当前位置:文档之家› 海洋沉积物监测规范

海洋沉积物监测规范

海洋沉积物监测规范
海洋沉积物监测规范

海洋沉积物分析的主要方法

海洋沉积物分析的主要方法概述

地质分析测试工作是地质科学研究和地质调查工作的重要技术手段之一。其产生的数据是地质科学研究、矿产资源及地质环境评价的重要基础,是发展地质勘查事业和地质科学研究工作的重要技术支撑。现代地球科学研究领域地不断拓展对地质分析测试技术的需要日益增强,迫切要求地质分析测试技术不断地创新和发展,以适应现代地球科学研究日益增长的需求。 海洋地质样品的分析测试是海洋地质工作的重要组成部分,无论是资源勘查还是环境评价均离不开相关样品的分析测试。选择准确可靠的分析方法是保证分析测试质量的关键,也是进行质量监控的重要手段之一。 1.电子探针分析(EMPA) 电子探针(EPMA),全名为电子探针X射线显微分析仪,又名微区X射线谱分析仪可对试样进行微小区域成分分析。电子探针的大批量是利用经过加速和聚焦的极窄的电子束为探针,激发试样中某一微小区域,使其发出特征X射线,测定该X射线的波长和强度,即可对该微区的元素作定性或定量分析。 电子探针仪是X射线光谱学与电子光学技术相结合而产生的,1958年法国首先制造出商品仪器。从Castaing奠定电子探针分析技术的仪器、原理、实验和定量计算的基础以来,电子探针分析(EPMA)作为一种微束、微区分析技术在50~60年代蓬勃发展,至70年代中期已比较成熟;近年来,由于计算机、网络技术的迅猛发展,相关应用软件的开发与使用的加快,使得装备有高精度的波谱仪的新一代电子探针仪具有数字化特征、人工智能和自动化的分析程序、网络功能以及高分辨率图象的采集、分析及处理能力。 EPMA技术具有高空间分辨率(约1μm)、简便快速、精度高、分析元素范围广(4Be~92U)、不破坏样品等特点,使其很快就在地学等研究领域得到应用。电子探针分析(EPMA)主要用于矿物的主要元素分析,但也可用于熔融岩石(玻璃)样品的主要元素分析,但不用来分析微量元素。它的主要优点是具有优良的空间分辨率,可以用电子束直径为1—2um进行分析。这意味着可以分析极其小的样品面积。岩石样品的常规分析局限于天然的和合成的玻璃样品。在这种应用中,常用非聚焦的电子束,以减小玻璃非均匀性问题。硅酸盐玻璃的电子探针分析在实验岩石学中具有特殊的重要性,但是很少利用电子探针进行岩石粉末的熔融片的主要元素分析。下面简要介绍电子探针在系列矿物研究和蚀变矿物带研究中的

中华人民共和国海洋沉积物质量

中华人民共和国海洋沉积物质量 GB 18668-2002 (国家质量监督检验检疫总局2002 年3月1日发布,自2002 年10 月1日起实施) 前言本标准的全部技术内容为强制性。为贯彻执行《中华人民共和国环境保护法》和《中华人民共和国海洋环境保护法》,防止和控制海洋沉积物污染,保护海洋生物资源和其他海洋 资源,有利于海洋资源的可持续利用,维护海洋生态平衡,保障人体健康,特制定本标准。 本标准由国家海洋局提出并负责解释。本标准由国家海洋标准计量中心归口。本标准 起草单位:国家海洋局国家海洋环境监测中心。本标准主要起草人:马德毅、汤烈风、 王菊英、阎启仑、马永安、关道明、王洪源。 1 范围本标准规定了海域各类使用功能的沉积物质量 要求。本标准适用于中华人民共和国管辖的海域。 2 引用标准下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。本标准出版时,所示版本均为有效。所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新 版本的可能性。 GB17378.5-1998 海洋监测规范第5部分:沉积物分析 GB17378.7-1998 海洋监测规范第7部分:近海污染生态调查和生物监测 GBJ48-1983 医院污水排放标准 3 海洋沉积物质量分类与指标 3.1 海洋沉积物质量分类按照海域的不同使用功能和环境保护的目标,海 洋沉积物质量分为三类。 第一类适用于海洋渔业水域,海洋自然保护区,珍稀与濒危生物自然保护区,海水养殖区,海水浴场,人体直接接触沉积物的海上运动或娱乐区,与人类食用直接有关的工业用水区。第二类适用于一般工业用水区、滨海风景旅游区。 第三类适用于海洋港口水域,特殊用途的海洋开发作业区。 3.2 海洋沉积物质量分类指标各类 沉积物质量标准列于表1。 4 海洋沉积物质量监测 4.1 海洋沉积物样品的采集、预处理、制备及保存按G B 17378.5 的有关规定执行。 4.2 本标准各项目的测定,按表2的分析方法进行。除大肠菌群及粪大肠菌群的测定方法所引用的标准为G B17378.7,病原体的测定方法所引用的标准为G BJ 48,其余项目的测定方法均引用G B 17378.5 标准,各项目的引用标准见表2。

★海水和海洋沉积物中总N的测定

海水和海洋沉积物中总N 的测定 Ξ 王正方 扈传昱 吕海燕 (国家海洋局第二海洋研究所,杭州,310012) 摘 要 系统介绍海水和海洋沉积物中总氮的测定方法。作者选用过硫酸钾为氧化剂将有关形式的氮转化成硝酸盐,将其还原成亚硝酸盐,连同原有的亚硝酸盐一起测定,获得海水和海洋沉积物中总氮。该方法操作简单安全,精密度为4.7%,回收率为95%~104%,适于船上操作。关键词 海水;海洋沉积物;总氮;分析方法中图法分类号 P734 海水中最重要的无机氮有氨氮,亚硝酸盐氮和硝酸盐氮。除无机氮外还有多种溶解的和 颗粒态的有机氮化物。通过对氮化物含量的测定可以了解水域被污染状况[2],肥源情况以及有机物的分解趋势。以前的研究均以无机氮的测定见多[1,3,4],而对于海水和海洋沉积物中总氮测定的研究却不是十分系统。本文详细介绍了海水和沉积物中总氮的测定方法,此法操作简单安全,精密度高,适于船上操作。已作为第二次全国海洋污染基线调查的推荐方法。 1 材料与方法 1.1仪器 (1)反应瓶:50m L 有聚丙烯或聚四氟乙烯螺旋盖的玻璃瓶 (2)普通厨用压力锅(3)50m L 容量瓶若干(4)振荡器1.2试剂及配制 (1)无氨蒸馏水或纯水。 (2)NaCl 溶液:31gNaCl (优级纯)溶于1000m L 无氨蒸馏水中。 (3)0.12m ol/L NaOH 溶液:4.8g 分析纯NaOH 溶于1L 无氨蒸馏水中,煮沸10min 后冷却稀 释至原体积。 (4)K 2S 2O 8氧化剂:称取10g 重结晶的K 2S 2O 8溶于1L0.12m ol/L 的NaOH 溶液中,保存于具塞棕色试剂瓶中。置于冰箱可至少稳定7d 。 K 2S 2O 8的提纯:在70~80℃的温度下溶解20gK 2S 2O 8于100m L 重蒸馏水中,将溶液冷却至接近零摄氏度,过滤。由于K 2S 2O 8在零度时的溶解度仅为1.75g/100m L ,因此试剂的损失很 增刊 1999年10月 青岛海洋大学学报 JOURNA L OF OCE AN UNIVERSITY OF QING DAO Supplement  Oct.1999  Ξ收稿日期:1999204208;修订日期:1999207212 王正方,男,1941年出生,研究员。

海洋沉积物的采集和硫化物的测定

沉积物样品的采集和沉积物中硫化物的测定 1 沉积物样品 1.1 样品采集 1.1.1 表层样品的采集 1.1.1.1 采样器类型及其选择 用自身重量或杠杆作用设计的抓斗式工或其他类型的沉积物采样器,其设计特点各异,包括弹簧制动、重力或齿板锁合方式。这些要随深入泥层的形状而不同,以及随所取样品的规模和面积不同,各自不一。采样器的选择主要考虑以下几方面: --贯穿泥层的深度; --齿板锁合的角度; --锁合效率(避免障碍的能力); --引起波浪“振荡”和造成样品的流失或者在泥水界面上洗掉样品组成或生物体的程度; --在急流中样品的稳定性。在选择沉积物采样器时,对生境、水流情况、采样面积以及采样船只设备均应统筹考虑。 常用的抓斗式采泥器与地面挖土设备很相似.它们是通过水文绞车将其沉降到选定的采样点上.通常采集较大量的混合样品能够比较准确地代表所选定的采样地点情况. 1.1.1.2 表层样品采集操作 1.1.1. 2.1 将绞车的钢丝绳与采泥器连结,检查是否牢固,同时,测采样点水深; 1.1.1. 2.2 慢速开动绞车将采泥器放入水中。稳定后,常速下放至离海底一定距离3~5m,再全速降至海底,此时应将钢丝绳适当放长,浪大流急时更应如此; 1.1.1. 2.3 慢速提升采泥器离底后,快速提至水面,再行慢速,当采泥器高过船舷时,停车,将其轻轻降至接样板上; 1.1.1. 2.4 打开采泥器上部耳盖,轻轻倾斜采泥器,使上部积水缓缓流出。若因采泥器在提升过程中受海水冲刷,致使样品流失过多或因沉积物太软、采泥器下降过猛,沉积物从耳盖中冒出,均应重采; 1.1.1. 2.5 样品处理完毕,弃出采泥器中的残留沉积物,冲洗干净,待用。 1.2.2 柱状样的采集 柱状采样器可以采集垂直断面沉积物样品。如果采集到的样品本身不具有机械强度,那么从采泥器上取下样器时应小心保持泥样纵向的完整性。 柱状样的采集操作。 1.2.2.2 首先要检查柱状采样器各部件是否安全牢固; 1.2.2.2 先作表层采样,了解沉积物性质,若为砂砾沉积物,就不作重力取样; 1.2.2.3 确定作重力采样后,慢速开动绞车,将采泥器慢慢放入水中待取样管在水中稳定后,常速下至离海3~5m处,再全速降至海底,立即停车; 1.1. 2.4 慢速提升采样器,离底后快速提至水面,再行慢速。停车后,用铁勾勾住管身,转入舷内,

海洋监测规范 无机磷

176 40 无机磷 40.1 磷钼蓝分光光度法 40.1.1 适用范围和应用领域 本法适用于海水中活性磷酸盐的测定。 40.1.2 方法原理 在酸性介质中,活性磷酸盐与钼酸铵反应生成磷钼黄,用抗坏血酸还原为磷钼蓝后,于882 nm 波长测定吸光值。 40.1.3 试剂及其配制 除非另作说明,所用试剂均为分析纯,水为二次水或等效纯水。 40.1.3.1 硫酸溶液:c (H 2SO 4)=6.0 mol/L 在搅拌下将300 mL 硫酸(H 2SO 4,ρ=1.84 g/mL)缓缓加到600 mL 水中。 40.1.3.2 钼酸铵溶液 溶解28 g 钼酸铵〔(NH 4)6Mo 7O 24·4H 2O 〕于200 mL 水中。溶液变混浊时,应重配。 40.1.3.3 酒石酸锑钾溶液 溶解6 g 酒石酸锑钾(C 4H 4KO 7Sb · 21H 2O)于200 mL 水中 ,贮于聚乙烯瓶中。溶液变 混浊时,应重配。 40.1.3.4 混合溶液 搅拌下将45 mL 钼酸铵溶液(40.1.3.2)加到200 mL 硫酸溶液(40.1.3.1)中,加入5 mL 酒石酸锑钾溶液(40.1.3.3),混匀。贮于棕色玻璃瓶中。溶液变混浊时,应重配。 40.1.3.5 抗坏血酸溶液 溶解20 g 抗坏血酸(C 6H 8O 6)于200 mL 水中,盛于棕色试剂瓶或聚乙烯瓶。在4℃避光保存,可稳定1个月。 40.1.3.6 磷酸盐标准贮备溶液:ρp =0.300 mg/mL 称取1.318 g 磷酸二氢钾(KH 2PO 4,优级纯,在110~115℃烘1~2 h)溶于10 mL 硫酸溶液(40.1.3.1)及少量水中,全量转入1 000 mL 量瓶,加水至标线,混匀,加1 mL 三氯甲烷(CHCl 3)。此溶液1.00 mL 含0.300 mg 磷。置于阴凉处,可以稳定半年。 40.1.3.7 磷酸盐标准使用溶液:ρp =3.00 μg/mL 量取1.00 mL 磷酸盐标准贮备溶液(40.1.3.6)至100 mL 量瓶中,加水至标线,混匀,加两滴三氯甲烷(CHCl 3)。此溶液1.00 mL 含3.00 μg 磷。有效期为一周。 40.1.4 仪器及设备 ——分光光度计,5 cm 测定池。 ——量筒:10,50,100,250,500 mL 。 ——量瓶:100,1 000 mL 。 ——具塞量筒:50 mL 。 ——刻度吸管:1,5,10 mL 。 ——自动加液器:1 mL 。 ——一般实验室常备仪器和设备。 40.1.5 分析步骤 40.1.5.1 绘制标准曲线 40.1.5.1.1 量取磷酸盐标准使用溶液(40.1.3.7)0,0.50,1.00,2.00,3.00,4.00 mL 于50 mL 具塞量筒中,加水至50 mL 标线,混匀。各浓度依次为0,0.030,0.060,0.120,0.180,0.240 mg/L 。

海洋沉积物的采集及硫化物的测定

海洋沉积物的采集及硫化物的测定

沉积物样品的采集和沉积物中硫化物的测定 1 沉积物样品 1.1 样品采集 1.1.1 表层样品的采集 1.1.1.1 采样器类型及其选择 用自身重量或杠杆作用设计的抓斗式工或其他类型的沉积物采样器,其设计特点各异,包括弹簧制动、重力或齿板锁合方式。这些要随深入泥层的形状而不同,以及随所取样品的规模和面积不同,各自不一。采样器的选择主要考虑以下几方面: --贯穿泥层的深度; --齿板锁合的角度; --锁合效率(避免障碍的能力); --引起波浪“振荡”和造成样品的流失或者在泥水界面上洗掉样品组成或生物体的程度; --在急流中样品的稳定性。在选择沉积物采样器时,对生境、水流情况、采样面积以及采样船只设备均应统筹考虑。 常用的抓斗式采泥器与地面挖土设备很相似.它们是通过水文绞车将其沉降到选定的采样点上.通常采集较大量的混合样品能够比较准确地代表所选定的采样地点情况. 1.1.1.2 表层样品采集操作 1.1.1. 2.1 将绞车的钢丝绳与采泥器连结,检查是否牢固,同时,测采样点水深; 1.1.1. 2.2 慢速开动绞车将采泥器放入水中。稳定后,常速下放至离海底一定距离3~5m,再全速降至海底,此时应将钢丝绳适当放长,浪大流急时更应如此; 1.1.1. 2.3 慢速提升采泥器离底后,快速提至水面,再行慢速,当采泥器高过船舷时,停车,将其轻轻降至接样板上; 1.1.1. 2.4 打开采泥器上部耳盖,轻轻倾斜采泥器,使上部积水缓缓流出。若因采泥器在提升过程中受海水冲刷,致使样品流失过多或因沉积物太

软、采泥器下降过猛,沉积物从耳盖中冒出,均应重采; 1.1.1. 2.5 样品处理完毕,弃出采泥器中的残留沉积物,冲洗干净,待用。 1.2.2 柱状样的采集 柱状采样器可以采集垂直断面沉积物样品。如果采集到的样品本身不具有机械强度,那么从采泥器上取下样器时应小心保持泥样纵向的完整性。 柱状样的采集操作。 1.2.2.2 首先要检查柱状采样器各部件是否安全牢固; 1.2.2.2 先作表层采样,了解沉积物性质,若为砂砾沉积物,就不作重力取样; 1.2.2.3 确定作重力采样后,慢速开动绞车,将采泥器慢慢放入水中待取样管在水中稳定后,常速下至离海3~5m 处,再全速降至海底,立即停车; 1.1.2.4 慢速提升采样器,离底后快速提至水面,再行慢速。停车后,用铁勾勾住管身,转入舷内,平卧于甲板上; 1.1. 2.5 小心将取样管上部积水倒出,丈量取样管打入深度。再用通条将样柱缓缓挤出,顺序放在接样板上进行处理和描述。若样柱长度不足或样管斜插入海底,均应重采。 沉积物中硫化物的测定方法 1.3 样品保存与运输 1. 3.1 样品保存 样品每隔3㎝分层,装在50ml 离心管中,现场加醋酸锌溶液进行固定,冷藏保存运回实验室。 2沉积物中硫化物的测定方法 硫化物是电正性较强的金属或非金属与硫形成的化合物,分为酸式盐( HS -,氢硫化物) 、正盐( S 2-) 和多硫化物(S n 2- )3 类。土和沉积物中的硫分为有机硫和无机硫两类。土壤中硫化物可与镉、铅、砷等亲硫元素生成难溶性重金属硫化物,加重土壤重金属污染。同时也易被有机质分解,生成H 2S,

海洋沉积物总DNA提取方法研究进展

Advances in Microbiology 微生物前沿, 2015, 4, 27-35 Published Online June 2015 in Hans. https://www.doczj.com/doc/586854634.html,/journal/amb https://www.doczj.com/doc/586854634.html,/10.12677/amb.2015.42005 Advances in Marine Sediments of the Total DNA Extraction Method Xinqiang Zhao, Xiaopeng Yu, Mingai Zhang, Cuifang Yu, Fansheng Cheng* College of Food Science and Engineering, Qingdao Agricultural University, Qingdao Shandong Email: 1760029992@https://www.doczj.com/doc/586854634.html,, *fscheng@https://www.doczj.com/doc/586854634.html, Received: May 25th, 2015; accepted: Jun. 16th, 2015; published: Jun. 19th, 2015 Copyright ? 2015 by authors and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). https://www.doczj.com/doc/586854634.html,/licenses/by/4.0/ Abstract Microorganisms inhabited in marine sediments server as an important role in the marine ecosys-tem as well as the biosphere substances’ circulation. The gradually deepening understanding of the biodiversity and the continuous improvement of research methods in marine sediments still face some basic obstacles, such as the cultivation of microorganisms and DNA extraction. This pa-per aims to summarize the current research progress in environmental DNA extraction method in marine sediment, which corresponds to Metagenomics and other modern molecular ecology re-search methods. Key steps in the sampling, transportation, storage, samples pretreatment, cell disruption, total DNA enrichment, storage and quality evaluation were discussed in detail. Keywords Marine Sediments, Microbial Diversity, DNA Extraction, Research Progress 海洋沉积物总DNA提取方法研究进展 赵新强,于晓朋,张名爱,于翠芳,程凡升* 青岛农业大学食品科学与工程学院,山东青岛 Email: 1760029992@https://www.doczj.com/doc/586854634.html,, *fscheng@https://www.doczj.com/doc/586854634.html, 收稿日期:2015年5月25日;录用日期:2015年6月16日;发布日期:2015年6月19日 *通讯作者。

国家海洋局关于印发《全国海洋环境监测与评价业务体系“十二五”

国家海洋局关于印发《全国海洋环境监测与评价业务体系“十二五”发展规划纲要》的通知 【法规类别】海洋资源 【发文字号】国海环字[2012]16号 【发布部门】国家海洋局 【发布日期】2012.01.18 【实施日期】2012.01.18 【时效性】现行有效 【效力级别】XE0303 国家海洋局关于印发《全国海洋环境监测与评价业务体系“十二五”发展规划纲要》的 通知 (国海环字〔2012〕16号) 沿海各省(自治区、直辖市)及计划单列市海洋厅(局),局属有关单位: 为贯彻落实“十二五”国家海洋环境保护工作总体思路和重大部署,指导和引领全国海洋环境监测与评价业务体系的创新发展和提升,我局组织编制了《全国海洋环境监测与评价业务体系“十二五”发展规划纲要》,于2011年12月31日经第48次局长办公会审议通过,现印发给你们,并就有关事宜通知如下: 一、各单位要依据职责,提高对海洋环境监测与评价工作“基础性、长期性、连续性、前瞻性”的认识,从科学监测、科学评价的角度出发,不断深化和拓展海洋环境监测与

评价业务领域,提高对海洋环境规律性的认识。 二、各单位要从战略的高度,充分认识到人才队伍建设对整个海洋环境监测与评价业务体系发展的重要性,建立健全人才科学使用和管理机制,以人才培养为基础、人才使用为根本,人才评价激励为重点,加强人才引进和培养力度,推行人才资质管理制度,建立一支德才兼备、结构优化的专业化创新型人才队伍。 三、各单位要以服务海洋产业宏观调控、促进沿海经济发展方式转变为重点,以“五个服务”为目标,构建“支撑决策、面向管理、服务公众”三位一体的服务体系,提高海洋环境监测与评价信息产品的服务水平。 四、各级海洋行政主管部门要切实提高所属海洋环境监测机构的综合能力,充分履行管辖海域海洋环境保护的责任,并对省-地市-县各级海洋环境监测与评价体系的发展进行整体部署。 各单位应根据《全国海洋环境监测与评价业务体系“十二五”发展规划纲要》有关精神,制定本单位细化落实方案并于2012年3月1日前报局备案。 国家海洋局 二○一二年一月十八日全国海洋环境监测与评价业务体系“十二五”发展规划纲要 (国家海洋局二〇一一年十二月) 为贯彻落实“十二五”国家海洋环境保护工作总体要求和重大部署,指导和推进全国海洋环境监测与评价业务体系系统发展,全面提升海洋环境监测与评价工作综合服务效

海洋牧场建设规范 第4部分 监测与评价

ICS65.150 点击此处添加中国标准文献分类号 B 50 DB37 山东省地方标准 DB37/T XXXXX—2016 海洋牧场建设规范 第4部分:监测与评价 Specification for marine ranching construction Part 4: Monitoring and assessment (报批稿) 201X-XX-XX发布201X-XX-XX实施

前言 本标准按GB/T 1.1-2009给出的规则起草。 请注意本文件的某些内容可能涉及专利。本文件的发布机构不承担识别这些专利的责任。 本标准由山东省海洋与渔业厅提出。 本标准由山东省渔业标准化技术委员会归口。 本标准起草单位:中国海洋大学、中国科学院海洋研究所、山东省海洋资源与环境研究院、中国水产科学研究院黄海水产研究所、国家海洋局第一海洋研究所、山东省水生生物资源养护管理中心、山东省海洋生物研究院。 本标准主要起草人:张秀梅、张沛东、李文涛、张涛、杨红生、张焕君、李娇、王波、杨宝清、刘洪军。

海洋牧场建设规范第4部分:监测与评价 1 范围 本标准规定了海洋牧场监测与评价的术语和定义、监测站位布设及监测周期、评价监测、日常监测、自动网络监测方法及内容、评价方法。 本标准适用于山东省管辖海域内海洋牧场的监测与评价。 2 规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅所注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB 3097 海水水质标准 GB 4789.3 食品安全国家标准食品微生物学检验大肠菌群计数 GB 11607 渔业水质标准 GB/T 5009 食品卫生检验方法理化部分 GB/T 12763.2 海洋调查规范第2部分:海洋水文观测 GB/T 12763.3海洋调查规范第3部分:海洋气象观测 GB/T 12763.4 海洋调查规范第4部分:海水化学要素调查 GB/T 12763.6 海洋调查规范第6部分:海洋生物调查 GB/T 12763.8 海洋调查规范第8部分:海洋地质地球物理调查 GB/T 12763.9 海洋调查规范第9部分:海洋生态调查指南 GB/T 12763.10 海洋调查规范第10部分:海底地形地貌调查 GB 17378.4 海洋监测规范第4部分:海水分析 GB 17378.5 海洋监测规范第5部分:沉积物分析 GB 17378.6 海洋监测规范第6部分:生物体分析 GB 17378.7 海洋监测规范第7部分:近海污染生态调查和生物监测 GB 18668 海洋沉积物质量 GB/T 21316 动物源性食品中磺胺类药物残留量的测定液相色谱-质谱/质谱法 GB/T 28058 海洋生态资本评估技术导则 HY/T 128 海洋经济生物质量风险评价指南 NY 5073 无公害食品水产品中有毒有害物质限量 SC/T 9417 人工鱼礁资源养护效果评价技术规范 3 术语和定义 下列术语和定义适用于本文件。 3.1 海洋牧场生物承载力marine ranching bio-capacity

南海海底沉积物的类型及工程特征

南海海底沉积物的类型及工程特征 江飞 一、区域地质背景 南海海盆面积约350 x 104km 2,由于它位于欧亚板块、太平洋板块、印度洋板块交汇处,因此它的形成和发展,既受控于NE 向的太平洋板块的俯冲作用,同时它也受控于NW 和EW 向的古特提斯海的封闭作用的影响。所以,南海构造和海底地形地貌十分复杂,既有水深较浅的平坦的南海北部陆架区,也有海底地形、地貌复杂的南海陆坡区和平坦的深海平原区。在不同的地形地貌背景上,它又沉积了厚度不一,各种不同类型的现代(Q 4)海洋沉积物。由于海洋细粒土是一种分布较广,具有其固有特性而且对海底工程建设和海洋开发有重要影响的一种软弱地基土。因此,对它的研究具有明显的实际意义和理论意义。 二、南海北部陆架浅海相淤泥质细粒土 (一)基本特点 南海北部陆架浅海相淤泥质细粒土,主要分布在水深小于30m 的内陆架现代沉积区,水深大于30m 的中陆架混合残留沉积区的部分地段也有分布。它们主要是华南大陆水系将陆源物质搬运入海沉积而成,主要由淤泥质粘土质粉砂、粉砂质粘土、砂质粘土等类型构成。沉积物颗粒较细,中值粒径介于0.1-0.005mm ,分选差,沉积韵律明显,一般多呈深灰色,含有机质、铁质高,频率曲线都呈双峰或多峰状。碎屑矿物、重矿物含量远比南海陆坡半深海相细粒土为高。它们和一般淤泥质细粒土相似,其工程特性具含水量高于液限、孔隙比大于1,压缩性大、强度小、处于汗流状态的特点。据C 14、Pb 210测年,其沉积速率大,一般为0.1-0.25cm/a 。 (二)物质组成 1.颗粒成分与团粒成分 根据风干土样颗粒成分(加分散剂)及团粒成分(不加分散剂)分析结果,该土主要由粘土颗粒、粉砂颗粒、细砂颗粒组成。天然状态下,大部分粘粒呈0.01-0.005mm 的微集聚体形式存在(表1)。

海洋沉积物有机碳

重铬酸钾氧化—还原容量法 测定海洋沉积物中有机碳的方法确认报告 1.目的 通过重铬酸钾氧化—还原容量法来测定海洋沉积物中有机碳的检出限、精密度、准确度的分析,判断本实验室的检测方法是否合格。 2.职责 2.1 检测人员负责按操作规程操作,确保测量过程正常进行,消除各种可能影响试验结果的意外因素,掌握检出限、精密度、准确度的计算方法。 2.2技术负责人负责审核检测结果和方法确认报告。 3.适用范围及方法标准依据 本法适用于沉积物中有机碳含量(质量分数)低于15%的样品的测定。 本方法为仲裁方法。 4.方法原理 在浓硫酸介质中,加入一定量的标准重铬酸钾,在加热条件下将样品中有机碳氧化成二氧化碳。剩余的重铬酸钾用硫酸亚铁标准溶液回滴,按重铬酸钾的消耗量,计算样品中有机碳的含量。 5.仪器与试剂 5.1 仪器 5.1.1硬质玻璃试管:18mm×160mm; 5.1.2油浴锅:内盛液体石蜡或植物油; 5.1.3铁丝笼:插试管用,能浸入油浴锅中; 5.1.4一般实验常备仪器和设备。 5.2试剂 5.2.1重铬酸钾-硫酸标准溶液(0.400mol/L):称取19.615g重铬酸钾(K2Cr2O7,优级纯研细并在120℃烘干4h,保存于干燥器中)于1L烧杯中,加入250ml水,微热溶解,冷后,在不断搅拌和冷却下,沿杯壁缓缓地注入500ml硫酸(H2SO4,ρ=1.84g/ml,优级纯),冷却后全量转入1000ml量瓶中加水至标线,均匀。 5.2.2 硫酸亚铁标准溶液(0.2mol/L):称取56g硫酸亚铁(Fe2SO4·7H2O)或80g 硫酸亚铁铵[(NH4)2SO4〃FeSO4〃6H2O],溶于500ml水中,在不断搅拌下,沿杯壁缓缓地注入20ml硫酸(H2SO4,ρ=1.84 g/ml),冷却后,用水稀至1L转入棕色试剂瓶中,待标定。

南通市海洋环境监测工作情况汇报

南通市海洋环境监测工作情况汇报 以下是为大家整理的南通市海洋环境监测工作情况汇报的相关范文,本文关键词为范文,网,情况汇报,工作,海洋,环境监测,南通市,,您可以从右上方搜索框检索更多相关文章,如果您觉得有用,请继续关注我们并推荐给您的好友,您可以在工作汇报中查看更多范文。 南通市海洋环境监测中心 南通市编制委员会20XX年12月9日通编发[20XX]25号文件批准,在南通市水产品质量检验测试中心增挂“南通市海洋环境监测中心”的牌子,海洋环境监测中心的主要职责为“组织开展海洋环境监测、监视、评价,定期发布海洋环境质量信息” 根据《20XX年度南通市海洋生态环境监测工作方案》的要求,市海洋环境监测中心在20XX年与国家海洋局东海分局吕四海洋站合作的基础上,20XX年进一步加强共建,全面开展海洋生态环境监测,现将20XX年1-9月开展的海洋生态环境监测工作情况简要汇报如下:

一、陆源入海排污口监测 依据《江苏省20XX年海洋环境监测工作方案》与《20XX南通市海洋生态环境监测工作方案》的要求,在省海洋环境监测中心的具体指导下,我中心与吕四海洋站分别于今年5月22—24日、7月7—10日、9月6—7日发挥共建优势,分别开展了三次市沿海14个陆源入海排污口的社会调查与生态环境监测工作。监测范围包括排污口的精确地理位置,排污口的照片、污水中污染物(coD、氨氮、亚硝酸盐氮、磷酸盐、悬浮物、氰化物、六价铬、油类)的瞬时浓度,排污口的瞬时流量等。所有的监测结果我们按照国家海洋环境监测中心统一编制的规范性监测结果报表和质控报表统一格式要求进行填写,并在规定时间内向省海洋环境监测中心提交了监测数据的电子文本。5月25-26日国家海洋环境监测中心来我市检查我市陆源入海污染物监测计划方案及监测结果。中心向专家组作了专题汇报,中心实验室也以优异的成绩通过了活性磷酸盐、亚硝酸盐指标的盲样考核,我市首次陆源入海排污口的监测工作顺利通过国家海洋环境监测中心专家组的检查与考核。在7月21日召开的的东海区入海排污口监测工作会议上,中心代表江苏省对前两次入海排污口的监测工作作了汇报。 二、苏北浅滩生态监控区监测 从5月起,中心开始苏北浅滩生态监控区的生态环境监测工作,

德国海洋生态环境监测现状及对我国的启示

摘要 海洋环境监测是海洋资源开发与利用的必要基础,也是海洋环境保护工作的重 要依据。德国海洋环境保护技术与科学研究一直走在世界前列,同时也是海洋 环境保护区域合作的良好典范。本文阐述了德国的海洋环境管理部门与海洋环 境保护的法律框架,就海洋生态环境监测的监测体系、监测机构、监测内容和 监测特点予以分析,并对我国海洋环境监测工作提出针对性建议。 关键词:海洋生态环境监测;德国;监测特点 正文 德国地处欧洲西部,濒临北海和波罗的海,国土面积约35.7万km2,海洋面积约5.7万km2,拥有丰富的海洋资源。海洋不仅为德国供给了足够的矿产、油气、食物药类等自然资源,还作为旅游景点与海运码头,极大地促进了经济发展。但是,和众多人类活动密集的近岸海域一样,北海和波罗的海也面临着严峻的海洋环境污染问题。北海和波罗的海与德国、英国、法国等14个国家相邻,繁忙的海运和较高的陆源排放量使其成为世界范围内污染最为严重的海域之一。德国一直对环境保护工作十分重视,拥有世界上较完备和详细的环境保护法,海洋环境保护技术与科学研究也走在世界的前列。在海洋生态环境保护方面,德国在提升本国监测能力和完善监测体系的同时,也注重与其他邻国开展区域性合作,共同应对海洋环境问题。本文首先阐述了德国的海洋环境管理部门与法律框架,随后以海洋生态环境监测为例,对监测体系、监测机构与监测内容予以总结,最后探讨了德国海洋环境监测的若干特点,为我国海洋环境监测工作的提升提供参考。 1 德国海洋环境管理概况 1.1 海洋环境管理部门 德国是联邦制国家,由16个州、3个直辖市组成。联邦政府和州政府的职责划分由基本法规定,实行立法统一、执法相互监督的原则,即立法由联邦政府统一负责,执行分别由州政府和赋予职能的联邦机构负责。德国的海洋管理分区域进行,离岸12海里内海域由沿海各州政府实施管理,12海里以外到200海里的专属经济区由联邦政府执行机构负责。 德国联邦政府涉及海洋环境管理的部门主要包括联邦环境自然保护、建设与核安全部、联邦运输和数字设施部以及联邦食品与农业部。

海底沉积物声衰减研究现状及展望

海底沉积物声衰减研究现状及展望 刘 强,卢 博 (中国科学院边缘海地质重点实验室,广东广州 510301) 摘 要:根据近年来海底沉积物声学物理研究发展的态势,介绍了与研究声衰减有关的海底沉积物样品采集装置和海洋沉积物声速结构模式,综合解析多种对海底沉积物声衰减等声学特性研究方法,并做出较为详细地比较和讨论,提出对海底沉积物声衰减研究在满足科研要求的同时也应符合国家标准和要求。同时,指出了研究海洋沉积物声衰减的必要性和重要性,强调了对海底沉积物声衰减研究的科学意义和应用意义。 关键词:海底沉积物声学;取样装置;声速结构模式;声衰减 中图分类号:P733.2 文献标识码:A 文章编号:1003-2029(2006)02-0063-05 引言 水声学主要研究声波在水下的产生、辐射、传播和接收的理论,主要用以解决与水下目标探测、识别以及信息传输过程有关的声学问题。其研究内容丰富,但其中很多科研都涉及到海底沉积物的声学特性,涉及到海底表层沉积物的声速问题,沉积物的声衰减问题及其声阻抗问题等等,这些都联系着海底沉积物声学和水声学。 在所有的浅海环境和深水条件下,海底是影响声传播的重要因素之一,研究海底界面的声学性质是海底声学和地球物理学的共同兴趣所在。在海底沉积物表层几米范围内,其物理和声学性质有较大的梯度变化。在海底沉积物声学物理研究中涉及到许多物理参数,其中,沉积物声速和声衰减参数等一直是重要的海底地声参数,直接决定着海底声波和地震过程的作用影响。 1 样品采集仪器和设备 海底沉积物声学特性尤其是声衰减特性的研究,在目前首先是要获得海底沉积物样品来进行分析研究,因此,完整的、具有一定科研价值的海底沉积层样品是非常重要的。在这里有必要介绍海底沉积物样品的采集装置。尽管可以用海上钻机钻取很深很长的柱状样品,但目前比较广泛使用的绝大部分仍依靠各种重力式采样器。 收稿日期:2005-11-12 基金项目:国家自然科学基金资助项目(40476020) 作者简介:刘强(1980-),男,河北人,中国科学院南海海洋研究所硕士研究生,从事海底沉积物声学等研究。1.1 蛤壳式取样器 一种早期使用的设备,也称为“抓斗”。这是用一对咬合的钢瓣,在很重的取样器放下海里去时保持张开,然后在触及海底时,由弹簧或其他类型的释放装置把钢瓣闭合。这一类取样器,从容积较小的袖珍型到可以挖取大约1m3物质的巨型挖泥器都有。针对这类装置作了改进,目前在一些海底取样当中仍在使用,缺点就是对海底沉积物的完整性有较大的损害以及不能确定取样深度。 1.2 箱式取样管 箱的口径为24cm×30cm或更大一些,高度大小不一。一般依靠设备自身重力沉入海底表层沉积物中,这样大口径的取样管是为了确保获得沉积物表层样品,在回收时利用一个铲子自动转到管口下面,把管口严密封闭。这种采样设备可以获得较好的表层沉积物,对海底沉积物的扰动较小,完整性破坏较小,往往还可能取到岩石碎块。在箱体内沉积物样品的顶部,常常可以见到保存良好的海底动物迹印和波痕,这是很有价值的,但其采集深度有限。取样后需要在已有沉积物的箱体里插入一根塑料管进行二次取样。现在使用较多的是多管采样器,属于盒式采样器的一种变形,不锈钢制造,取样管为4根或8根有机玻璃管,长度60cm,口径10cm。 1.3 重力式取样管和活塞重力式取样管 这两种采样器比较广泛应用在目前海底沉积物的海上取样工作,两者的取样基本原理差不多,取样管长度1~10 m,可调节长度;取样管口径由50~100mm不等;管的顶部是配重和定向尾翼,管口是带有花瓣爪,以保护样品不会在取样后掉出管外,管内都配有相应口径大小的塑料管作为内管,方便取出样品和保护样品以后的运输和分割。不同的是活塞重力式取样管在内管里有活塞,当取样管下沉到海底时活塞通过预先放置的一根钢丝绳的拉动,完成一个 第25卷 第2期2006年6月 海 洋 技 术 OCEAN TECHNOLOGY V ol.25,No.2 June,2006

中国海洋生态环境污染及治理资料

中国海洋生态环境污染及治理 姓名:张悦 学号:201305071106 院系:外国语学院商务英语班

一、我国海洋环境污染及生态破坏的现状与原因分析 (一)海洋环境污染与生态破坏的现状 据1998年全国环境状况公报,1998年近岸海域水体污染严重,局部海域环境质量仍呈恶化趋势。因水质污染和过度捕捞,近海生物资源下降,近海海水养殖自身污染严重。总之,我国近岸海域环境质量总体上未见好转,主要污染指标是无机氮、活性磷酸盐与重金属。 渤海污染继续加重。海域内90%的监测站位超过一类海水水质标准,主要污染指标为无机氮、活性磷酸盐、石油类和铅。其中辽东湾局部海域无机氮已超过三类标准。另外,渤海生态系统退化,生物和渔业资源衰退。据调查,10年来渤海鱼类群落生物多样性指数大大下降,经济鱼类低龄化、个体小型化、生长周期缩短。 黄海污染总体较轻。海域内的45%监测站位超一类海水水质标准,主要污染指标为无机氮、活性磷酸盐和铅。其中胶州湾和大连湾无机氮分别超三类和二类标准。 东海污染严重。海域78%的监测站位超四类海水水质标准。主要污染指标为无机氮、活性磷酸盐、铅和汞。 南海水质较好,局部污染严重。海域内28%的监测站位超一类海水水质标准,主要污染指标为无机氮、活性磷酸盐和铅。珠江口海域污染突出。 1 、我国海域海水环境质量 90 年代以来 ,我国海洋环境污染一直比较严重。其中,我国近海水质劣于一类海水水质标准的面积,从1992年的10 万平方公里,上升到1999年的最高值20.2万平方公里,平均每年以14.6%的速度增长。1999年以后,我国的海洋环保工作初显成效,总体污染状况得到改善,污染加重的势头得到遏制,全海域未达到清洁海域水质标准的面积由1999年的20.2万平方公里,逐年下降到2004年的16.9万平方公里,减少了16.3%,环境污染状况得到了初步的改善。但2004 年的数据显示 ,全海域未达到清洁海域水质标准的面积约16.9万平方公里,比2003年增加约2.7万平方公里,我国近岸中度和严重污染海域范围增加。对于渤海、黄海、东海、南海四海区的2001-2004年海水环境污染状况研究表

近岸海域环境监测技术规范

《近岸海域环境监测技术规范》 (征求意见稿) 编制说明 《近岸海域环境监测技术规范》编制组 二○○七年五月

目录 1 《近岸海域环境监测技术规范》编制背景与任务来源 2 我国近岸海域环境监测现状与特点 3 制订《近岸海域环境监测技术规范》目的、原则、方法和依据 4 主要内容及适用范围 5 关于规范条文的说明 6 与其行业规范的比较

《近岸海域环境监测技术规范》 编制说明 1 《近岸海域环境监测技术规范》编制背景与任务来源 1.1编制背景 近岸海域是人类经济活动频繁、受陆源污染物影响大、多介面相互作用强烈的敏感区域。系统而科学地在该区域开展环境监测,以持续地获取真实而全面的水文、化学、生物等基础数据,是环保行政管理部门实施和加强对近岸海域环境管理的重要举措,是环境监测工作的重要组成部分。自全国近岸海域环境监测网成立以来,按照国家环保总局和环境监测总站的部署,以近岸海域环境监测中心站为主干的各网络成员,迅速而有效地开展了一系列监测工作,包括于1997年和1998年的开展的渤、黄海和东、南海近岸海域环境综合调查,获得了大量的监测数据,并掌握了我国近岸海域的基本环境状况,为环保主管部门对海洋环境保护工作实施指导、协调和监督提供了强有力的技术支持。但总体上说近岸海域环境监测在我国起步较晚,经验不足,力量薄弱,技术支持缺乏。虽然我国已经有了一个适用于广域范围的《海洋监测规范》(GB17378.1~7-1998),国家海洋局也相继出台了一系列监测规程,但这个规范和这些规程是依据近年来海洋部门各种实际工作情况来制订的,不适用于环境保护部门已经在开展的近岸海域环境质量例行监测和各项专题监测,且在应用于受陆源直接影响的近岸海域环境监测时就受到各种限制。简单的如《海洋监测规范》规定,化学需氧量和重金属汞指标不需过滤直接测定,这就导致在入海河流影响区域(如长江口、杭州湾、珠江口等)这两项指标的监测结果受气候和海况的影响差异很大,不能真实的反映环境质量状况。 因此针对近岸海域环境监测的特点,制定一个统一的、规范化的、可操作性强的,开展近岸海域环境监测所必需的专业技术规范,确保近岸海域环境监测的科学性、准确性、可比性,推动我国环境监测工作的不断发展,是十分必要的,必将使全国环境监测系统在近岸海域环境监测技术上一个新的台阶。本规范的制定,以积极满足环保主管部门对近岸海域环境管理为基本原则,在切实履行对近岸海域环境质量例行监测的同时,分别增加了近岸海域环境功能区环境质量监测、海滨浴场水质监测、入海污染源环境影响监测、大型海岸工程环境影响监测及赤潮监测等专题监测的规范制定,以切实提高近岸海域环境监测为环境管理服务的作用与效能。 1.2 任务来源 1、国家环境保护总局环办[2002] 89号文《关于下达“十五”期间环境监测技术规范制订项目计划的通知》; 2、中国环境监测总站《关于填报国家环境保护标准制修订计划任务书的通知》(2002年9月12日); 3、中国环境监测总站总工字[2003] 30号文《关于明确监测技术规范编制要求的通知》;

海洋工程环境影响评价技术导则

海洋工程环境影响评价技术导则 行业技术标准 《沿海大型工程海洋灾害风险评价技术导则(征求意见稿)》 编制说明 中国海洋工程咨询协会 《沿海大型工程海洋灾害风险评价技术导则》编制组 2012年6月 行业技术标准《沿海大型工程海洋灾害风险评价 技术导则(征求意见稿)》编制说明 一、标准编制的背景、目的和意义 我国是世界上海洋灾害最严重、最频发的少数国家之一,海洋灾害对沿海经济社会造成的损失相当严重,已成为沿海开发规划实施和经济建设的制约因素之一。近年来,超强台风、风暴潮、海浪、海冰等灾害频发,海平面持续上升,局部地面沉降量加大,海岸环境变化加速,而我国现行沿海大型工程防御海洋灾害的评价技术标准与海洋灾害风险面临的态势不相适应,严重制约着沿海经济社会的发展。 2011年日本“3?11”强烈地震引发海啸并导致严重核泄漏事故,引起了全世界对海洋灾害的强烈关注。沿海国家纷纷采取多种措施,加强海洋灾害的防御。我国沿海地区集中了核电、油气、石化等大型工程和人口密集的滨海城镇,也存在海洋灾害风险考虑不足、特别是海啸灾害风险设防薄弱等诸多问题。因此,开展沿海大型工程海洋灾害风险评价,是有效提高海洋灾害防御能力和减少海洋灾害损失的关键技术方法之一,可为海洋灾害防御决策与管理提供基础依据。 编制《沿海大型工程海洋灾害风险评价技术导则》(以下简称《导则》),是落实和贯彻《中华人民共和国海洋观测预报管理条例》的具体要求,对科学论证和评

价沿海大型工程的海洋灾害风险,提出减轻或防御海洋灾害风险的对策措施,合理开发利用海洋,促进沿海经济社会可持续发展,保障沿海经济建设和人民生命财产安全,具有重要的现实意义。 《导则》的编制,以科学发展观为指导,贯彻落实国家安全生产和防灾 —1— 减灾的要求,以保障沿海大型工程生产安全、减轻海洋灾害对生产和生活的威胁为目的,以海啸、风暴潮、海浪、海冰为海洋灾害要素,以成熟、实用的技术方法为依据,以实现业务化评价为运行模式,结合海洋灾害的特点,采取数据资料收集、补充勘察、分析计算与综合评估相结合的方法,依据工程的海洋灾害设防技术参数和设防标准,分析判断工程的灾害风险脆弱性,提出预防或减轻海域灾害影响的对策措施。《导则》主要内容包括:分析和评估海啸、风暴潮、海浪和海冰致灾因子的特征,分析多灾种叠加及次生灾害风险评估方法的成熟度,提出评价大型工程风暴潮、海啸、海浪和海冰灾害风险的技术方法,提出改进大型工程海洋灾害设防技术参数和预防措施的对策建议。 二、工作简况(包括任务来源、计划项目编号、参加单位、主要工作过程、标准主要起草人及其所做的工作等) 1、任务来源、计划项目编号和参加单位 任务来源:国家海洋局关于印发2012年海洋预报减灾工作方案的通知(国海预字,2012,279号),计划项目名称:重大工程海洋灾害风险评估技术标准。 标准的编制任务由中国海洋工程咨询协会承担,国家海洋预报中心、国家海洋信息中心、国家海洋环境监测中心和相关技术单位参加编制。 2、主要编制工作过程 中国海洋工程咨询协会与参加单位于2011年7月组成了标准编制组,着手开展编制工作。标准编制组根据国家下达的任务要求,拟订了工作计划,开始资料收

相关主题
文本预览
相关文档 最新文档