当前位置:文档之家› 微分几何答案第二章

微分几何答案第二章

微分几何答案第二章
微分几何答案第二章

第二章 曲面论

§1曲面的概念

1、求正螺面r ={ u v cos ,u v sin , b v }的坐标曲线、

解 u -曲线为r ={u 0cos v ,u 0sin v ,bv 0 }={0,0,bv 0}+u {0cos v ,0sin v ,0},为曲线的直母线;v-曲线为r ={0u v cos ,0u v sin ,b v }为圆柱螺线.

2.证明双曲抛物面r ={a(u +v), b(u -v),2uv }的坐标曲线就就是它的直母线。 证 u-曲线为r ={ a(u+0v ), b(u -0v ),2u 0v }={ a 0v , b0v ,0}+ u{a,b,20v }表示过点{ a0v , b 0v ,0}以{a,b,20v }为方向向量的直线;

v-曲线为r ={a(0u +v), b(0u -v),20u v}={a 0u , b 0u ,0}+v{a,-b,20u }表示过点(a 0u , b 0u ,0)以{a,-b,20u }为方向向量的直线。

3、求球面r =}sin ,sin cos ,sin cos {?????a a a 上任意点的切平面与法线方程。 解 ?r =}cos ,sin sin ,cos sin {?????a a a -- ,?r

=}0,cos cos ,sin cos {????a a - 任意点的切平面方程为00cos cos sin cos cos sin sin cos sin sin sin cos cos cos =------???

???

???????

?a a a a a a z a y a x 即 xcos ?c os ? + ycos ?s in ? + z sin ? - a = 0 ;

法线方程为 ?

?????????sin sin sin cos sin cos cos cos cos cos a z a y a x -=-=- 。 4.求椭圆柱面22

221x y a b

+=在任意点的切平面方程,并证明沿每一条直母线,此曲面只有一个切平面 。

解 椭圆柱面22

221x y a b

+=的参数方程为x = co s?, y = asi n?, z = t , }0,cos ,sin {??θb a r -= , }1,0,0{=t r 。所以切平面方程为:

01

000cos sin sin cos =----??

??

b a t z b y a x ,即x bcos ? + y asin ? - a b = 0 此方程与t无关,对于?的每一确定的值,确定唯一一个切平面,而?的每一数值对应一条直母线,说明沿每一条直母线,此曲面只有一个切平面 。

5.证明曲面},,{3

uv

a v u r = 的切平面与三个坐标平面所构成的四面体的体积就是常数。 证 },0,1{23v

u a r u -= ,},1,0{23uv a r v -= 。切平面方程为:33=++z a uv v y u x 。 与三坐标轴的交点分别为(3u,0,0),(0,3v,0),(0,0,uv

a 2

3)。于就是,四面体的体积为: 332

9||3||3||361a uv a v u V ==就是常数。

§2 曲面的第一基本形式

1. 求双曲抛物面r ={a(u +v), b(u-v),2uv}的第一基本形式、

解 ,4},2,,{},2,,{2222v b a r E u b a r v b a r u v u ++==-==

2222224,4u b a r G uv b a r r F v v u ++==+-=?=

, ∴ I = +++2222)4(du v b a 22

22222)4()4(dv u b a dudv uv b a ++++-。

2、求正螺面r ={ u v cos ,u v sin , bv }的第一基本形式,并证明坐标曲线互相垂直。 解 },cos ,sin {},0,sin ,{cos b v u v u r v v r v u -== ,12==u r E ,0=?=v u r r F ,

222b u r G v +== ,∴ I =2222)(dv b u du ++,∵F=0,∴坐标曲线互相垂直。

3.在第一基本形式为I =222sinh udv du +的曲面上,求方程为u = v 的曲线的弧长。

解 由条件=2ds 222sinh udv du +,沿曲线u = v 有d u=dv ,将其代入2ds 得=2ds 222sinh udv du +=22cosh vdv ,d s = c oshvdv , 在曲线u = v上,从1v 到2v 的弧长为|sinh sinh ||cosh |122

1v v vdv v v -=?。

4、设曲面的第一基本形式为I = 2222)(dv a u du ++,求它上面两条曲线u + v = 0 ,

u–v = 0的交角。

分析 由于曲面上曲线的交角就是曲线的内蕴量,即等距不变量,而求等距不变量只须知道曲面的第一基本形式,不需知道曲线的方程。

解 由曲面的第一基本形式知曲面的第一类基本量1=E ,0=v F ,22a u G +=,曲线u

+ v = 0与u – v = 0的交点为u = 0, v = 0,交点处的第一类基本量为1=E ,0=v F ,2a G =。曲线u + v = 0的方向为du = -dv , u – v = 0的方向为δu=δv , 设两曲线的夹角为?,则有

c os ?=22222211a a v

G u E Gdv Edu u

Gdv u Edu +-=+++δδδδ 。 5.求曲面z = axy 上坐标曲线x = x 0 ,y =0y 的交角、

解 曲面的向量表示为r ={x,y,axy }, 坐标曲线x = x0的向量表示为r ={ x0,y,ax0y } ,其切向量y r

={0,1,ax0};坐标曲线y =0y 的向量表示为r ={x , 0y ,ax 0y },其切向量x r ={1,0,a0y },设两曲线x = x0与y =0y 的夹角为?,则有co s? = 20

220200211||||y a x a y x a r r r r y x y x ++=? 6、 求u-曲线与v-曲线的正交轨线的方程、

解 对于u-曲线dv = 0,设其正交轨线的方向为δu:δv ,则有

Edu δu + F(du δv + d vδu)+ G d v δv = 0,将dv =0代入并消去du 得u-曲线的正交轨线的微分方程为Eδu + F δv = 0 、

同理可得v -曲线的正交轨线的微分方程为Fδu + G δv = 0 .

第四版微分几何第二章课后习题答案

第二章曲面论 §1曲面的概念 1.求正螺面 r ={ u v cos ,u v sin , bv }的坐标曲线. 解 u-曲线为r ={u cos v ,u 0sin v ,bv }={0,0,bv 0}+u {0 cos v , sin v ,0}, 为曲线的直母线;v-曲线为r ={ 0u v cos , 0u v sin ,bv }为圆柱螺线. 2.证明双曲抛物面 r ={a (u+v ), b (u-v ),2uv }的坐标曲线就是它的直 母线。 证 u-曲线为r ={ a (u+0v ), b (u-0v ),2u v }={ a 0v , b 0v ,0}+ u{a,b,2 v } 表示过点{ a v , b 0v ,0}以{a,b,2 v }为方向向量的直线; v-曲线为r ={a ( u +v ), b (0u -v ),20u v }={a 0u , b 0u ,0}+v{a,-b,2 u } 表示过点(a 0u , b 0u ,0)以{a,-b,20u }为方向向量的直线。 3.求球面 r =} sin ,sin cos ,sin cos {a a a 上任意点的切平面和法线方程。

4.求椭圆柱面222 2 1x y a b 在任意点的切平面方程,并证明沿每一条直母线,此 曲面只有一个切平面 。 解椭圆柱面 222 2 1x y a b 的参数方程为x = cos , y = asin , z = t , } 0,cos ,sin {b a r , } 1,0,0{t r 。所以切平面方程为: 1 0cos sin sin cos b a t z b y a x ,即x bcos + y asin - a b = 0 此方程与t 无关,对于的每一确定的值,确定唯一一个切平面,而 的每一数值 对应一条直母线,说明沿每一条直母线,此曲面只有一个切平面 。 5.证明曲面} , ,{3 uv a v u r 的切平面和三个坐标平面所构成的四面体的体积是常 数。 证 } , 0,1{23 v u a r u ,} , 1,0{2 3uv a r v 。切平面方程为: 3 3 z a uv v y u x 。 与三坐标轴的交点分别为(3u,0,0),(0,3v,0),(0,0, uv a 2 3)。于是,四面体的体积为: 3 3 2 9| |3| |3||36 1a uv a v u V 是常数。

微分几何第四版习题答案解析梅向明

§1曲面的概念 1.求正螺面r r ={ u v cos ,u v sin , bv }的坐标曲线. 解 u-曲线为r r ={u 0cos v ,u 0sin v ,bv 0 }={0,0,bv 0}+u {0cos v ,0sin v ,0},为曲线的直母线;v-曲线为r r ={0u v cos ,0u v sin ,bv }为圆柱螺线. 2.证明双曲抛物面r r ={a (u+v ), b (u-v ),2uv }的坐标曲线就是它的直母线。

证 u-曲线为r r ={ a (u+0v ), b (u-0v ),2u 0v }={ a 0v , b 0v ,0}+ u{a,b,20v }表示过点{ a 0v , b 0v ,0}以{a,b,20v }为方向向量的直线; v-曲线为r r ={a (0u +v ), b (0u -v ),20u v }={a 0u , b 0u ,0}+v{a,-b,20u }表示过点(a 0u , b 0u ,0)以{a,-b,20u }为方向向量的直线。 3.求球面r r =}sin ,sin cos ,sin cos {?????a a a 上任意点的切平面和法线方程。 解 ?r ρ =}cos ,sin sin ,cos sin {?????a a a -- ,?r ρ=}0,cos cos ,sin cos {????a a - 任意点的切平面方程为00 cos cos sin cos cos sin sin cos sin sin sin cos cos cos =------? ?? ????? ??????a a a a a a z a y a x 即 xcos ?cos ? + ycos ?sin ? + zsin ? - a = 0 ; 法线方程为 ? ? ????????sin sin sin cos sin cos cos cos cos cos a z a y a x -=-=- 。 4.求椭圆柱面22 221x y a b +=在任意点的切平面方程,并证明沿每一条直母线,此 曲面只有一个切平面 。 解 椭圆柱面22 221x y a b +=的参数方程为x = cos ?, y = asin ?, z = t , }0,cos ,sin {??θb a r -=ρ , }1,0,0{=t r ρ 。所以切平面方程为: 01 0cos sin sin cos =----????b a t z b y a x ,即x bcos ? + y asin ? - a b = 0 此方程与t 无关,对于?的每一确定的值,确定唯一一个切平面,而?的每一数值对应一条直母线,说明沿每一条直母线,此曲面只有一个切平面 。

微分几何习题全解(梅向明高教版第四版)

微分几何主要习题解答 第一章 曲线论 §2 向量函数 5. 向量函数)(t r 具有固定方向的充要条件是)(t r × ) ('t r = 0 。 分析:一个向量函数)(t r 一般可以写成)(t r =)(t λ)(t e 的形式,其中)(t e 为单位向 量函数,)(t λ为数量函数,那么)(t r 具有固定方向的充要条件是)(t e 具有固定方向,即)(t e 为常向量,(因为)(t e 的长度固定)。 证 对于向量函数)(t r ,设)(t e 为其单位向量,则)(t r =)(t λ)(t e ,若)(t r 具有固 定方向,则)(t e 为常向量,那么)('t r =)('t λe ,所以 r ×'r =λ'λ(e ×e )=0 。 反之,若r ×'r =0 ,对)(t r =)(t λ)(t e 求微商得'r ='λe +λ 'e ,于是r × 'r =2 λ(e ×'e )=0 ,则有 λ = 0 或e ×'e =0 。当)(t λ= 0时,)(t r =0 可与任意方 向平行;当λ≠ 0时,有e ×'e =0 ,而(e ×'e 2)=22'e e -(e ·'e 2)=2'e ,(因为e 具有固定长, e ·'e = 0) ,所以 'e =0 ,即e 为常向量。所以,)(t r 具有固定方向。 6.向量函数)(t r 平行于固定平面的充要条件是(r 'r ''r )=0 。 分析:向量函数)(t r 平行于固定平面的充要条件是存在一个定向向量)(t n ,使 )(t r ·n = 0 ,所以我们要寻求这个向量n 及n 与'r ,''r 的关系。 证 若)(t r 平行于一固定平面π,设n 是平面π的一个单位法向量,则n 为常向 量,且)(t r ·n = 0 。两次求微商得'r ·n = 0 ,''r ·n = 0 ,即向量r ,'r ,''r 垂直 于同一非零向量n ,因而共面,即(r 'r ''r )=0 。 反之, 若(r 'r ''r )=0,则有r ×'r =0 或r ×'r ≠0 。若r ×'r =0 ,由上题知 )(t r 具有固定方向,自然平行于一固定平面,若r ×' r ≠ ,则存在数量函数)(t λ、 )(t μ,使''r = r λ +μ'r ①

微分几何试题库

微分几何 一、判断题 1 、两个向量函数之和的极限等于极限的和(√) 2、二阶微分方程22 u v du u v dudv u v dv ++=总表示曲面上两族曲A(,)2B(,)B(,)0 线. (?) 3、若() s t均在[a,b]连续,则他们的和也在该区间连续(√)r t和() 4、向量函数() s t具有固定长的充要条件是对于t的每一个值, s t平行(×) s t的微商与() () 5、等距变换一定是保角变换.(√) 6、连接曲面上两点的所有曲线段中,测地线一定是最短的.(?) 7、常向量的微商不等于零(×) 8、螺旋线x=cost,y=sint,z=t在点(1,0,0)的切线为X=Y=Z(×) 9、对于曲线s=() s t上一点(t=t0),若其微商是零,则这一点为曲线的正常点(×) 10、曲线上的正常点的切向量是存在的(√) 11、曲线的法面垂直于过切点的切线(√) 12、单位切向量的模是1(√) 13、每一个保角变换一定是等距变换(×) 14、空间曲线的形状由曲率与挠率唯一确定.(√) F=,这里F是第一基本量.(√)15、坐标曲线网是正交网的充要条件是0

二、填空题 16、曲面上的一个坐标网,其中一族是测地线 17、螺旋线x=2cost,y=2sint,z=2t,在点(1,0,0)的法平面是___ y+z=0, . 18.设给出1 c 类曲线:)(t r r =,.b t a ≤≤则其弧长可表示为?'b a dt t r )( 19、已知33{cos ,sin ,cos 2}r x x x =,02x π << ,则α=1 {3cos ,3sin ,4}5 x x --, β= {sin ,cos ,0}x x ,γ=1{4cos ,4sin ,3}5x x --,κ= 625sin 2x ,τ=8 25sin 2x 。 20、曲面的在曲线,如果它上面每一点的切点方向都是渐近方向,则称为渐进曲线。 21、旋转面r ={()cos ,()sin ,()t t t ?θ?θψ},他的坐标网是否为正交的?____是_____(填“是”或“不是”). 22、过点平行于法方向的直线叫做曲面在该点的_____法线_____线. 23.任何两个向量q p ,的数量积=?q p )cos(~ pq q p 24、保持曲面上任意曲线的长度不便的变称为____等距(保长)变换__. 25、圆柱螺线的曲率和挠率都是_____常数____数(填“常数”或“非常数”). 26.若曲线(c)用自然参数表示)(t r r =,则曲线(c)在)(0s P 点的密切平面的方程是 0))(),(),((000=-s r s r s r R 27.曲线的基本三棱形由三个基本向量和密切平面、法平面、从切平面 28.杜邦指标线的方程为1222±=++Ny Mxy Lx 29、已知曲面{cos ,sin ,6}r u v u v v =,0u >,02 v π ≤<,则它的第一基本形式 为 222(36)du u dv ++ ,第二基本形式为 dv ,高斯曲率

第四版 微分几何 第二章课后习题答案

第二章 曲面论 §1曲面的概念 1.求正螺面r ={ u v cos ,u v sin , bv }的坐标曲线. 解 u-曲线为r ={u 0cos v ,u 0sin v ,bv 0 }={0,0,bv 0}+u {0cos v ,0sin v ,0},为曲线的直母线;v-曲线为r ={0u v cos ,0u v sin ,bv }为圆柱螺线. 2.证明双曲抛物面r ={a (u+v ), b (u-v ),2uv }的坐标曲线就是它的直母线。 证 u-曲线为r ={ a (u+0v ), b (u-0v ),2u 0v }={ a 0v , b 0v ,0}+ u{a,b,20v }表示过点{ a 0v , b 0v ,0}以{a,b,20v }为方向向量的直线; v-曲线为r ={a (0u +v ), b (0u -v ),20u v }={a 0u , b 0u ,0}+v{a,-b,20u }表示过点(a 0u , b 0u ,0)以{a,-b,20u }为方向向量的直线。 3.求球面r =}sin ,sin cos ,sin cos {?????a a a 上任意点的切平面和法线方程。

4.求椭圆柱面 222 2 1x y a b + =在任意点的切平面方程, 并证明沿每一条直母线,此曲面只有一个切平面 。 解 椭圆柱面 222 2 1x y a b + =的参数方程为x = cos ?, y = asin ?, z = t , }0,cos ,sin {??θb a r -= , }1,0,0{=t r 。所以切平面方程为: 01 0cos sin sin cos =----?? ??b a t z b y a x ,即x bcos ? + y asin ? - a b = 0 此方程与t 无关,对于?的每一确定的值,确定唯一一个切平面,而?的每一数值对应一条直母线,说明沿每一条直母线,此曲面只有一个切平面 。 5.证明曲面},,{3 uv a v u r = 的切平面和三个坐标平面所构成的四面体的体积是常 数。 证 },0,1{23 v u a r u -= ,},1,0{23 uv a r v -= 。切平面方程为:33=++z a uv v y u x 。 与三坐标轴的交点分别为(3u,0,0),(0,3v,0),(0,0, uv a 2 3)。于是,四面体的体积为: 3 3 2 9| |3| |3||36 1a uv a v u V = =是常数。

微分几何练习题库及参考答案(已修改)

《微分几何》复习题与参考答案 一、填空题 1.极限232 lim[(31)i j k]t t t →+-+=138i j k -+. 2.设f ()(sin )i j t t t =+,2g()(1)i j t t t e =++,求0 lim(()())t f t g t →?= 0 . 3.已知{}42 r()d =1,2,3t t -?, {}6 4 r()d =2,1,2t t -?,{}2,1,1a =,{}1,1,0b =-,则 4 6 2 2 ()()a r t dt+b a r t dt=???? ?{}3,9,5-. 4.已知()r t a '=(a 为常向量),则()r t =ta c +. 5.已知()r t ta '=,(a 为常向量),则()r t = 2 12 t a c +. 6. 最“贴近”空间曲线的直线和平面分别是该曲线的___ 切线___和 密切平面____. 7. 曲率恒等于零的曲线是_____ 直线____________ . 8. 挠率恒等于零的曲线是_____ 平面曲线________ . 9. 切线(副法线)和固定方向成固定角的曲线称为 一般螺线 . 10. 曲线()r r t =在t = 2处有3αβ=,则曲线在t = 2处的曲率k = 3 . 11. 若在点00(,)u v 处v 0u r r ?≠,则00(,)u v 为曲面的_ 正常______点. 12. 已知()(2)(ln )f t t j t k =++,()(sin )(cos )g t t i t j =-,0t >,则4 ()d f g dt dt ?=?4cos 62-. 13.曲线{}3()2,,t r t t t e =在任意点的切向量为{}22,3,t t e . 14.曲线{}()cosh ,sinh ,r t a t a t at =在0t =点的切向量为{}0,,a a . 15.曲线{}()cos ,sin ,r t a t a t bt =在0t =点的切向量为{}0,,a b . 16.设曲线2:,,t t C x e y e z t -===,当1t =时的切线方程为 2111 -=-- =-z e e y e e x . 17.设曲线t t t e z t e y t e x ===,sin ,cos ,当0t =时的切线方程为11-==-z y x . 18. 曲面的曲纹坐标网是曲率线网的充要条件是____F =M =0_ ______________. 19. u -曲线(v -曲线)的正交轨线的微分方程是 _____ E d u +F d v =0(F d u +G d v =0)__. 20. 在欧拉公式2212cos sin n k k k θθ=+中,θ是 方向(d) 与u -曲线 的夹角. 21. 曲面的三个基本形式,,I II III 、高斯曲率K 、平均曲率H 之间的关系是20H K III -II +I = . 22.已知{}r(,),,u v u v u v uv =+-,其中2,sin u t v t ==,则dr d t ={}2cos ,2cos ,2cos t t t t vt u t +-+. 23.已知{}r(,)cos cos , cos sin ,sin a a a ?θ?θ?θ?=,其中t =?,2t =θ,则

微分几何第二章 矩阵和坐标变换

二、矩阵和坐标变换 2.1 矩阵及矩阵的运算 由m n ?个数排列形成的一个矩形数阵,称为m 行n 列矩阵。 如1111 n m m n a a A a a ?? ? = ? ??? ,其中ij a 称为矩阵元素。若两个矩阵A 、B 的行数和列数都相同,并且对应元素相等,则两个矩阵相等,记为A B = 。 矩阵的加(减)法 两个矩阵A 、B ,它们的行数和列数分别相等,把它们的对应元素相加减,得到一个 新矩阵C ,则称为A 与B 之和(差),记为C A B =± 。 矩阵加法适合交换律:A B B A +=+ 矩阵加法适合结合律:()()A B C A B C ++=++ 数乘矩阵 用数λ和矩阵A 相乘,则将A 中的每一个元素都乘以λ,称为λ与A 之积,记为A λ 或A λ 。 数乘矩阵适合结合律:()()A A λμλμ= 数乘矩阵适合分配率:()A B A B λλλ+=+ 矩阵乘法 两个矩阵A 、B ,它们相乘得到一个新矩阵C ,记为C AB = 。 矩阵A 和B 的乘积C 的第i 行和第j 列的元素等于第一个矩阵A 的第i 行与第二个矩阵B 的 第j 列的对应元素乘积之和。即 11221 n ij i j i j in nj ik kj k c a b a b a b a b ==+++= ∑ 注意:只有第一个矩阵的列数和第二个矩阵的行数相等时,才能相乘。 矩阵乘法适合结合律:()()A B C A B C = 矩阵乘法适合分配率:()A B C AC BC +=+ 矩阵乘法不适合交换律:AB BA ≠

2.2坐标变换 空间中不同坐标系下,同一点有不同的坐标,同一矢量有不同的分量。由于运算时要在同一坐标系下进行,为此,要考察两个坐标系之间的相互关系,就要用坐标变换的方式。 2.2.1底失的变换 给出两个直角坐标系[]123;,,O e e e σ= ,123;,,O e e e σ??'''''=? ? ,其中σ称为旧坐标系, σ'称为新坐标系。下面研究σ和σ'两个坐标系之间的关系。 首先把新坐标系σ'的底失123,,e e e ''' 看成在旧坐标系σ里的一个径失。则新坐标系σ'的底失123,,e e e ''' 在旧坐标系σ里的表达式可写成: 111112213322112222333 311322333e a e a e a e e a e a e a e e a e a e a e ?'=++??'=++??'=++?? 这就是σ变换到σ'的底失变换公式。 反之,又可推导出由新坐标系σ'到旧坐标系σ的底失变换公式。 111121231332121222323131232333e a e a e a e e a e a e a e e a e a e a e ? '''=++? ?'''=++??'''=++? ? 由上面两式不难看出,将九个系数按其原来位置排列成方阵: 11121321 222331 32 33a a a A a a a a a a ?? ?= ? ??? A 表示了底失变换关系,称为由σσ'→的底失系数变换矩阵。用矩阵乘法的形式表示为: 1 111112132212223223132 33333e e e a a a e a a a e A e a a a e e e ??' ???? ???? ??? ????'== ??????? ??????'??????? ?? 2.2.2矢量的坐标变换 设一矢量r 在坐标系σ和σ'里的分量依次是(),,x y z 和(),,x y z ''',则: 123r xe ye ze =++ 又 123 r x e y e z e ''''''=++

微分几何第四版习题答案梅向明

§1曲面的概念 1.求正螺面r ={ u v cos ,u v sin , bv }的坐标曲线. 解 u-曲线为r ={u 0cos v ,u 0sin v ,bv 0 }={0,0,bv 0}+u {0cos v ,0sin v ,0},为曲线的直母线;v-曲线为r ={0u v cos ,0u v sin ,bv }为圆柱螺线. 2.证明双曲抛物面r ={a (u+v ), b (u-v ),2uv }的坐标曲线就是它的直母线。 证 u-曲线为r ={ a (u+0v ), b (u-0v ),2u 0v }={ a 0v , b 0v ,0}+ u{a,b,20v }表示过点{ a 0v , b 0v ,0}以{a,b,20v }为方向向量的直线; v-曲线为r ={a (0u +v ), b (0u -v ),20u v }={a 0u , b 0u ,0}+v{a,-b,20u }表示过点(a 0u , b 0u ,0)以{a,-b,20u }为方向向量的直线。 3.求球面r =}sin ,sin cos ,sin cos {?????a a a 上任意点的切平面和法线方程。 解 ?r =}cos ,sin sin ,cos sin {?????a a a -- ,?r =}0,cos cos ,sin cos {????a a - 任意点的切平面方程为00 cos cos sin cos cos sin sin cos sin sin sin cos cos cos =------? ?? ????? ??????a a a a a a z a y a x 即 xcos ?cos ? + ycos ?sin ? + zsin ? - a = 0 ; 法线方程为 ? ? ????????sin sin sin cos sin cos cos cos cos cos a z a y a x -=-=- 。 4.求椭圆柱面22 221x y a b +=在任意点的切平面方程,并证明沿每一条直母线,此曲面只 有一个切平面 。 解 椭圆柱面22 221x y a b +=的参数方程为x = cos ?, y = asin ?, z = t , }0,cos ,sin {??θb a r -= , }1,0,0{=t r 。所以切平面方程为: 01 0cos sin sin cos =----????b a t z b y a x ,即x bcos ? + y asin ? - a b = 0 此方程与t 无关,对于?的每一确定的值,确定唯一一个切平面,而?的每一数值对应一条

微分几何试题库

微分几何 一、判断题 1、两个向量函数之和的极限等于极限的和(√) 2、二阶微分方程22A(,)2B(,)B(,)0u v du u v dudv u v dv ++=总表示曲面上两族曲线.(?) 3、若4 ()s t 的微商与()s t 平行(5、等距变换一定是保角变换678910、曲线上的正常点的切向量是存在的(1112131415二、16、曲面上的一个坐标网,其中一族是测地线 17、螺旋线x=2cost,y=2sint,z=2t,在点(1,0,0)的法平面是___y+z=0,. 18.设给出1c 类曲线:)(t r r =,.b t a ≤≤则其弧长可表示为?'b a dt t r )( 19、已知33{cos ,sin ,cos 2}r x x x =,02x π << ,则α=1 {3cos ,3sin ,4}5 x x --,β={sin ,cos ,0}x x ,

γ=1{4cos ,4sin ,3}5x x --,κ= 625sin 2x ,τ=8 25sin 2x 。 20、曲面的在曲线,如果它上面每一点的切点方向都是渐近方向,则称为渐进曲线。 21、旋转面r ={()cos ,()sin ,()t t t ?θ?θψ},他的坐标网是否为正交的?____是_____(填“是”或“不是”). 22、过点平行于法方向的直线叫做曲面在该点的_____法线_____线. 23.242526.27.28.29第二基本形式为 21236 u -+:du 30同或对称。3132.一个曲面为可展曲面的充分必要条件为此曲面为单参数平面族的包络 三、综合题 33.求曲线t te z t t y t t x ===,cos ,sin 在原点的密切平面,法平面,切线方程。 解:},,cos ,sin {t te t t t t r = 在原点处0=t 在原点处切平面的方程为:

微分几何 陈维桓 习题答案

习题答案2 p. 58 习题3.1 2. 在球面2222{(,,)|1}S x y z x y z =++=上,命(0,0,1)N =,(0,0,1)S =-. 对于赤道平面上的任意一点(,,0)p u v =,可以作为一的一条直线经过,N p 两点,它与球面有唯一的交点,记为p '. (1) 证明:点p '的坐标是 2 221u x u v =++,2221 v y u v =++,222211u v z u v +-=++, 并且它给出了球面上去掉北极N 的剩余部分的正则参数表示; (2) 求球面上去掉南极S 的剩余部分的类似的正则参数表示; (3) 求上面两种正则参数表示在公共部分的参数变换; (4) 证明球面是可定向曲面. 证明. (1) 设(,)r u v Op '=v . 如图,,,N p p '三点共线,故有t ∈R 使得 (1)Op tOp t ON '=+-u u u v u u v u u u v . (1) 由于21Op ON =='u u u v u u u v ,222 u v Op =+u u v ,0Op ON '?=u u u v u u u v ,0t ≠,取上式两边的模长平方, 得222/(1)t u v =++. 从而 22222221 (,,)(,,0)(0,0,1)11u v x y z Op u v u v u v +-'==+++++u u u v 22222222 221,,111u v u v u v u v u v ??+-= ?++++++?? ,2 (,)u v ∈R . (2) 由(1)可知 (,,1)(0,0,1)(,,1)r Op tNp ON t u v tu tv t '==+=-+=-u u u v u u u v u u u v v , 又2()dt t udu vdv =-+,所以 2(,,1)(1,0,0)u r t u u v t =--+v ,2(,,1)(0,1,0)v r t v u v t =--+v ,

微分几何期终试题

《微分几何》 期终考试题(A) 班级:____ 学号:______ 姓名:_______ 成绩:_____ 一、 填空题(每空1分, 共20分) 1. 半径为R 的球面的高斯曲率为 ;平面的平均曲率为 . 2. 若的曲率为,挠率为)(t r )(t k )(t τ,则关于原点的对称曲线的曲率为 )(t r ;挠率为 . 3. 法曲率的最大值和最小值正好是曲面的 曲率, 使法曲率达到最大值和最小值的方向是曲面的 方向. 4. 距离单位球面球心距离为)10(<

二、 单项选择题(每题2分,共20分) 1. 等距等价的两曲面上,对应曲线在对应点具有相同的 【 】 A. 曲率 B. 挠率 C. 法曲率 D. 测地曲率 2. 下面各对曲面中,能建立局部等距对应的是 【 】 A. 球面与柱面 B. 柱面与平面 C. 平面与伪球面 D. 伪球面与可展曲面 3. 过空间曲线C 上点P (非逗留点)的切线和P 点的邻近点Q 的平面π,当Q 沿曲线趋于点C P 时,平面π的极限位置称为曲线C 在P 点的 【 】 A. 法平面 B. 密切平面 C. 从切平面 D. 不存在 4. 曲率和挠率均为非零常数的曲线是 【 】 A. 直线 B. 圆 C. 圆柱螺线 D. 平面曲线 5. 下列关于测地线,不正确的说法是 【 】 A. 测地线一定是连接其上两点的最短曲线 B. 测地线具有等距不变性 C. 通过曲面上一点,且具有相同切线的一切曲线中,测地线的曲率最小 D. 平面上测地线必是直线 6. 设曲面的第一、第二基本型分别是,则曲面的两个主曲率分别是 【 】 2222,Ndv Ldu II Gdv Edu I +=+= A.G N k E L k ==21, B. N G k L E k ==21, C. v E G k k ???==ln 21 21 D. u G E k k ??==ln 2121 7. 曲面上曲线的曲率,测地曲率,法曲率之间的关系是 【 】 k g k n k

最新微分几何答案

微分几何答案

第二章曲面论 §1曲面的概念 1.求正螺面={ u ,u , bv }的坐标曲线. 解 u-曲线为={u ,u ,bv }={0,0,bv}+u {,,0},为曲线的直母线;v-曲线为={,,bv }为圆柱螺线. 2.证明双曲抛物面={a(u+v), b(u-v),2uv}的坐标曲线就是它的直母线。 证 u-曲线为={ a(u+), b(u-),2u}={ a, b,0}+ u{a,b,2}表示过点{ a, b,0}以{a,b,2}为方向向量的直线; v-曲线为={a(+v), b(-v),2v}={a, b,0}+v{a,-b,2}表示过点(a, b,0)以{a,-b,2}为方向向量的直线。 3.求球面=上任意点的切平面和法线方程。 解 = ,= 任意点的切平面方程为 即 xcoscos + ycossin + zsin - a = 0 ; 法线方程为。 4.求椭圆柱面在任意点的切平面方程,并证明沿每一条直母线,此曲面只有一个切平面。 解椭圆柱面的参数方程为x = cos, y = asin, z = t , , 。所以切平面方程为: ,即x bcos + y asin - a b = 0 此方程与t无关,对于的每一确定的值,确定唯一一个切平面,而的每一数值对应一条直母线,说明沿每一条直母线,此曲面只有一个切平面。 5.证明曲面的切平面和三个坐标平面所构成的四面体的体积是常数。 证,。切平面方程为:。 与三坐标轴的交点分别为(3u,0,0),(0,3v,0),(0,0,)。于是,四面体的体积为: 是常数。 §2曲面的第一基本形式 1.求双曲抛物面={a(u+v), b(u-v),2uv}的第一基本形式. 解 , ∴ I = 2。 2.求正螺面={ u ,u , bv }的第一基本形式,并证明坐标曲线互相垂直。 解,,,,∴I =,∵F=0,∴坐标曲线互相垂直。 3.在第一基本形式为I =的曲面上,求方程为u = v的曲线的弧长。

微分几何第四版习题答案梅向明

微分几何第四版习题答 案梅向明 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

§1曲面的概念 1.求正螺面r ={ u v cos ,u v sin , bv }的坐标曲线. 解 u-曲线为r ={u 0cos v ,u 0sin v ,bv 0 }={0,0,bv 0}+u {0cos v ,0sin v ,0},为曲线的直母线;v-曲线为r ={0u v cos ,0u v sin ,bv }为圆柱螺线. 2.证明双曲抛物面r ={a (u+v ), b (u-v ),2uv }的坐标曲线就是它的直母线。 证 u-曲线为r ={ a (u+0v ), b (u-0v ),2u 0v }={ a 0v , b 0v ,0}+ u{a,b,20v }表示过点{ a 0v , b 0v ,0}以{a,b,20v }为方向向量的直线; v-曲线为r ={a (0u +v ), b (0u -v ),20u v }={a 0u , b 0u ,0}+v{a,-b,20u }表示过点(a 0u , b 0u ,0)以{a,-b,20u }为方向向量的直线。 3.求球面r =}sin ,sin cos ,sin cos {?????a a a 上任意点的切平面和法线方程。 解 ?r =}cos ,sin sin ,cos sin {?????a a a -- ,?r =}0,cos cos ,sin cos {????a a - 任意点的切平面方程为00 cos cos sin cos cos sin sin cos sin sin sin cos cos cos =------? ?? ????? ??????a a a a a a z a y a x 即 xcos ?cos ? + ycos ?sin ? + zsin ? - a = 0 ; 法线方程为 ? ? ????????sin sin sin cos sin cos cos cos cos cos a z a y a x -=-=- 。 4.求椭圆柱面22 221x y a b +=在任意点的切平面方程,并证明沿每一条直母线,此曲面只有一个 切平面 。 解 椭圆柱面22 221x y a b +=的参数方程为x = cos ?, y = asin ?, z = t , }0,cos ,sin {??θb a r -= , }1,0,0{=t r 。所以切平面方程为: 01 0cos sin sin cos =----????b a t z b y a x ,即x bcos ? + y asin ? - a b = 0

(整理)《微分几何》陈维桓第六章习题及答案.

§ 6.1 测地曲率 1. 证明:旋转面上纬线的测地曲率是常数。 证明: 设旋转面方程为{()cos ,()sin ,()} r f v u f v u g v =, 22222 ()()(()())()f v du f v g v dv ''I =++, 222(),()() E f v G f v g v ''==+ 纬线即u —曲线:0 v v =(常数), 其测地曲率为2 u g k == =为常数。 2、 证明:在球面S (cos cos ,cos sin ,sin )r a u v a u v a u =, ,0222 u v ππ π- <<<< 上,曲线 C 的测地曲率可表示成 ()()sin(())g d s dv s k u s ds ds θ=- , 其中((),())u s v s 是球面S 上曲线C 的参数方程, s 是曲线C 的弧长参数, ()s θ是曲线C 与球面上经线(即u -曲

线)之间的夹角。 证明 易求出2 E a =, 0 F =,2 2 cos G a u =, 因此 g d k ds θθθ= 221ln(cos )sin 2d a u ds a u θθ?=+? sin sin cos d u ds a u θθ= -, 而1sin cos dv ds a u θθ ==, 故 sin g d dv k u ds ds θ= -。 3、证明:在曲面S 的一般参数系(,)u v 下,曲线:(),()C u u s v v s ==的测地曲率是 ()()()()()())g k Bu s Av s u s v s v s u s ''''''''=-+-, 其中s 是曲线C 的弧长参数,2 g EG F =-, 并且 12 112 11 12 22 (())2()()(())A u s u s v s v s ''''=Γ+Γ+Γ, 2222 2111222(())2()()(())B u s u s v s v s ''''=Γ+Γ+Γ 特别是,参数曲线的测地曲率分别为 2 3 11(())u g k u s ',1322(()) v g k v s '= 。 证明 设曲面S 参数方程为12(,)r r u u =,1122:(),()C u u s u u s ==

微分几何习题及答案解析

第一章 曲线论 §2 向量函数 5. 向量函数)(t r 具有固定方向的充要条件是)(t r × )('t r = 0 。 分析:一个向量函数)(t r 一般可以写成)(t r =)(t λ)(t e 的形式,其中)(t e 为单位向 量函数,)(t λ为数量函数,那么)(t r 具有固定方向的充要条件是)(t e 具有固定方向,即)(t e 为常向量,(因为)(t e 的长度固定)。 证 对于向量函数)(t r ,设)(t e 为其单位向量,则)(t r =)(t λ)(t e ,若)(t r 具有固 定方向,则)(t e 为常向量,那么)('t r =)('t λe ,所以 r ×'r =λ'λ(e ×e )=0 。 反之,若r ×'r =0 ,对)(t r =)(t λ)(t e 求微商得'r ='λe +λ'e ,于是r × 'r =2 λ(e ×'e )=0 ,则有 λ = 0 或e ×'e =0 。当)(t λ= 0时,)(t r =0 可与任意 方向平行;当λ≠0时,有e ×'e =0 ,而(e ×'e 2)=22'e e -(e ·'e 2)=2'e ,(因 为e 具有固定长, e ·'e = 0) ,所以 'e =0 ,即e 为常向量。所以,)(t r 具有固 定方向。 6.向量函数)(t r 平行于固定平面的充要条件是(r 'r ''r )=0 。 分析:向量函数)(t r 平行于固定平面的充要条件是存在一个定向向量)(t n ,使)(t r ·n = 0 ,所以我们要寻求这个向量n 及n 与'r ,''r 的关系。 证 若)(t r 平行于一固定平面π,设n 是平面π的一个单位法向量,则n 为常向 量,且)(t r ·n = 0 。两次求微商得'r ·n = 0 ,''r ·n = 0 ,即向量r ,'r ,' 'r 垂直于同一非零向量n ,因而共面,即(r 'r ''r )=0 。 反之, 若(r 'r ''r )=0,则有r ×'r =0 或r ×'r ≠0 。若r ×'r =0 ,由上题知 )(t r 具有固定方向,自然平行于一固定平面,若r ×' r ≠ ,则存在数量函数)(t λ、

微分几何练习题库及参考答案(已修改)

> 《微分几何》复习题与参考答案 一、填空题 1.极限232 lim[(31)i j k]t t t →+-+=138i j k -+. 2.设f ()(sin )i j t t t =+,2g()(1)i j t t t e =++,求0 lim(()())t f t g t →?= 0 . 3.已知{}42 r()d =1,2,3t t -?, {}6 4 r()d =2,1,2t t -?,{}2,1,1a =,{}1,1,0b =-,则 4 6 2 2 ()()a r t dt+b a r t dt=???? ?{}3,9,5-. 4.已知()r t a '=(a 为常向量),则()r t =ta c +. 5.已知()r t ta '=,(a 为常向量),则()r t = 212 t a c +. 6. 最“贴近”空间曲线的直线和平面分别是该曲线的___ 切线___和 密切平面____. 【 7. 曲率恒等于零的曲线是_____ 直线____________ . 8. 挠率恒等于零的曲线是_____ 平面曲线________ . 9. 切线(副法线)和固定方向成固定角的曲线称为 一般螺线 . 10. 曲线()r r t =在t = 2处有3αβ=,则曲线在t = 2处的曲率k = 3 . 11. 若在点00(,)u v 处v 0u r r ?≠,则00(,)u v 为曲面的_ 正常______点. 12. 已知()(2)(ln )f t t j t k =++,()(sin )(cos )g t t i t j =-,0t >,则4 ()d f g dt dt ?=?4cos 62-. 13.曲线{}3()2,,t r t t t e =在任意点的切向量为{}22,3,t t e . 14.曲线{}()cosh ,sinh ,r t a t a t at =在0t =点的切向量为{}0,,a a . \ 15.曲线{}()cos ,sin ,r t a t a t bt =在0t =点的切向量为{}0,,a b . 16.设曲线2:,,t t C x e y e z t -===,当1t =时的切线方程为 2111 -=-- =-z e e y e e x . 17.设曲线t t t e z t e y t e x ===,sin ,cos ,当0t =时的切线方程为11-==-z y x . 18. 曲面的曲纹坐标网是曲率线网的充要条件是____F =M =0_ ______________. 19. u -曲线(v -曲线)的正交轨线的微分方程是 _____ E d u +F d v =0(F d u +G d v =0)__. 20. 在欧拉公式2212cos sin n k k k θθ=+中,θ是 方向(d) 与u -曲线 的夹角. 21. 曲面的三个基本形式,,I II III 、高斯曲率K 、平均曲率H 之间的关系是20H K III -II +I = . 22.已知{}r(,),,u v u v u v uv =+-,其中2,sin u t v t ==,则 dr d t ={}2cos ,2cos ,2cos t t t t vt u t +-+.

微分几何练习题库与答案

《微积分几何》复习题 本科 第一部分:练习题库及答案 一、填空题(每题后面附有关键词;难易度;答题时长) 第一章 1.已知(1,1,1),(1,0,1)=-=-a b ,则这两个向量的夹角的余弦θcos = 3 6 2.已知(0,1,1),(1,0,1)=-=-a b ,求这两个向量的向量积?=a b (-1,-1,-1). 3.过点)1,1,1(P 且与向量(1,0,1)=-a 垂直的平面方程为X-Z=0 4.求两平面0:1=++z y x π与12:2=+-z y x π的交线的对称式方程为2 1 131--= -=+z y x 5.计算2 3 2 lim[(31)]t t t →+-+=i j k 138-+i j k . 6.设()(sin )t t t =+f i j ,2()(1)t t t e =++g i j ,求0 lim(()())t t t →?=f g 0 . 7.已知(,)(,,)u v u v u v uv =+-r ,其中2 t u =,t v sin =,则d d t =r (2cos ,2cos ,2cos )t t t t vt u t +-+ 8.已知t =?,2 t =θ,则 d (,) d t ?θ=r (sin cos 2cos sin ,sin sin 2cos cos ,cos )a at a at a ?θ?θ?θ?θ?---+ 9.已知4 2 ()d (1,2,3)t t =-?r ,6 4 ()d (2,1,2)t t =-? r ,求 4 6 2 2 ()d ()d t t t t ?+??=??a r b a r )5,9,3(-,其中(2,1,1)=a ,(1,1,0)=-b 10.已知()t '=r a (a 为常向量),求()t =r t +a c 11.已知()t t '=r a ,(a 为常向量),求()t =r 2 12 t +a c 12.已知()(2)(log )t t t =++f j k ,()(sin )(cos )t t t =-g i j ,0t >,则4 d ()d d t t ?=?f g 4cos 62-. 第二章 13.曲线3 ()(2,,)t t t t e =r 在任意点的切向量为2 (2,3,)t t e 14.曲线()(cosh ,sinh ,)t a t a t at =r 在0t =点的切向量为(0,,)a a 15.曲线()(cos ,sin ,)t a t a t bt =r 在0t =点的切向量为(0,,)a b

相关主题
文本预览
相关文档 最新文档