当前位置:文档之家› Fmoc-N-甲基-L-苯丙氨酸的微波辅助合成

Fmoc-N-甲基-L-苯丙氨酸的微波辅助合成

Fmoc-N-甲基-L-苯丙氨酸的微波辅助合成
Fmoc-N-甲基-L-苯丙氨酸的微波辅助合成

微波辅助合成TiO2 及其光催化性能的研究(完整版)

微波辅助合成TiO2及其光催化性能的研究 摘要:以TiCl 4为原料,采用微波辅助合成法制备了纳米TiO 2 光催化剂。利用SEM、XRD、TEM、TG-DTA 等技术。对产物进行了表征,并以制备的TiO 2 为催化剂,通过酸性品红水溶液的光催化降解实验考察了该催化剂的光催化反应性能。 关键词:微波辅助合成;催化性能;TiO 2 ;光催化 前言: 二氧化钛具有特殊的物理化学特性及电子能带结构,光催化活性高,作为光催化材料广泛地应用于环境保护和污染治理的研究应用领域[1]。TiO2的制备方法影响着二氧化钛催化剂的形态结构,从而也大大影响了其光催化性能,因而为了获得具有高活性的光催化剂,TiO2的制备技术也被广泛而深入地进行了研究[2~4]。制备纳米TiO2有很多方法,常用的有胶-凝胶法[2]、电化学(elect rochemist ry)法[3]、CVD(Chemical Vapor Deposition)法[4]、溅射法和真空蒸镀法等。微波能作为一种新型的加热方式,主要优点在于对反应体系快速升温、加快反应速率、缩短反应时间、提高反应选择性等,因而广泛地应用于材料加工与合成等诸多方面。本研究利用微波辅助合成的新方法,制备纳米TiO2光催化剂,研究催化剂的结构特点及光催化特性,旨在寻求微波法在TiO2纳米光催化剂制备领域的实际应用。 正文: 1 纳米TiO 2 光催化机理 半导体粒子具有能带结构,一般由添满电子的低能价带和高能导带构成,价带和导带之间存在禁带。当用能量等于或大于禁带宽度的光照射半导体时,价带上的电子(e-)被激发跃迁到导带,在价带上产生空穴(h+),并在电场作用下分离并迁移到粒子表面。光生空穴因具有极强的得电子能力,而具有很强的氧化能力,将其表面吸附的OH-和H2O分子氧化成·OH自由基,而·OH几乎无选择地将有机物氧化,并最终降解为CO2和H2O。也有部分有机物与h+直接反应,而迁移到表面的e-则具有很强的还原能力。光催化机理可用下式表示: 在整个光催化反应中,·OH起着决定作用。半导体内产生的电子-空穴对存在分离/被俘获与复合的竞争,电子与空穴复合的几率越小,光催化活性越高。半导体粒子尺寸越小时,电子与空穴迁移到表面的时间越小,复合的几率越小;同时粒子尺寸越小,比表面积越大,

羧甲基淀粉胶黏剂的制备

攀枝花学院实验报告 实验课程:化工工艺方向专业实验实验项目:羧甲基淀粉胶黏剂的制备实验日期:院系: 班级:姓名:学号: 组员 【实验目的】 1、学习改性淀粉胶黏剂的基本知识。 2、掌握羧甲基淀粉胶黏剂的制备方法和操作技术。 【产品性能与功能】 用淀粉配置胶黏剂已有悠久的历史。淀粉不溶于水,仅能在热水中糊化,糨糊就是它的糊化物。淀粉的糊化温度较高,所制的的糨糊黏合力低,而且稠度过大,不利于在制备和使用时机械化操作。 用物理、化学或生物的方法对淀粉进行改性便可改变淀粉的溶解、黏度、以及相关性能, 是制备淀粉基胶黏剂的有效方法。淀粉分子中含有糖苷键和活性羟基, 能和许多物质发生化学反应, 是对淀粉进行化学改性的基础,其中氧化、酯化、醚化、交联、接枝等是常用的化学改性方法。 在本实验中,用氯乙酸处理淀粉,使分子中羟甲基上的氢被羧甲基取代(发生醚化),生成羧甲基淀粉,也能达到提高水溶性的目的。在淀粉的葡萄糖残基中,只有C6连接的羟基是伯醇羟基,因此在羧甲基化反应中此羟基优先被醚化。由于羧基有酸性,因此淀粉经羧甲基化和成盐以后,水溶性也就大大增加了。 羧甲基淀粉胶黏剂是一种重要的改性淀粉,它具有糊化温度低、胶合力强、稳定性较高、保水性和对纸张的渗透力好等优点。而且流动性好,便于涂覆,有利于机械化生产,特别适合于作楞纸产品的胶黏剂。 【实验仪器设备、药品、器材】 仪器设备:烧杯(500ml、200ml、100ml)、真空泵、水浴锅、量筒(100ml)、PH试纸、电子天平、电热套、玻璃棒 药品:30g淀粉(小麦、玉米淀粉或木薯淀粉)、氢氧化钠、1.6g氯乙酸(ClCH2COOH)、0.4g硼砂(Na2B4O7·10H2O)、蒸馏水、1g丙烯酰胺、0.6g1% 双氧水(H 2O 2 )、2gL-抗坏血酸 O O OH H CH 2 OH 【实验原理】 羧甲基淀粉(CMS)是以淀粉和氯乙酸为原料,在碱性催化剂的作用下反应而制的。 羧甲基淀粉经碱处理,制成载体糊料;经硼砂处理,制成主体糊料。将两种糊料按比例混合,即成为产品羧甲基淀粉胶黏剂。

微波辅助有机合成中_非热效应_的研究方法

进展评述 微波辅助有机合成中“非热效应”的研究方法 陈新秀 徐 盼 夏之宁3 (重庆大学化学化工学院 重庆 400030) 摘 要 微波作为一种新颖的加热方式,极大地提高了有机合成的效率。对于微波促进有机合成反应机理,人们提出了它具有“非热效应”。本文从微波对分子的影响、微波光量子对化学键的影响以及微波对化学 反应的影响3个方面,对“非热效应”存在的理论依据进行了阐述;从理论、实验以及两者相结合的角度,对“非 热效应”的研究方法与技术进行了综述。 关键词 微波 有机合成 非热效应 Methods for N on2therm al Microw ave E ffects in Microw ave Assisted Organic synthesis Chen X inxiu,Xu Pan,X ia Zhining3 (C ollege of Chemistry and Chemical Engineering,Chongqing University,Chongqing400030) Abstract As a new heating technology,the microwave extraordinarily im proves the efficiency in organic synthesis. The investigations on the mechanism of microwave2accelerated organic synthesis were supposed to be a“non2thermal effects”.The theoretical foundation of non2thermal effects was studied on the basis of the im pact of microwave on m olecules, chemical bonds and the chemical reactions.The studying methods and the especial technologies for evidencing the non2 thermal effects in microwave assisted organic synthesis were reviewed. K eyw ords M icrowave,Organic synthesis,N on2thermal effects 微波作为一种新型的加热方式已被广泛应用于有机合成等领域。在过去30年,微波辅助合成方法已被应用到几乎所有类型的有机反应。与传统加热方式相比,微波辐射可提高反应的产率或大大缩短反应时间[1,2],有时还表现出和常规加热不同的选择性[3,4]。尽管已有大量有关微波合成的研究报道,但是相比于常规加热方式,微波加速或改变化学反应的原因并不十分清楚。目前认为微波存在3种可能的效应:微波热效应,特殊的微波效应,微波非热效应。微波热效应及其特殊效应,已得到大家的认可[5];而微波“非热效应”的存在与否,至今依然是微波化学领域争论的一个焦点。 微波非热效应是指不能用单纯的热Π动力学效应或者特殊微波效应解释的微波场对化学反应的影响,还有,微波作用使一个处于相同温度等反应条件下的合成产生了不同的效果,也被列为“非热效应”之类。对于一个有机反应微波能否产生“非热效应”,目前尚有较大的分歧[6~12],有的文献用实验证明有“非热效应”;而另外又有文献证明没有“非热效应”。后者认为微波辅助有机合成产生不一样效果的原因是温度控制不准的结果。对此争议采用证明的方法多种,但却不能令众人信服。鉴于对“非热效应”研究方法的归纳总结以及综合评价尚未见报道,本文根据“非热效应”的理论依据,从理论、实验以及两者相结合的角度,对合成领域中“非热效应”的研究方法与技术进行综述。 1 微波“非热效应”的理论依据 111 微波对分子存在影响 科技部国际合作项目(2006DFA43520)和国家自然科学基金项目(20775096)资助 2009201221收稿,2009203209接受

羧甲基淀粉

羧甲基淀粉 一、CMS简介 1. 淀粉可以看作是葡萄糖的高聚体。淀粉除食用外,工业上用于制糊精、麦芽糖、葡萄糖、酒精等,也用于调制印花浆、纺织品的上浆、纸张的上胶、药物片剂的压制等。可由玉米、甘薯、野生橡子和葛根等含淀粉的物质中提取而得。淀粉有直链淀粉和支链淀粉两类。直链淀粉含几百个葡萄糖单元,支链淀粉含几千个葡萄糖单元。在天然淀粉中直链的占20%~26%,它是可溶性的,其余的则为支链淀粉。当用碘溶液进行检测时,直链淀粉液呈显蓝色,而支链淀粉与碘接触时则变为红棕色。 淀粉是植物体中贮存的养分,贮存在种子和块茎中,各类植物中的淀粉含量都较高,大米中含淀粉62%~86%,麦子中含淀粉57%~75%,玉蜀黍中含淀粉65%~72%,马铃薯中则含淀粉超过90%。淀粉是食物的重要组成部分,咀嚼米饭等时感到有些甜味,这是因为唾液中的淀粉酶将淀粉水解成了二糖--麦芽糖。食物进入胃肠后,还能被胰脏分泌出来的唾液淀粉酶水解,形成的葡萄糖被小肠壁吸收,成为人体组织的营养物。支链淀粉部分水解可产生称为糊精的混合物。糊精主要用作食品添加剂、胶水、浆糊,并用于纸张和纺织品的制造(精整)等。淀粉燃点约为380℃。 2. 羧甲基淀粉(Carboxymethyl starch sodium,CMS),分子式:[C6H7O2(OH)2OCH2COONa]n,是改性淀粉的代表产品,是醚类淀粉的一种,是以小麦、玉米、土豆、红薯(任何一种均可)等淀粉为原料,经物理、化学反应精制而成。羧甲基淀粉可部分的替代羧甲基纤维素(CMC)的应用,它是能溶于冷水的高分子电解质。首次制成羧甲基淀粉是在1924年,1940年已工业化生产。它无味、无毒、不易霉变、当取代度大于0.2以上时易溶于水。它是一种无毒无味的白色或浅黄色粉末状固体,能迅速溶于冷热水中,形成无色透明胶状液,黏度高,而且对光、热皆稳定,具有极好的分散力、结合力、吸湿性及乳化性(其水溶液可作油/水型或水/油型乳化剂,对油和蜡质均有乳化能力),但不溶于乙醇、乙醚、丙酮等有机溶剂。CMS属天然食品,对人体无害,能被人体α-淀粉酶分解,具有生物可消化性,易被人体吸收,同时还可抑制肿瘤增长且增加免疫力,无环境污染,是环保型产品。 二、CMS用途

微波辅助法合成金属有机骨架

微波辅助法合成金属有机骨架 微波加热在有机化学中,使用了几十年,直到最近才应用于制备多维的配位聚合物,通常称为金属–有机框架(MOF)。微波加热使反应所需时间短,快速的结晶成核力学和生长,和高产量的理想产品,产品能够很容易地被分离出来,且而几乎没有副产物。这些具有较好性质的材料从过去经济可行时期被系统研究出来的角度来看,金属有机骨架的研究是极为重要的。强调的是纳米晶体可以直接应用功能化设备上。 1 引言 超级分子化学的分支被称作“晶体工程”,它主要研究的是大分子网状物的构成,它的可预测的拓扑学和性质是有其独特的祖坟的化学性质控制的。Desiraju 和Etter的关于通过氢键有机晶体组装的研究认为是晶体工程的开端。Hoskins 和Tobson描述了基于共价键的金刚石型骨架的设计,拓展了配位键的概念,现在是人们所熟知的金属有机骨架、配位聚合物或者配位骨架。共价键影响产物的性质,尤其是高度孔状结构的设计,这个孔状结构要求达到主体的交换和气体储存的要求,并且拥有催化性质、电学性质、磁性以及荧光性质。 有机配体和金属离子作为“主要的结构单元”,和作为“第二结构单元”的多齿配体,形成聚合物。这两个术语都引自沸石化学。遗憾的是,和沸石不同的是,金属阳离子和有机配体可能的结合方式是无穷大的,因此,我们仍然不能预测任何特殊的结构形成何种结构。 金属有机骨架的合成方法的发展分为三个阶段。第一阶段,在过去的几个世纪,人们用蒸发溶剂的方法在非常小的容器里制备较大单晶,制备时间从几周到几个月不等。第二阶段,借鉴传统的沸石合成方法——溶剂热法开始被应用,实验所需时间缩短到几天。虽然微晶通常能够在这些条件下得到,但是这个方法被改进后可以获得单晶。目前面临的工作是进一步缩短反应时间,大大增加产率和功能化材料。目前研究的主要目的是,能够形成产业化。微波法将很快取代传统的溶剂热合成法,溶剂热合成法利用的是传统加热方法,而且已经有关于微波法制备金属有机骨架的文章发表。这篇文章简要地阐述了微波加热的研究,阐述了它的优点及局限。 2 背景 2.1 传统的溶剂热合成法 金属有机骨架的合成是主要结构单元通过自我识别的自组装过程。大量的结构已经用溶剂热合成法合成制得,但是所需反应时间长(几天到几周),所需设备庞大,能量消耗高。为了克服这些困难,新的方法形成了,比如说电化学方法、溶剂热合成法,甚至更多的有前景的方法,包括微波辅助合成法。 2.2 微波辅助合成法 微波加热是P. L. Spencer于1946年在Raytheon Corporation偶然发现的。当他正在进行关于雷达微波的应用时,电磁波在1m到1mm之间(300Hz~300GHz),他口袋里的巧克力棒融化了。频繁使用的家用的微波放射是2.45GHz(12.24cm),最大瓦数是800W。 微波是通过磁电管形成的,磁电管包含振荡器,振荡器是用来将高电压的直流电转换为高频率的放射。用一个典型的实验设备中,波导将磁电管形成的能量转换到进样池(图1-顶部)。许多分子,最显著的是水,其具有绝缘性,使它们循环并和微波的交流电连接在一起。当分子之间相互碰撞的时候,分子运动形成的高温就被分散了。样品池是一个法拉第笼子,它能够阻止微波进入环境中。微波加热主要的优点是他的能量效率,因为能量只在反应

干法制备羧甲基淀粉

2015届毕业论文 题目干法制备羧甲基淀粉 专业班级化工04班 学号1106010409 学生姓名刘玉洁 学院化工与制药学院 指导教师金士威/欧阳贻德 指导教师职称教授/讲师 完成日期:2015 年 6 月8 日

干法制备羧甲基淀粉Dry Process Preparation of Carboxymethyl Starch 学生姓名刘玉洁 指导教师欧阳贻德/金士威

摘要 羧甲基淀粉(CMS)是一种非常重要的阴离子型醚化淀粉,其用途十分广泛。当今社会对其需求量的日益增大,对其性能要求越来越高,对羧甲基淀粉的研究已逐步受到关注,目前,羧甲基淀粉的生产工艺存在诸多问题,不能完全满足工业生产需要。 以玉米淀粉为原料,采用干法制备高取代度的羧甲基淀粉。反应分为碱化和醚化2个阶段,以异丙醇(体积分数为60%)为溶剂,氢氧化钠为碱化剂,氯乙酸钠为醚化剂,对羧甲基淀粉工艺进行了研究。考察了碱化温度、碱化时间、醚化温度、醚化时间等因素对羧甲基淀粉取代度的影响,最终确定最佳的碱化温度为35℃,碱化时间为60min,醚化温度为70℃,醚化时间为150min,在此条件下制得的羧甲基淀粉的取代度为0.32,产品的外观得到改善,淀粉糊的黏度稳定性得到加强。 关键词:羧甲基淀粉;干法;制备;取代度;醚化

Abstract Carboxymethyl starch (CMS) is an important kind of anionic etherified starch, and is widely applied in many areas. With the increasing demand of society, people have paid more attention to study carboxymethyl starch gradually, which has become a hot spot in recent years. Currently, there is a low degree of substitution, the viscosity instability of the starch paste, poor appearance and other shortcomings on the industrial production of carboxymethyl starch and therefore that greatly limits its application. Highly substituted carboxymethyl starch was produced by dry method used corn starch as raw material. The process was made up of two steps, that was the alkalizing reaction and the etherifying reaction. The isopropyl alcohol (whose volume fraction was 60%)was used as a solvent, alkalizing agent was sodium hydroxide and the etherifying agent was sodium chloroacetate. The effects of the alkalizing temperature and reaction time, the etherifying temperature and reaction time on the degree of substitution were considered.Ultimately, the best alkalizing temperature is 35 ℃, the reaction time is 60 minutes,the etherifying temperature is 70 ℃and the reaction time is 150 minutes. Under the above conditions, the degree of substitution of carboxymethyl starch can reach 0.32, and the appearance of the product has improved, the viscosity stability of starch paste has been strengthened too. Keywords: carboxymethyl starch; dry method; preparation; degree of substitution; etherification

微波辅助合成及绿色化学

微波辅助化学合成和绿色化学 引言 绿色化学又称环境无害化学,它涉及到化学合成、催化、生物化学、分析化学等不同领域, 其核心是利用化学原理从根本上消除化学工业对环境的污染,少产废物,甚至不产废物,达到“零排放”的特点。为了使化学合成过程与环境达成友好的协调,人们通常期望采用清洁的实验技术、清洁的反应物、清洁的反应溶媒以及尽可能温和的实验条件进行高选择性的、高收率的化学合成。清洁的实验技术有电解化学合成、微波化学合成、光化学合成和催化合成等等;清洁的反应溶媒有超临界水、超临界CO2、离子性液体,或者不需反应溶媒的固相合成反应;清洁的反应物有有机锡的化合物等。 微波技术用于化学合成最早可追溯到1986年,当时加拿大的R.Gedye 等实验中发现: 和传统的加热方式如电加热、油浴加热相比,微波辅助化学合成的反应速度大大的得以提高。 此外,由于微波反应还具有重现性高、环保、选择性高等诸多特点,迅速引起了人们的广泛关注。自90年代后半期以来,有关微波合成的报导逐年呈上升趋势,至今 已有1000多篇相关报导。事实上,现在有机合成类代表 性杂志如Tetrahedron Letters,Synlett 等基本上每期上都刊登有微波合成的文章。此外,现已有关于微波化学的书籍出版、微波化学的学术论坛也方兴未艾。在美国,微波辅助化学合成已走进课堂,并得到了老师和学生们的高度认可。 微波加热原理和特徵 微波是频率位于300GHz 和300MHz ,波长介于1mm 和1m 之间的电磁波,家用微波炉的频率为2.45GHz ,波长为12.2cm 。在比该波长更短的可见光、紫外光的幅射下,分子由於受到激发,很容易发生光化学反应,但微波的能量相对较小,不会引起分子的光化学反应。和传统的加热方式相比,微波加热的速度快的多,大多数研究表明:采用微波加热的化学反应所用时间通常为采用传统加热方式所用时间的千分之一甚至更少。目前,对微波加热机理的探讨很多,大多数都是从传统的电磁波物理学理论出发对其加以解释的,可简单地描述如下:分子在微波的辐射下(电场的作用下) ,转向偶极矩发生变化,由於摩擦产生热量。 微波和物质的相互作用 可以看出:在微波加热的情况下,热量来自分子本身,这和传统的加热方式--热量来自热源并经过物质的热传导有明显的区别。因此,微波更适合于对极性物质的加热。下表中给出了一些溶媒(10ml)在微波辐射下的升温速度, 可以看出:极性溶媒的升温速度比非极性溶媒的升温速度快的多。故在采用微波加热进行化学合成的过程中,溶媒的选择显得非常重要。 溶媒 温度(。 C) 沸点(。 C) 电荷诱导率 30秒 60秒 H2O 62 104 100 80.10 198419861988199019921994199619982000 200 400 600 800 1000 t o t a l p a p e r year

羧甲基淀粉胶黏剂的制备

羧甲基淀粉胶黏剂的制备 学院:化学化工学院 班级:09级应化二班 姓名:张晓丽12009240215 余翔12009240254 雍明 12009240244

摘要:氧化淀粉胶黏剂是以玉米、土豆、木薯等淀粉为原料经轻度氧化降解反应制得的,此类胶黏剂具有黏结力强、存储性能好的特点。氧化点胶黏剂是针对糊化淀粉胶黏剂强度低,存储期短,干燥速度慢等缺点,经过反复试验而研制成功的一种性能良好的胶黏剂,我国从20世纪70年代末开始进行氧化淀粉胶黏剂用于瓦楞纸板的研究和应用,目前氧化淀粉胶黏剂已成为国内应用最广泛的淀粉胶黏剂之一。因此,研究开发性能优良的淀粉胶粘剂具有重要意义。本文主要讲了氧化剂氧化淀粉的原理和了解了玉米淀粉的合成工艺。 关键词:氧化淀粉;胶粘剂;KMnO4 前言:淀粉是一种价廉的制备粘合剂的原料,特别适用于纸张的粘合.很久以来瓦楞纸箱行业中使用的胶粘剂是泡花碱,由于其含碱量高, 对纸张的腐蚀性大,生产出的纸箱易返潮、变形、破损甚至腐蚀包装内商品,因而越来越不适合商业包装要求.我国规定自1993年起,全国所有包装用纸箱的生产均不得使用水玻璃为胶粘剂.淀粉胶粘剂具有强度高、重量轻、无腐蚀、无污染、防潮好、成本低等优点,用量越来越大.生产淀粉胶粘剂可用的氧化剂一般有过氧化氢、次氯酸盐、氯酸盐、高锰酸钾或多元氧化剂等.氧化法又有冷制与热制之分,冷制法一般生产周期长,受季节温度影响较大,有时反应时间较长;热制法具有生产周期短,产品质量稳定,不受季节温度变化限制的优点.本法采用高锰酸钾在酸性条件下氧化,通过简单热处理制得淀粉胶粘剂. 正文 1.1材料与试剂 1.1.1材料与设备 90w调速搅拌器、超级恒温水浴、恒温干燥箱、温度计、升降台架、粘度计、酸式滴定管、滴液漏斗、量筒、烧杯、真空泵等。 1.1.2试剂及药品 玉米淀粉、氢氧化钠、高锰酸钾、浓硫酸、去离子水、亚硫酸氢钠。 1.2原理与方法 1.2.1实验原理 淀粉是不溶于水的多糖类碳水化合物,分子式为(C6H10O5)n,是 由若干个α-D-葡萄糖单位通过1,4苷键位结合起来的。它主要来源于植物的块根和种子,呈白色,无臭,无味的粉状或粒状固体,其中直

微波合成应用知识

微波合成应用知识 微波在合成化学上的应用代表着这个领域的一个重要突破。它大幅度的改变了化学合成反应的执行和在科学界中人们对它的看法。以下就微波反应的原理,和微波合成在具体实验中的注意事项进行阐述。 1.微波反应原理: 在微波合成中,微波与反应混合物中的分子或离子直接偶合,通过偶极旋转或离子传导这两种方式将能量从微波传导到被加热物质,使得反应体系中能量快速增加。一方面可以使能量更有效的作用于各种反应,使得反应速度更快,反应产率更高,反应更清洁。另一方面微波直接将能量传递给反应物(转化为分子能),所以微波能够驱动某些在传统加热方式下不能发生的反应,为化学转换带来了全新的可能性。 2.什么是单模,多模微波 单模微波:简单的说是只用一种数学模型就可以表示的微波。多模微波:简单的说是需要用多种数学模型才能够表示的微波。单模微波作为一种单一作用到反应物上的能量,可以使我们的反应更加精确,反应容易控制,有很好的反应重现性。多模微波虽然不如单模微波可以精确的定量控制,但他具有较大微波反应腔体的特性也是非常重要的。 3.什么是环型聚焦微波 CEM在DISCOVER系列的微波合成仪器中,采用了基于AFC(AUTO FOCUS COUPLING)环形聚焦自动耦合单模微波技术,一方面确保了单模微波反应得重现性特点,另一方面聚焦微波的设计使微波场能量密度达到900w/l比驻波微波场能力密度大3-4倍,比通常多模微波能量密度大了30多倍。大能量的微波场能量提高了很多反应可能性。 在这里值得注意的是,我们在查以前参考文献的时候,一定要看清楚文献中使用的微波合成仪的类型。然后使用适合的微波功率进行合成。如果文献中没有提到仪器,那么我们在实验的时候就必须从较小的功率还是摸索。(比如以20W的功率开始摸索) 4.微波对于不同物质的作用 不同物质具有不同的微波特性,通常来说:金属反射微波;石英、特氟隆等是吸收微波的能力非常弱,这些物质能被微波穿透;在通常的反应物中,除非极性溶剂吸收微波的能力很弱以外,其余的溶剂、底物、催化剂等都具有不同吸收微波的能力。

详细说明羧甲基淀粉钠的合成方法

详解羧甲基淀粉的合成方法 目前在生产羧甲基淀粉时所采用的方法主要分为:干法、水溶液法、有机溶剂法。 下面我们详细介绍每一种生产方法,对羧甲基淀粉的制造过程有一个比较详细的了解,可以帮助用户了解在选购使用羧甲基淀粉的时候,是不是会与自己即将进行的试验起化学反应等等,这样就会节约成本与时间的同时,增长一部分知识。 羧甲基淀粉的合成工艺是将玉米淀粉、氢氧化钠和氯乙酸按一定的比例及顺序投入球磨机研磨,再喷入润湿剂,继续研磨,同时加热进行反应。反应物料始终为干粉状态。润湿剂可以是水,乙醇等有机溶剂。这种工艺的优点是溶剂用量少(因而称为润湿剂),生产成本低廉,工艺简单。但因是固相体系反应,很少量的溶剂很难使反应试剂的分子渗透到淀粉颗粒内部,只能在淀粉颗粒的表面进行生成羧甲基淀粉钠的反应。所以这种方法生产的羧甲基淀粉取代度不高。 水媒法生产羧甲基淀粉,这种方法与干法不同是以水为反应介质合成羧甲基淀粉。由于水的用量大,反应物料呈流体状态。反应设备是常规反应釜。与干法比易于传质传热,生产操作简便。本法的合成工艺是在反应釜中加入反应所需的水和淀粉,搅拌并

且加入氢氧化钠,温度保持在20℃-30℃,搅拌10-30分钟,完成碱化反应。再加入氯乙酸,提高反应温度到50℃-60℃,充分反映5-6小时,完成醚化反应。本法以水为反应介质,不需要回收,成本低廉。虽然淀粉在氢氧化钠水溶液中,其颗粒溶胀,但氢氧化钠分子容易扩散到淀粉内部,利于羧甲基淀粉生成。但当取代度超过0.2时,产品羧甲基淀粉溶于水。本法只适于低取代度羧甲基淀粉的生产。这也是实际生产中很少采用这种方法的根本原因。 有机溶剂法生产羧甲基淀粉,这种方法以有机溶剂为反应介质。使用的有机溶剂可以是甲醇、乙醇、丙醇、异丙醇和丙酮等。但从价格和安全因素综合考虑,乙醇是最常用的溶剂。若合成高取代度的羧甲基淀粉,常采用非溶胀性溶剂异丙醇或丙酮。在实际生产过程中,通常使用醇和水的混合溶剂。水能把氢氧化钠输送到淀粉颗粒内部,増加了反应活性中心,提高了产品的取代度。最终产物的羧甲基淀粉的取代度就越高,混合溶剂中醇含量也高。本法的工艺流程与水溶液法基本相同。这种方法的优点是:可以合成高取代度的羧甲基淀粉,还可保持淀粉始终处于颗粒状态,利于生产操作及后处理过程。 值得注意的是,在其他反应条件一定的情况下,反应物料的配比决定产品的取代度。氯乙酸与淀粉的投料比越高,羧甲基淀

微波合成仪操作规程

微波合成仪 Parr反应釜主要用于物料的水热反应、水热转化及各种材料的水热合成与制备。本设备釜体为纯钛材质,最高承受温度300℃,最高承受压力12.5MPa,不适用于强酸强碱等强腐蚀性体系的水热反应。 一、操作流程 (1)实验前,检查并确保热电偶、压力传感器、冷却水电磁阀等部分连接正确,釜头各阀门处于关闭状态,釜头密封垫圈完好。 (2)加入反应物料,物料体积不得超过反应釜容积的2/3(即1.2L),在高温高压状态下应尽量减少反应物料体积以确保安全。 (3)装上釜体,使釜体与釜盖吻合,拧紧固定螺丝。紧固螺丝时,应均匀、对称、逐步的拧紧密封螺栓,使其达到一致的应力状态,过松和过紧都是不允许的。同时应定期向螺栓螺纹处涂少量高温防咬油以保证螺栓的正常使用,延长其工作寿命。 (4)实验开始时,先打开磁力搅拌器及压力传感器冷却水(如有冷却水电磁阀也应同时打开其水源),并注意观察保证冷却水接口及冷却水套无泄漏。 (5)依次打开电源控制总开关、搅拌马达电源开关,缓慢调节转速旋钮至适当搅拌速度。然后设定好反应温度,按加热键并选择Ⅰ、Ⅱ档进行加热(Ⅰ为半功率,Ⅱ为全功率)。 (6)实验过程中如需采样,应缓慢旋开液体采样阀进行采样以免发生危险,实验结束后应通过进气阀进气来吹扫采样探底管以保证探底管清洁(通常不建议实验过程中采样)。 (7)实验结束后,关闭加热键,根据实验需要磁力搅拌器可继续搅拌以促进冷却。如果通冷却水来加快釜体冷却,则需注意冷却水出水铜管温度很高,身体及仪器其他管线要远离铜管以免烫伤或发生其他危险。 (8)等待反应釜温度降至常温后,关闭磁力搅拌器、冷却水、显示屏、控制器总电源。然后取下釜体,取出物料,并清洗反应釜。 二、注意事项 (1)本仪器为高温高压贵重仪器,只允许专业人员进行操作,实验过程中严禁非专业人员靠近、触摸反应釜,以免烫伤或发生其他危险。 (2)禁止在带电、带压情况下对反应釜进行维护、拆卸等工作。 (3)原则上仪器开启过程中,操作人员不得离开,注意观察反应釜温度、压力的变化,超过反应釜最高承受温度和压力时应立即关闭仪器电源,打开冷却水。 模板

植物花青素生物合成相关基因研究进展_周惠

◆◆ 2011年第4期辣椒杂志(季刊)引言 花青素(Anthocyanidin),又称为花色素,是一类广泛存在于多种植物中的水溶性天然色素,自然状态下,植物体内的花青素常与各种单糖结合而形成糖苷,称为花色苷(Anthocyanin)。自然界广泛存在的花色素以紫红色的矢车菊色素(Cyanidin)、砖红色的天竺葵色素(Pelargonidin)及蓝紫色的翠雀素(Delphinidin)为主,并由此再衍生出其他3种花色素,如矮牵牛花色素(Petunidin)及锦葵色素由翠雀素 经不同程度的甲基化而来,芍药花色素(Peonidin)则 是由矢车菊素经甲基化形成的。pH 值影响花青素类物质的颜色,pH<7时呈红色,pH 在7~8时呈紫色,pH>11呈蓝色。花色素为植物体内类黄酮生化合成的产物,而类黄酮化合物对植物体本身具有多种生物学功能,如在植物花色形成、吸引授粉虫媒和种子传播、花粉萌发、防止病原微生物侵染、抵抗紫外线辐射以及植物和微生物互相识别等过程中都发挥着十分重要作用[1-2]。 植物花青素生物合成相关基因研究进展 周 惠1 文锦芬2邓明华1 朱海山1* (1云南农业大学园林园艺学院云南昆明650201)(2昆明理工大学现代农业工程学院云南昆明650500) 摘要 花青素是一种水溶性色素,是构成花瓣和果实颜色的主要色素之一。它是植物二级代谢产物,具有重要的营养和药用作用。综述了植物花青素生物合成途径及生物合成途径中关键酶的研究现状和发展趋势,为今后进一步研究花青素提供参考借鉴。关键词植物;花青素;酶;基因 Research Progress in Plant Anthocyanidin Biosynthesis Genes Zhou Hui 1Wen Jinfen 2Deng Minghua 1Zhu Haishan 1* (1College of Horticulture and Landscape,Yunnan Agricultural University,Kunming 650201;2Faculty of Modern Agricultural Engineering,Kunming University of Science and Technology,Kunming 650500)Abstract Anthocyanidin is a natural plant pigment,one of the important pigments in the petal and fruit color,and a plant secondary metabolism product with important nutritional and medical functions.This paper discusses the biosynthesis pathway of anthocyanidin,some related anthocyanidin synthases and the biochemical functions of anthocyanidin in plants,and reviews the current situation and the future trend of related anthocyanidin researches. Key w ords plant;anthocyanidin;enzyme;gene 收稿日期:2011-09-28 作者简介:周惠(1988-),女,硕士研究生,E-mail:chuangwaiyumeng@https://www.doczj.com/doc/588632804.html, 通讯作者:朱海山,男,博士,教授,主要从事茄科蔬菜遗传育种研究 专题综述

自然辩证法与微波合成技术的发展

自然辩证法与微波合成技术的发展 理学院化学工程李郭成632085216132 摘要:本文以自然辩证的观点探讨了微波合成技术的发展历程,运用自然辩证法的基本理论、基本方法,系统分析了微波合成技术的发展历史、现状和未来,并对其的发展趋势和未来模式做了探索性研究和预测,同时以哲学的观点阐述其发展的因果关系,揭示其事物发展的共性问题。 关键词:自然辩证法、微波合成、微波反应器 1 前言 自然辩证法就是用唯物辩证法的观点和方法研究自然界发展的最一般的规律,研究人类认识自然界的最一般的规律和方法,研究自然科学发展的最一般的科学。辩证法对自然科学来说,是一种重要的思维形式,因此,我们在学习自然科学时,要善于发掘自然科学中富含的自然辩证法。微波合成技术是一项新型有机合成技术,在近几年的时间内技术日趋成熟,其内容充满了丰富的辩证法,我们也要用自然辩证法来不断推动微波合成技术的发展与完善。 2 推进自然科学的进步———当代自然辩证法 自然辩证法是马克思主义对于自然界和科学技术发展的一般规律以及人类认识自然改造自然的一般方法的科学,是辩证唯物主义的自然观、科学技术观、科学技术方法论。它主要研究自然界发展的总规律,人与自然相互作用的规律,科学技术发展的一般规律,科学技术研究的方法,其研究目的就是为了合理地处理人与自然的矛盾[1]。它集中研究自然界和科学技术的辩证法,是唯物主义在自然界和科学技术领域中的应用,它的原理和方法主要适用于自然领域和科学技术领域。学习和运用自然辩证法将有助于我们搞清科学和哲学的关系,从而更加清楚地认识科学的本质和发展规律,更加全面的观察思考问题,只有加深了认识,我们才能更好地发挥主观能动性,迎接新的科学技术的挑战。 在这里,我们主要谈的是在比较系统的学习了《自然辩证法》的课程后,结合我们自己的学科知识,对自然辩证法在学科学习中的理论意义和实践操作中的指导作用作了简要的说明。而作为化学工程相关专业,微波有机合成技术是非常重要的知识,对于我国的化学学科和经济发展起着很重要的作用。 3 微波合成技术的发展

微波合成乙酰水杨酸

微波合成乙酰水杨酸 一、实验目的 1.了解并掌握微波合成新技术 2.熟悉重结晶、熔点测定等操作 二、实验原理 三、实验仪器及试剂 仪器:普通微波炉;100mL锥形瓶;抽滤装置;表面皿;数字熔点仪 试剂:水杨酸(AR) 2.0g;乙酸酐(AR) 4.0g;碳酸氢钠(AR)0.1g;盐酸溶液(pH=3~4) 20 mL;95%乙醇5 mL;1%三氯化铁溶液 四、实验内容 在100ml 干燥的锥形瓶中加入 2.0g 水杨酸和 4.0g 乙酸酐,加入适量碳酸氢钠(0.1g)作催化剂,稍加摇动,将一表面皿盖住锥型瓶口。然后放在微波炉中辐射一定时间(微波输出功率为425w,辐射时间为60s),反应结束后,稍冷,加入20ml pH=3~4 的盐酸水溶液,将混合物继续在冷水中冷却使之结晶完全,抽滤,用少量蒸馏水洗涤,干燥,得乙酰水杨酸粗产物。粗产物用乙醇—水混合溶剂(1体积95%的乙醇+2 体积的水)约16ml 重结晶,干燥,得白色乙酰水杨酸晶体,称重,测熔点。由于反应物水杨酸可与三氯化铁溶液反应生成蓝色配合物。故用1%三氯化铁溶液检验重结晶产品,无蓝紫色出现,表明产物中不含水杨酸,纯度较高。 纯乙酰水杨酸的熔点为135~136℃。 乙酰水杨酸的常规合成方法是用浓硫酸或浓磷酸作催化剂以加速反应进行,该法速率慢,产率仅70%—80%,且易发生副反应,对生产设备有较强的腐蚀性。微波辐射法的速率是常规法的20 倍。微波辐射提高化学反应速率的主要原因是微波

作用于反应物后,加剧了分子运动速率,提高分子的平均动能,降低了反应的活化能,因而大大增加了反应物分子的碰撞频率,使反应迅速完成。 本实验约需3~4h 五、注意事项 使用微波炉前要认真阅读使用说明,正确操作,以防微波泄漏。 六、思考题 有哪些因素会影响到产率?

碳纳米点合成(微波法)

碳纳米点合成(微波法) 【实验目的】 1、了解碳纳米点的基本性质(发光性质等)及应用前景 2、掌握微波法制备碳纳米点的操作过程 【实验仪器】 微波炉(提供微波加热),手提式紫外分析仪,去离子超纯水机,电子天平 【实验原理】 近年来,由碳元素构成的各种纳米材料诸如富勒烯、石墨烯、碳纳米管和碳纳米点等不断被发现,碳纳米材料以其优良的性质成为21世纪科技创新的前沿领域。尤其作为一种新型的碳纳米材料,碳纳米点因具有良好的水溶性、稳定性、低毒性、耐光漂白以及很好的生物相容性,正引起人们极大的关注,有望替代有机染料和多含重金属元素的半导体量子点在生物成像与传感、光催化及光电器件等领域的应用。 作为新型碳纳米材料,碳纳米点以其优异的物理和化学性质吸引了国内外学者的广泛关注和研究。为制备出荧光性能优良的碳纳米点,世界各国研究人员已经建立了多种制备碳纳米点的新方法。其中,微波技术已经成为一种重要的合成碳纳米点的化学手段。例如,2009年,Zhu等人报道了一种简单、经济的制备荧光碳纳米点的微波辅助热解法,具体过程为:将一定量的聚乙二醇(PEG-200)和糖类物质(葡萄糖和果糖等)溶解在蒸馏水中形成透明溶液,然后将该溶液在微波炉中加热,随着反应的进行,溶液颜色由无色逐渐变为黄色,最后为黑色,即得到了荧光碳纳米点。通过改变微波处理时间,可以很好地控制碳纳米点的尺寸及发光特性。微波处理时间越久,碳纳米点尺寸越大,发光向长波长移动。 【实验内容】 1、将1 g柠檬酸和1 g(2 g)尿素溶于20 mL去离子水中形成透明溶液; 2、将混合溶液放入750 W的微波炉中微波加热15 min左右,在此过程中反应液从无色溶液逐渐变为淡棕色溶液最后变为深褐色粘稠状固体,表明形成了碳纳米点; 3、取少量反应产物溶于去离子水中,置于紫外分析仪下,分析两种碳纳米点样品的发光特性。 【注意事项】 1、药品称量需认真,以免所制备的两种碳纳米点的发光性质差别不明显; 2、微波加热的时间要掌握好,加热时间太短或太长都会影响碳纳米点质量和发光性质。 【思考题】 正常情况下,柠檬酸和尿素质量比为1:1制备的碳纳米点发光为蓝色,1:2为绿色,但是为何有时所制备的两种碳纳米点发光颜色差别不明显?试分析可能原因。

微波水热合成法制备纳米材料

实验7微波水热合成法制备纳米材料 一、实验导言 “纳米”一词出自长度单位之一——nm的中文音译。20世纪后半叶,科学技术的发展先后出现了以“纳米”为名的一系列名词、术语。例如,纳米技术:逐个地移动分子或原子的技术称纳米技术,又称分子搭建技术;纳米结构:系统内以纳米级构建的结构件称纳米结构;纳米粒子:粒子直径在1~100 nm的粒子称纳米粒子;纳米材料:由纳米级粒子制成的材料称纳米材料;以及基于纳米级研究的各种具体命名,“纳米型电池”就是一例。 在物质结构研究中,人们从物质的宏观性质,例如,熔点、硬度、稳定性、导电性、磁性、光学性能等追溯到物质的微观结构,即原子结构、化学键、分子结构、晶体结构等来说明物质的性质。对材料也是如此。 科学上对物质结构的研究从来没有停止过。纳米级研究为我们展示了一个全新的概念,开辟了一个崭新的空间,即在物质的宏观层次和微观层次之间还存在着不同的亚微观层次,即团簇、纳米、介观等层次。 我们来定量地比较一下上述物质层次: 微观粒子的原子个数:1个到数个; 亚微观粒子的原子或分子个数:数百个到数千个; 宏观粒子的原子或分子个数:无限多。 即纳米粒子是具有数百到数千个原子或分子的粒子。粒子的尺度如此微细,它与化学成分完全相同的宏观粒子相比,具有许多不同寻常的特点。例如,表面效应,体积效应和量子尺寸(Kubo)效应等。 体积效应:纳米粒子的尺度与传导电子的德布罗意波长相当或更小时,边界条件被破坏,磁性、内压、光吸收、热阻、化学活性、熔点等都发生很大的变化。称为体积效应。表现在宏观性质上,纳米粒子的熔点远低于宏观粒子,例如,普通金的熔点为1063℃,而纳米金的熔点只有330℃。此特性为粉末冶金提供了新工艺条件。另外,利用等离子共振频移随颗粒粒度变化的性质可以制造具有一定频宽的微波吸收纳米材料,用于电磁波屏蔽和隐形技术。 表面效应:粒子的表面原子数与原子总数之比随粒度的减小迅速增加,引起粒子的表面积和表面能迅速增大,称为表面效应。该效应表现在表面原子的晶场环境等与内部原子不同,使之易与其他原子稳定结合,具有很强的化学和催化活性。 量子尺寸(Kubo)效应:当粒子尺寸小到一定值时,某些电子有从准连续能级变为分立能级的现象,称为量子尺寸效应。因由Kubo通过实验证实,也称为Kubo效应。通俗地说,该效应使纳米粒子具有特殊的光学、力学、电磁学、耐磨、耐蚀、巨弹性模量、巨磁阻效应等性能,应用上可使微电子器件进一步微型化。 纳米粒子的特性所致,使纳米粒子磁性粉末如Fe2O3有很多潜在的用途:用作信息储存、彩色成像、生物加工、铁流体、磁凝和磁共振成像等的软磁材料;用于制备磁纪录纳米气敏材料等。再如SnO2是广泛用作对CO、煤气、乙醇等还原性气体进行检测和报警的气敏材料,若制成TiO2一SnO2固溶体纳米粉末,可使材料的灵敏度明显提高,使用效果更佳。 逐年深入的纳米研究推动着纳米技术的发展。在扫描隧道显微镜下蚀刻出的纳米级汉字令人惊叹不已;在微电子介质上制造出记录密度为普通磁盘3万倍的高密度存储器,于普通邮票大小的衬底上记录下400万页报纸刊载的内容令人叫绝。一些基于纳米技术的工具和器件也相继诞生:微型机电系统、专用集成微型仪器、传感器等。科学家们还提出了许多“不可思议”的设想,期待着诸如:纳米机器人、纳米卫星等梦想成真。 目前,我国已有ZnO、Fe2O3等纳米粉末以可观的规模投入工业化生产。 纳米粒子和纳米材料的制备方法很多。化学方法有:气相沉积法、沉淀法、水热合成法、

相关主题
文本预览
相关文档 最新文档