当前位置:文档之家› 图像过完备稀疏表示理论及应用综述_陈垚佳

图像过完备稀疏表示理论及应用综述_陈垚佳

图像过完备稀疏表示理论及应用综述_陈垚佳
图像过完备稀疏表示理论及应用综述_陈垚佳

英文文献1 翻译

目录 1.理论............................................... - 2 - 2.实施............................................... - 3 - 3. 范例.............................................. - 4 - 4.变化和扩展......................................... - 6 - 4.1 利用梯度方向,以减少参数...................... - 6 - 4.2 Hough变换的内核............................... - 6 - 4.3Hough曲线变换与广义Hough变换.................. - 6 - 4.4 三维物体检测(平面和圆柱).................... - 6 - 4.5 基于加权特征.................................. - 7 - 4.6 选取的参数空间................................ - 7 - 4.6.1 算法实现一种高效椭圆检测................ - 8 - 5.局限性............................................. - 8 - 6. 参见.............................................. - 8 - 参考文献............................................. - 9 - 附件: ............................................... - 10 -

数字图像处理的发展现状及研究内容概述

数字图像处理的发展现状及研究内容概述人类传递信息的主要媒介是语音和图像。据统计,在人类接受的信息中,听觉信息占20%,视觉信息占60%,所以作为传递信息的重要媒体和手段——图像信息是十分重要的,俗话说“百闻不如一见”、“一目了然”,都反映了图像在传递信息中独到之处。 目前,图像处理技术发展迅速,其应用领域也愈来愈广,有些技术已相当成熟并产生了惊人的效益,当前图像处理面临的主要任务是研究心的处理方法,构造新的处理系统,开拓更广泛的应用领域。 数字图像处理(Digital Image Processing)又称为计算机数字图像处理,它是指将数字图像信号转换成数字信号并利用计算机对其进行处理的过程。数字图像处理最早出现于20世纪50年代,当时的电子计算机已经发展到一定水平,人们开始利用计算机来处理图形和数字图像信息。数字图像处理作为一门学科大约形成于20世纪60年代初期。早期的数字图像处理的目的是改善数字图像的质量,它以人为对象,以改善人的视觉效果为目的。数字图像处理中,输入的是质量低的数字图像,输出的是改善质量后的数字图像,常用的数字图像处理方法有数字图像增强、复原、编码、压缩等。 1:数字图像处理的现状及发展 数字图像处理技术在许多应用领域受到广泛重视并取得了重大的开拓性成就,属于这些领域的有航空航天、生物医学工程、工业检测、机器人视觉、公安司法、军事制导、文化艺术等,使数字图像处理成为一门引人注目、前景远大的新型学科。随着数字图像处理技术

的深入发展,从70年代中期开始,随着计算机技术和人工智能、思维科学研究的迅速发展,数字图像处理向更高、更深层次发展。 人们已开始研究如何用计算机系统解释数字图像,实现类似人类视觉系统理解外部世界,这被称为数字图像理解或计算机视觉。很多国家,特别是发达国家投入更多的人力、物力到这项研究,取得了不少重要的研究成果。其中代表性的成果是70年代末MIT的Marr提出的视觉计算理论,这个理论成为计算机视觉领域其后十多年的主导思想。数字图像理解虽然在理论方法研究上已取得不小的进展,但它本身是一个比较难的研究领域,存在不少困难,人类本身对自己的视觉过程还了解甚少,因此计算机视觉是一个有待人们进一步探索的新领域。如今数字图像处理技术已给人类带来了巨大的经济和社会效益。不久的将来它不仅在理论上会有更深入的发展,在应用上意识科学研究、社会生产乃至人类生活中不可缺少的强有力的工具。 数字图像处理进一步研究的问题,不外乎如下几个方面: (1)在进一步提高精度的同时着重解决处理速度问题。如在航天遥感、气象云图处理方面,巨大的数据量和处理速度任然是主要矛盾之一。 (2)加强软件研究、开发新的处理方法,特别要注意移植和借鉴其他学科的技术和研究成果,创造新的处理方法。 (3)加强边缘学科的研究工作,促进数字图像处理技术的发展。如:人的视觉特性、心理学特性等的研究,如果有所突破,讲对团向处理技术的发展起到极大的促进作用。

图像特征提取综述

图像特征提取的定位是计算机视觉和图像处理里的一个概念,表征图像的特性。输入是一张图像(二维的数据矩阵),输出是一个值、一个向量、一个分布、一个函数或者是信号。提取特征的方法千差万别,下面是图像特征的一些特性: 边缘 边缘是两个区域边界的像素集合,本质上是图像像素的子集,能将区域分开。边缘形状是任意的,实践中定义为大的梯度的像素点的集合,同时为了平滑,还需要一些算法进行处理。角 顾名思义,有个突然较大的弧度。早起算法是在边缘检测的基础上,分析边缘的走向,如果突然转向则被认为是角。后来的算法不再需要边缘检测,直接计算图像梯度的高度曲率(合情合理)。但会出现没有角的地方也检测到角的存在。 区域 区域性的结构,很多区域检测用来检测角。区域检测可以看作是图像缩小后的角检测。 脊 长形的物体,例如道路、血管。脊可以看成是代表对称轴的一维曲线,每个脊像素都有脊宽度,从灰梯度图像中提取要比边缘、角和区域都难。 特征提取 检测到特征后提取出来,表示成特征描述或者特征向量。 常用的图像特征:颜色特征、 纹理特征 形状特征 空间关系特征。 1.颜色特征 1.1特点:颜色特征是全局特征,对区域的方向、大小不敏感,但是不能很好捕捉局部特征。 优点:不受旋转和平移变化的影响,如果归一化不受尺度变化的影响。 缺点:不能表达颜色空间分布的信息。 1.2特征提取与匹配方法 (1)颜色直方图 适用于难以自动分割的图像,最常用的颜色空间:RGB和HSV。 匹配方法:直方图相交法(相交即交集)、距离法、中心距法、参考颜色表法、累加颜色直方图法。 对颜色特征的表达方式有许多种,我们采用直方图进行特征描述。常见的直方图有两种:统计直方图,累积直方图。我们将分别实验两种直方图在图像聚类和检索中的性能。 统计直方图 为利用图像的特征描述图像,可借助特征的统计直方图。图像特征的统计直方图实际是一个1-D的离散函数,即: 上式中k代表图像的特征取值,L是特征可取值个数,是图像中具有特征值为k的像素的个数,N是图像像素的总数,一个示例如下图:其中有8个直方条,对应图像中的8种灰度像素在总像素中的比例。

机器视觉技术发展现状文献综述

机器视觉技术发展现状 人类认识外界信息的80%来自于视觉,而机器视觉就是用机器代替人眼来做 测量和判断,机器视觉的最终目标就是使计算机像人一样,通过视觉观察和理解 世界,具有自主适应环境的能力。作为一个新兴学科,同时也是一个交叉学科,取“信息”的人工智能系统,其特点是可提高生产的柔性和自动化程度。目前机器视觉技术已经在很多工业制造领域得到了应用,并逐渐进入我们的日常生活。 机器视觉是通过对相关的理论和技术进行研究,从而建立由图像或多维数据中获机器视觉简介 机器视觉就是用机器代替人眼来做测量和判断。机器视觉主要利用计算机来模拟人的视觉功能,再现于人类视觉有关的某些智能行为,从客观事物的图像中提取信息进行处理,并加以理解,最终用于实际检测和控制。机器视觉是一项综合技术,其包括数字处理、机械工程技术、控制、光源照明技术、光学成像、传感器技术、模拟与数字视频技术、计算机软硬件技术和人机接口技术等,这些技术相互协调才能构成一个完整的工业机器视觉系统[1]。 机器视觉强调实用性,要能适应工业现场恶劣的环境,并要有合理的性价比、通用的通讯接口、较高的容错能力和安全性、较强的通用性和可移植性。其更强调的是实时性,要求高速度和高精度,且具有非接触性、实时性、自动化和智能 高等优点,有着广泛的应用前景[1]。 一个典型的工业机器人视觉应用系统包括光源、光学成像系统、图像捕捉系统、图像采集与数字化模块、智能图像处理与决策模块以及控制执行模块。通过 CCD或CMOS摄像机将被测目标转换为图像信号,然后通过A/D转换成数字信号传送给专用的图像处理系统,并根据像素分布、亮度和颜色等信息,将其转换成数字化信息。图像系统对这些信号进行各种运算来抽取目标的特征,如面积、 数量、位置和长度等,进而根据判别的结果来控制现场的设备动作[1]。 机器视觉一般都包括下面四个过程:

数字信号处理英文文献及翻译

数字信号处理 一、导论 数字信号处理(DSP)是由一系列的数字或符号来表示这些信号的处理的过程的。数字信号处理与模拟信号处理属于信号处理领域。DSP包括子域的音频和语音信号处理,雷达和声纳信号处理,传感器阵列处理,谱估计,统计信号处理,数字图像处理,通信信号处理,生物医学信号处理,地震数据处理等。 由于DSP的目标通常是对连续的真实世界的模拟信号进行测量或滤波,第一步通常是通过使用一个模拟到数字的转换器将信号从模拟信号转化到数字信号。通常,所需的输出信号却是一个模拟输出信号,因此这就需要一个数字到模拟的转换器。即使这个过程比模拟处理更复杂的和而且具有离散值,由于数字信号处理的错误检测和校正不易受噪声影响,它的稳定性使得它优于许多模拟信号处理的应用(虽然不是全部)。 DSP算法一直是运行在标准的计算机,被称为数字信号处理器(DSP)的专用处理器或在专用硬件如特殊应用集成电路(ASIC)。目前有用于数字信号处理的附加技术包括更强大的通用微处理器,现场可编程门阵列(FPGA),数字信号控制器(大多为工业应用,如电机控制)和流处理器和其他相关技术。 在数字信号处理过程中,工程师通常研究数字信号的以下领域:时间域(一维信号),空间域(多维信号),频率域,域和小波域的自相关。他们选择在哪个领域过程中的一个信号,做一个明智的猜测(或通过尝试不同的可能性)作为该域的最佳代表的信号的本质特征。从测量装置对样品序列产生一个时间或空间域表示,而离散傅立叶变换产生的频谱的频率域信息。自相关的定义是互相关的信号本身在不同时间间隔的时间或空间的相关情况。 二、信号采样 随着计算机的应用越来越多地使用,数字信号处理的需要也增加了。为了在计算机上使用一个模拟信号的计算机,它上面必须使用模拟到数字的转换器(ADC)使其数字化。采样通常分两阶段进行,离散化和量化。在离散化阶段,信号的空间被划分成等价类和量化是通过一组有限的具有代表性的信号值来代替信号近似值。 奈奎斯特-香农采样定理指出,如果样本的取样频率大于两倍的信号的最高频率,一个信号可以准确地重建它的样本。在实践中,采样频率往往大大超过所需的带宽的两倍。 数字模拟转换器(DAC)用于将数字信号转化到模拟信号。数字计算机的使用是数字控制系统中的一个关键因素。 三、时间域和空间域 在时间或空间域中最常见的处理方法是对输入信号进行一种称为滤波的操作。滤波通常包括对一些周边样本的输入或输出信号电流采样进行一些改造。现在有各种不同的方法来表征的滤波器,例如: 一个线性滤波器的输入样本的线性变换;其他的过滤器都是“非线性”。线性滤波器满足叠加条件,即如果一个输入不同的信号的加权线性组合,输出的是一个同样加权线性组合所对应的输出信号。

数字图像处理技术的研究现状及其发展方向

目录 绪论 (1) 1数字图像处理技术 (1) 1.1数字图像处理的主要特点 (1) 1.2数字图像处理的优点 (2) 1.3数字图像处理过程 (3) 2数字图像处理的研究现状 (4) 2.1数字图像的采集与数字化 (4) 2.2图像压缩编码 (5) 2.3图像增强与恢复 (8) 2.4图像分割 (9) 2.5图像分析 (10) 3数字图像处理技术的发展方向 (13) 参考文献 (14)

绪论 图像处理技术基本可以分成两大类:模拟图像处理和数字图像处理。数字图像处理是指将图像信号转换成数字信号并利用计算机进行处理的过程。其优点是处理精度高,处理内容丰富,可进行复杂的非线性处理,有灵活的变通能力,一般来说只要改变软件就可以改变处理内容。困难主要在处理速度上,特别是进行复杂的处理。数字图像处理技术主要包括如下内容:几何处理、算术处理、图像增强、图像复原、图像重建、图像编码、图像识别、图像理解。数字图像处理技术的发展涉及信息科学、计算机科学、数学、物理学以及生物学等学科,因此数理及相关的边缘学科对图像处理科学的发展有越来越大的影响。 数字图像处理的早期应用是对宇宙飞船发回的图像所进行的各种处理。到了70年代,图像处理技术的应用迅速从宇航领域扩展到生物医学、信息科学、资源环境科学、天文学、物理学、工业、农业、国防、教育、艺术等各个领域与行业,对经济、军事、文化及人们的日常生活产生重大的影响。 数字图像处理技术发展速度快、应用范围广的主要原因有两个。最初由于数字图像处理的数据量非常庞大,而计算机运行处理速度相对较慢,这就限制了数字图像处理的发展。现在计算机的计算能力迅速提高,运行速度大大提高,价格迅速下降,图像处理设备从中、小型计算机迅速过渡到个人计算机,为图像处理在各个领域的应用准备了条件。第二个原因是由于视觉是人类感知外部世界最重要的手段。据统计,在人类获取的信息中,视觉信息占60%,而图像正是人类获取信息的主要途径,因此,和视觉紧密相关的数字图像处理技术的潜在应用范围自然十分广阔。近年来,数字图像处理技术日趋成熟,它广泛应用于空间探测、遥感、生物医学、人工智能以及工业检测等许多领域,并促使这些学科产生了新的发展。 1数字图像处理技术 1.1数字图像处理的主要特点 (1)目前数字图像处理的信息大多是二维信息,处理信息量很大,因此对计

图像局部特征描述子研究分析(未完-待续)

研究背景 在日常生活中,我们主要依赖于视觉来感知外界的信息,比起听觉,视觉能给我们更加丰富的描述。人们一直想通过计算机视觉来描述视觉信息中有意义和有用的东西。首先,我们必须回答什么类型的信息是我们想要的?如何提取这样的特征信息?有人定义视觉为发现图像是什么和在哪里的过程,这强调了视觉是一个信息处理任务[]。而如何构建一个视觉系统来进行这样的信息处理任务是很多学者研究的问题之一。其中,达成统一共识是利用不同的特征层来构建这一个视觉模型系统,最简单的三层体系结构为低层、中层、高层。而本文基于最基本的图像描述方法——尺度的概念,利用尺度空间表示法来分析最低层图像数据。尺度空间方法是一种尺度参数连续、不同尺度空间下采样保持一致性的视觉多尺度分析。 视觉多尺度分析是一种新的视觉信息处理方法,其基本思想是:当我们用眼睛观察物体且物体和观察者之间的距离(将距离视为尺度参数)不断变化时,视网膜将感知到不断变化的图像信息,分析和综合这些不同尺度下的视觉信息以获得被观察物体的本质特征,这种视觉分析方法即称为视觉多尺度分析。 尺度空间方法的基本思想是:在视觉信息(图像信息)处理模型中引入一个被视为尺度的参数,通过连续变化尺度参数获得不同尺度下的视觉处理信息,然后综合这些信息以深入地挖掘图像的本质特征。尺度空间方法将传统的单尺度视觉信息处理技术纳入尺度不断变化的动态分析框架中,因此更容易获得图像的本质特征。 为什么要研究尺度空间?可以从以下几个通俗的描述来说明: 1)现实世界的物体由不同尺度的结构所组成; 2)在人的视觉中,对物体观察的尺度不同,物体的呈现方式也不同; 3)对计算机视觉而言,无法预知某种尺度的物体结构是有意义的,因此有必要将所有尺度的结构表示出来; 4)从测量的角度来说,对物体的测量数据必然是依赖于某个尺度的,例如温度曲线的采集,不可能是无限的,而是在一定温度范围进行量化采集。温度范围即是选择的尺度; 5)采用尺度空间理论对物体建模,即将尺度的概念融合入物理模型之中。 尺度空间数学定义表示如下: 设多尺度分析的初始图像为0()u x (x , 为图像区域),(,)u x t 为多尺度分析用于图像所获得的在尺度(0)t t 时的图像,称0:()(,)t T u x u x t 为尺度空间算子,尺度空间算子族 0t t T 为尺度空间,并称为0:()(,)t h T u x t u x t h 尺度由t 变化到t h 的尺度空间算子。 依据尺度空间公理,尺度空间算子应满足如下定义的视觉不变性: 定义2 设t T 为尺度空间算子,称t T 具有

图像处理文献综述

文献综述 1.1理论背景 数字图像中的边缘检测是图像分割、目标区域的识别、区域形状提取等图像分析领域的重要基础,图像处理和分析的第一步往往就是边缘检测。 物体的边缘是以图像的局部特征不连续的形式出现的,也就是指图像局部亮度变化最显著的部分,例如灰度值的突变、颜色的突变、纹理结构的突变等,同时物体的边缘也是不同区域的分界处。图像边缘有方向和幅度两个特性,通常沿边缘的走向灰度变化平缓,垂直于边缘走向的像素灰度变化剧烈。根据灰度变化的特点,图像边缘可分为阶跃型、房顶型和凸缘型。 1.2、图像边缘检测技术研究的目的和意义 数字图像边缘检测是伴随着计算机发展起来的一门新兴学科,随着计算机硬件、软件的高度发展,数字图像边缘检测也在生活中的各个领域得到了广泛的应用。边缘检测技术是图像边缘检测和计算机视觉等领域最基本的技术,如何快速、精确的提取图像边缘信息一直是国内外研究的热点,然而边缘检测也是图像处理中的一个难题。 首先要研究图像边缘检测,就要先研究图像去噪和图像锐化。前者是为了得到飞更真实的图像,排除外界的干扰,后者则是为我们的边缘检测提供图像特征更加明显的图片,即加大图像特征。两者虽然在图像边缘检测中都有重要地位,但本次研究主要是针对图像边缘检测的研究,我们最终所要达到的目的是为了处理速度更快,图像特征识别更准确。早期的经典算法有边缘算子法、曲面拟合法、模版匹配法、门限化法等。 早在1959年Julez就曾提及边缘检测技术,Roberts则于1965年开始了最早期的系统研究,从此有关边缘检测的理论方法不断涌现并推陈出新。边缘检测最开始都是使用一些经验性的方法,如利用梯度等微分算子或特征模板对图像进行卷积运算,然而由于这些方法普遍存在一些明显的缺陷,导致其检测结果并不

图像采集卡英文文献

英文文献:(4000+) 基于相似性的可视化的图像采集 G.P.阮M.吴霞 感官智能信息系统,阿姆斯特丹大学, Kruislaan403,1098SJ荷兰阿姆斯特丹 电子邮件:fgiangnp,worringg@science.uva.nl 摘要 在很多文献中,很少有内容是基于利用可视化作为探索工具集合的多媒体的检索系统,。然而,在搜寻影像时没有实例,需要探索数据设置。截至目前,大多数可用的系统只显示图像的二维网格形式的随机集合。最近,先进的基于相似技术已被开发用于浏览。然而,他们没有分析可视化视觉大片集合时出现的问题。在本文中,我们明确提出这些问题。开始之前,我们建立了三个总体要求:概述,可见性和数据结构保存。解决方案是为每一个需求提出了建议。最后,系统被提出并给出了实验结果,以证明我们的理论和方法。 1引言 多媒体技术的发展和廉价的数码相机,可用性图像和视频集规模大幅增长。为了管理,探索并通过搜索并且收藏,可视化系统是必不可少的。许多工程已促成了这一有趣的领域[ 18 ] 。在基于内容检索的这一主要问题是系统的自动标注功能之间的语义鸿沟和在集合的概念上的存取条件与用户的要求。提高了系统的性能可从系统的角度,或从用户侧和从这些的组合中进行。在任何方式的集合中可视化是一个重要的元素,因为它是建立在用户之间的联系的最好方式和系统。在文献中,很少有基于内容的多媒体检索系统利用可视化作为探索的工具集合。然而,在搜寻影像时没有从实例入手,设置需要探索数据。截至目前,大多数可用的系统只显示图像的二维网格形式的随机集合。并且浏览是依赖于图像之间的关系。因此,应根据相似性。对于描述,查询,搜索等基本特征或例子是最适当的方式就是可视化浏览。最近,更多先进的技术已被开发用于浏览基于相似性。然而,他们没有分析可视化可视化集合时出现的特殊问题。例如,作为图像集的大小需要的空间是非常大的,从集合随机选择一组图片不能被认为是一个正确的做法。用户使用此选项设置,只能得到数据库里面的能是什么的感觉。在另一方面,显示(即无论大小或分辨率)的限制,不允许任何系统,以显示整个集合。此外,显示所有图像时甚至不给用户提供更多的信息,而且还容易让图像迷失在拥挤的网络图像中。有些系统取得了一个电子,通过展示剩余来缓解这种限制。并整个收集到用户中作为一个点集。然后,每个图像由显示器上的一个点来表示,并且一旦用户选择了一点,他们将得到的实像的可视化。但是从实际的角度看来,这种做法是不容易的,因为用户在看一千多个点。此外,每一个图像都是一个可视对象,因此其总含量多少应对用户是可见的。在本文中,我们提出的所有问题都得到明确。本文的结构如下。在第2节中,我们分析出一些要求用于可视化大图像集合。然后在第3节,为每一个需求得出解决方案。最后,第4所示的实验结果与真实的数据。 2问题分析 在本节中,我们更详细地分析一个可视化视觉大片集合时出现的问题。从为了一个共同的可视化系统存在的一般要求是去NED。在可视化的大集合的RST的问题是,由于其在尺寸和分辨率的限制,以显示他们的设备的有限显示尺寸,这就是所谓的可视空间。同时,该大小集合通常比可视空间的所能承受的能力小大要大得多。其次,由于图像是视觉对象的任何可视化工具的最终目的是要显示图像的内容。由于空间限制,只有一小部分的图像可以在同一时间被显示。随机选择这些图像的肯定不是一个好方法,因为它是不能够显示整个集合的分

基于matlab的图像预处理技术研究文献综述

毕业设计文献综述 题目:基于matlab的图像预处理技术研究 专业:电子信息工程 1前言部分 众所周知,MATLAB在数值计算、数据处理、自动控制、图像、信号处理、神经网络、优化计算、模糊逻辑、小波分析等众多领域有着广泛的用途,特别是MATLAB的图像处理和分析工具箱支持索引图像、RGB 图像、灰度图像、二进制图像,并能操作*.bmp、*.jpg、*.tif等多种图像格式文件如。果能灵活地运用MATLAB提供的图像处理分析函数及工具箱,会大大简化具体的编程工作,充分体现在图像处理和分析中的优越性。 图像就是用各种观测系统观测客观世界获得的且可以直接或间接作用与人眼而产生视觉的实体。视觉是人类从大自然中获取信息的最主要的手段。拒统计,在人类获取的信息中,视觉信息约占60%,听觉信息约占20%,其他方式加起来才约占20%。由此可见,视觉信息对人类非常重要。同时,图像又是人类获取视觉信息的主要途径,是人类能体验的最重要、最丰富、信息量最大的信息源。通常,客观事物在空间上都是三维的(3D)的,但是从客观景物获得的图像却是属于二维(2D)平面的。 图像存在方式多种多样,可以是可视的或者非可视的,抽象的或者实际的,适于计算机处理的和不适于计算机处理的。 图像处理它是指将图像信号转换成数字信号并利用计算机对其进行处理的过程。图像处理最早出现于20世纪50年代,当时的电子计算机已经发展到一定水平,人们开始利用计算机来处理图形和图像信息。图像处理作为一门学科大约形成于20世纪60年代初期。早期的图像处理的目的是改善图像的质量,它以人为对象,以改善人的视觉效果为目的。图像处理中,输入的是质量低的图像,输出的是改善质量后的图像,常用的图像处理方法有图像增强、复原、编码、压缩等。首次获得实际成功应用的是美国喷气推进实验室(JPL)。他们对航天探测器徘徊者7号在 1964 年发回的几千张月球照片使用了图像处理技术,如几何校正、灰度变换、去除噪声等方法进行处理,并考虑了太阳位置和月球环境的影响,由计算机成功地绘制出月球表面地图,获得了巨大的成功。随后又对探测飞船发回的近十万张照片进行更为复杂的图像处理,以致获得了月球的地形图、彩色图及全景镶嵌图,获得了非凡的成果,为人类登月创举奠定了坚实的基础,也推动

数字图像处理期末课程论文.

1 选题 课程论文选题如下,每人任选一题,题目自拟,本学期6月3日前交至计算机学院411办公室。 1.图像XX增强方法综述与MATLAB实现(至少3种) 2.图像增强方法的深入研究(学习一种或两种课本上没有的图像平 滑/锐化方法与课本上介绍的进行对比研究)(需实验) 3.图像XX特征分析方法综述与MATLAB实现(至少3种) 4.结合人脸图像讨论各种图像特征分析方法的适用性(需实验) 5..灰度共生矩阵与灰度差分直方图在图像处理中实际应用(需实验) 6.不同图像分割方法的分析与比较(需实验) 7.基于数字图像处理的森林火灾识别方法研究 基于摄像机摄取的视频图像对现场进行火灾的自动探测、监视,同时将摄得的图像,利用各种图像处理技术不断进行图像处理和分析,通过早期火灾的图像变化特征来探测火灾是否发生。 测试要求:首先从彩色摄像机获取视频流图像,并转换成BMP格式图像,先判断图像中有红色区域存在。 l)火灾图像预处理,包括图像抽样、图像分割、图像灰度化、二值化、图像平滑处理; 2)研究火焰目标的特征提取方法 (l)轮廓特征提取:该模块主要功能为提取火焰轮廓上的尖点特征和圆形度。在火焰轮廓特征图中,从下至上从左至右逐点扫描,将火焰的边缘编成链码。当链码在一定步数内,出现一次有效上升和一次有效下降时,我们就得到一个尖角。 (2)颜色特征提取:火焰一般从焰心到外焰其颜色应从白色到黄色再向红 色移动,在图像中表现为像素值的变化不明显,可以用图像像素方差值来反映这种变化。 8.基于数字图像处理的答题卡识别方法 9.车牌识别方法研究(要求本地苏L车牌照)

2 格式要求 (1)页面设置: A4纸,页边距正常(上、下各2cm,左3cm、右2.0cm), 页码(页面底端居中,小五号,Times New Roman字体), 装订线:0.5厘米,装订位置:左侧3、7两颗钉(2)题目: 不多于30字,黑体、小三号、不加粗、居中排列,1.25倍 行距,段前断后各空0.5行。 (3)内容: 不少于5000字,宋体,小四,不加粗,1.25倍行距,段前 空2字符。 (4)标题要求: 一级标题:小三号、宋体、加粗,段前断后各空0.5行 二级标题:四号、宋体、加粗,段前断后各空0.5行 三级标题:小四号、宋体、加粗,段前断后各空0.5行 四级标题:小四号、宋体、不加粗,段前断后各空0.5行 图片要求:图片嵌入到文字中,文字不环绕,图片居中,图 标题为宋体五号字,不加粗 表格要求:三线表,表标题及表中文字为宋体五号字,不加 粗 (5)参考文献: 不少于3篇,宋体五号字,不加粗,1.0倍行距,段前不空

数字图像处理技术的现状及其发展方向(笔记)

数字图像处理技术的现状及其发展方向 一、数字图像处理历史发展 数字图像处理(Digital Image Processing)将图像信号转换成数字信号并利用计算机对其进行处理。 1.起源于20世纪20年代。 2.数字图像处理作为一门学科形成于20世纪60年代初期,美国喷气推进实验室(JPL)推动了数字图像处理这门学科的诞生。 3.1972年英国EMI公司工程师Housfield发明了用于头颅诊断的X射线计算机断层摄影装置即CT(Computer Tomograph),1975年EMI公司又成功研制出全身用的CT装置,获得了人体各个部位鲜明清晰的断层图像。 4.从70年代中期开始,随着计算机技术和人工智能、思维科学研究的迅速发展,数字图像处理向更高、更深层次发展,人们已开始研究如何用计算机系统解释图像,实现类似人类视觉系统理解外部世界,其中代表性的成果是70年代末MIT的Marr提出的视觉计算理论。 二、数字图像处理的主要特点 1.目前数字图像处理的信息大多是二维信息,处理信息量很大,对计算机的计算速度、存储容量等要求较高。 2.数字图像处理占用的频带较宽,在成像、传输、存储、处理、显示等各个环节的实现上,技术难度较大,成本也高,这就对频带压缩技术提出了更高的要求。 3.数字图像中各个像素是不独立的,其相关性大。因此,图像处理中信息压缩的潜力很大。 4.由于图像是三维景物的二维投影,一幅图像本身不具备复现三维景物的全部几何信息的能力,要分析和理解三维景物必须作合适的假定或附加新的测量。在理解三维景物时需要知识导引,这也是人工智能中正在致力解决的知识工程问题。 5.一方面,数字图像处理后的图像一般是给人观察和评价的,因此受人的因素影响较大,作为图像质量的评价还有待进一步深入的研究;另一方面,计算机视觉是模仿人的视觉,人的感知机理必然影响着计算机视觉的研究,这些都是心理学和神经心理学正在着力研究的课题。 三、数字图像处理的优点 1.再现性好;图像的存储、传输或复制等一系列变换操作不会导致图像质量的退化。 2.处理精度高;可将一幅模拟图像数字化为任意大小的二维数组,现代扫描仪可以把每个像素的灰度等级量化为16位甚至更高。 3.适用面宽;图像可以来自多种信息源,图像只要被变换为数字编码形式后,均是用二维数组表示的灰度图像组合而成,因而均可用计算机来处理。 4.灵活性高;数字图像处理不仅能完成线性运算,而且能实现非线性处理,即凡是可以用数学公式或逻辑关系来表达的一切运算均可用数字图像处理实现。 四、数字图像处理过程及其主要进展 常见的数字图像处理有:图像的采集、数字化、编码、增强、恢复、变换、

数字图像处理试题集2(精减版)资料讲解

第一章概述 一.填空题 1. 数字图像是用一个数字阵列来表示的图像。数字阵列中的每个数字,表示数字图像的一个最小单位,称为__________。 5. 数字图像处理包含很多方面的研究内容。其中,________________的目的是根据二维平面图像数据构造出三维物体的图像。 解答:1. 像素5. 图像重建 第二章数字图像处理的基础 一.填空题 1. 量化可以分为均匀量化和________________两大类。 3. 图像因其表现方式的不同,可以分为连续图像和________________两大类。 5. 对应于不同的场景内容,一般数字图像可以分为________________、灰度图像和彩色图像三类。 解答: 1. 非均匀量化 3. 离散图像 5. 二值图像 二.选择题 1. 一幅数字图像是:( ) A、一个观测系统。 B、一个有许多像素排列而成的实体。 C、一个2-D数组中的元素。 D、一个3-D空间的场景。 3. 图像与灰度直方图间的对应关系是:() A、一一对应 B、多对一 C、一对多 D、都不对 4. 下列算法中属于局部处理的是:() A、灰度线性变换 B、二值化 C、傅立叶变换 D、中值滤波 5. 一幅256*256的图像,若灰度级数为16,则该图像的大小是:() A、128KB B、32KB C、1MB C、2MB 6. 一幅512*512的图像,若灰度级数为16,则该图像的大小是:() A、128KB B、32KB C、1MB C、2MB 解答:1. B 3. B 4. D 5. B 6. A 三.判断题 1. 可以用f(x,y)来表示一幅2-D数字图像。() 3. 数字图像坐标系与直角坐标系一致。() 4. 矩阵坐标系与直角坐标系一致。() 5. 数字图像坐标系可以定义为矩阵坐标系。() 6. 图像中虚假轮廓的出现就其本质而言是由于图像的灰度级数不够多造成的。() 10. 采样是空间离散化的过程。() 解答:1. T 3. F 4. F 5. T 6. T 10. T 1、马赫带效应是指图像不同灰度级条带之间在灰度交界处存在的毛边现象(√) 第三章图像几何变换 一.填空题 1. 图像的基本位置变换包括了图像的________________、镜像及旋转。 7. 图像经过平移处理后,图像的内容________________变化。(填“发生”或“不发生”) 8. 图像放大是从小数据量到大数据量的处理过程,________________对许多未知的数据的估计。(填“需要”或“不需要”) 9. 图像缩小是从大数据量到小数据量的处理过程,________________对许多未知的数据的估计。(填“需要”或“不需要”) 解答:1. 平移7. 不发生8. 需要9. 不需要

基于傅里叶变换和小波变换的图像稀疏表示

基于二维傅里叶变换和小波变换的图像稀疏表示 一、基于二维傅里叶变换的图像稀疏表示 傅里叶变换是数字图像处理技术的基础,其通过在时空域和频率域来回切换图像,对图像的信息特征进行提取和分析。一幅静止的数字图像可以看成是矩阵,因此,数字图像处理主要是对包含数据的矩阵进行处理。 经过对图像进行二维离散傅里叶变换可以得到它的频谱,进而得到我们所需要的特征。二维离散傅里叶变换及逆变换可以表示为: 其中u=0,1,2,...,M-1和v=0,1,2,...,N-1。其中变量u和v用于确定它们的频率,频域系统是由F(u,v)所张成的坐标系,其中u和v用做(频率)变量。空间域是由f(x,y)所张成的坐标系。 傅立叶频谱图上我们看到的明暗不一的亮点,其意义是指图像上某一点与邻域点差异的强弱,即梯度的大小,也即该点的频率的大小(可以这么理解,图像中的低频部分指低梯度的点,高频部分相反)。一般来讲,梯度大则该点的亮度强,否则该点亮度弱。下图为cameraman原图像及其频谱分布图: cameraman原图像大小为256*256,其傅里叶变换频谱图大小为256*256。 图像从频域到时域的变换过程称为重构过程,通过峰值信噪比(PSNR)对图像进行评价,公式如下: PSNR=10*log10((2^n-1)^2/MSE)

MSE是原图像与处理后图像之间均方误差,n是每个采样值的比特数。通过取不同的大系数个数观察图像变化,单独取第1个大系数时: N=1 PSNR=12.2353所取频谱系数对应图 单独取第9个系数时: N=1 PSNR=6.3108第9个频谱系数对应图

N=2 PSNR= 13.1553所取频谱系数对应图 N=10 PSNR=15.4961 所取频谱系数对应图 N=50 PSNR=17.1111 所取频谱系数对应图

基于matlab数字图像处理的开题报告

毕业设计(论文)开题报告 题目:基于Matlab的数字图像处理 学生姓名:学号: 专业:通信工程 指导教师: 2011年 3 月 13 日

一.文献综述: 随着人类社会的进步和科学技术的发展,人们对信息处理和信息及交流的要求越来越高。人们传递信息的主要媒介是语音和图像。在接受的信息中,听觉信息占20%,视觉信息占60%,其它如味觉,嗅觉,触觉总的加起来不超过20%。图像信息处理是人们视觉延续的重要手段。人的眼睛只能看到波长为380到780nm的可见光部分,而迄今为止人类发现可成像的射线已有很多种,他们扩大了人类认识客观世界的能力。 数字图像处理是一个跨科学的前沿科技领域,在工程学,计算机科学,信息学,统计学,物理,化学,生物医学,地址,海洋,气象,农业,冶金等许多科学中的应用取得了巨大的成功和显著地经济效益。 图像是当光辐射能量照在物体上,经过他的反射或透射,或有发光物体本身发出的光能量,在人的视觉器官中所重现出的物体的视觉信息。图像一般用Image表示,是视觉景物的某种形式的标记和记录。通俗的说,图像是指利用技术手段把目标原封不动的再现。由于图像感知的主题是人类,所以不仅可以将图像看作是二维平面上或三维立体空间中具有明暗或颜色变化的分布,还可以包括人的心理因素对图像接收和理解所产生的影像。 一般认为图片是图像的一种类型,在一些教科书中将其定义为“经过核实的光照后可见物体的分布”,图片强调了现实世界中的可见物体。图形是指人为的图形,如图画,动画等人造的二维或三维图形,他强调应用一定的数学模型生成图形。图形学是研究应用计算机生成,处理和显示图形的一门学科。它涉及利用计算机将有概念或数学描述所表示的物体图像进行处理和现实的过程,侧重点在于根据给定的物体描述数学模型,光照及想象中的摄像机的成像几何,生成一幅图像的过程。 而图像处理进行的却是与其相反的过程,提示基于画面进行二维或三维物体模型的重建,这在很多场合是十分重要。 从20世纪60年代起,随着电子计算机技术的进步,数字图像处理技术得到了飞跃发展。数字信号处理(DSP)技术通常是指利用采集,滤波,检测,均衡,变换,调制,压缩,去噪,估计等处理,已得到符合人们需要的信号形式。图像信号的数字处理是指将图像作为图像信号的数学处理技术,按照人们通常的习惯,也成为数字图像处理技术。最常见的使用计算机对图像进行处理,他是在以计算机为中心的包括各种输入,输出,存储及显示设备内的数学图像处理系统上进行的。

基于数字图像处理的树叶识别论文---黄金版要点

目录 摘要 (1) 英文摘要 (2) 1 引言 (2) 1.1 选题背景及意义 (3) 1.2 国内外研究的进展 (3) 1.2.1 树叶识别的研究进展 (3) 1.2.2 神经网络的研究进展 (4) 1.3 论文的主要内容与组织结构 (4) 1.3.1 论文的主要内容 (4) 1.3.2 组织结构 (4) 2 树叶图像预处理 (4) 2.1 图像采集 (4) 2.2 图像裁剪 (5) 2.3 图像平滑 (6) 2.4 图像分割 (8) 2.4.1 最大类间方差法 (8) 2.4.2 matlab实现及效果图 (8) 2.5 边缘检测 (9) 3 树叶图像特征提取 (11) 4 基于神经网络的树叶识别 (13) 4.1 BP网络基本理论 (13) 4.2 隐含层数的选取 (13) 4.3 节点数的选取 (13) 4.4 BP网络的建立 (14) 4.5 树叶识别 (14) 4.6 GUI界面设计 (14) 4.7 结果分析 (16) 5 总结与展望 (16) 5.1 总结论文的主要工作 (16) 5.2 展望论文的不足 (16) 参考文献 (16) 致谢 (17)

基于神经网络的树叶识别系统研究机电与信息工程学院电子信息工程曹文君(20903031002) 指导老师:吕军(助教) 摘要:植物是生物圈的重要组成部分,其中,叶片是植物的一个重要特征,不同的植物叶片在叶形及叶脉等外部特征上都不尽相同,这就使我们能够很好地利用植物叶片的特征来对植物分类。过去这类工作是由人工完成,不但工作量大,而且工作效率比较低。随着数字图像处理技术的快速发展,我们可以有效地借助计算机进行辅助操作,这样可以提高识别的准确性,从而提升了工作效率。 本文重点工作有:应用数字图像处理技术对采集到的叶片做图像预处理;提出了基于BP神经网络的方法进行树叶的识别,并构造了一个基于神经网络的集成分类器模型。最后,对本系统进行了仿真测试,取得了较好的结果。 关键词:图像处理;神经网络;集成分类器

数字图像处理发展及现状

数字图像处理的发展及现状 网络092 张海波 0904681468 摘要: 简述了数字图像处理技术的发展及应用现状,系统分析了数字图像处理技术的主要优点,不足及制约其发展的因素,阐述了数字图像处理技术研究的主要内容和将来的研究重点,概述了数字图像处理技术未来的应用领域,并提出了该技术未来的研究方向。 关键词:数字图像;图像处理;现状与展望;计算机技术 1 前言: 图像处理技术基本可以分成两大类:模拟图像处理(Analog Image Processing)和数字图像处理(Digtal Image Processing)。数字图像处理是指将图像信号转换成数字信号并利用计算机进行处理的过程。其优点是处理精度高,处理内容丰富,可进行复杂的非线性处理,有灵活的变通能力,一般来说只要改变软件就可以处理内容[1]。困难主要在处理速度上,特别是进行复杂的处理。数字图像处理技术主要包括如下内容:几何处理(Geometrical Processing)、算术处理(Arithmetic Processing)、图像增强(Image Enhancement)、图像复原(Image Restoration)、图像重建(Image Reconstruction)、图像编码(Image Encoding)、图像识别(Image Recognition)、图像理解(Image Understanding)。数字图像处理技术的发展涉及信息科学、计算机科学、数学、物理学以及生物学等学科[2],因此数理及相关的边缘学科对图像处理科学的发展有越来越大的影响。近年来,数字图像处理技术日趋成熟,它广泛应用于空间探测、遥感、生物医学、人工智能以及工业检测等许多领域,并促使这些学科产生了新的发展。 2 数字图像处理技术发展: 数字图像处理技术使20世纪60年代随着计算机技术和 VLSY Very Large Scale Integration的发展而产生、发展和不断成熟起来的一个新兴技术领域,它在理论上和实际应用中都取得了很大的成就。 视觉是人类最重要的感知手段,图像又是视觉的基础[3]。早期图像处理的目的是改善图像质量,它以人为对象,以改善人的视觉效果为目的。图像处理中输入的是质量低的图像,输出的是改善质量后的图像。常用的图像处理方法有图像增强、复原、编码、压缩等。首次获得成功应用的是美国喷气推进实验室(JPL)。他们对航天探测器徘徊者7号在1964年发回的几千张月球照片进行图像处理,如几何校正、灰度变换、去除噪声等,并考虑了太阳位置和月球环境的影响。随后又对探测飞船发回的近十万张照片进行更为复杂的图像处理,获得了月球的地形图、彩色图及全景镶嵌图,为人类登月创举奠定了基础,也推动了数字图像处理这门学科的诞生。在以后的宇航空间技术探测研究中,数字图像处理技术都发挥了巨大的作用。 数字图像处理技术取得的另一个巨大成就是在医学上。1972年英国EMI公司工程师Housfield发明了用于头颅诊断的X射线计算机断层摄影装置,也就是我们通常所说的CT

基于稀疏表示的图像去噪算法研究

毕业设计说明书 基于稀疏表示的图像去噪算法研究 学生姓名: 学号: 系 别: 专 业: 指导教师: 2014年6月 朱祥 1005014240 光电工程系 电子信息科学与技术 杨学峰

中文摘要 图像去噪是信号处理领域中的一个重要研究课题,稀疏表示理论的研究随着近年来兴起的压缩传感理论,越来越引起研究学者的重视。因此基于稀疏表示的图像去噪成为近年来该领域的一个前沿研究课题。 本文在深入研究了稀疏表示理论及相关重构算法的基础上,将小波去噪转化为一个最优化问题,从而建立了基于稀疏表示的去噪模型。文中分别采用了最速下降法和OMP重构算法,通过恢复小波系数的稀疏性,达到去除噪声的目的。 本文的主要工作如下: 建立一种基于稀疏表示的小波去噪模型。将小波去噪的问题转化为一个最优化问题,通过求解该问题,得到不含噪声的小波系数,最终达到去除噪声的目的。利用最速下降法求解上述问题,实现信号与图像的去噪。该方法将小波系数作为一个整体进行求解,利用了小波系数的整体特性,克服了小波阈值去噪仅对系数逐点处理的缺点。实验结果表明,该算法切实有效,特别是针对低信噪比信号和图像,表现出很好的效果。 利用OMP重构算法与迭代阈值思想来实现信号与图像去噪。由于OMP算法仅适用于图像重构,不具有去噪性能,为此我们在OMP算法迭代的过程中,引入了迭代阈值的思想,不断干预重构小波系数,使其更具稀疏性。实验结果表明,该方法对一维信号进行处理的效果更明显。 关键词:图像去噪;稀疏表示;最速下降法;OMP算法

ABSTRACT Image denoising is one of the important branches in the field of signal processing.Sparse representation has also attracted researchers’attention recently especially with the development of the new compressed sensing theory.Therefore image denoising based on sparse representation becomes one of the frontier issues in signal processing.The main contributions of this paper are as follows:A new wavelet denoising model based on sparse representation is presented.The traditional wavelet denoising problem is converted to all optimization problem.And Then the noise—free wavelet coefficients are obtained by solving the optimization problem. The steepest descent method is used to solve the problem above and Thus complement the signal and image denoising.This method considers the overall wavelet coefficients as a whole and makes use of the structure properties of the coefficients.It greatly overcomes the shortcomings of the wavelet thresholding method which deals with the wavelet coefficients in a point-wise manner.The experimental results show that the algorithm is efficient especially for those signal sand images with low signal to noise ratios. An idea of the iterative threshold is introduced to OMP algorithm for signal and image denoising.As the OMP algorithm is only effective for image reconstruction and doesn’t have the denoising property,the idea of the iterative threshold is introduced in the iterative process of the OMP algorithm,which could make the reconstructed wavelet coefficients sparser.The experimental results show that the method is efficient for one-dimensional signal denoising. KEYWORDS:Image Denoising;Sparse Representation;Steepest descent method;OMP algorithm

相关主题
文本预览
相关文档 最新文档