当前位置:文档之家› 壳聚糖定量分析方法的研究进展

壳聚糖定量分析方法的研究进展

壳聚糖定量分析方法的研究进展
壳聚糖定量分析方法的研究进展

壳聚糖的应用研究进展(综述性论文)

绿色原料——壳聚糖的应用研究进展 09化学1班 XXX 指导老师:沈友教授 (惠州学院化学工程系,广东,惠州,516007) 摘要:本文综述了绿色原料壳聚糖的应用研究进展,着重介绍了壳聚糖在食品,水处理,生物药用,造纸业等方面的应用。 关键词:壳聚糖应用食品水处理 前言 原料在化学品的合成中非常重要,其可以成为影响一个化学品的制造、加工与使用的最大因素之一。如果一个化学品的原料对环境有负面的影响,则该化学品也很可能对环境具有净的负面影响。要实现绿色化学,在选择原料时应尽量使用对人体和环境无害的材料,避免使用枯竭或稀有的材料,尽量采用回收再生的原材料,采用易于提取、可循环利用的原材料,使用环境可降解的原材料。 自然界的有机物,数量最大的是纤维素,其次是蛋白质,排在第三位的是甲壳素,估计每年生物合成甲壳素100 亿t。甲壳素N-脱乙酰基的产物壳聚糖就是一种重要的绿色原料。 壳聚糖化学名称为聚葡萄糖胺(1-4)-2-氨基-B-D葡萄糖,壳聚糖的外观为白色或淡黄色半透明状固体, 略有珍珠光泽, 可溶于大多数稀酸如盐酸、醋酸、苯甲酸等溶液, 且溶于酸后,分子中氨基可与质子相结合, 而使自身带正电荷。自1859年,法国人Rouget首先得到壳聚糖后,这种天然高分子的生物官能性和相容性、血液相容性、安全性、微生物降解性等优良性能被各行各业广泛关注,在医药、食品、化工、化妆品、水处理、金属提取及回收、生化和生物医学工程等诸多领域的应用研究取得了重大进展。壳聚糖无毒无害,具有良好的保湿性、润湿性,能防止静电; 化学稳定性良好, 但吸湿性较强, 遇水易分解。对壳聚糖进行化学改性, 得到的壳聚糖衍生物在许多物化性质方面都得到改善,其应用也更加受到关注。本文着重介绍了壳聚糖在食品,医药,水处理方面的应用进展。

改性沥青的研究进展

改性沥青的研究进展 黄 彬,马丽萍,许文娟 (昆明理工大学环境科学与工程学院,昆明650093) 摘要 为了得到性能更优良的改性沥青,越来越多的材料被用作改性沥青改性剂,同时新的评价标准和方法及其他领域的新化学分析方法也被用来更完整准确地评价改性沥青的性能。总结了国内外改性沥青的研究现状及进展,从改性机理、性能影响因素及评价方法等方面来介绍各种改性沥青的概况,并概述了改性沥青的发展方向。 关键词 改性沥青 改性剂 机理 发展Rsearch Development of Modif ied Asphalt HUAN G Bin ,MA Liping ,XU Wenjuan (Faculty of Environmental Science and Engineering ,Kunming University of Science and Technology ,Kunming 650093) Abstract More materials ,as modifier ,are used to improve the properties of modified asphalt.Besides ,the new evaluation standards and methods ,new chemical analysis methods are used to evaluate the properties more com 2pletely and accurately.The situation and development of modified asphalt research at home and abroad are summa 2rized.From the aspcts of modification mechanism ,influencing factors and evaluation methods ,various modified as 2phalts are introduced ,and the development trend of modified asphalt technology is illustrated in the paper. K ey w ords modified asphalt ,modifier ,mechanism ,development  黄彬:女,1986年生,硕士研究生,主要研究方向为固体废物资源化 E 2mail :binbin_huang @https://www.doczj.com/doc/585614123.html, 马丽萍:女,1966年生,教 授,主要研究方向为工业废气污染控制、固废综合开发利用 E 2mail :lipingma22@https://www.doczj.com/doc/585614123.html, 0 前言 普通道路沥青由于自身的组成和结构决定了其感温性能差,弹性和抗老化性能差,高温易流淌,低温易脆裂。而且在过去的10年中,车轴负荷增加、车流量增加、气候条件恶劣,难以满足高级公路的使用要求,必须对其改性以改善使用性能。在沥青或沥青混合料中加入天然或合成的有机或无机材料,熔融或分散在沥青中与沥青发生反应或裹覆在沥青集料表面,可以改善或提高沥青路面性能。 1 改性沥青的分类 在沥青的改性材料中,高分子聚合物是应用最广泛、研究最集中的一种。其他改性材料还有两大类:矿物质填料和添加剂。矿物质填料,如硅藻土、石灰、水泥、炭黑、硫磺、木质素、石棉和炭棉等,对沥青进行物理改性,可提高沥青抗磨耗性、内聚力和耐候性。添加剂,包括抗氧化剂和抗剥落剂,如有机酸皂、胺型或酚型抗氧化剂或阴、阳离子型或非离子型表面活性剂,可提高沥青粘附性、耐老化或抗氧化能力。聚合物改性沥青(PMA 、PMB ),按照改性剂的不同一般可分为3类:①热塑性橡胶类,即热塑性弹性体,主要是嵌段共聚物,如SBS 、SIS 、SE/BS ,是目前世界上最为普遍使用的道路沥青改性剂,并以SBS 最多;②橡胶类,如NR 、SBR 、CR 、BR 、IR 、EP 2DM 、IIR 、SIR 及SR 等,以胶乳形式使用,其中SBR 应用最为广泛;③树脂类,如EVA 、PE 、PVC 、PP 及PS 。 2 各种改性沥青及其发展现状 通过SCI 和EI 分别检索近15年来改性沥青在交通、建筑、材料、能源及环境等学科方面研究的文献情况,检索结果如图1、图2及表1、表2所示。根据表1、表2数据和图1、图2情况可以看出,近几年国内外对改性沥青的研究越来越多,尤其以SBS 和胶粉最为突出,出现了多种新型改性剂。下面 将分别介绍各种改性沥青及其发展现状。 图1 SCI 检索统计表 Fig.1 SCI search results 2.1 矿物质材料改性沥青 矿物质材料作改性剂的研究较少,主要为硅藻土、纳米 碳酸钙、矿渣粉、白炭黑等,可与基质沥青形成均匀、稳定的 共混体系以改善沥青性能[1] 。

改性沥青现状及发展前景

改性沥青现状及发展前景 1、改性沥青应用现状 普通道路石油沥青,由于原油成分及炼制:工艺等原因,其含蜡量较高,导致其具有温度敏感性强,与石料的粘附性差,低温延度小等缺点。用其铺筑的沥青路面,夏季较软,易出现明显车辙壅包等病害;冬季较脆,易出现低温开裂等病害;混合料的抗疲劳性能,抗老化性能较差。同时,由于经济的快速发展,普通沥肯混合料已不能满足高等级道路和特殊地点的重交通,大轴载,快速安全运输的需要。 1.1 改性沥青的应用背景和现状 据相关资料,20世纪60年代以前,沥青路面仅用于城市道路和专用公路,沥青材料主要是煤沥青和用进口原油提炼的石油沥青。20世纪70年代前后,在全国范围内曾采用渣油吹氧稠化,掺配特立尼达(TLA)或阿尔巴尼亚稠沥青等改性的方法,提高结合料稠度,配制成200号沥青铺筑以表面处治为主的沥青面层。1985年国内开展 了沥青中掺丁苯,氯丁橡胶,废轮胎粉等改性沥青和掺金属皂等改善混合料性能的研究试验工作,取得了成功的经验。1992年NovophaltPE现场改性技术的引入,对改性沥青的推广应用起到了促进作用,使改性沥青从研究试验逐步发展到生产应用。 1.2影响改性沥青应用的因素 生产施工工艺在聚合物改性沥青的大规模应用中起到了关

键性的作用。无论是聚合物改性,物理改性还是采用不同的沥青加工工艺都会增加较大的工程成本,在国内经济不发达地区的应用会受到一定的制约。 2、改性沥青的研究现状 目前国内的研究重点在新的改性剂和沥青改性剂的加工工艺上还有一部分研究是面向工程应用的,即研究在沥青集料改性剂确定的情况下,找出合适的级配,最佳沥青用量和改性剂用量以满足实际工程的要求。我国研究改性沥青已有多年的历史,也取得了丰富的成果,但至今仍有两个问题没有很好地解决: (1)没有形成对改性沥青和改性性能统一的评价标准; (2)国内没有形成统一的研究体系。 改性沥青的研究是一项长期的复杂的系统工作,要想取得突破性成果必须综合各研究机构的优势,形成统一的研究体系,比如美国l987年~l992年的大型系统工程SHRP计划等等。而相对于国内,研究工作往往由各高等院校,科研院所独立完成,没有统一的研究规划,配套工作滞后。另外由于各部门的利益关系,沥青改性的关键技术往往是秘而不宣的,在一定程度上造成人财物的巨大浪费。 3、改性沥青的应用前景 由于普通沥青已不能适应现代化路面的要求,性能良好的改性沥青必将在高等级路面中起到越来越重要的作用 3.1 SBS改性沥青将获得更广泛的应用 研究表明,SBS改性的优越性突出表现在具有双向改性作用,

壳聚糖改性工艺的研究

壳聚糖改性工艺的研究 壳聚糖[是自然界中唯一大量存在的高分子碱性氨基多糖,与合成高分子材料相比,具有来源广泛、价格低廉、性质稳定、无刺激、无致敏、无致突变、良好的生物相容性和生物可降解性、低免疫原性以及生物活性等优点,已被广泛应用于工业、农业、生物工程、医药、食品、日化、污水处理、纺织印染等领域。壳聚糖不溶于普通溶剂,使其应用受到了一定限制,因此,对壳聚糖进行化学改性,提高其溶解性,并赋予其一些其他功能,扩大其应用领域成为了一个研究热点。 20116壳聚糖的结构和性质 1. 1壳聚糖的结构特性 壳聚糖具有复杂的双螺旋结构,其功能基团有氨基葡萄糖单元上的6位伯经基、3位仲羟基和2位氨基或一些N位乙酰氨基以及糖酐键,其结构式如图1所示。 1. 2.壳聚糖的一般理化性质 壳聚糖是生物界中惟一的一种碱性多糖,它是白色、无定型、半透明、略有珍珠光泽的固体,因原料和制备方法不同,其相对分子质量也从数十万至数百万不等。 1. 3壳聚糖的溶解性质 壳聚糖可溶于稀的盐酸、硝酸、醋酸等无机酸和大多数有机酸但不溶于稀硫酸和稀磷酸。影响壳聚糖溶解的主要因素有脱乙酰度、壳聚糖的相对分子质量、酸的种类等。 2壳聚糖的改性研究 由于壳聚糖自身性能的局限性,科研工作者对其进行了改性研究,通过控制反应条件在壳聚糖上引人其他基团来改变其理化性质[6]。本文将介绍壳聚糖改性的研究进展及应用,并对目前的一些改性方法进行了较全面的总结。 2. 1化学改性 壳聚糖分子上有许多经基和氨基,可通过对其进行分子设计实现可控化学修饰,从而改善壳聚糖本身性能的一些不足。根据壳聚糖的化学性质,可以从酰化、酯化、烷基化等几个方面对其进行化学改性。 2.1.1酸化改性 壳聚糖可与多种有机酸的衍生物如酸酐,酰卤等反应,可引人不同相对分子质量的脂肪族或芳香族的酰基进行改性。酰化反应既可在轻基上反应(O位酰化)生成酯,也可在氨基上反应(N位酞化)生成酰胺。酰化化改性后的产物的溶解度有所改善,它具有良好的生物相容性,是一种潜在的医用生物高分子材料。如脂肪族酰化化产物可作为生物相 容性材料,N一甲酰化产物可增强人造纤维的物理性能。

固定化酶的研究进展

固定化酶的研究进展 固定化酶是20世纪60年代发展起来的一项新技术。最初主要是将水溶性酶与不溶性体结合起来,成为不溶于水的酶衍生物,所以曾叫过“水不溶酶”和“固相酶”。但是,后来发现,也可以将酶包埋在凝胶内或置于超滤装置中,高分子底物与酶在超滤膜一边,而反应产物可以透过膜逸出。在这种情况下,酶本身仍是可溶的,只不过被固定在一个有限的空间内不能再自由流动。因此,用水不溶酶或固相酶的名称就不再恰当。在1971年第一届国际酶工程会议上,正式建议采用“固定化酶”的名称[1]。 一固定化酶的发展历程[1] 酶参与体内各种代谢反应,而且反应后其数量和性质不发生变换。作为一种生物催化剂,酶可以在常温常压等温和条件下高效地催化反应,一些难以进行的化学反应在酶的催化作用下也可顺利地进行反应,而且反应底物专一性强、副反应少等优点大大促进了人们对酶的应用和酶技术的研究。近年来,酶被人们广泛应用于食品生产与检测、生物传感器、医药工程、环保技术、生物技术等领域。 1916年美国科学家NELSON和GRIFFIN最先发现了酶的固定化现象;直到20世纪50年代,酶固定化技术的研究才真正有效地开展;1953年,德国科学家GRUB-HOFER 和SCHLEITH首先将聚氨基苯乙烯树脂重氮化,然后将淀粉酶、胃蛋白酶、羧肽酶和核糖核酸酶等与上述载体结合制备固定化酶;到20世纪60年代,固定化技术迅速发展;1969年日本千畑一郎利用固定化氨基酰胺酶从DL-氨基酸生产L-氨基酸,是世界上固定化酶大规模应用的首例;在1971年的第一届国际酶工程会议上,正式建议使用固定化酶(mimobilizedenzyme)这个名称。我国的固定化酶研究开始于1970年,首先是中国科学院微生物所和上海生化所的酶学工作者同时开始了固定化酶的研究工作 二固定化酶的特点[2] [3] 固定化酶具有许多优点:极易将固定化酶与底物、产物分开;可以在较长时间内进行分批反应和装柱连续反应;在大多数情况下,可以提高酶的稳定性;酶反应过程能够加以严格控制;产物溶液中没有酶的残留,简化了提取工艺;较水溶性酶更适合于多酶反应;可以增加产物的收率,提高产物的质量;酶的使用效率提高,成本降低。但是,固定化酶也有其不足之处,如固定化时,酶活力有损失;增加了固定化的成本,工厂开始投资大;只能用于水溶性底物,而且较适用于小分子。 三固定化酶固定化方法[3] [4] 由于所固定的酶或细胞的不同,或者固定的目的及固定用的载体的不同,使固定化方法大相径庭。根据固定的一般机理,可将之分为如下几种方法。酶的固定化方法有:

SBS改性沥青的性能与应用

SBS改性沥青的性能与应用 摘要:我国高速公路建设自改革开放以来,经历了从无到有,从起步到建设成高速公路网的翻天覆地变化。与此同时,传统的普通沥青已经很难适应现代对公路的高标准要求,而改性沥青的研制与应用则较好地解决了这一问题。本文主要通过介绍SBS改性沥青在高温、低温条件下的抗车辙、抗裂性能,与水稳定性,抗滑能力等内容,比较得出其对于传统沥青在工程、经济、社会各方面的优越性,探究了加强对SBS改性沥青的学习,开展对SBS改性沥青深入的研究与推广其广泛应用的长远意义。 关键词:SBS改性沥青;改性沥青性能;改性沥青应用;沥青施工;工程效益;应用前景 1 前言 随着交通流量的增长、车载质量的增加以及高温和低温的作用,为适应道路路面的使用性能的要求,保证路面良好的使用状态,延长路面的使用寿命,就必须探寻更高性能的路面材料。SBS改性沥青混凝土具有很好的高温抗车辙能力,低温抗裂能力,改善了沥青的水稳定性,提高了路面的抗滑能力,增强了路面的承载能力,提高了沥青的抗氧化能力,是比较优良的路面材料。自上世纪40年代以来,国内外学者对各类改性沥青的性能进行了大量的研究工作,改性沥青技术得到了越来越多的重视。现有研究结果表明,与其他改性沥青相比,SBS(苯乙烯一丁二烯一苯乙烯)改性沥青的综合性能[1]更为突出,SBS改性沥青必将在未来很长的一段时间内得到更深入的研究和更广泛的应用。 2 SBS改性沥青简介 SBS属于苯乙烯类热塑性弹性体,是苯乙烯—丁二烯—苯乙烯三嵌段共聚物,SBS改性沥青是以基质沥青为原料,加入一定比例的SBS改性剂,通过剪切、搅拌等方法使SBS均匀地分散于沥青中,同时,加入一定比例的专属稳定剂,形成SBS共混材料,利用SBS良好的物理性能对沥青做改性处理。在良好的设计配合比和施工条件下,用SBS改性沥青铺筑的沥青混凝土路面有着传统沥青路面无法比拟的优越性能,具有很好的耐高温、抗低温能力以及较好的抗车辙能力和抗疲劳能力,并极大地改善沥青的水稳定性,提高了路面的抗滑性能。

壳聚糖的制备方法及研究进展

龙源期刊网 https://www.doczj.com/doc/585614123.html, 壳聚糖的制备方法及研究进展 作者:张立英 来源:《山东工业技术》2018年第02期 摘要:壳聚糖作为一种碱性多糖被广泛应用于食品、生物、化工、医疗等领域。本文重点介绍了壳聚糖的制备方法及其研究进展,并对其发展趋势进行了展望。 关键词:壳聚糖;碱性多糖;制备方法 DOI:10.16640/https://www.doczj.com/doc/585614123.html,ki.37-1222/t.2018.02.016 壳聚糖本身的分子结构类似于纤维素,因其多了一个带正电荷的胺基,使其化学性质较为活泼。目前壳聚糖正因其优良的生理活性在食品、化妆品、医药、化工、污水处理等方面展现出广阔的应用前景,近十年来国内外对于壳聚糖的开发研究热度一直持续不减,各种新颖的制备方法也是层出不穷。 1壳聚糖的来源 壳聚糖通常是由甲壳素(又名几丁质)经脱乙酰基作用获得,甲壳素在自然界中广泛存在于高等真菌以及节肢动物(虾、蟹、昆虫等)的外壳中,其中虾壳、蟹壳是工业生产壳聚糖的主要原料。由于大分子间的氢键作用,天然存在的甲壳素构造坚固,化学性质稳定,不溶于水、酸碱和一般的有机溶剂,这也使得甲壳素的应用范围非常有限,因此甲壳素只有经脱乙酰基处理成壳聚糖才能获得广泛应用。 2壳聚糖的制备方法 (1)化学降解法。传统的壳聚糖生产多采用化学降解法。作为壳聚糖工业生产最常用的制备方法,化学降解法简便易行,效率高,整个生产过程容易控制,但该法环境污染较为严重,对周边环境具有一定的破坏性。欧阳涟等从蟹壳中获取甲壳素,并通过脱乙酰反应制备出了壳聚糖。试验探究了影响产物壳聚糖脱乙酰反应的各种因素,如反应温度、碱液含量及反应时间等,最终确定制备高脱乙酰度壳聚糖的条件为反应温度70℃,碱液质量分数47%,反应时间10 h。 (2)微生物培养法。微生物发酵法生产壳聚糖起源于美国,我国从上世纪90年代开始研究。其主要原理是利用微生物自身生产的酶进行催化,从而脱去甲壳素中的乙酰基,进而制备壳聚糖。目前该领域研究重点主要集中在优良菌株的选育和培养基的优化上。 贺淹才等首先采用电解法从培养的黑曲霉湿菌体中制得甲壳素,然后采用碱提取法从培养的黑曲霉湿菌体中制备壳聚糖。试验基于黑曲霉细胞壁的主要成分为蛋白质与甲壳素,而蛋白质带有可电离的基团,于溶液中可形成带电荷的阳离子和阴离子,在外加电场作用下发生迁

壳聚糖降解研究进展

技术进展 Technology Progre ss 壳聚糖降解研究进展 李 治 刘晓非 杨冬芝 管云林 姚康德 (天津大学材料科学与工程学院,天津,300072) 提 要 壳聚糖已被广泛应用于化工、环保、医药等众多领域,将壳聚糖降解到需要的分子量是其应用的前提。 本文介绍并评述了化学降解、物理降解和生物降解等壳聚糖降解方法的研究进展。 关键词 壳聚糖,降解,分子量,低聚物 壳聚糖是甲壳素的脱乙酰化产物,在自然界中的储量非常丰富,广泛存在于虾、蟹和昆虫的外壳及藻类、菌类的细胞壁之中,是年产量仅次于纤维素的第二大天然高分子,也是迄今为止发现的唯一天然碱性多糖。壳聚糖是分子链由β2(104)222乙酰胺基2 D2葡糖单元和β2(104)222氨基2D2葡糖单元组成的共聚物,以分子量和脱乙酰化度来表征。 近年来随着研究的深入,壳聚糖在化工、 环 图1 壳聚糖 保、食品、印染、纺织、生物医药等方面展现出广 泛而独特的应用价值:可用作微量金属离子提取 剂、纸张添加剂、胶卷增感剂、废水处理中的高效 絮凝剂、化妆品中的保湿剂、食品添加剂和保藏剂 以及印染固色剂[1~4];可用于制造催化功能膜和各 种形式的能量转换膜,可提高巨噬细胞的吞噬功 能,抑制肿瘤生长[5~7];是肠道有益细菌双歧杆菌 的增殖因子,能降低胆固醇和血脂[8];可用于制造 药物可控释放膜、可吸收的手术缝合线以及人工透 析膜等等[9~11]。 但是,一般由甲壳素脱乙酰化制得的壳聚糖分 子量很大,并且有紧密的晶体结构,不溶于普通溶 剂,只能在某些酸性介质中溶解,这使壳聚糖的应 用受到极大限制;另外,研究表明分子量对壳聚糖 的性质有很大影响,不同分子量的壳聚糖性质差异 很大,有时甚至表现出截然相反的特性[12,13],而 壳聚糖的许多独特功能只有在分子量降低到一定程 度时才表现出来。因此,选择适当的方法对壳聚糖 进行降解就显得尤为重要。目前,国内外学者提出 的降解方法主要有化学降解、物理降解和生物降解 三大类。 1 化学降解 111 用N a N O2降解 将壳聚糖溶解于质量分数为10%乙酸溶液中, 在搅拌下缓慢滴入一定量的NaNO2溶液,于4℃下 静置一段时间,使—NH2发生重氮化反应,脱去一 分子N2,引起分子内重排使大分子链断裂,再用 NaBH4还原端基,完成降解反应[13]。反应过程如 图2所示。 这是传统的化学降解方法,降解产物的分子量 可以通过改变NaNO2的加入量和反应时间来控制, 国内常用此法降解壳聚糖并提取产物中的单糖组 分。该法的主要缺陷在于:(1)产品的分子量分布 太宽,均一性差;(2)降解过程中破坏了氨基,理 论上加入1摩尔NaNO2就要消耗1摩尔氨基,而壳 聚糖良好的生物相容性主要由氨基提供[14],同时 分子链上存在足够数量的氨基也是壳聚糖进行进一 步改性的重要前提,氨基数量的减少将会使壳聚糖 的应用受到限制;(3)生产的三废污染严重。 国家自然科学基金资助项目,N o.59773002。

壳聚糖改性研究与应用

壳聚糖改性研究与应用 赵朝霞(1142032224)四川大学化学学院2011级本科 摘要:甲壳素是一种天然多糖,脱除乙酰基的产物是壳聚糖,作为新型功能生物材料,它们已在水处理、日用化学品、生物工程和医药等领域得到了应用。本文综述了近年来关于壳聚糖改性研究进展,以及将其应用到医学、食品、化学工业等各个领域的概况,重点介绍了化学和物理修饰方法的应用研究。 关键词:壳聚糖化学改性与修饰物理改性与修饰功能材料 甲壳素的化学名称为(1,4)一2一乙酰氨基一2一脱氧一β—D—葡聚糖,它是通过β-1-4糖苷键相连的线性生物高分子,分子量从几十万到几百万。甲壳素脱除乙酰基后的产物是壳聚糖,其化学名称为(1,4)一2一氨基一2—脱氧—β一D—葡聚糖。甲壳素和壳聚糖具有与纤维素很相近的化学结构,它们的区别仅是在C位上的羟基分别被一个乙酰氨基和氨基所代替(如图) 但它们的化学性质却有较大差别。甲壳素和壳聚糖具有生物降解性、细胞亲和性和生物效应等许多独特的性质,尤其是含有游离氨基的壳聚糖,是天然多糖中唯一的碱性多糖[1-4]。因此,它们已在废水处理、食品工业、纺织、化工、日用化学品、农业、生物工程和医药等方面得到应用。 医药领域 聚乳酸一羟基乙酸共聚物(PLGA)微粒广泛用于蛋白、多肽、核酸等生物大分子给药。由于PL-GA纳米微球表面缺乏可用于共价修饰的基团,所以难以在表面负载生物活性物质如DNA、配体和疫苗等,不易于通过受体或抗体进行靶向给药。因此,人们尝试用不同方法将PLGA 表层包裹不同的聚合物以达到物理改性PLGA微球表面的目的。如阳离子表面修饰是基于PLGA表层负电荷而设计的,这种方式使PLGA的表面活化成为可能。将壳聚糖(CHS)选做纳米微球表面修饰材料是因为它具有阳离子电荷,生物可降解,黏膜黏附性等特性。阎晓霏等以溶菌酶为模型蛋白,将改性PLGA与溶菌酶通过化学键结合并以CHS修饰得到一种新型阳离子纳米微球,达到增大纳米微球的包封率、载药量并促进蛋白类药物吸收的目的[5]。 壳聚糖在医药测定方面也有着十分积极的作用。Zhang等[6]首先制备了壳聚糖包覆的CdSe /ZrKS量子点作为Her2/neu基因小分子干扰RNA(small interfering RNA,siRNA)的载体。并通过跟踪量子点的荧光信号证实药物载体靶向传送到乳腺肿瘤细胞,利用荧光索酶和酶联免疫分析验证导入细胞的siRNA的基因沉默效应。钟文英[7]等壳聚糖包覆的Ccrre量子点为荧光探针,基于荧光猝灭法建立了吉米沙星定量测定方法。以壳聚糖为载体合成新型疏水色谱填料[8],有效分离提纯枯草芽孢杆菌α一淀粉酶、鸡卵粘蛋白、AS 1.398中性蛋白酶以及伪单孢杆菌脂肪酶[9],以壳聚糖为载体的亲和吸附剂和壳聚糖固定化蛋白酶均具有广泛应用价值. 壳聚糖羧甲基化后,与磷酸钙生成螯合物,它可促进骨骼的矿化,在医药上可作为成骨的促进剂[10]。 二、化工领域 武美霞[11]等以壳聚糖为络合剂、稳定剂或保护剂,通过简单的化学还原法制备了具有超小尺寸的非晶态NiB.CS催化剂,并且使活性组分Ni分散均匀。壳聚糖修饰炭黑负载Pt—Au 催化剂,对原电极有相当好的物理极化学性质的改良作用。Sugunan[12]等认为,壳聚糖之所以能够捕获并起到稳定金纳米粒子的作用,一是由于两者之间存在静电作用;二是壳聚糖具有足够大的立体位阻效应,从而避免了金纳米粒子的聚集并能使金纳米粒子功能化。因此,

改性壳聚糖的研究进展

改性壳聚糖的研究进展 1壳聚糖的理化性质 壳聚糖(chitosan,(1,4)-2-氨基-2-脱氧-β-D-葡聚糖)是甲壳素(chitin,(1,4)-2-乙酰氨基-2-脱氧-β-D-葡聚糖)部分脱乙酰化的产物。甲壳素广泛存在于蟹、虾以及藻类、真菌等低等动植物中,含量极其丰富,自然界每年产量约在100亿吨,是仅次于纤维素的第二大多糖。它是由葡萄糖结构单元组成的直链多糖,此多糖中含有数千个乙酰己糖胺残基,因此在分子间形成很强的氢键,导致其不溶于水和普通有机溶剂,这就大大限制了其应用范围。 将甲壳素在碱性条件下加热,脱去N-乙酰基后可生成壳聚糖。人们常将N-脱乙酰度和粘度(平均相对分子质量)作为衡量壳聚糖性能的两项指标。N-脱乙酰度是判定壳聚糖溶解性的依据,脱乙酰度越高,分子链上的游离氨基就越多,在酸中的溶解性就越好;而壳聚糖相对分子质量越大,分子之间的缠绕程度就越大,溶解度就越小。壳聚糖是自然界中唯一的一种碱性多糖,它一般是白色无定型、半透明、略有珍珠光泽的固体。壳聚糖可溶于大多数稀酸,如盐酸、醋酸、苯甲酸溶液,且溶于酸后分子中氨基可与质子结合,使自身带上正电荷。甲壳素及壳聚糖的结构式如图1所示:

图1壳寡糖与壳聚糖的结构式 甲壳素和壳聚糖在自然界可以被各种微生物降解。微生物中的甲壳素酶(chitinase)可以随机地水解甲壳素的N-乙酰-β-(1-4)糖苷键。而壳聚糖可以被多种酶水解,包括壳聚糖酶(chitosanase)、麦芽糖酶、脂肪酶、以及各种来源的蛋白酶。在人体内甲壳素酶和壳聚糖酶并非普遍存在,通过测定显示N-乙酰壳聚糖在人血清中可以被人体内普遍存在的溶菌酶(lysozyme)降解。 壳聚糖的主链结构中引入了2-氨基,化学性质区别于3,6-羟基,与甲壳素相比增加了反应选择性的功能基团。由于C6-OH是一级羟基,C3-OH是二级羟基,空间位阻不同反应活性也不同,再加上C2-NH2,壳聚糖就具有三个活性不同的可供修饰的基团。根据不同的需要,被修饰的壳聚糖作为一种功能大分子广泛用于各种领域。由于壳聚糖只在酸性水溶液中溶解,而在中性或碱性水溶液中以及多数有机溶剂中不溶,限制了它的应用范围,因此科学家们采用衍生化的方法对壳聚糖进行改性获得了多种水溶性和可溶解于某些有机溶剂的衍生物,大大扩展了壳聚糖的应用范围。其中包括对壳聚糖进行N-,O-酰化,含氧无机酸酯化,醚化,N-烷基化,C6-OH和C3-OH的氧化,以及鳌合、交联等,在此过程中获得了许多性能良好,甚至是

定量分析方法重点整理

定量分析方法重点 整理 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

1、公共管理:是一门研究公共组织尤其是政府组织的管理活动及其规律的学科。公共管理研究的内容:①公共组织的结构、功能、环境和运行机制; ②行政管理体制改革、中央与地方的关系;③市场经济条件下政府的职能与作用、政府与市场、政府与企业、政府与社会的关系;④公共人力资源的开发与利用;⑤公共管理中的规划、计划与决策、监督与控制,公共项目评估,行政立法、司法和执法;⑥公共信息管理和咨询服务;⑦财政管理、教育管理、科技管理和文化管理。 2、定量分析方法的主要内容 系统模型与系统分析、线性回归预测分析、社会调查程序与方法、统计分析方法、线性回归预测分析、马尔可夫预测方法、投入产出分析方法、最优化方法(线性规划、运输问题、动态规划、资源分配问题)、评价分析方法、层次分析法、对策论、风险型决策与多目标决策、管理系统模拟、排队论、系统动力学方法、网络计划方法 3、为什么在系统分析中广泛使用系统模型而不是真实系统进行分析?人类认识和改造客观世界的研究方法,一般有实验法和模型法。实验法是通过对客观事物本身直接进行科学实验来进行研究的,因此局限性比较大。公共管理问题大多是难以通过实验法直接进行研究,广泛使用系统模型还基于以下五个方面的考虑:①系统开发的需要只能通过建造模型来对系统或体制的性能进行预测;②经济上的考虑对复杂的社会经济系统直接进行实验,成本十分昂贵;③安全性、稳定性上的考虑对有些问题通过直接实验进行分析,往往缺乏安全性和稳定性,甚至根本不允许;④时间上的考虑使用系统模型很快就可得到分析结果;⑤系统模型容易操作,分析结果易于理解 4、系统分析的要点和步骤 要点(1)任务的对象是什么即要干什么(what); (2)这个任务何以需要即为什么这样干(why); (3)它在什么时候和什么样的情况下使用即何时干(when); (4)使用的场所在哪里即在何处干(where); (5)是以谁为对象的系统即谁来干(who); (6)怎样才能解决问题即如何干(how)。步骤 (1)明确问题与确定目标。当一个有待研究分析的问题确定以后,首先要对问题进行系统的合乎逻辑的阐述,其目的在于确定目标,说明问题的重点与范围,以便进行分析研究。 (2)搜集资料,探索可行方案。在问题明确以后,就要拟定解决问题的大纲和决定分析方法,然后依据已搜集的有关资料找出其中的相互关系,寻求解决问题的各种可行方案。 (3)建立模型。为便于对各种可行方案进行分析,应建立各种模型,借助模型预测每一方案可能产生的结果,并根据其结果定性或定量分析各方案的优劣与价值。(4)综合评价。利用模型和其他资料所获得的结果,对各种方案进行定性与定量相结合的综合分析,显示出每一种方案的利弊得失和效益成本,同时考虑到各种有关因素,如政治、经济、军事、科技、环境等,以获得对所有可行方案的综合评价和结论。(5)检验与核实。 5、简述霍尔三维结构与切克兰德“调查学习”模式之间的区别。 1)霍尔三维结构将系统的整个管理过程分为前后紧密相连的六个阶段和七个步骤,并同时考虑到为完成这些阶段和步骤的工作所需的各种专业管理知识。三维结构由时间维、逻辑维、知识维组成。霍尔三维结构适用于良结构系统,即偏重工程、机理明显的物理型的硬系统。2)切克兰德“调查学习”模式的核心不是寻求“最优化”,而是“调查、比较”或者说是“学习”,从模型和现状比较中,学习改善现存系统的途径,其目的是求得可行的满意解。适用于不良结构系统,偏重社会、机理尚不清楚的生物型的软系统。3)处理对象不同:前者为技术系统、人造系统,后者为有人参与的系统;4)处理的问题不同:前者为明确、良结构,后者为不明确,不良结构;5)处理的方法不同:前者为定量模型,定量方法,后者采用概念模型,定性方法;6)价值观不同:前者为一元的,要求优化,有明确的好结果(系统)出现,后者为多元的,满意解,系统有好的变化或者从中学到了某些东西。

SBS改性沥青机理研究进展

S BS改性沥青机理研究进展 李双瑞,林 青,董声雄 (福州大学化学化工学院,福州 350002) 摘要:介绍了沥青的特性、苯乙烯2丁二烯2苯乙烯三嵌段共聚物(S BS)的性能,分析了S BS与基质沥青之间 的溶胀性和相容性问题,着重论述了S BS改性沥青机理的研究进展,指出机理主要分为物理共混和化学改性两 类:物理共混———S BS微粒受到沥青组分中油分的作用发生溶胀而均匀分散在沥青中,S BS与沥青之间没有发 生化学作用,只是一种分子间作用力;化学改性———加入添加剂使沥青和S BS之间发生加成、交联或接枝等化 学反应,形成较强的共价键或离子键,改善沥青的化学性质。提出化学改性是提高S BS改性沥青路用性能的重 要手段。 关键词:苯乙烯-丁二烯-苯乙烯嵌段共聚物;S BS改性沥青;改性机理 采用聚合物对道路沥青进行改性是提高和改善沥青混合料路用性能的一种重要措施[1~6]。近年来,在聚合物改性材料中,苯乙烯2丁二烯2苯乙烯三嵌段共聚物(S BS)以其优异的性能,成为世界上使用最为广泛的沥青改性剂[7~12]。对S BS改性沥青路用性能的研究[13~17]表明:采用S BS对沥青改性后,改性沥青的低温柔性和高温性能明显提高,温度敏感性大大降低。关于S BS改性沥青的机理,国内外科技人员进行了大量的研究,但并没有形成统一的理论。本文根据国内外相关文献,介绍了沥青和S BS的性能以及S BS在沥青中的溶胀性和相容性问题,着重论述了S BS改性沥青机理的研究进展。 1 沥青的特性 沥青是由多种化学成分极其复杂的烃类所组成。这些烃类为一些带有不同长短侧链的高度缩合的环烷烃和芳香烃,以及这些烃类的非金属元素衍生物[18]。按生产来源划分,沥青主要可分为地沥青(包括天然沥青与石油沥青)、焦油沥青、煤沥青、页岩沥青等。道路中各国目前生产和最常用的是石油沥青。石油沥青是原油加工的重质产品[19]。石油沥青的组分极为复杂,通常用溶剂将沥青通过色层分析法分成饱和分、芳香分、胶质和沥青质四个组分[18]。Hubbard2Stanfield法将沥青划分为油分、树脂和沥青质3个组分[19]。 油分是石油沥青中最轻的馏分,含量在45%~60%。油分是石油沥青可以流动的主要原因,其含量越多,软化点越低,粘度越小,使沥青具有柔软性和抗裂性。树脂的含量在15%~30%。树脂的存在使石油沥青有一定的可塑性、可流动性和粘结性,直接决定着石油沥青的延伸度和粘结力。沥青质是固体无定形物质,含量在5%~30%。沥青质是高分子化合物,它是石油沥青中分子量最高的组分,决定着石油沥青的塑性状态界限、自固态变为液态的程度、粘滞性、温度稳定性、硬度和软化点。此外,石油沥青中还含有一定数量的沥青酸、沥青酸酐、碳化物和似碳物。 沥青的主要结构为胶体结构,即以沥青质为核,表面层被树脂浸润包裹,而树脂又溶于油分中,形成沥青胶团,无数胶团彼此通过油质结合成胶体结构。当沥青中沥青质含量适当,并有较多的树脂作为保护物质时,它所组成的胶团之间有一定的吸引力,这种结构称之为溶胶-凝胶结构。大多数优质的路用沥青都属于这种胶体结构,具有粘弹性和触变性。当沥青质含量较高时,胶粒相互缠结,粘度大、塑性小、 基金项目:中法先进科技合作项目(PRAMX02208); 作者简介:李双瑞(1977-),女,河南南阳人,博士研究生,从事沥青材料改性的研究; 联系人,E2mail:sxdong2004@https://www.doczj.com/doc/585614123.html,.

壳聚糖在水处理中的应用

壳聚糖基复合材料在水处理中的应用研究进展 田清源,费梦飞 山东农业大学化学与材料科学学院 摘要:介绍了壳聚糖的结构、性质及其在水处理中的应用原理,综述了壳聚糖与粘土、二氧化硅、无机高分子絮凝剂及其它无机材料复合得到的壳聚糖基复合材料在水处理中的应用研究进展,提出未来的发展应加强处理机理的研究、对重金属离子外的其它无机物和有机物的处理研究以及产业化应用研究。 壳聚糖(Chitosan,CTS)是唯一一种碱性天然多糖,是甲壳素经脱乙酰作用的产物。壳聚糖分子链上存在大量的氨基和羟基,具有很高的反应活性,同时还具有良好的生物相容性、无毒性和生物可降解性,此外,壳聚糖还是天然的高分子絮凝剂,作为吸附剂和絮凝剂在水处理领域具有很好的应用前景。鉴于壳聚糖在酸性溶液中易溶解、沉降慢、稳定性差,片状和粉状的壳聚糖使其再生、贮存很不方便,通常人们将其改性、交联制成如微球、多孔小珠等树脂产品,但是在乳化交联过程中,交联剂的用量直接影响着微球的机械性能和饱和吸附量,两者难以兼顾,因此,壳聚糖树脂微球的性能仍不够理想。近年来,随着聚合物/无机杂化材料研究的发展,壳聚糖/无机物复合材料的制备和性能的研究进展很快。无机物与壳聚糖的复合,一方面改善了壳聚糖材料的机械性能,另一方面又赋予壳聚糖新的功能,对于提高壳聚糖的应用价值意义重大[1]。作者在此对壳聚糖基复合材料在水处理方面的应用研究进展进行了综述。 1壳聚糖的结构和性质 壳聚糖是由β-(1→4)-2-氨基-2-脱氧-D-葡糖胺和β-(1→4)-2-乙酰氨基-2-脱氧-D-葡糖胺两种糖单元间隔连接而成的链状聚合物,分子量根据脱乙酰度的不同从数十万到数百万不等[2]。壳聚糖分子链上分布着大量羟基、N-乙酰氨基和氨基,形成各种分子内和分子间的氢键,不仅是配位作用和反应的位点,同时也形成了壳聚糖大分子的二级结构[3]。壳聚糖的结构式如图1所示。 图1壳聚糖的结构式 壳聚糖分子链上丰富的羟基和氨基基团,使其具有许多独特的化学和物理性质。例如,壳聚糖上的氨基使其呈一定的碱性,可以从溶液中结合氢离子,从而使壳聚糖成为带正电荷的聚电解质而溶于酸;壳聚糖分子中活泼的C2位氨基和C6位羟基,使其易于发生化学反应,可进行多种化学修饰,形成不同结构和性能的衍生物,从而拓宽了其应用领域。另外,作为一种生物高分子化合物,壳聚糖还具有优良的生物相容性和生物可降解性。 评价壳聚糖性能的两项重要指标是脱乙酰度和平均分子量,一般而言,脱乙酰度越高、平均分子量越小,壳聚糖的溶解性就越好[4,5]。壳聚糖独特的结构和性质,使其具有良好的粘合性、生物可降解性、生物相容性、再生性和抗菌性,因此,广泛应用于生物医学、药学、食品、造纸、纺织以及环保等领域。 2壳聚糖在水处理中的应用原理[6] 2.1吸附与絮凝作用 壳聚糖分子链上存在大量的氨基、羟基和N-乙酰氨基,使其可借助氢键、盐键形成网

改性沥青的研究现状分析

-144-科学技术创新2019.13 改性沥青的研究现状分析 戚春华赵玉芳高明星 (内蒙古农业大学,内蒙古呼和浩特010()10) 摘要:为了适应交通量的迅猛发展、车辆重载以及复杂的气候变化,对路面材料的性能提出更高的要求,普通沥青已无法满足,必须对沥青进行改性,研发出具有良好路用性能的改性沥青,满足现代道路发展的需要。对改性沥青的起源与发展进行总结分析,归纳现有研究存在的不足以及改性沥青的发展应解决的问题结果表明:多聚磷酸、SBS、环氧树脂、硅藻土、纳米材料等将是今后制备复合改性沥青的重要材料;对改性沥青改性机理认识不足、改性材料与沥青的相容性问题以及改性沥青的存储稳定性问题是制约改性沥青推广应用的重要原因。 关键词:改性沥青;改性材料;制备工艺;发展 中图分类号:U414文献标识码:A文章编号:2096-4390(2019)13-0144-02 近年来,随着交通量的迅猛发展,车辆重载以及复杂的气候变化.对公路路面材料的性能提出了更高的要求。普通沥青路面表面平整无接缝,行车振动小,噪声低,开放交通快,养护简便等优点,但也存在感温性能差,弹性和耐老化性能差,高温易流淌和低温易脆裂等缺点。基于普通沥青路面存在的缺点难以满足现代道路的使用要求,必须对其进行改性研究,使其满足现代道路建设的要求。目前有些改性沥青的制备工艺已经相当成熟,对各种新型材料的使用也进行了大量研究.然而对改性沥青的改性机理的研究还缺少深刻的认识。 本文通过对改性沥青的起源与发展进行分析总结,归纳现有研究存在的不足以及改性沥青的发展应解决的关键问题。 1改性沥青的组成成分研究 研究发现每种改性剂都有各自的优缺点,比如橡胶改性沥青制备工艺简单,稳定性差,不易贮存,多聚磷酸价格低廉,对沥青高温和老化性能的改善效果较为明显,低温性能较差,SBR改性沥青制备工艺简单,价格低廉,但高温稳定性差,多用于高寒高海拔地区,SBS改性沥青的弹性、低温性能、耐老化等性能均有所提高,对于高寒地区来说,低温性能稍显不足,多用于炎热地区,环氧树脂改性沥青能提高沥青材料的粘附力、拉伸强度以及断裂延伸率,有很高的强度,优良的温度稳定性,且高温条件下抗变形能力较好,制备工艺复杂,施工较难。近年来国内外学者开始研究如何将两种或者多种改性剂对沥青进行复合改性,综合其优点.进一步提高改性效果。 张忠明叭黄成武回等人以橡胶粉和SBS为改性剂,通过不同的室内制备工艺制备复合改性沥青,并对制备出的复合改性沥青的性能进行比较研究,为室内制备复合改性沥青(转下页) 接,当检测车在对道路进行检测的时候,将采集到的数据上传到云端与之前对该条道路检测所采集到的数据进行比对,可以分析出该道路路面在最近几年的破损变化速率。将该速率与当地的气候水文条件以及车流量进行分析。 4.2智能检测设备数据共享化 对于路面管理系统本身而言,目前各个地区已经建立的路面管理系统之间彼此是孤立的,没有任何联系,成为“信息孤岛”。 在数据进行共享之前,要将各个地区的评价指标进行标准化处理,由于各个地区路面所处的环境条件是不一样的,交通量和路面结构类型也是不同。评价指标的标准化是相当困难的。 一旦完成智能检测设备数据的共享化,我相信我国的路面力学理论、路面设计施工方法都会有飞跃式的进步。 5结论 随着智能检测设备的发展,尽管我们已经取得了许多方面的成就,比如图像分析处理技术,高精度的图像采集技术以及地理信息技术,但仍然有着广阔的发展空间等待着我们去探索。集成化的智能检测设备,标准化的检测指标,完备的云端数据库以及一些交通运输附属产业都等待着我们进一步的研究。我相信今后中国的交通事业会在新“互联网+”时代蓬勃发展。 参考文献 [1]邢荣军.高速公路路面破损自动识别与智能评价[D].重庆:重庆交通大学,2011,4. [2]喻翔.高速公路路面养护管理系统决策优化研究[D].成都:西南交通大学,2005,5. ⑶庞明宝,魏连雨.系统工程与交通[M].天津:天津人民出版社. 2003. [4]徐东云,张雷,兰荣娟.城市交通拥堵的背景变换分析[J].城市问题,2009⑶. [5|龚建江.公路设计与管理中的工程数据库研究[J].绿色交通. 2018,2,20⑷. 作者简介:朱瑞峰(1995,10,31-),男,汉族,四川省,学历:在读研究生,研究方向:道路规划与线形设计理论与方法。

壳聚糖抗菌剂研究进展

Bioprocess 生物过程, 2017, 7(4), 41-48 Published Online December 2017 in Hans. https://www.doczj.com/doc/585614123.html,/journal/bp https://https://www.doczj.com/doc/585614123.html,/10.12677/bp.2017.74006 Research Progress on Chitosan Antimicrobial Maotao Wu SunRui Marine Environment Engineering Co., ltd, Qingdao Shandong Received: Nov. 20th, 2017; accepted: Dec. 1st, 2017; published: Dec. 7th, 2017 Abstract Chitosan is a nature macromolecule. With the investigation, its applications are broad. The article summarizes the research and application of chitosan as an antimicrobial, the mechanism and the infective factors, and the development foreground of the chitosan antimicrobial is prospected. Keywords Chitosan, Antimicrobial, Mechanism, Prospect 壳聚糖抗菌剂研究进展 吴茂涛 青岛双瑞海洋环境工程股份有限公司,山东青岛 收稿日期:2017年11月20日;录用日期:2017年12月1日;发布日期:2017年12月7日 摘要 壳聚糖是一种天然的高分子,随着研究的深入发展,应用范围越来越广泛。本文概述了壳聚糖在抗菌剂领域的研究应用情况,归纳总结了其抗菌机理及其影响因素,同时展望了壳聚糖抗菌剂的发展前景。 关键词 壳聚糖,抗菌剂,机理,展望

相关主题
文本预览
相关文档 最新文档