当前位置:文档之家› 第4章 进程同步与死锁习题答案

第4章 进程同步与死锁习题答案

第4章  进程同步与死锁习题答案
第4章  进程同步与死锁习题答案

第4章进程同步与死锁

(1) 什么是进程同步?什么是进程互斥?

解:

同步是进程间的直接制约关系,这种制约主要源于进程间的合作。进程同步的主要任务就是使并发执行的各进程之间能有效地共享资源和相互合作,从而在执行时间、次序上相互制约,按照一定的协议协调执行,使程序的执行具有可再现性。

进程互斥是进程间的间接制约关系,当多个进程需要使用相同的资源,而此类资源在任一时刻却只能供一个进程使用,获得资源的进程可以继续执行,没有获得资源的进程必须等待,进程的运行具有时间次序的特征,谁先从系统获得共享资源,谁就先运行,这种对共享资源的排它性使用所造成的进程间的间接制约关系称为进程互斥。互斥是一种特殊的同步方式。

(2) 进程执行时为什么要设置进入区和退出区?

解:

为了实现多个进程对临界资源的互斥访问,必须在临界区前面增加一段用于检查欲访问的临界资源是否正被访问的代码,如果未被访问,该进程便可进入临界区对资源进行访问,并设置正被访问标志,如果正被访问,则本进程不能进入临界区,实现这一功能的代码成为“进入区”代码;在退出临界区后,必须执行“退出区”代码,用于恢复未被访问标志。(3) 同步机构需要遵循的基本准则是什么?请简要说明。

解:

同步机制都应遵循下面的4条准则:

1.空闲让进。当无进程处于临界区时,允许进程进入临界区,并且只能在临界区运行

有限的时间。

2.忙则等待。当有一个进程在临界区时,其它欲进入临界区的进程必须等待,以保证

进程互斥地访问临界资源。

3.有限等待。对要求访问临界资源的进程,应保证进程能在有限时间内进入临界区,

以免陷入“饥饿”状态。

4.让权等待。当进程不能进入临界区时,应立即放弃占用CPU,以使其它进程有机

会得到CPU的使用权,以免陷入“饥饿”状态。

(4) 整型信号量是否能完全遵循同步机构的四条基本准则?为什么?

解:

不能。在整型信号量机制中,未遵循“让权等待”的准则。

(5) 在生产者-消费者问题中,若缺少了V(full)或V(empty),对进程的执行有什么影响?

解:

如果缺少了V(full),那么表明从第一个生产者进程开始就没有对信号量full值改变,即使缓冲池存放的产品已满了,但full的值还是0,这样消费者进程在执行P(full)时会认为缓冲池是空的而取不到产品,那么消费者进程则会一直处于等待状态。

如果缺少了V(empty),例如在生产者进程向n个缓冲区放满产品后消费者进程才开始从中取产品,这时empty=0,full=n,那么每当消费者进程取走一个产品时empty并没有被改变,直到缓冲池中的产品都取走了,empty的值也一直是0,即使目前缓冲池有n个空缓冲区,生产者进程要想再往缓冲池中投放产品会因申请不到空缓冲区而被阻塞。

(6) 在生产者-消费者问题中,若将P(full)和P(empty)交换位置,或将V(full)或V(empty)交换

位置,对进程执行有什么影响?

解:

对full和empty信号量的P、V操作应分别出现在合作进程中,这样做的目的是能正确表征各进程对临界资源的使用情况,保证正确的进程通信联络。

(7) 利用信号量写出不会出现死锁的哲学家进餐问题的算法。

解:

对哲学家按顺序从0到4编号,哲学家i左边的筷子的编号为i,哲学家右边的筷子的编号为(i+1)%5。

semaphore chopstick[5]={1};

//定义信号量数组chopstick[5],由于侉子是临街资源(互斥),故设置初值均为1。

Pi(){

//i号哲学家的进程

do{

if(i<(i+1)%5)

{

wait(chopstick[i]);

wait(chopstick[(i+1)%5]);

}

else

{

wait(chopstick[(i+1)%5]);

wait(chopstick[i]);

}

eat

signal(chopstick[i]);

signal(chopstick[(i+1)%5]);

think

}while(1);

}

(8) 利用AND型信号量和管程解决生产者-消费者问题。

解:

利用AND信号量解决生产者-消费者问题的算法描述如下:

var mutex,empty,full: semaphore:=1,n,0;

buffer: array[0,...,n-1] of item;

in out: integer := 0, 0;

begin

parbegin

producer: begin

repeat

.

.

.

produce an item in nextp;

.

.

.

Swait(empty, mutex);

buffer(in) := nextp;

in := (in+1) mod n;

Ssignal(mutex, full);

until false;

end

consumer: begin

repeat

Swait(full, mutex);

nextc := buffer(out);

out := (out+1) mod n;

Ssignal(mutex, empty);

consume the item in nextc;

until false;

end

parend

end

利用管程机制解决生产者-消费者问题,首先需要建立一个管程ProducerConsumer,其中包含两个过程insert(item)和consumer(item)。生产者-消费者同步问题可以用伪代码描述如下:

monitor ProducerConsumer

condition full,empty;

int count;

void insert(int item)

{

if (count==N) wait(full);

insert(item);

count=count+1;

if (count==1) signal(empty);

}

int remover()

{

if (count==0) wait(empty);

remove=remove_item;

count=count-1;

if (count==N-1) signal(full);

}

count=0;

end monitor

void producer()

{

while (true)

{

item=produce_item;

ProducerConsumer.insert(item);

}

}

void consumer()

{

while (true)

{

item=ProducerConsumer.remove;

consume(item)

}

}

(9) 进程的高级通信机制有哪些?请简要说明。

解:

进程的高级通信机制分为三大类:共享存储系统、消息传递系统和管道通信系统。

1.共享存储器系统:在共享存储器系统中,相互通信的进程通过共享某些数据结构或

共享存储区实现进程之间的通信。该系统又可进一步细分为两种方式:基于共享数

据结构的通信方式和基于共享存储区的通信方式。

2.消息传递系统:消息传递机制可以实现不同主机间多个CPU上进程的通信。这种

方式需要使用两条原语send和receive来发送和接收格式化的消息(message)。

3.管道通信系统:管道通信是一种以文件系统为基础实现的适用于在进程之间实现大

量数据传送的通信方式。

(10) 什么是死锁?产生死锁的原因和必要条件是什么?

解:

所谓死锁是指在一个进程集合中的所有进程都在等待只能由该集合中的其它一个进程才能引发的事件而无限期地僵持下去的局面。

产生死锁的原因可以归结为两点:1)竞争资源,2)各进程之间的推进顺序不当。

产生死锁的必要条件有四个:1)互斥条件,2)不剥夺条件,3)请求和保持条件,4)环路条件。

(11) 死锁的预防策略有哪些?请简要说明。

解:

死锁的预防策略有三,说明如下:

1.摒弃请求和保持条件:为摒弃请求和保持条件,系统中需要使用静态资源分配法,

该方法规定每一个进程在开始运行前都必须一次性地申请其在整个运行过程中所

需的全部资源。此时,若系统有足够的资源,就把进程需要的全部资源一次性地分

配给它;若不能全部满足进程的资源请求,则一个资源也不分给它,即使有部分资

源处于空闲状态也不分配给该进程。这样,当一个进程申请某个资源时,它不能占

有其它任何资源,在进程运行过程中也不会再提出资源请求。这种方法破坏了请求

和保持条件,从而避免死锁的发生。

2.摒弃不剥夺条件:要摒弃“不剥夺条件”,可以使用如下策略:进程在需要资源时

才提出请求,并且进程是逐个地申请所需资源,如果一个进程已经拥有了部分资源,

然后又申请另一个资源而不可得时,其现有资源必须全部释放。在这种方法中,进

程只能在获得其原有资源和所申请的新资源时才能继续执行。

3.摒弃环路等待条件:为确保环路等待条件不成立,可以在系统中实行资源有序分配

策略,即系统中的所有资源按类型被赋予一个唯一的编号,每个进程只能按编号的

升序申请资源。

(12) 某系统中有A、B、C、D四类资源,且其总数量都是8个。某时刻系统中有5个进程,判断下列资源状态是否安全?若进程P2申请资源(1,1,1,1),能否为其分配?

解:

现在对该时刻的状态进行安全分析:

由于A vailable向量为(3,4,4,1),所以Work向量初始化为(3,4,4,1)

此时的Work小于任意的Need[i]向量,所以系统处于不安全状态

由于Request2(1,1,1,1)

此时A vailable向量为(2,3,3,0),所以Work向量初始化为(2,3,3,0),此时的Work小于任意的Need[i]向量,所以系统处于不安全状态,所以不可以为P2分配资源

(13) 三个进程P1、P2、P3都需要5个同类资源才能正常执行直到终止,且这些进程只有在需要设备时才申请,则该系统中不会发生死锁的最小资源数量是多少?请说明理由。

解:

系统中不会发生死锁的最小资源数量是13,这样可以保证当每一个进程都占有4个资源的时候,有一个进程可以获得最后一个资源后被运行,运行完毕后释放资源,于是其余进程也能顺利运行完,所以不会死锁。

(14) 在解决死锁问题的几个方法中,哪种方法最易于实现,哪种方法使资源的利用率最高?

解:

预防死锁这个方法实现简单,效果突出;避免死锁这种方法系统吞吐量和资源利用率较高。

(15) 考虑由n个进程共享的具有m个同类资源的系统,如果对于i=1,2,3,…,n,有Need[i]>0并且所有进程的最大需求量之和小于m+n,试证明系统不会产生死锁。

解:

本题中只有一种资源,不妨设Max[i]为第i个进程的资源总共需要量,Need[i]为第i个

进程还需要的资源数量,Allocation[i]表示第i个进程已经分配到的资源数量,A vailable为系统剩余的资源数,其中i=1,2,3,…,n。

假设此系统可以发生死锁。

系统剩余的资源数量为A vailable(A vailable>=0),由假设,因为系统处于死锁状态,所以A vailable个资源无法分配出去,所以每个进程的Need[i]都大于A vailable,即Need[i]>=A vailable+1

所以∑Need[i]>=n*(A vailable+1)=n*A vailable+n, ①因为剩下的资源数是A vailable,所以已经分配出去的资源数为m – A vailable;

即∑Allocation[i]=m – A vailable ②由①式和②式可以得到:

∑Need[i] + ∑Allocation[i]>=n*A vailable+n+ m – A vailable=(n-1)*A vailable+m+n ③又因为n>=1,所以(n-1)>=0,又因为A vailable>=0,所以(n-1)*A vailable>=0 ④由③式和④式可以得到∑Need[i] + ∑Allocation[i]>=0+m+n=m+n ⑤根据题意知:∑Max[i]

(16) 某车站售票厅,在任何时刻最多可以容纳20 名购票者进入,当售票厅中少于20名购票者时,厅外的购票者可立即进入,否则需要在外面等待。若把一个购票者看作一个进程,请回答以下问题:

①用信号量管理这些并发进程时,应该怎样定义信号量,写出信号量的初值以及信号量的各取值的含义。

②根据所定义的信号量,写出相应的程序来保证进程能够正确地并发执行。

③如果购票者最多为n个人,试写出信号量取值的可能变化范围(最大值和最小值)。

解:

①定义信号量S,初值为20,当s > 0时,它表示可以继续进入购票厅的人数,当s = 0时表示厅内已有20人正在购票,当s < 0时| s |表示正等待进入的人数。

②semaphore S=20;

begin

parbegin

procedure:begin

repeat

wait(s);

Enter and buy ticket;

signal(s);

until false;

end

parend

end

③最大值为20,最小值为20-n

(17) 在测量控制系统中的数据采集任务时,把所采集的数据送往一单缓冲区;计算任务从该单缓冲区中取出数据进行计算。试写出利用信号量机制实现两个任务共享单缓冲区的同步算法。

解:

semaphore mutex = 1;

semaphore full = 0;

semaphore empty = 1;

begin

parbegin

collect:

begin

repeat

……

collect data in nextp;

wait(empty);

wait(mutex);

buffer:=nextp;

signal(mutex);

signal(full);

until false;

end

compute:

begin

repeat

……

wait(full);

wait(mutex);

nextc:=buffer;

signal(mutex);

signal(empty);

compute data in nextc;

until false;

end

parend

end

(18) 桌上有一空盘,允许存放一只水果。爸爸可以向盘中放苹果,也可以向盘中放桔子,儿子专等着吃盘中的桔子,女儿专等着吃盘中的苹果。规定当盘空时一次只能放一只水果供吃者用,请用信号量实现爸爸、儿子和女儿3个并发进程的同步。

解:

本题中应设置三个信号量S、S o、S a,信号量S表示盘中是否为空,其初值为1;S o表示盘中是否有桔子,其初值为0;S a表示盘中是否有苹果,其初值为0。同步描述如下:

爸爸: P(S); 儿子:P(S o); 女儿:P(S a);

将水果放入盘中从盘子中取出桔子从盘子中取出苹果

if (放入的是桔子) v(S o);V(S);V(S);

else v(S a);吃桔子吃苹果;

(19) 设某系统中有3个进程Get、Process和Put,共用两个缓冲区buffer1和buffer2。假设buffer1中最多可以放11个信息,现在已经放入了两个信息;buffer2最多可以放5个信息。

Get进程负责不断地将输入信息送入buffer1中,Process进程负责从buffer1中取出信息进行处理,并将处理结果送到buffer2中,Put进程负责从buffer2中读取结果并输出。试用信号量机制实现它们的同步与互斥。

解:

semaphore empty1=9; //buffer1空的数量

semaphore full1=2; //buffer1满的数量

semaphore empty2=5; //buffer2空的数量

semaphore full2=0; //buffer2满的数量

in1,in2,out1,out2:integer := 2,0,1,0;

Get(){

while(1){

wait(empty1)

in1=(in1+1)mod11

signal(full1)

}

}

Process(){

while(1){

wait(full1)

out1=(out1+1)mod11

signal(empty1)

signal(empty2)

in2=(in2+1)mod5

signal(full2)

}

}

Put(){

while(1){

wait(full2)

out2=(out2+1)mod5

signal(empty2)

}

}

(20) 某寺庙有大、小和尚若干,另有一水缸。由小和尚挑水入缸供大和尚饮用。水缸可以容10桶水,水取自同一井。水井很窄,每次只能容一个水桶取水。水桶总数为3。每次入、取缸水仅为1桶,且不可同时进行。试给出取水、入水的同步算法。

解:

semaphore well=1; // 保证互斥地访问水井的信号量

semaphore vat=1; // 保证互斥地访问水缸的信号量

semaphore empty=10; // 表示水缸中剩余的空间能容纳的水的桶数

semaphore full=0; // 表示水缸中水的桶数

semaphore pail=3; // 保证互斥地访问临界资源水桶的信号量

// 大和尚进程

big_monk(){

while(1){

wait(full);

wait(pail);

wait(vat);

use pail to get water from vat

signal(vat);

signal(empty);

drink water in the pail

signal(pail);

}

}

// 小和尚进程

little_monk(){

while(1){

wait(empty);\

wait(pail);

wait(well);

use pail to get water from well

signal(well);

wait(vat);

pour water to the vat

signal(vat);

signal(full);

signal(pail);

}

}

(21) 在银行家算法中,若出现下述资源分配情况:

Process Allocation Need Available

P0 0 0 3 2 0 0 1 2 1 6 2 2

P1 1 0 0 0 1 7 5 0

P2 1 3 5 4 2 3 5 6

P3 0 0 3 2 0 6 5 2

P4 0 0 1 4 0 6 5 6

试问:

①该状态是否安全?

②若进程P2 提出请求Request( 1, 2, 2, 2 )后,系统能否将资源分配给它?

解:

现在对该时刻的状态进行安全分析:

由于A vailable向量为(1,6,2,2),所以Work向量初始化为(1,6,2,2)该时刻的安全性检查表如下:

由于Request2(1,2,2,2)

然后进行安全性检测,此时A vailable为(0,4,0,0),所以Work初始化为(0,4,0,0)。

此时的Work小于任意的Need[i]向量,所以系统处于不安全状态,即认为不能分配资源(0,2,0)给P2。

(22) 设系统中仅有一类数量为M的独占型资源,系统中有N个进程竞争该类资源,其中各进程对该类资源的最大需求量为W。当M、N、W分别取下列值时,试判断哪些情形可能会发生死锁,为什么?

(1)M=2,N=2,W=1;(2)M=3,N=2,W=2;

(3)M=3,N=2,W=3;(4)M=5,N=3,W=2;

解:

1.不会发生死锁。因为两个进程需要的最多资源量都是1个,而系统拥有的资源量正

好是2个,两个进程都能顺利运行完,所以不会死锁。

2.不会发生死锁。因为2个进程需要的最多的资源量都是2个,而系统拥有的资源量

是3个,所以总会有1个进程得到2个资源后被运行,运行完毕后释放资源,于是

另一个进程也能顺利运行完,所以不会死锁。

3.会发生死锁。当一个进程占有1个资源,另一个进程占有2个资源时,2个进程都

要再申请资源,但是系统已经没有资源了,所以就发生死锁了。

4.不会发生死锁。因为三个进程需要的资源最大数量都是2个,而系统有5个资源,

所以至少有2个进程可以拿到足够的资源运行,运行完后再释放资源,最后一个进

程也能得到运行,所以不会死锁。

第3章死锁习题及答案

第三章死锁习题 一、填空题 1.进程的“同步”和“互斥”反映了进程间①和②的关系。 【答案】①直接制约、②间接制约 【解析】进程的同步是指在异步环境下的并发进程因直接制约而互相发送消息,进行相互合作、相互等待,使得各进程按一定的速度执行的过程;而进程的互斥是由并发进程同时共享公有资源而造成的对并发进程执行速度的间接制约。 2.死锁产生的原因是①和②。 【答案】①系统资源不足、②进程推进路径非法 【解析】死锁产生的根本原因是系统的资源不足而引发了并发进程之间的资源竞争。由于资源总是有限的,我们不可能为所有要求资源的进程无限地提供资源。而另一个原因是操作系统应用的动态分配系统各种资源的策略不当,造成并发进程联合推进的路径进入进程相互封锁的危险区。所以,采用适当的资源分配算法,来达到消除死锁的目的是操作系统主要研究的课题之一。 3.产生死锁的四个必要条件是①、②、③、④。 【答案】①互斥条件、②非抢占条件、③占有且等待资源条件、④循环等待条件 【解析】 互斥条件:进程对它所需的资源进行排它性控制,即在一段时间内,某资源为一进程所独占。 非抢占条件:进程所获得的资源在未使用完毕之前,不能被其它进程强行夺走,即只能由获得资源的进程自己释放。 占有且等待资源条件:进程每次申请它所需的一部分资源,在等待新资源的同时,继续占有已分配到的资源, 循环等待条件:存在一进程循环链,链中每一个进程已获得的资源同时被下一个进程所请求。 4.在操作系统中,信号量是表示①的物理实体,它是一个与②有关的整型变量,其值仅能由③原语来改变。 【答案】①资源,②队列,③P-V 【解析】信号量的概念和P-V原语是荷兰科学家E.W.Dijkstra提出来的。信号量是一个特殊的整型量,它与一个初始状态为空的队列相联系。信号量代表了资源的实体,操作系统利用它的状态对并发进程共享资源进行管理。信号量的值只能由P-V原语来改变。 5.每执行一次P原语,信号量的数值S减1。如果S>=0,该进程①;若S<0,则②该进程,并把它插入该③对应的④队列中。 【答案】①继续执行,②阻塞(等待),③信号量,④阻塞(等待) 【解析】从物理概念上讲,S>0时的数值表示某类资源可用的数量。执行一次P原语,意味着请求分配一个单位的资源,因此描述为S=S-1。当S<0时,表示已无资源,这时请求资源的进程将被阻塞,把它排在信号量S的等待队列中。此时,S的绝对值等于信号量队列上的阻塞的进程数目。 6.每执行一次V原语,信号量的数值S加1。如果①,Q进程继续执行;如果S<=0,则从对应的②队列中移出一个进程R,该进程状态变为③。 【答案】①S>0,②等待,③就绪 【解析】执行一次V原语,意味着释放一个单位的资源。因此,描述为S=S+1。当S<0时,表示信号量请求队列中仍然有因请求该资源而被阻塞的进程。因此,应将信号量对应的阻塞队列中的第一个进程唤醒,使之转至就绪队列。 7.利用信号量实现进程的①,应为临界区设置一个信号量mutex。其初值为②,表示该资源尚未使用,临界区应置于③和④原语之间。

2019年进程管理习题及答案

进程管理习题答案 一.选择题 1.在进程管理中,当时进程从阻塞状态变为就绪状态. A. 进程被进程调度程序选中 B.等待某一事件 C.等待的事件发生 D.时间片用完 答:C 2.分配到必要的资源并获得处理机时的进程状态是。 A.就绪状态 B.执行状态 C.阻塞状态 D.撤消状态 答:B 3.P、V操作是。 A.两条低级进程通信原语 B.两组不同的机器指令 C.两条系统调用命令 D.两条高级进程通信原语 答:A 4.对进程的管理和控制使用。 A.指令 B.原语 C.信号量 D.信箱通信 答:B 5.进程的并发执行是指若干个进程。 A.同时执行 B.在执行的时间上是重叠的 C.在执行的时间上是不可重叠的 D.共享系统资源 答:B 6.若P、V操作的信号量S初值为2,当前值为-1,则表示有等待进程。A.0个 B.1个 C .2个 D.3个 答:B 7.进程的三个基本状态在一定条件下可以相互转化,进程由就绪状态变为运行状态的条件是①;由运行状态变为阻塞状态的条件是②。 A.时间片用完 B.等待某事件发生 C.等待的某事件己发生 D.被进程调度程序选中 答,①D ②B 8.下列的进程状态变化中,变化是不可能发生的。 A.运行一就绪 B.运行一等待 C.等待一运行 D.等待一就绪 答:C 9.一个运行的进程用完了分配给它的时间片后,它的状态变为。 A.就绪 B.等待 C.运行 D.由用户自己确定

答:A 10.用P、V操作管理临界区时,信号量的初值应定义为。 A.一1 B.0 C.1 D.任意值 答:C 11.用V操作唤醒一个等待进程时,被唤醒进程的状态变为. A.等待 B.就绪 C.运行 D.完成 答:B 12.进程间的同步是指进程间在逻辑上的相互关系。 A.联接 B.制约 C. 继续 D.调用 答:B 13.是一种只能进行P操作和V操作的特殊变量。 A.调度 B.进程 C.同步 D.信号量 答:D 14.下面对进程的描述中,错误的是。 A.进程是动态的概念 B.进程执行需要处理机 C.进程是有生命期的 D.进程是指令的集合 答:D 15.下面的叙述中正确的是。 A.操作系统的一个重要概念是进程,因此不同进程所执行的代码也一定不同。B.为了避免发生进程死锁,各进程只能逐个申请资源。 C.操作系统用PCB管理进程,用户进程可以从此PCB中读出与本身运行状况有关的信息 D.进程同步是指某些进程之间在逻辑上的相互制约关系 答:D 16.进程控制就是对系统中的进程实施有效的管理,通过使用、进程撤销、进程阻塞、进程唤醒等进程控制原语实现。 A.进程运行 B.进程管理 C.进程创建 D.进程同步 答:C 17.操作系统通过对进程进行管理。 A.JCB B.PCB C.DCT D.CHCT 答:B 18.用P、V操作可以解决互斥问题。 A.一切 B.某些 C.正确 D.错误 答:A 19.通常,用户进程被建立后,。 A.便一直存在于系统中,直到被操作人员撤消

实验二(1)进程同步

实验二(2)进程同步 一、实验目的 1、生产者-消费者问题是很经典很具有代表性的进程同步问题,计算机中的很多同步问题都可抽象为生产者-消费者问题,通过本实验的练习,希望能加深学生对进程同步问题的认识与理解。 2、熟悉VC的使用,培养和提高学生的分析问题、解决问题的能力。 二、实验内容及其要求 1.实验内容 以生产者/消费者模型为依据,创建一个控制台进程,在该进程中创建n个线程模拟生产者和消费者,实现进程(线程)的同步与互斥。 2.实验要求 学习并理解生产者/消费者模型及其同步/互斥规则;设计程序,实现生产者/消费者进程(线程)的同步与互斥; 三、实验算法分析 1、实验程序的结构图(流程图); 2、数据结构及信号量定义的说明; (1) CreateThread ●功能——创建一个在调用进程的地址空间中执行的线程 ●格式 HANDLE CreateThread( LPSECURITY_ATTRIBUTES lpThreadAttributes, DWORD dwStackSize,

LPTHREAD_START_ROUTINE lpStartAddress, LPVOID lpParamiter, DWORD dwCreationFlags, Lpdword lpThread ); ●参数说明 lpThreadAttributes——指向一个LPSECURITY_ATTRIBUTES(新线程的安全性描述符)。dwStackSize——定义原始堆栈大小。 lpStartAddress——指向使用LPTHRAED_START_ROUTINE类型定义的函数。 lpParamiter——定义一个给进程传递参数的指针。 dwCreationFlags——定义控制线程创建的附加标志。 lpThread——保存线程标志符(32位) (2) CreateMutex ●功能——创建一个命名或匿名的互斥量对象 ●格式 HANDLE CreateMutex(LPSECURITY_ATTRIBUTES lpMutexAttributes, BOOL bInitialOwner, LPCTSTR lpName); bInitialOwner——指示当前线程是否马上拥有该互斥量(即马 ●参数说明 lpMutexAttributes——必须取值NULL。上加锁)。 lpName——互斥量名称。 (3) CreateSemaphore ●功能——创建一个命名或匿名的信号量对象 ●格式 HANDLE CreateSemaphore(LPSECURITY_ATTRIBUTES lpSemaphoreAttributes, LONG lInitialCount, LONG lMaximumCount, LPCTSTR lpName ); ●参数说明 lpSemaphoreAttributes——必须取值NULL。

进程同步与通信作业习题与答案

第三章 一.选择题(50题) 1.以下_B__操作系统中的技术是用来解决进程同步的。 A.管道 B.管程 C.通道 2.以下_B__不是操作系统的进程通信手段。 A.管道 B.原语 C.套接字 D.文件映射 3.如果有3个进程共享同一程序段,而且每次最多允许两个进程进入该程序段,则信号量的初值应设置为_B__。 4.设有4个进程共享一个资源,如果每次只允许一个进程使用该资源,则用P、V操作管理时信号量S的可能取值是_C__。 ,2,1,0,-1 ,1,0,-1,-2 C. 1,0,-1,-2,-3 ,3,2,1,0 5.下面有关进程的描述,是正确的__A__。 A.进程执行的相对速度不能由进程自己来控制 B.进程利用信号量的P、V 操作可以交换大量的信息 C.并发进程在访问共享资源时,不可能出现与时间有关的错误 、V操作不是原语操作 6.信号灯可以用来实现进程之间的_B__。 A.调度 B.同步与互斥 C.同步 D.互斥 7.对于两个并发进程都想进入临界区,设互斥信号量为S,若某时S=0,表示_B__。 A.没有进程进入临界区 B.有1个进程进入了临界区 C. 有2个进程进入了临界区 D. 有1个进程进入了临界区并且另一个进程正等待进入 8. 信箱通信是一种_B__方式 A.直接通信 B.间接通信 C.低级通信 D.信号量 9.以下关于临界区的说法,是正确的_C__。

A.对于临界区,最重要的是判断哪个进程先进入 B.若进程A已进入临界区,而进程B的优先级高于进程A,则进程B可以 打断进程A而自己进入临界区 C. 信号量的初值非负,在其上只能做PV操作 D.两个互斥进程在临界区内,对共享变量的操作是相同的 10. 并发是指_C__。 A.可平行执行的进程 B.可先后执行的进程 C.可同时执行的进程 D.不可中断的进程 11. 临界区是_C__。 A.一个缓冲区 B.一段数据区 C.一段程序 D.栈 12.进程在处理机上执行,它们的关系是_C__。 A.进程之间无关,系统是封闭的 B.进程之间相互依赖相互制约 C.进程之间可能有关,也可能无关 D.以上都不对 13. 在消息缓冲通信中,消息队列是一种__A__资源。 A.临界 B.共享 C.永久 D.可剥夺 14. 以下关于P、V操作的描述正确的是__D_。 A.机器指令 B. 系统调用 C.高级通信原语 D.低级通信原语 15.当对信号量进行V源语操作之后,_C__。 A.当S<0,进程继续执行 B.当S>0,要唤醒一个就绪进程 C. 当S<= 0,要唤醒一个阻塞进程 D. 当S<=0,要唤醒一个就绪 16.对临界区的正确论述是__D_。 A.临界区是指进程中用于实现进程互斥的那段代码 B. 临界区是指进程中用于实现进程同步的那段代码 C. 临界区是指进程中用于实现进程通信的那段代码 D. 临界区是指进程中访问临界资源的那段代码 17. __A__不是进程之间的通信方式。 A.过程调用 B.消息传递 C.共享存储器 D.信箱通信 18. 同步是指进程之间逻辑上的__A__关系。

计算机操作系统习题及答案.

第5章死锁 1)选择题 (1)为多道程序提供的可共享资源不足时,可能出现死锁。但是,不适当的_C__ 也可能产生死锁。 A. 进程优先权 B. 资源的线性分配 C. 进程推进顺序 D. 分配队列优先权 (2)采用资源剥夺法可以解除死锁,还可以采用_B___ 方法解除死锁。 A. 执行并行操作 B. 撤消进程 C. 拒绝分配新资源 D. 修改信号量 (3)发生死锁的必要条件有四个,要防止死锁的发生,可以通过破坏这四个必要条件之一来实现,但破坏_A__ 条件是不太实际的。 A. 互斥 B. 不可抢占 C. 部分分配 D. 循环等待 (4)为多道程序提供的资源分配不当时,可能会出现死锁。除此之外,采用不适当的_ D _ 也可能产生死锁。 A. 进程调度算法 B. 进程优先级 C. 资源分配方法 D. 进程推进次序 (5)资源的有序分配策略可以破坏__D___ 条件。 A. 互斥使用资源 B. 占有且等待资源 C. 非抢夺资源 D. 循环等待资源 (6)在__C_ 的情况下,系统出现死锁。 A. 计算机系统发生了重大故障 B. 有多个封锁的进程同时存在 C. 若干进程因竞争资源而无休止地相互等待他方释放已占有的资源 D. 资源数大大小于进程数或进程同时申请的资源数大大超过资源总数 (7)银行家算法在解决死锁问题中是用于_B__ 的。 A. 预防死锁 B. 避免死锁 C. 检测死锁 D. 解除死锁 (8)某系统中有3个并发进程,都需要同类资源4个,试问该系统不会发生死锁的最少资源数是_C__ 。 A. 12 B. 11 C. 10 D. 9 (9)死锁与安全状态的关系是_A__ 。 A. 死锁状态一定是不安全状态 B. 安全状态有可能成为死锁状态 C. 不安全状态就是死锁状态 D. 死锁状态有可能是安全状态

操作系统死锁练习及答案

死锁练习题 (一)单项选择题 l系统出现死锁的根本原因是( )。 A.作业调度不当 B.系统中进程太多 C.资源的独占性 D.资源管理和进程推进顺序都不得当 2.死锁的防止是根据( )采取措施实现的。 A.配置足够的系统资源 B.使进程的推进顺序合理 C.破坏产生死锁的四个必要条件之一 D.防止系统进入不安全状态 3.采用按序分配资源的策略可以防止死锁.这是利用了使( )条件不成立。 A.互斥使用资源 B循环等待资源 c.不可抢夺资源 D.占有并等待资源 4.可抢夺的资源分配策略可预防死锁,但它只适用于( )。A.打印机 B.磁带机 c.绘图仪 D.主存空间和处理器 5.进程调度算法中的( )属于抢夺式的分配处理器的策略。A.时间片轮转算法 B.非抢占式优先数算法 c.先来先服务算法 D.分级调度算法 6.用银行家算法避免死锁时,检测到( )时才分配资源。 A.进程首次申请资源时对资源的最大需求量超过系统现存的资源量 B.进程己占用的资源数与本次申请资源数之和超过对资源的最大需求量 c.进程已占用的资源数与本次申请的资源数之和不超过对资源的最大需求量,且现存资源能满足尚需的最大资源量 D进程已占用的资源数与本次申请的资源数之和不超过对资源的最大需求量,且现存资源能满足本次申请量,但不能满足尚需的最大资源量 7.实际的操作系统要兼顾资源的使用效率和安全可靠,对资源的分配策略,往往采用 ( )策略。 A死锁的防止 B.死锁的避免 c.死锁的检测 D.死锁的防止、避免和检测的混合(一)单项选择题 1.D 2.C 3.B 4.D 5.A 6 C 7 D (二)填空题 l若系统中存在一种进程,它们中的每一个进程都占有了某种资源而又都在等待其中另一个进程所占用的资源。这种等待永远不能结束,则说明出现了______。 2.如果操作系统对 ______或没有顾及进程______可能出现的情况,则就可能形成死锁。3.系统出现死锁的四个必要条件是:互斥使用资源,______,不可抢夺资源和______。 4.如果进程申请一个某类资源时,可以把该类资源中的任意一个空闲资源分配给进程,则说该类资源中的所有资源是______。 5.如果资源分配图中无环路,则系统中______发生。 6.为了防止死锁的发生,只要采用分配策略使四个必要条件中的______。 7.使占有并等待资源的条件不成立而防止死锁常用两种方法:______和______. 8静态分配资源也称______,要求每—个进程在______就申请它需要的全部资源。 9.释放已占资源的分配策略是仅当进程______时才允许它去申请资源。 10抢夺式分配资源约定,如果一个进程已经占有了某些资源又要申请新资源,而新资源不能满足必须等待时、系统可以______该进程已占有的资源。 11.目前抢夺式的分配策略只适用于______和______。 12.对资源采用______的策略可以使循环等待资源的条件不成立。 13.如果操作系统能保证所有的进程在有限的时间内得到需要的全部资源,则称系统处于______。 14.只要能保持系统处于安全状态就可______的发生。 15.______是一种古典的安全状态测试方法。 16.要实现______,只要当进程提出资源申请时,系统动态测试资源分配情况,仅当能确保系统安全时才把资源分配给进程。 17.可以证明,M个同类资源被n个进程共享时,只要不等式______成立,则系统一定不会发生死锁,其中x为每个进程申请该类资源的最大量。 18.______对资源的分配不加限制,只要有剩余的资源,就可把资源分配给申请者。 19.死锁检测方法要解决两个问题,一是______是否出现了死锁,二是当有死锁发生时怎样去______。 20.对每个资源类中只有一个资源的死锁检测程序根据______和______两张表中记录的资源情况,把进程等待资源的关系在矩阵中表示出

第3章 进程同步与通信 练习题答案

第3章进程同步与通信练习题 (一)单项选择题 1.临界区是指( )。 A.并发进程中用于实现进程互斥的程序段 B.并发进程中用于实现进程同步的程序段 C.并发进程中用户实现进程通信的程序段 D.并发进程中与共享变量有关的程序段 2.相关临界区是指( )。 A.一个独占资源 B.并发进程中与共享变量有关的程序段 c.一个共享资源 D.并发进程中涉及相同变量的那些程序段 3.管理若干进程共享某一资源的相关临界区应满足三个要求,其中( )不考虑。 A一个进程可以抢占己分配给另一进程的资源 B.任何进程不应该无限地逗留在它的临界区中c.一次最多让一个进程在临界区执行 D.不能强迫一个进程无限地等待进入它的临界区4、( )是只能由P和v操作所改变的整型变量。 A共享变量 B.锁 c整型信号量 D.记录型信号量 5.对于整型信号量,在执行一次P操作时,信号量的值应( )。 A.不变 B.加1 C减1 D.减指定数值 6.在执行v操作时,当信号量的值( )时,应释放一个等待该信号量的进程。 A>0 B.<0 c.>=0 D.<=0 7.Pv操作必须在屏蔽中断下执行,这种不可变中断的过程称为( )。 A初始化程序 B.原语 c.子程序 D控制模块 8.进程间的互斥与同步分别表示了各进程间的( )。 A.竞争与协作 B.相互独立与相互制约 c.不同状态 D.动态性与并发性 9并发进程在访问共享资源时的基本关系为( )。 A.相互独立与有交往的 B.互斥与同步 c并行执行与资源共享 D信息传递与信息缓冲 10.在进程通信中,( )常用信件交换信息。 A.低级通信 B.高级通信 c.消息通信 D.管道通信 11.在间接通信时,用send(N,M)原语发送信件,其中N表示( )。 A.发送信件的进程名 B.接收信件的进程名 C信箱名 D.信件内容 12.下列对线程的描述中,( )是错误的。 A不同的线程可执行相同的程序 B.线程是资源分配单位 c.线程是调度和执行单位 D.同一 进程中的线程可共享该进程的主存空间 13.实现进程互斥时,用( )对应,对同一个信号量调用Pv操作实现互斥。 A.一个信号量与一个临界区 B.一个信号量与—个相关临界区 c.一个信号量与一组相关临界 区 D一个信号量与一个消息 14.实现进程同步时,每一个消息与一个信号量对应,进程( )可把不同的消息发送出去。 A.在同一信号量上调用P操作 B在不同信号量上调用P操作 c.在同一信号量上调用v操作D.在不同信号量上调用v操作 (二)填空题 1.目前使用的计算机的基本特点是处理器______执行指令。 2.进程的______是指进程在顺序处理器上的执行是按顺序进行的。 3.当一个进程独占处理器顺序执行时,具有______和______两个特性。 4.进程的封闭性是指进程的执行结果只取决于______,不受外界影响。 5 进程的可再现性是指当进程再次重复执行时,必定获得______的结果。 6.一个进程的工作在没有全部完成之前,另一个进程就可以开始工作,则称这些进程为______.

实验二死锁的检测与避免

实验二死锁的检测与避免—银行家算法 一、实验目的 1、了解进程产生死锁原因,了解为什么要避免死锁。 2、掌握银行家算法的数据结构,了解算法的执行过程,加深对银行家算法的理 解。 二、实验内容及步骤 采用银行家算法来实现一个n 个并发进程共享m 个系统资源的系统。进程可 以申请和释放资源,系统可以按照各进程的申请计算是否可以分配给其资源。 1、创建C语言工程项目,按照教材上的有关说明,定义相应的数据结构。 2、给各个数据结构设定合适的初始值。 注意:步骤1、2可同时进行,即利用C语言中的定义变量就可同时初始化的 方式进行数值初设。 3、依据银行家算法的描述依次进行资源的试探性分配,直至成功或失败,成功 则说明当前状态是安全的;失败后,还应该将资源回到初始状态,并进行另一 次试探;只有所有的试探都失败了,才能说明当前状态是不安全的。 通常,这种试探性算法采用递归的方法是很合适的,程序也是很简洁的。 三、实验原理 1、银行家算法的思路 先对用户提出的请求进行合法性检查,即检查请求的是不大于需要的,是否不大于可利用的。若请求合法,则进行试分配。最后对试分配后的状态调用安全性检查算法进行安全性检查。若安全,则分配,否则,不分配,恢复原来状态,拒绝申请。 2、银行家算法程序流程图(图2-1)

银行家算法(图2-1) 安全性算法(图2-2)

四、实验结果及分析 (一): 1、T0时刻安全性 2、P1发出请求向量Request 1(1,0,2) 3、P4发出请求向量Request 4(3,3,0) 4、P0发出请求向量Request 0(0,2,0) (二): 1、 该状态是否安全? 2、 P2发出请求向量Request (1,2,2 ,2)后,系统能否将资源分配给它? (三)、自行设计一组资源分配数据,要求资源数大于等于3,进程数大于等于3,有2次预分配。

第三章 进程同步问题习题答案

进程同步练习 1.有一阅览室,共有100个座位。读者进入时必须先在一张登记表上登记,该表为每一座位列一表目,包括座号和读者姓名。读者离开时要消掉登记内容。试用P、V操作描述读者进程的同步结构。 var mutex : semaphere;信号量,用于互斥 full : semaphere; 信号量,用于同步 table : array 0..n-1 of item; 登记表 procedure reader; 读者进程 begin P(full); P(mutex); ; Register_name(table); V(mutex); Reading; P(mutex); Delet_name(table); V(mutex); V(full) end;

begin … seminitsal,1; ,100); 初始化 cobegin reader; reader; ... coend end. 2.设公共汽车上有一位司机和一位售票员,它们的活动如下: 售票员: 动车辆售票 正常行车开车门 到站停车关车门 请分析司机与售票员之间的同步关系,如何用PV

操作实现。 答:为了安全起见,显然要求:关车门后才能启动车辆;到站停车后才能开车门。所以司机和售票员在到站、开门、关门、启动车辆这几个活动之间存在着同步关系。用两个信号量S1、S2分别表示可以开车和可以开门,S1的初值为1,S2的初值为0。用PV操作实现司机进程和售票员进程同步的算法描述如下: 售票员: (S1)售票 动车辆P(S2) 正常行车开车门 : 到站停车关车门 V(S2)V(S1) 另外,程序中PV操作出现的顺序与信号量的初值设置有关,以本题为例,算法如下描述时,S1、S2的

死锁避免算法设计报告

漳州师范学院 操作系统课程设计 死锁避免算法设计 姓名: 学号: 系别: 专业: 年级: 指导教师: 一、课程设计题目介绍(含设计目的)

死锁避免算法设计是通过模拟实现银行家算法实现死锁避免目的: 1、了解进程产生死锁的原因,了解为什么要进行死锁的避免。 2、掌握银行家算法的数据结构,了解算法的执行过程,加深对银行家算法的理解。 3、通过运用Dijkstra的银行家算法来避免多个进程运行中因争夺资源而造成僵局,即死锁 要求: 本课程设计可以实现教材3.6.3节中所描述的银行家避免死锁算法。 可自定义进程数目、资源类型和每种类型资源的数目; 可输入每个进程对每种资源的最大需求、已经获得的数量; 当某进程发起某种资源请求时,计算系统状态是否安全。 思想: 操作系统按照银行家制定的规则为进程分配资源,当进程首次申请资源时,要测试该进程对资源的最大需求量,如果系统现存的资源可以满足它的最大需求量则按当前的申请量分配资源,否则就推迟分配。当进程在执行中继续申请资源时,先测试该进程已占用的资源数与本次申请的资源数之和是否超过了该进程对资源的最大需求量。若超过则拒绝分配资源,若没有超过则再测试系统现存的资源能否满足该进程尚需的最大资源量,若能满足则按当前的申请量分配资源,否则也要推迟分配,从而达到死锁的避免。

二、总体设计(含系统的结构、原理框图或模块介绍等) 1.系统的结构 2.原理框图 从主函数开始进入银行家算法系统,先调用初始化函数chushihua()分别输入Allocation[i][j],Max[i][j],All[y]并判断是否符合条件,在调用函数show(),输出当前状态Available,Max[i][j],Allocation[i][j],Need[i][j]。然后调用安全性算法函数safe()判断在该时刻是否处于安全状态,并输出安全序列。然后调用银行家算法函数bank()进行试分配后再调用安全性算法函数判断在该时刻是否处于安全状态,若不安全,则恢复试分配时改变的值。

《操作系统原理》5资源管理(死锁)习题

第五章死锁练习题 (一)单项选择题 1.系统出现死锁的根本原因是( )。 A.作业调度不当B.系统中进程太多C.资源的独占性D.资源管理和进程推进顺序都不得当 2.死锁的防止是根据( )采取措施实现的。 A.配置足够的系统资源B.使进程的推进顺序合理 C.破坏产生死锁的四个必要条件之一D.防止系统进入不安全状态 3.采用按序分配资源的策略可以防止死锁.这是利用了使( )条件不成立。 A.互斥使用资源B循环等待资源C.不可抢夺资源D.占有并等待资源 4.可抢夺的资源分配策略可预防死锁,但它只适用于( )。 A.打印机B.磁带机C.绘图仪D.主存空间和处理器 5.进程调度算法中的( )属于抢夺式的分配处理器的策略。 A.时间片轮转算法B.非抢占式优先数算法C.先来先服务算法D.分级调度算法 6.用银行家算法避免死锁时,检测到( )时才分配资源。 A.进程首次申请资源时对资源的最大需求量超过系统现存的资源量 B.进程己占用的资源数与本次申请资源数之和超过对资源的最大需求量 C.进程已占用的资源数与本次申请的资源数之和不超过对资源的最大需求量,且现存资源能满足尚需的最大资源量 D进程已占用的资源数与本次申请的资源数之和不超过对资源的最大需求量,且现存资源能满足本次申请量,但不能满足尚需的最大资源量 7.实际的操作系统要兼顾资源的使用效率和安全可靠,对资源的分配策略,往往采用( )策略。 A死锁的防止B.死锁的避免C.死锁的检测D.死锁的防止、避免和检测的混合 (二)填空题 1.若系统中存在一种进程,它们中的每一个进程都占有了某种资源而又都在等待其中另一个进程所占用的资源。这种等待永远不能结束,则说明出现了______。 2.如果操作系统对______或没有顾及进程______可能出现的情况,则就可能形成死锁。 3.系统出现死锁的四个必要条件是:互斥使用资源,______,不可抢夺资源和______。 4.如果进程申请一个某类资源时,可以把该类资源中的任意一个空闲资源分配给进程,则说该类资源中的所有资源是______。 5.如果资源分配图中无环路,则系统中______发生。 6.为了防止死锁的发生,只要采用分配策略使四个必要条件中的______。 7.使占有并等待资源的条件不成立而防止死锁常用两种方法:______和______. 8静态分配资源也称______,要求每—个进程在______就申请它需要的全部资源。 9.释放已占资源的分配策略是仅当进程______时才允许它去申请资源。 10.抢夺式分配资源约定,如果一个进程已经占有了某些资源又要申请新资源,而新资源不能满足必须等待时、系统可以______该进程已占有的资源。 11.目前抢夺式的分配策略只适用于______和______。 12.对资源采用______的策略可以使循环等待资源的条件不成立。 13.如果操作系统能保证所有的进程在有限的时间内得到需要的全部资源,则称系统处于______。14.只要能保持系统处于安全状态就可______的发生。 15.______是一种古典的安全状态测试方法。 16.要实现______,只要当进程提出资源申请时,系统动态测试资源分配情况,仅当能确保系统安全时才把资源分配给进程。

操作系统练习 同步问题 有答案

操作系统练习题: 1 在南开大学和天津大学之间有一条弯曲的小路,其中从S到T一段路每次只允许一辆自行车通过,但中间有一个小的“安全岛”M(同时允许两辆自行车停留),可供两辆自行车已从两端进小路情况下错车使用,如图所示。试设计一个算法使来往的自行车均可顺利通过。 解答: 首先中间的安全岛M仅允许两辆自行车通过,应作为临界资源设置信号量。但仔细分析发现,在任何时刻进入小路的自行车最多不会超过两辆(南开和天大方向各一辆),因此不需为安全岛M设置信号量。在路口S处,南开出发的若干辆自行车应进行路口资源的争夺,以决定谁先进入小路SK段,为此设置信号量S,用以控制路口资源的争夺;同理,设置信号量T,控制天大方向自行车对路口T的争夺。又小路SK段仅允许一辆车通过,设置信号量SK初值为1,同理设置小路LT段信号量LT初值为1。 程序如下: S := l; T:=1; SK :=1; LT:=1; Parbegin 进程P:(南开方向自行车) begin P(S) ; {与其它同方向的自行车争夺路口S} P(SK); {同对面自行车争夺路段SK} 通过SK; 进入M; ** V (SK);{一旦进入M,便可释放路段SK} P (LT) ; {同对面的自行车争夺路段LT} 通过LT; V (LT);{将路段LT释放} V(S); {将路口S释放给同方向的正在路口S处等待的自行车}

end, 进程Q:(天大方向自行车) begin P(T); P(LT); 通过LT; 进入M; V(LT); P(SK); 通过SK; V(SK); V(T); End; Parend。 说明**: P进程进入安全岛M后,释放了路段SK,但没有释放路口S,原因在于它是向对面的4进程释放路段资源SK,而在P进程离开小路LT后,才会将路口S释放给其他P进程,如不这样,就会死锁。请考虑如下情况:两个方向各有一辆车前进,若在P进程到达安全岛M后,执行V (S)及V (SK)操作,则有可能使得同方向的其它P进程得到路段SK的使用权,而进入小路;同理,Q进程到达安全岛后执行V (LT)及V (T)操作,有可能使得同方向的其它Q进程得到路段LT而进入小路。此时共有四辆车在整个路径中,最终出现死锁状态。 2某寺庙,有小、老和尚若干,有一水缸,由小和尚提水入缸(向缸中倒水)供老和尚饮用。水缸可容10桶水,水取自同一井中。水井径窄,每次只能容一个捅取水。水桶总数为3个。每次人、取缸水仅为1桶,且不可同时进行。试给出有关从缸中取水和向缸中倒水的算法描述。 解答: 应首先考虑清楚本题需要几个进程。从井中取水后向缸中倒水为连续动作,可算同一进程,从缸中取水为另一进程。 再考虑信号量.有关互斥的资源有水井(一次仅一个水桶进出)和水缸(一次入、取水为一桶),分别为之设信号量mutexl , mutex2控制互斥; 另有同步问题存在:三个水桶无论从井中取水还是人出水缸都是一次一个,应为之设信号量count,抢不到水桶的进程只好等待;还有水缸满时,不可人水,设信号量empty控制入水量.水缸空时不可出水,设信号量full,控制出水量。 mutexl:=1;mutex2:=1; empty:=10; full:=0 ; count:=3;

死锁的检测与解除C语言代码

实验名称:死锁的检测与解除姓名:杨秀龙 学号:1107300432 专业班级:创新实验班111 指导老师:霍林

实验题目 死锁的检测与解除 实验目的 为了更清楚系统对死锁是如何检测和当死锁发生时如何解除死锁 设计思想 首先需要建立和银行家算法类似的数组结构,先把孤立的进程(没有占用资源的进程)放入一个数组中,根据死锁原理,找出既不阻塞又非独立的进程结点,使之成为孤立的结点并放入孤立数组中,再释放该进程的占用资源,继续寻找下一个孤立结点,如果所有进程都能放入孤立数组中,则系统不会发生死锁,如果有进程不能放入,则系统将发生死锁,并进行死锁解除,撤消所有的死锁进程,释放它们占用的资源。 主要数据结构 和银行家算法类似,需要建立相应的数组 int allocation[M][M]; int request[M][M]; int available[M]; int line[M]; //管理不占用资源的进程 int no[M]; //记录造成死锁的进程 int work[M];

流程图 否

运行结果 图(1)不会发生死锁时 图(1)当发生死锁时

附录 源代码如下: # include "stdio.h" # define M 50 int allocation[M][M]; int request[M][M]; int available[M]; int line[M]; int no[M]; intn,m,i,j,f,a=0; main() { void check(); void remove(); void show(); printf("输入进程总数:"); scanf("%d", &n); printf("输入资源种类数量:"); scanf("%d", &m); printf("输入进程已占用的资源Allocation:\n"); for(i=0;i

[操作系统]经典进程同步问题题库

1、测量控制系统中的数据采集任务把所采集的数据送一单缓冲区;计算任务则从该缓冲区中取出数据并进行计算。试写出利用信号量机制实现两者共享单缓冲区的同步算法。 Var Sempty,Sfull: semaphore:= 1,0 Begin Parbegin Collection:begin repeat 采集一个数据; wait(Sempty); 数据放入缓冲区; signal(Sfull); untill false; end; Compute:begin repeat wait(Sfull); 从缓冲区取出数据; signal(Sempty); 计算; ` until false; end; Parend End 2、有一阅览室,共有100个座位。读者进入时必须先在一种登记表上登记,该表为每一座位列一个表目,包括座号和读者姓名。读者离开时要注销掉登记内容。试用wait和signal原语描述读者进程的同步问题。 var mutex, readcount :semaphore := 1,100; Begin Parbegin Process Reader:begin repeat wait(readcount); wait(mutex); <填入座号和姓名完成登记>; signal(mutex); <阅读> wait(mutex) <删除登记表中的相关表项,完成注销> signal(mutex); signal(readcount); until false; end; parend; End; 1)、桌上有一空盘,只允许放一个水果,爸爸专向盘中放苹果,妈妈专向盘中放桔子;女儿专吃盘中的苹果,儿子专吃盘中的桔子;试用wait 和signal原语实现爸爸、妈妈、女儿、儿子之间的同步问题。 var Sempty, Sapple, Sorange,: semaphore:= 1,0,0; begin parbegin Father: begin repeat wait(Sempty); ; signal(Sapple); until false; end; Mother: begin repeat wait(Sempty); ; signal(Sorange); until false; end; Son: begin repeat wait(Sorange); ; signal(Sempty); until false; end; Daughter: begin repeat wait(Sapple); ; signal(Sempty); until false; end; parend; end; 1、在4×100米接力赛中,4个运动员之间存在如下关系,运动员1跑到终点把接力棒交给运动员2;运动员2一开始处于等待状态,在接到运动员1传来的接力棒后才能往前跑,他跑完100米后交给运动员3,运动员3也只有在接到运动员2传来的棒后才能跑,他跑完100米后交给运动员4,运动员4接到棒后跑完全程。请试用信号量机制对其上过程进行分析。 var s1,s2,s3:semaphpre:=0,0,0; begin parbegin Athlete1: begin Run 100m; signal(s1); end; Athlete2: begin wait(s1); Run 100m; signal(s2); end; Athlete3: begin wait(s2); Run 100m; signal(s3); end; Athlete4: begin wait(s3); Run 100m; end; parend; end 2、在公共汽车上,司机和售票员各行其职,司机负责开车和到站停车;售票员负责售票和开、关车门;当售票员关好车门后驾驶员才能开车行驶。试用wait和signal操作实现司机和售票员的同步。

第5章 死锁 练习题参考答案

第五章死锁练习题参考答案 (一)单项选择题 1.D 2.C 3.B 4.D 5.A 6.C 7.D (二)填空题 1.死锁2.资源管理不得当,并发执行时3.占有并等待资源,循环等待资源4.等价的5.没有死锁6.一个条件不成立7.静态分配资源,释放已占资源8.预分配资源.开始执行前9.没有占用资源10.抢夺11.主存空间,处理器12.按序分配13安全状态14.避免死锁15.银行家算法16.死锁的避免17.n(x- 1)+l<=m 18.死锁检测方法19判断系统,解除死锁20.占用表,等待表21.尚需量,剩余量22终止,抢夺资源23.校验点24.防止,检测 (三)简答题 1.若系统中存在一组进程、它们中的每—个进程都占用了某种资源而又都在等待其中另一个进程所占的资源,这种等待永远不能结束,则说明系统出现了死锁。产生死锁的原因有两个:一是操作系统对资源的管理不当,二是没有顾及进程并发执行时可能出现的情况。 2.采用某些资源分配策略使死锁的四个必要条件之一不成立,就能防止死锁。除第一个条件互斥使用资源没有对应策略外,对占有并等待资源、不可抢夺资源和循环等待资源这三个条件可采用静态分配资源,释放已占资源,抢夺式分配资源和按序分配资源等资源分配策略。 3.如果操作系统能保证所有的进程在有限的时间内得到需要的全部资源,则称系统处于安全状态。常用银行家算法动态地检测系统中的资源分配情况和进程对资源的需求情况进行资源分配,确保系统处于安全状态。 4解决死锁问题有以下三种方法:(1)死锁的防止。系统按预定的策略为进程分配资源,这些分配策略能使死锁的四个必要条件之一不成立,从而使系统不产生死锁。(2)死锁的避免。系统动态地测试资源分配情况,仅当能确保系统安全时才给进程分配资源。(3)死锁的检测。对资源的申请和分配不加限制,只要有剩余的资源就可把资源分配给申请者,操作系统要定时判断系统是否出现了死锁,当有死锁发生时设法解除死锁。5.用抢夺资源的方式解除死锁时要注意三点:(1)抢夺进程资源时希望付出的代价最小。(2)为被抢夺者的恢复准备好条件,如返回某个安全状态,并记录有关信息。(3)防止被抢夺资源的进程“饿死”,一般总是从执行时间短的进程中抢夺资源。 (四)应用题 1.(1)根据表,P1,P2和P3三个进程尚需资源数分别是4,5和1,系统的资源剩余量为2,若把剩余的资源量全部分配给P2,系统产已无资源可分配,使三个进程都等待资源而无法完成,形成死锁。所以不能先满足进程P2的要求。 (2)可先为进程P3分配1个资源,当它归还3个资源后,这样共有4个可分配资源,可满足P1申请1个资源的要求,再分配3个资源给进程P1,待P1归还7个资源后,先满足P2申请2个资源的请求,分配给进程P2,再分配3个资源给P2,使它完成。 2.(1)系统目前尚余有的资源数为(2,6,2,1),五个进程尚需的资源数分别是A:(2,0,0,0) ; B:(0,0,0,0); C:(4,6,2,0) ; D:(5,7,0,0); E:(0,0,2,1);由于进程B己满足了全部资源需求,它在有限时间内会归还这些资源,因此可分配资源达到(3,6,4,1),这样就可分配给进程A;等A归还资源后,可分配资源达到(6,12,6,1),再分配给进程C;之后可分配资源会达到(7,12,10,1),分配给进程D并等待一段时间后,可分配资源将达到(7,12,10,2),最后,可分配给进程E,满足其全部请求。所以说目前系统处于安全状态。 (2)若此时给进程D分配(2,5,0,0)个资源,进程D尚需(3,2,0,0),则系统剩余的资源量为(0,

相关主题
文本预览
相关文档 最新文档