关系其值只与发电机电压和系统电压的相角差有关而与它们的幅

值无关

若并列时系统电压瞬时值为

(3.1) 发电机侧瞬时值为

(3.2) 图3.2 是发电机电压和系统电压矢量图在滑差存在的情况下系统电压与

发电机电压之间的相角差d 不为常数而是时间t 的函数即

(3.3)

图 3.2 电压矢量图

Wg 、W s ---发电机和系统角频率θs ---系统电压初相角

随着t的变化δ从0 到2π 做周期性变化。线性整步电压是指其幅值在一周期内

与角差δ 分段按比例变化的电压。在模拟式自动准同期装置中采用的线性整步电压,一般呈三角形波形,如图3.3。图3.3(a)表示相角差由0 ~ 2π变化时,线性整

步电压的波形,其特点如下:当δ在0 ~π区间时,线性整步电压u与相角差δ 成

正比,即u=k δ,其中k 为比例常数,线性整步电压的大小随δ 的增加而增大;当δ=0 时,线性整步电压有最小值,其值为零;当δ=π 时,线性整步电压有最

大值,其值为kπ,是常数。当δ在π~ 2 π区间时,线性整步电压仍与相角差δ成

正比,即u=k(2π-δ),此时线性整步电压的大小随δ的增加而成比例地减少,到δ=2π时,又达到最小值u= 0。因此,线性整步电压幅值的大小与相角差之δ之间是线性关系,而与同期电压U s,U g 的幅值无关。

图3.3(b)将线性整步电压的角度横坐标δ改为时间横坐标t,由于t=δ/ωs

故滑差ws 不同时,线性整步电压虽然最大值一样,但是它们的滑差周期的长短却不同,因此线性整步电压同样也可以用于检查同期条件。

图3.3(c)是本章讨论的自动准同期装置的线性整步电压特性相当于取δ0=π、其特点是当δ在-π~0区间时,u与(δ+π)成正比,即

u=Cδ+A (A=Cπ)(3.4)

所以线性整步电压随δ的增加而加大。当δ=0 时,线性整步电压有最大值A;当δ 在0 ~ π区间时,u值与(π-δ)成正比,即

u= A –Cδ(3.5)

此时线性整步电压的大小随δ的增加而成比例地减小,到δ=2π时达到最

小值,即u=0,由此可见,图3.3(c)的线性整步电压幅值与角差δ 之间也是分段的

线性关系,而与同期电压的幅值无关。

图 3.3 线性整步电压波形图

模拟式准同期大都利用以上所述的线性整步电压来检查准同期条件是否满

足,其中包括频差检查、压差检查和恒定越前时间的形成等,下面分别讨论。

3.2.1线性整步电压的形成

不同的自动准同期装置中形成线性整步电压的电路不尽相同,但其工作原理

却大同小异,其形成电路示意图如图3.4(a)所示。

发电机电压和系统和系统电压经过整形电路变成方波U1 、U2 ,方波信号经过

相敏电路,由于发电机电压和系统电压的频率不同,因此形成了一组宽度由小到

大,又逐渐减小的方波U3,最后,U3经过滤波电路就形成了如图3.3 (a)的整步电

压波形。波形形成过程如图3.4(b)所示。

3.2.2恒定越前时间的形成

图 3.5 电路是某同期装置恒定越前时间形成电路,线性整步电压经过由R1、C1组成的比例-微分电路之后,送入由三极管BG1、BG2组成的电平检测器与电平检测器的翻转电平(BG2 的基极电平)进行比较,由BG3 集电极输出恒定越前时间信号[1]。图3.6 是恒定越前时间形成波形图。图中u1、u2分别为电流IR 和IC在R2 上形成的电压。从图中可以看出,

对应于不同滑差的两个线性整步电压产生的越前时间t1=t2。

3.4 (a)整步电压波形形成电路示意图

3.4 (b) 整步电压形成电路波形图

图 3.5 恒定越前时间形成电路

图 3.6 利用线性整步电压获得导前时间波形图

3.2.3频差检测原理

作为准同期条件之一的频率差检测的原理可以用图3.7 说明。首先选定一个角

度δ,令

(3.4)

式中d sh-允许滑差角频率,是自动准同期装置的整定值;

th-断路器合闸时间,对于选定的断路器及其合闸回路,th是已知的;

t1-自动准同期装置恒定超前时间,t1=th

对于确定的发电机及其断路器,式(3.6)中的δ是一个确定的已知值。然后,

检测发电机电压以滑差角频率w s相对系统电压转动时走过角度δ 所用的时间,走过δ所用的时间长。则ws小;时间短,则w s 大,特此用数学式表述,有

(3.5)

式中w s -----实际滑差角频率:

tδ-----以速度走过角度δ所用的时间。

根据上式有:

(3.6)

此式说明如果tδ=t1,则ws=w sh ;如果tδ>t1,则wswsh

这样,就将检测发电机电压和系统电压之间滑差角频率w s 大于、小于或等于整定值wsh 的问题,变成了比较走过给定角度δ 所用时间tδ小于、大于或等于恒定越前时间t1的问题了[2, 3]。

图 3.7 频差检测原理图

3.3微机型自动准同期装置的原理

3.3.1徽机型自动准同期装置的构成原理

微机型自动准同期装置克服了模拟式准同期装置的局限性,其硬件简单、编程方便,运行可靠,技术上日趋成熟,成为当前发展的方向。微机型自动准同期装置具有高速运算和逻辑判断能力,可以对压差、频差、相角差进行精确的运算,并能考虑到相角差可能具有加速运动问题,按照相角差当时的变化规律,捕捉最佳的合闸时机,实现快速无冲击并网。微机型自动准同期装置形式较多,但其功能及装置原理是相似的。

微机型自动准同期装置的微机系统由微处理器、存储器及相应的输入/输出接口电路组成。输入/输出接口电路为可编程并行接口,用以采集并列点选择信号、远方复位信号、断路器辅助节点信号等开关量,并控制输出继电器实现调压、调速、合闸、报警等功能。

1.频差、相角差鉴别电路

频差、相角差鉴别电路用以从外界输入装置的两侧电压互感器二次电压中提取与频率和相角差有关的量,进而实现对准同期三要素中频差及相角差的检查,以确定是否符合同期条件。来自并列点断路器两侧TVs及TVG的二次电压经过隔离电路后通过相敏电路将正弦波转化

为相同频率的矩形波,通过对矩形波电压的过零检测,即可得出待并发电机侧及运行系统侧的频率fs、fc的信息,进而就不难获得频差fD、角频率差WD。这些值可以在每一个工频信号周期获得,在随

机存储器中始终保留一个时段的这些值。完全可以通过计算已知时段△t、始末

ωD的差值△ωD得到ωD

的一阶导数,即。这样就为计算理想导前合闸角创造了条件。

(3.7)

式中--导前时间,即断路器合闸回路动作时间。

2.压差鉴别电路

压差鉴别电路用以从外部输入装置的TVs及TVG两电压互感器二次侧电压

中提取电压有效值,进而实现对准同期三要素中压差的检查,以确定是否符合同

期条件。如不符合同期条件,则根据压差的大小和极性进行均压控制。

3.输入电路

自动准同期装置的输入信号除并列点两侧的TV二次电压外还要输入如下开

关量信号:

①并列点选择信号。自动准同期装置不论是单机型还是多机型,其参数存

储器中都要预先存放好各台发电机的同期参数整定值,例如导前时间、允许频差、允许压差、均频控制系数、均压控制系数等。在确定即将执行并网的并列点后,

首先要通过控制台上每个并列点的同期开关(或由上位机控制的相应继电器)从

同期装置的并列点选择输入端送入一个开关量信号,这样同期装置接入后(或复

位后)即会调出相应的整定值,进行并网条件检测。装置可供多台发电机并网共用,但每次只能为一台发电机服务。如同时给同期装置的并列点选择输入端送上

一个以上的开关量信号时,装置将会给出并列点大于或等于2的出错信息。

②断路器辅助节点信号。并列点断路器辅助节点是用来实时测量断路器合

闸时间(含中间继电器动作时间)的。同期装置的导前时间整定值越是接近断路器

的实际合闸时间,并网时的相角差就越小。这也是为什么要实测断路器合闸时间

的理由。在同期装置发出合闸命令的同时,即启动内部的一个毫秒计时器,直到

装置回收到断路器辅助节点的变位信号后停止计时,这个计时值即为断路器合闸

时间。应该指出断路器主触头的动作不一定和辅助节点同步,因此这种测量合闸

时间的方法是存在误差的。弥补的方法是由录波器在并网时通过记录脉振电压及

同期装置合闸继电器节点动作的波形图,得到断路器精确合闸时间,与由辅助节

点测出的合闸时间的差值在软件上进行修正。也可通过同期瞬间并列点两侧电压

的突变这一信息精确计算出断路器合闸时间。

③远方复位信号。“复位”是使微机从头再执行程序的一项操作,同期装

置在自检或工作过程中如果出现硬件、软件问题或受干扰都可能导致出错或死

机。此时可通过按一下装置面板上的复位按钮或设在控制台上的远方复位按钮使

装置复位,复位后装置可能又正常工作了,也可能仍旧显示出错或死机。前者说

明是装置受短暂的千扰,而本身无故障,后者则是装置有故障应检查。

④面板的按键。同期装置面板上装有若千按键,这些按键也是开关量形式

的输入量,与前述输入开关量不同的不是由装置对外的插座输入,而是由装置面

板直接输入到并行输入接口电路。

经典之-发电机同期并列原理详解

第六章同期系统 将一台单独运行的发电机投入到运行中的电力系统参加并列运行的操作,称为发电机的并列操作。同步发电机的并列操作,必须按照准同期方法或自同期方法进行。否则,盲目地将发电机并入系统,将会出现冲击电流,引起系统振荡,甚至会发生事故、造成设备损坏。 准同期并列操作,就是将待并发电机升至额定转速和额定电压后,满足以下四项准同期条件时,操作同期点断路器合闸,使发电机并网。 (!)发电机电压相序与系统电压相序相同; (")发电机电压与并列点系统电压相等; (#)发电机的频率与系统的频率基本相等; ($)合闸瞬间发电机电压相位与系统电压相位相同。自同期并列操作,就是将发电机升速至额定转速后,在未加励磁的情况下合 闸,将发电机并入系统,随即供给励磁电流,由系统将发电机拉入同步。自同期法的优点:!合闸迅速,自同期一般只需要几分钟就能完成,在系统 急需增加功率的事故情况下,对系统稳定具有特别重要的意义;"操作简便,易于实现操作自动化。因为在发电机未加励磁电流时合闸并网,不存在准同期条件的限制,不存在准同期法可能出现的问题;#在系统电压和频率因故降低至不能使用难同期法并列操作时,自同期方法将发电机投入系统提供了可能性。 自同期法的缺点是:未加励磁的发电机合闸并入系统瞬间,相当一个大容量的电感线圈接入系统,必然会产生冲击电流,导致局部系统电压瞬间下降。一般自同期法使用于水轮发电机及发电机—变压器组接线方式的汽轮发电机。在采用自同期法实施并列前,应经计算核对。 发电厂发电机的并列操作断路器,称为同期点。除了发电机的出口断路器之外在一次电路中,凡有可能与发电机主回路串联后与系统(或另一电源)之间构成唯一断路点的断路器,均可作为同期点。例如,发电机—变压器组的高压侧断路器,发电机—三绕组变压器组的各侧断路器,高压母线联络断路器及旁路断

发电机非同期并列的危害及预防正式样本

文件编号:TP-AR-L6733 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编制:_______________ 审核:_______________ 单位:_______________ 发电机非同期并列的危 害及预防正式样本

发电机非同期并列的危害及预防正 式样本 使用注意:该解决方案资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 摘要:在发电厂的生产过程当中,发电机组与系 统的并列是一项非常重要的操作。由于各种原因在并 列过程中发生事故的现象时有发生,这种事故对电力 生产和电气设备造成的损失和损害都是非常严重的, 因此我们有必要对发电机组在并列过程中所发生的故 障,进行认真的分析提高认识,找出发生故障的原因 并加以解决,以利于以后的安全生产。 同期系统是小型水电站电气操作回路的重要组成 部分,对于发电机组安全并网起着及其重要的作用。 准同期是目前普遍采用的一种并网方式。同期装置对

待并两例电源电压的相序、频率、相位等进行准确的检测和判断,当待并两侧电源电压各参数基本相同时,自动或手动完成并网操作。但是,往往因系统接线有误,运行人员误操作,会造成非同期并列的严重后果。 所谓非同期并列是指凡不符合准同期条件下进行并列,就是说将带励磁机发电机并入电网。非同期并网是发电厂电气操作的恶性事故之一。 发电机并入电网分为准同期并列和自同期并列。准同期并列就是在并列操作前,调节发电机励磁,当发电机的电压相位,频率,幅值分别与并列点系统的电压,相位,频率,幅值相接近时,将发电机断路器合闸,完成并列操作。自同期并列就是先将励磁绕组经过一个电阻闭路,在不加励磁的情况下,当待并发电机频率与系统频率接近时,合上发电机断路器,紧

1某发电机采用自动准同期并列方式与系统进行并列,系统的参数为已

计算分析题 =================================================== 1、某发电机采用自动准同期并列方式与系统进行并列,系统的参数为已归算到以发电机额定容量为基准的标么值。一次系统的参数为:发电机交轴次暂态电抗''q X 为0.128;系统等值机组的交轴次暂态电抗与线路之和为0.22;断路器合闸时间为s t QF 4.0=,它的最大可能误差时间为QF t 的%20±;自动并列装置最大误差时间为s 05.0±;待并发电机允许的冲击电流值为GE h I i 2''max .=。求允许合闸相角差ey δ、允许滑差sy ω与相应的脉动电压周期。 2、同步发电机等值电路如下,试绘制其矢量图。 3、在某电力系统中,与频率无关的负荷占25%,与频率一次方成比例的负荷占40%,与频率二次方成比例的负荷占15%,与频率三次方成比例的负荷占20%。当系统频率由50Hz 下降到48Hz 时,系统KL*值为多少? 4、某电力系统用户总功率为Pfhe=2500MW ,系统最大功率缺额Pqe=800MW ,负荷调节效应系数KL*=1.8。自动减负荷装置接入后,期望恢复频率为ffh=48 Hz 。试计算: 5、AB 两电力系统由联络线相连。已知A 系统Hz MW K GA /800=,Hz MW K LA /50=, MW P LA 100=?;B 系统Hz MW K Hz MW K LB G B /40,/700==MW P LB 50=?。求在下列情 况下系统频率的变化量△f 和联络线功率的变化量△P ab 。 (1)两系统所有机组都参加一次调频; (2)A 系统机组参加一次调频,而B 系统机组不参加一次调频; (1) 残留的频率偏差标幺值Δf fh* (2) 接入减负荷装置的总功率P JH (3) 在图中标出P fhe 及P qe 位置和大小 I G X d

同步发电机准同期并列实验步骤

同步发电机准同期并列实验 一、实验目的 1.加深理解同步发电机准同期并列原理,掌握准同期并列条件; 2.掌握微机准同期控制器及模拟式综合整步表的使用方法; 3.熟悉同步发电机准同期并列过程; 4.观察相关参数。 二、实验项目和方法 (一)机组启动与建压 1.检查调速器上“模拟调节”电位器指针是否指在0位置,如不在则应调到0位置; 2.合上操作电源开关,检查实验台上各开关状态:各开关信号灯应绿灯亮、红灯熄。调速器面板上数码管显示发电机频率,调速器上“微机正常”灯和“电源正常”灯亮; 3.按调速器上的“微机方式自动/手动”按钮使“微机自动”灯亮; 4.励磁调节器选择它励、恒UF运行方式,合上励磁开关; 5.把实验台上“同期方式”开关置“断开”位置; 6.合上系统电压开关和线路开关QF1,QF3,检查系统电压接近额定值380V; 7.合上原动机开关,按“停机/开机”按钮使“开机”灯亮,调速器将自动启动电动机到额定转速; 8.当机组转速升到95%以上时,微机励磁调节器自动将发电机电压建压到与系统电压相等。 (二)手动准同期 将“同期方式”转换开关置“手动”位置。在这种情况下,要满足并列条件,需要手动调节发电机电压、频率,直至电压差、频差在允许范围内,相角差在零度前某一合适位置时,手动操作合闸按钮进行合闸。 观察微机准同期控制器上显示的发电机电压和系统电压,相应操作微机励磁调节器上的增磁或减磁按钮进行调压,直至“压差闭锁”灯熄灭。 观察微机准同期控制器上显示的发电机频率和系统频率,相应操作微机调速器上的增速或减速按钮进行调速,直至“频差闭锁”灯熄灭。 此时表示压差、频差均满足条件,观察整步表上旋转灯位置,当旋转至0o位置前某一合适时刻时,即可合闸。观察并记录合闸时的冲击电流。 具体实验步骤如下: (1)检查调速器上“模拟调节”电位器指针是否指在0位置,如不在则应调到0位置; (2)合上操作电源开关,检查实验台上各开关状态:各开关信号灯应绿灯亮、红灯熄。调速器面板上数码管显示发电机频率,调速器上“微机正常”灯和“电源正常”灯亮; (3)按调速器上的“模拟方式”按钮按下,使“模拟方式”灯亮。合上原动机开关,按下“停机/开机”按钮,开机指示灯亮;

发电机的启动、并列和解列

一、发电机与系与统并列: 1、接到值长令与汽机值班员联系。 2、检查发电机出口开关在“备用”位置。 3、插上发电机测量PT 小车的二次插头。 4、将发电机测量PT 小车由“试验”摇至“工作”位置; 5、插上发电机测量PT 小车的二次小开关及控制保险; 6、插上发电机保护PT 小车的二次插头; 7、将发电机保护PT 小车由“试验”摇至“工作”位置; 8、插上发电机保护PT 小车的二次小开关及控制保险; 9、查发电机出口601 开关在“分闸”位置; 10、插上发电机出口601 开关的二次插头; 11、将发电机出口601 开关由“试验”摇至“工作”位置; 12、插上发电机出口601 开关的二次小开关及控制保险; 13、查发电机出口联跳灭磁开关的保护压板在“退出”位置; 14、查发电机失磁保护压板在“退出”位置; 13、待发电机转速升至额定值(3000 转/分)后,合上灭磁开关MK。10、检查励磁输出下限指示灯亮,选择开关在手动位置,按下启磁按钮。11、手动调节可控硅输出,缓慢升高发电机定子电压至额定值,在升压过程中应注意监视发电机定子电压上升平稳并与励磁电流增加值对应,且三相静子电流指示均为零。12、将同期控制方式开关扭至“就地”位置。13、将发电机同期开关扭至“投入”位置。14、将同步检查开关扭至“允许”位置。15、将同期方式开关扭至“自动”位置。16、调整发电机频率、电压与系统的一致。17、将发电机主开关扭至闪光位置。18、待同步表指针按顺时针方向缓慢(3 转/分)接近红线约5?左右,合上发电机主开关(此时应监视发电机三相静子电流表指示基本平衡,确证开关已合上)。19、通知汽轮机发电机已并列。 20、按值长命令接待有、无功负荷。21、断开发电机同期开关。22、断开发电机准同期开关。23、断开发电机同期闭锁开关。24、投入励磁柜内主开关联动灭磁开关压板和失磁及空载过压压板。25、投入失磁保护出口压板。26、操作完毕,汇报值长。27、发电机并列操作结束后,切换发电机励磁为自动(选择开关扭至自动位置)。二、发电机解列操操作:1、得值长令与汽机值班员联系。2、断开励磁柜内主开关联动灭磁开关压板和失磁及空载过压压板。3、断开发电机失磁保护出口压板。4、将发电机励磁由“自动”切换为“手动”运行。5、降低发电机有、无功负荷均为零,发电机定子电流为零。6、断开发电机主开关(此时应注意发电机三相静子电流表指示均为零,确证发电机主开关已断开)7、降低“手动”输出使发电机定子电压指示为零,至感应调压器输出下限指示灯亮。8、断开灭磁开关。9、通知机、炉发电机已解列。10、将#1 发电机出口601 开关由“工作”摇至“试验”位置。11、操作完毕,汇报值长。

发电机准同期并列

准同期并列 将同步发电机并入电力系统的合闸操作通常采用准同期并列方式。准同期并列要求在合闸前通过调整待并机组的电压和转速,当满足电压幅值和频率条件后,根据“恒定越前时间原理”,由运行操作人员手动或由准同期控制器自动选择合适时机发出合闸命令,这种并列操作的合闸冲击电流一般很小,并且机组投入电力系统后能被迅速拉人同步。根据并列操作的自动化程度不同,又分为手动准同期、半自动准同期和全自动准同期三种方式。 正弦整步电压是不同频率的两正弦电压之差,其幅值作周期性的正弦规律变化。它能反映两个待并系统间的同步情况,如频率差、相角差以及电压幅值差。线性整步电压反映的是不同频率的两方波电压间相角差的变化规律,其波形为三角波。它能反映两个待并系统间的频率差和相角差,并且不受电压幅值差的影响,因此得到广泛应用。 手动准同期并列,应在正弦整步电压的最低点(相同点)时合闸,考虑到断路器的固有合闸时间,实际发出合闸命令的时刻应提前一个相应的时间或角度。 自动准同期并列,通常采用恒定越前时间原理工作,这个越前时间可按断路器的合闲时间整定。准同期控制器根据给定的允许任差和允许频差,不断地检查准同期条件是否满足,在不满足要求时闭锁合闸并且发出均压均频控制脉冲。当所有条件均满足时,在整定的越前时刻送出合闸脉冲。 自同期并列 自同期也是一种并列操作过程,但它不同于准同期其操作过程是这样的:先将水轮 发电机组转动起来,当转速上升至稍低于机组的额定转速时,就将断路器闭合,这时电力 系统给发电机定子绕组送进三相冲击电流形成旋转磁超然后励磁系统再给发电机转子 绕组送进直流电流产生磁超使电力系统将发电机拉入同步运行状态 在并列过程中,发电机因有冲击电流而受到一定的损伤是自同期的缺点优点是并 列过程比较迅速,特别是在电力系统中发生事故或系统电压、频率发生剧烈波动时,采用 准同期费时间多而且很困难,甚至不可能实现并列,但采用自同期方式就有可能较迅速地 实现并列

发电机同期并网试验方案及措施

宁夏天元锰业余 热发电项目 西北电力建设一公司调试所 调试措施 NXTY 共 9页 发行时间 二〇一四年十月 宁夏天元锰业余热1#发电机组 准同期并网试验方案及措施

宁夏天元锰业余热1#发电机组 电气调试方案 名称单位签名日期批准建设单位 审核施工单位监理单位调试单位 编写调试单位 措施名称:宁夏天元锰业余热1#发电机准同期并网试验方案及措施 措施编号:NXTYMY201410措施日期:2014年10月 保管年限:长期密级:一般 试验负责人:刘迎锋 试验地点:宁夏天元锰业余热发电车间 参加试验人员:刘迎锋、曾志文 参加试验单位:陕西电建一公司调试所(以下简称调试单位)、山东恒信建设监理公司(以下简称监理单位)、山东兴润建设有限公司(以下简称安装单位);宁夏天元锰业余热发电电气车间(以下简称生产单位)、设备厂家等

试验日期:2014年10月 目录 1.系统概述 (4) 2.主要设备参数 (5) 3.编制依据与执行的标准 (6) 4.试验仪器 (6) 5. 试验应具备的条件 (6) 6. 发电机短路特性试验 (7) 组织机构及人员分工 (8) 8.安全技术措施 (9)

1、系统概述 1.1系统概述: 1.1.1宁夏天元锰业余热发电工程,设计规模山东济南锅炉厂生产75 T/h循环流化床锅炉,配青岛汽轮机厂抽汽式12MW汽轮机和东方电气集团东风电机有限公司15MW发电机组。锅炉以煤/煤矸石燃烧,由山东省环能设计院有限公司设计。由山东兴润建设有限公司负责安装,西北电力有限公司调试所负责调试。 1.1.2宁夏天元锰业3×15MW发电工程,其发电机出口电压为10.5KV,发电机出口经1#主变高压侧送至110KVⅠ段/110KVⅡ段母线;与枣锰Ⅰ回联络线并入系统; 1.1.3 110KV系统设计为双母分段,Ⅰ母与Ⅱ母互为备用,Ⅰ母与Ⅱ母之间装设有母

第二章--《同步发电机自动并列》练习参考答案

第二章《同步发电机的自动并列》练习参考答案 二、单项选择题 1.准同步并列的方法是,发电机并列合闸前( C),当( )时,将发电机断路器合闸,完成并列操作。 A.未加励磁,发电机电压与并列点系统侧电压的幅值、频率、相位接近相等;B.未加励磁,发电机转速接近同步转速; C.已加励磁,发电机电压与并列点系统侧电压的幅值、频率、相位接近相等;D.巳加励磁,发电机转速接近同步转速。 2.自同步并列操作的合闸条件是( B )。 A.发电机已加励磁、接近同步转速; B.发电机未加励磁、接近同步转速; C.发电机已加励磁、任意转速; D.发电机未加励磁、任意转速。 3.滑差是( B)之差。 A.发电机电压频率与系统电压频率; B.发电机电压角频率与系统电压角频率; C.发电机电压周期与系统电压周期; D.发电机转速与系统等值转速。 4.发电机并列合闸时,如果测到滑差周期是10s,说明此时( D)。 A.发电机与系统之间的滑差是10rad; B.发电机与系统之间的频差是10Hz; C.发电机与系统之间的滑差是0.1rad; D.发电机与系统之间的频差是0.1Hz。 5.发电机准同步并列后立即带上了无功负荷(向系统发出无功功率),说明合闸瞬间发电机与系统之间存在( A)。 A.电压幅值差,且发电机电压高于系统电压; B.电压幅值差,且发电机电压低于系统电压; C.电压相位差.且发电机电压超前系统电压; D.电压相位差,且发电机电压滞后系统电压。 6.发电机并列后立即从系统吸收有功功率,说明合闸瞬间发电机与系统之间存在( D)。 A.电压幅值差,且发电机电压高于系统电压; B.电压幅值差,且发电机电压低于系统电压; C.电压相位差,且发电机电压超前系统电压; D.电压相位差,且发电机电压滞后系统电压。 7.发电机准同步并列后,经过了一定时间的振荡后才进入同步状态运行,这是由于合闸瞬间( B)造成的。 A.发电机与系统之间存在电压幅值差; B.发电机与系统之间存在频率差; C.发电机与系统之间存在电压相位差; D.发电机的冲击电流超过了允许值。 8.正弦整步电压( D)。

经典之-发电机同期并列原理详解

第六章同期系统 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 第六章同期系统 将一台单独运行的发电机投入到运行中的电力系统参加并列运行的操作,称为发电机的并列操作。同步发电机的并列操作,必须按照准同期方法或自同期方法进行。否则,盲目地将发电机并入系统,将会出现冲击电流,引起系统振荡,甚至会发生事故、造成设备损坏。 准同期并列操作,就是将待并发电机升至额定转速和额定电压后,满足以下四项准同期条件时,操作同期点断路器合闸,使发电机并网。 (!)发电机电压相序与系统电压相序相同; (")发电机电压与并列点系统电压相等; (#)发电机的频率与系统的频率基本相等; ($)合闸瞬间发电机电压相位与系统电压相位相同。自同期并列操作,就是将发电机升速至额定转速后,在未加励磁的情况下合 闸,将发电机并入系统,随即供给励磁电流,由系统将发电机拉入同步。自同期法的优点:!合闸迅速,自同期一般只需要几分钟就能完成,在系统 急需增加功率的事故情况下,对系统稳定具有特别重要的意义;"操作简便,易于实现操作自动化。因为在发电机未加励磁电流时合闸并网,不存在准同期条件的限制,不存在准同期法可能出现的问题;#在系统电压和频率因故降低至不能使用难同期法并列操作时,自同期方法将发电机投入系统提供了可能性。 自同期法的缺点是:未加励磁的发电机合闸并入系统瞬间,相当一个大容量的电感线圈接入系统,必然会产生冲击电流,导致局部系统电压瞬间下降。一般自同期法使用于水轮发电机及发电机—变压器组接线方式的汽轮发电机。在采用自同期法实施并列前,应经计算核对。 发电厂发电机的并列操作断路器,称为同期点。除了发电机的出口断路器之外在一次电路中,凡有可能与发电机主回路串联后与系统(或另一电源)之间构成唯一断路点的断路器,均可作为同期点。例如,发电机—变压器组的高压侧断路器,发电机—三绕组变压器组的各侧断路器,高压母线联络断路器及旁路断

第二章 《同步发电机的自动并列》练习参考答案

第二章 《同步发电机的自动并列》练习参考答案 一、名词解释 1.并列操作 答:将发电机并入电力系统参加并列运行的操作。 2.准同步并列 答:发电机在并列合闸前已加励磁,当发电机电压的幅值、频率、相位分别与并列点系统侧电压的幅值、频率、相位接近相等时,将发电机断路器合闸,完成并列操作。 3.自同步并列 答:将未加励磁、接近同步转速的发电机投入系统,随后给发电机加上励磁,在原动转矩、同步力矩作用下将发电机拉人同步,完成并列操作。 4.同步点 答:可以进行并列操作的断路器。 5.滑差、滑差频率、滑差周期 答:滑差:并列断路器两侧发电机电压电角速度与系统电压电角速度之差,用S ω表示,即X G s ωωω-=; 滑差频率:并列断路器两侧发电机电压频率与系统电压频率之差,用f s 表示,即X G s f f f -=; 滑差周期:并列断路器两侧发电机电压与系统电压之间相角差变化3600所用的时间。 6.越前时间、恒定越前时间、恒定越前时间自动准同步装置 答:越前时间:相对于?=0δ提前(越前)的时间; 恒定越前时间:相对于?=0δ提前(越前)的时间,且这一时间不随频差(或滑差)、压差变化;

恒定越前时间自动准同步装置:由恒定越前时间脉冲发出合闸脉冲命令的自动准同步装置。 7.越前相角、恒定越前相角、恒定越前相角式自动准同步装置 答:越前相角:相对于?=0δ提前(越前)的相角; 恒定越前相角:相对于?=0δ提前(越前)的相角,且这一相角不随频差(或滑差)、压差变化; 恒定越前相角自动准同步装置:由恒定越前相角脉冲发出合闸脉冲命令的自动准同步装置。 8.整步电压、正弦整步电压、线性整步电压 答:整步电压:包含同步条件信息的电压; 正弦整步电压:与时间具有正弦函数关系的整步电压,表达式 2t sin 2s m zb ωU u = 线性整步电压:与时间具有线性函数关系的整步电压,表达式 ??? ????<

发电机升压并列和解列操作

发电机升压并列和解列操作 一、发电机与系与统并列: 1、接到值长令与汽机值班员联系。 2、检查发电机出口开关在“备用”位臵。 3、插上发电机测量PT小车的二次插头。 4、将发电机测量PT小车由“试验”摇至“工作”位臵; 5、插上发电机测量PT小车的二次小开关及控制保险; 6、插上发电机保护PT小车的二次插头; 7、将发电机保护PT小车由“试验”摇至“工作”位臵; 8、插上发电机保护PT小车的二次小开关及控制保险; 9、查发电机出口601开关在“分闸”位臵; 10、插上发电机出口601开关的二次插头; 11、将发电机出口601开关由“试验”摇至“工作”位臵; 12、插上发电机出口601开关的二次小开关及控制保险; 13、查发电机出口联跳灭磁开关的保护压板在“退出”位臵; 14、查发电机失磁保护压板在“退出”位臵; 13、待发电机转速升至额定值(3000转/分)后,合上灭磁开关MK。 10、检查励磁输出下限指示灯亮,选择开关在手动位臵,按下启磁 按钮。 11、手动调节可控硅输出,缓慢升高发电机定子电压至额定值,在 升压过程中应注意监视发电机定子电压上升平稳并与励磁电流增加值对应,且三相静子电流指示均为零。

12、将同期控制方式开关扭至“就地”位臵。 13、将发电机同期开关扭至“投入”位臵。 14、将同步检查开关扭至“允许”位臵。 15、将同期方式开关扭至“自动”位臵。 16、调整发电机频率、电压与系统的一致。 17、将发电机主开关扭至闪光位臵。 18、待同步表指针按顺时针方向缓慢(3转/分)接近红线约5o左 右,合上发电机主开关(此时应监视发电机三相静子电流表指示基本平衡,确证开关已合上)。 19、通知汽轮机发电机已并列。 20、按值长命令接待有、无功负荷。 21、断开发电机同期开关。 22、断开发电机准同期开关。 23、断开发电机同期闭锁开关。 24、投入励磁柜内主开关联动灭磁开关压板和失磁及空载过压压 板。 25、投入失磁保护出口压板。 26、操作完毕,汇报值长。 27、发电机并列操作结束后,切换发电机励磁为自动(选择开关扭 至自动位臵)。 二、发电机解列操操作:

发电机自动准同期并列不成功原因的初步分析详细版

文件编号:GD/FS-7614 A Specific Measure To Solve A Certain Problem, The Process Includes Determining The Problem Object And Influence Scope, Analyzing The Problem, Cost Planning, And Finally Implementing. 编辑:_________________ 单位:_________________ 日期:_________________ (解决方案范本系列) 发电机自动准同期并列不成功原因的初步分析详细 版

发电机自动准同期并列不成功原因 的初步分析详细版 提示语:本解决方案文件适合使用于对某一问题,或行业提出的一个解决问题的具体措施,过程包含确定问题对象和影响范围,分析问题,提出解决问题的办法和建议,成本规划和可行性分析,最后执行。,文档所展示内容即为所得,可在下载完成后直接进行编辑。 8月24日3:13运行人员准备发电机采用D-AVR自动升压,发电机自动准同期并列,当操作执行第26步在DCS上将“ASS START/STOP”按钮选择在“ON”位置和第27步在DCS上将“CONFIRM”按钮选择“ON”位置,即将发电机自动准同期装置投入后,自动准同期装置开始自动检同期,经过一段时间后,自动准同期装置发出告警信号,装置闭锁,发电机自动准同期并网失败。 5:10发电机采用D-AVR自动升压,发电机手动准同期并列成功。 原因初步分析

发电机自动准同期装置发出的告警信号为“滑差太小”。根据发电机自动准同期装置内部特性,当发电机与系统之间滑差<0.02Hz、时间大于30秒后,装置将发出闭锁,本次同期并网失败告警。 根据特性,当发电机的频率与系统的频率不一致时,装置将自动向DEH发出增速或减速信号,发出的信号脉冲宽度与发电机与系统频差大小相反,即发电机与系统频差越大,增、减速信号脉冲宽度越宽,相反,发电机与系统频差越小,增、减速信号脉冲宽度越小。而DEH接受的最小信号宽度为200ms,即当发电机与系统频差小于一定值以后,自动准同期装置向DEH发出的最小信号宽度将小于DEH接受的最小信号宽度,使汽轮机不能增、减转速,最终使发电机自动同期失败。 防范措施

同步发电机准同期并网

实践教案目标 1?加深理解同步发电机准同期并列原理,掌握准同期并列条件; 2?掌握微机准同期控制器及模拟式综合整步表的使用方法; 3?熟悉同步发电机准同期并列过程; 4?观察、分析有关波形。 实践教案内容 同步发电机准同期并列实验 [实践项目1]手动准同期实验 1?按准同期并列条件合闸 将“同期方式”转换开关置“手动”位置。在这种情况下,要满足并列条件,需要手动调节发电机电压、频率,直至电压差、频差在允许范围内,相角差在零度前某一合适位置时,手动操作合闸按钮进行合闸。 观察微机准同期控制器上显示的发电机频率和系统频率,相应操作微机调速器上的增速或减速按钮进行调速,直至“增速减速”灯熄灭。 此时表示压差、频差均满足条件,观察整步表上旋转灯位置,当旋转至0。位置前某一合适时刻时, 即可合闸。观察并记录合闸时的冲击电流。 2?偏离准同期并列条件合闸 实验分别在单独一种并列条件不满足的情况下合闸,记录功率表冲击情况: <1 )电压差相角差条件满足,频率差不满足,在fF>fX和fFVX和VF

同步发电机自动准同期并列综述(行业二类)

同步发电机自动准同期并列综述 任治坪 (新疆大学电气工程学院,新疆乌鲁木齐 830008) 摘要:本文介绍的是同步发电机的自动准同期并列基本原理,其中包含了同期并列的基本基本条件,模拟式自动准同期装置的原理,微机型自动准同期装置的原理等内容。 关键字:同期并列整步电压恒定越前时间周期法解析法DFT类算法 Parallel synchronous generator automatic synchronizing Summary Ren Zhiping (Electrical Engineering College,Xinjiang University,Urumqi,Xinjiang 830008) Abstract:This article describes a synchronous generator automatic synchronizing the basic principles of a tie, which contains the basic fundamental conditions for the same period in parallel, analog principle of automatic synchronizing devices, computer-based automatic synchronizing device principle and so on. Key word: Juxtaposition;Lockout V oltage;Echizen time constant;Cycle approach;Resolve approach;DFT-like algorithm 0、引言 随着工业社会的不断发展电力行业显得越来越重要,而同期并列是电力系统中经常进行的一项十分重要的操作。不恰当的并列会对发电机和系统产生巨大的冲击损坏电气设备影响电力系统的稳定性造成成本升高甚至造成人员伤亡。本文即针对发电机同期并列的原理及过程进行了阐述。 1、准同期装置的发展 电力系统中的同期并列方式主要有自同期并列和准同期并列两种,其中自同期并列主要用于水轮发电机组,作为处理系统事故的重要措施之一。但是由于自同期的使用不可避免地会出现较大的冲击电流并伴随母线电的下降,因此所使用的场合不多,相反应用最广泛的是准同期并列,我国是世界上微机准同期装置最早研制的国家之一,1982年在安徽陈村水电站成功投入了第一台微机同期装置。八十年代中期又陆续推出了一些类似装置。目前国内有许多科研、制造单位都在进行微机自动准同步装置的研制。准同期装置的发展经历了如下三代

发电机的并列运行

发电机的并列运行 ??一、发电机并列运行的条件 ?1.待并发电机的电压有效值Uf与电网的电压有效值U相等或接近相等,允许相差±5%的额定电压值。 列。 ?2./秒以内。 ??? 时, ???3.待并发电机电压的相位与电网电压的相位相同,即相角相同。 ???在发电机并列时,如果两个电压的相位不一致,由此而产生的冲击电流可能达到额定电流的20~30倍,所以是非常危险的。冲击电流可分解为有功分量和无功分量,有功电流的冲击不仅要加重汽轮机的负担,还有可能使汽轮机受到很大的机械应力,这样非但不能把待并发电机拉入同步,而且可能使其它并列运行的发电机失去同步。

在采用准同期并列时,发电机的冲击电流很小。所以,一般应将相角差控制在10o 以内,此时的冲击电流约为发电机额定电流的0.5倍。 ???4.待并发电机电压的相序必须与电网电压的相序一致。 ???5.待并发电机电压的波形应与电网电压的波形一致。 ??? ???? ???1.发电机升压操作正常后,需要根据发电机及电力系统具体运行状况,将待并同期点的同期开关(控制屏5KP的“联络线同期开关”TK/或者是6KP的“发电机同期开关”TK)右转至“投”的位置,使同期母线带电。 ???2.将发电机同期闭锁开关STK置于“闭锁”位置,其1、3接点断开。与此同时,同步检查继电器TJJ进入闭锁状态。

???3.将6KP的“手动准同期开关”1STK左转至“粗调”位置,6KP的组合式三相同期表S就有了电压和周波的指示。此时,通过调整发电机的电压及频率,使之与电网的电压及频率相近或基本一致。 ???4.当发电机周波与电网周波相差在1.0周/秒以内时,将“手动准同期开关”1STK 右转至“细调”位置,则组合式三相同期表S的线圈得电,指针开始缓慢地顺时针 时101) ???5.

经典之发电机同期并列原理详解

第六章同期系统将一台单独运行的发电机投入到运行中的电力系 统参加并列运行的操作,称为发电机的并列操作。同 步发电机的并列操作,必须按照准同期方法或自同期 方法进行。否则,盲目地将发电机并入系统,将会出现 冲击电流,引起系统振荡,甚至会发生事故、造成设备 损坏。 准同期并列操作,就是将待并发电机升至额定转速和额定电压后,满足以下四项准同期条件时,操作同期点断路器合闸,使发电机并网。 (!)发电机电压相序与系统电压相序相同; (")发电机电压与并列点系统电压相等; (#)发电机的频率与系统的频率基本相等; ($)合闸瞬间发电机电压相位与系统电压相位相 同。自同期并列操作,就是将发电机升速至额定 转速后,在未加励磁的情况下合

闸,将发电机并入系统,随即供给励磁电流,由系统将发电机拉入同步。自同期法的优点:!合闸迅速,自同期一般只需要几分钟就能完成,在系统 急需增加功率的事故情况下,对系统稳定具有特别重要的意义;"操作简便,易 于实现操作自动化。因为在发电机未加励磁电流时合闸并网,不存在准同期条 件的限制,不存在准同期法可能出现的问题;#在系统电压和频率因故降低至不能使用难同期法并列操作时,自同期方法将发电机投入系统提供了可能性。 自同期法的缺点是:未加励磁的发电机合闸并入系统瞬间,相当一个大容量的电感线圈接入系统,必然会产生冲击电流,导致局部系统电压瞬间下降。一般自同期法使用于水轮发电机及发电机—变压器组接线方式的汽轮发电机。在采用自同期法实施并列前,应经计算核对。 发电厂发电机的并列操作断路器,称为同期点。除了发电机的出口断路器之外在一次电路中,凡有可能与发电机主回路串联后与系统(或另一电源)之间

同步发电机准同期并列实验报告

实验报告 课程名称: 电力系统分析综合实验 指导老师: 成绩:__________________ 实验名称:____同步发电机准同期并列实验____实验类型:________________同组学生姓名:__________ 一.实验目的 1、加深理解同步发电机准同期并列原理,掌握准同期并列条件; 2、掌握微机准同期控制器及模拟式综合整步表的使用方法; 3、熟悉同步发电机准同期并列过程; 4、观察、分析有关波形。 二.原理与说明 将同步发电机并入电力系统的合闸操作通常采用准同期并列方式。准同期并列要求在合闸前通过调整待并机组的电压和转速,当满足电压幅值和频率条件后,根据“恒定越前时间原理”,由运行操作人员手动或由准同期控制器自动选择合适时机发出合闸命令,这种并列操作的合闸冲击电流一般很小,并且机组投入电力系统后能被迅速拉入同步。根据并列操作自动化程度的不同,又分为:手动准同期、半自动准同期和全自动准同期三种方式。 正弦整步电压是不同频率的两正弦电压之差,其幅值作周期性的正弦规律变化。它能反映两个待并系统间的同步情况,如频率差、相角差以及电压幅值差。 线性整步电压反映的是不同频率的两方波电压间相角差的变化规律,其波形为三角波。它能反映两个待并系统间的频率差和相角差,并且不受电压幅值差的影响,因此得到广泛应用。 手动准同期并列,应在正弦整步电压的最低点(同相点)时合闸,考虑到断路器的固有合闸时间,实际发出合闸命令的时刻应提前一个相应时间或角度。 自动准同期并列,通常采用恒定越前时间原理工作,这个越前时间可按断路器的合闸时间整定。准同期控制器根据给定的允许压差和频差,不断检查准同期条件是否满足,在不满足要求时闭锁合闸并且发出均匀均频控制脉冲。当所有条件满足时,在整定的越前时刻送出合闸脉冲。 三.实验项目和方法 1.机组微机启动和建压 (1)在调速装置上检查“模拟调节”电位器指针是否指在0位置,如果不在,则应调到0位置; (2)合上操作台的“电源开关”,在调速装置、励磁调节器、微机准同期控制器上分别确认其“微机正常”灯为闪烁状态,在微机保护装置上确认“装置运行”灯为闪烁状态。在调速装置上确认“模拟方式”灯为熄灭状态,否则,松开“模拟方式”按钮。同时确认“并网”灯为熄灭状态,“输出0”、“停机”灯亮。检查实验台上各开关状态:各开关信号灯应绿灯亮、红灯熄,调速装置面板上数码管在并网前显示发电机转速(左)和控制量(右),在并网后显示控制量(左)和功率角(右); (3)按调速装置上的“微机方式自动/手动”按钮使“微机自动”灯亮; (4)把操作台上“励磁方式”开关置于“微机它励”位置,在励磁调节器上确认“它励”灯亮; (5)在励磁调节器上选择恒UF 运行方式,合上“励磁开关”; (6)把实验台上“同期方式”开关置“断开”位置; (7)合上“系统开关”和线路开关“QF1、QF3”,检查系统电压接近额定值380V ; (8)合上“原动机开关”,按“停机/开机”按钮使“开机”灯亮,调速装置将自动启动电动机到额定转速; (9)当机组转速升到95%以上时,微机励磁调节器自动将发电机电压建压到与系统电压相等。 专业: 姓名: 学号: 日期: 地点:

发电机并列分析

电力系统自动化课程设计 课题名称:发电机并网模型的建立与并网过程的仿真分析学院名称:信息科学与工程学院 专业班级:电气工程及其自动化1003班 学号: 0909102008 学生姓名:徐扬 指导老师:孙妙平

目录 摘要 (3) 前言 (3) 设计任务及要求 (3) 1发电机并网条件分析 (4) 发电机并入系统时的冲击电流 (5) 电压相位差分析 (6) 初相位差分析 (7) 频率滑差分析 (8) 电压幅值差分析 (9) 分析结论 (10) 2仿真模型建立 (10) 3仿真结果分析 (11) 4理论分析与仿真结果对比 (16) 5心得体会 (17) 参考资料 (17)

摘要 发电机并网要求满足准同期条件,并网要求准确、快速。准确可以保障安全和减少并网对发电机引起的冲击,而快速则能够减小发电机的空载损耗。借助工程计算软件Matlab强大的绘图功能对并网条件进行分析,用Simulink和PSB建立仿真模型对不同条件下的并网过程进行了动态仿真,并取得了满意的仿真结果。 本文探讨了发电机安全并入电网所需的条件,借助工程计算软件Matlab 强大的绘图功能对不同条件下的并网过程进行了仿真分析,从而得出了一些重要的结论。这些结论为自动准同期装置的研制提供了理论根据。 关键字:发电机并网simulink 仿真。 前言 发电机并网是电力系统的一项经常、重要操作,不恰当的并列可能造成电气设备的损坏并对系统的稳定产生影响[。过去对发电机并列的工程培训和研究, 一般需要动模机组和多种传感器、录波器等昂贵设备。成本高且数据读取和计算复杂、繁琐,输出结果不理想。而利用数字仿真只需要有计算机和相应的软件即可实现, 不但成本低, 还可以很方便地得到各种所需数据、波形等结果, 对数据的处理也更方便。 MATlAB是高性能数值计算和可视化软件产品。它由主包、Simulink 及功能各异的工具箱组成。从版本开始增加了一个专用于电力系统分析的PSB(电力系统模块,Power system blockset )。PSB中主要有同步机、异步机、变压器、直流机、特殊电机的线性和非线性、有名的和标么值系统的、不同仿真精度的设备模型库单相\三相的分布和集中参数的传输线单相、三相断路器及各种电力系统的负荷模型、电力半导体器件库以及控制和测量环节。再借助其他模块库或工具箱,在Simulink环境下, 可以进行电力系统的仿真计算, 并可方便地对各种波形进行图形显示。本文以一单机一无穷大系统为模型, 在环境下使用GUI、Simulink、m语言等创建一发电机并网过程分析与仿真系统。该系统可以对多种情况下的发电机并网过程进行仿真分析, 并将仿真结果显示于GUI界面。 本文探讨了发电机安全并入电网所需的条件,借助工程计算软件Matlab强大的绘图功能对不同条件下的并网过程进行了仿真分析,从而得出了一些重要的结论。这些结论为自动准同期装置的研制提供了理论根据。 设计任务及要求 一、课程设计的目的 通过发电机并网模型的建立与仿真分析,使学生掌握发电机并网方法和Matlab/Simulink中的电力系统模块(PSB),深化学生对发电机并网技术的理解,培养学生分析、解决问题的能力和Matlab软件的应用能力。 二、课程设计的内容

浅析发电机自动准同期并网技术

浅析发电机自动准同期并网技术 【摘要】本文结合自动准同期装置在宣钢的成功使用经验,对发电机自动准同期并网进行浅要的分析介绍。 【关键词】发电机;同期并网;自动准同期;电压;频率 引言 发电机必须并入电力系统才能将所发出的电能上送至系统中,才能实现电能从发电机流向用电设备,对发电机与电力系统之间的并列操作就是同期并网操作,同期并网操作是发电机操作中的一项关键内容,操作出现问题将直接导致发电机并网失败。当前,企业电网的规模日益增大,同时发电机的数量和容量都在不断增加,这就需要对同期并网技术进行深入的了解,最终实现能够将发电机准确、可靠、稳定的并入系统目标。 1、发电机并网的条件手动准同期的缺点 1.1发电机并网的条件 (1)发电机机端母线的电压与系统母线的电压幅值相等并且波形一致。 (2)发电机所发出电的频率与系统的频率相同,均为50Hz。 (3)发电机侧电压与系统侧电压的相序相同。 (4)合闸的瞬间,发电机侧电压与系统侧电压相位相同。 在以上四个条件具备的基础上,就能完成发电机的顺利并网,在并网瞬间,发电机机端电压与系统电压的瞬时值越是差距越小,则发电机并网时受到的冲击就越小,并网过程就越平稳。 2、手动同期并网的缺点 老式发电机采用的手动准同期装置,虽然可以通过人工观察合闸前的发电机与系统两侧的电压、频率等数值,通过调节发电机本体和励磁装置来调节发电机侧的参数使其等于系统侧参数,并在参数相同的时刻合上并网开关,实现发电机的并网操作,但是根据实际情况来看,其始终摆脱不了如下几条缺点: (1)不能自动选择合闸的时机,对操作人员的专业素质和操作熟练程度依赖性较大。 (2)老的手动准同期装置的精度下降,虽然是在同期装置所显示的可以合

相关主题
文本预览
相关文档 最新文档