当前位置:文档之家› 中考数学专题训练:定值和最值问题解析版解析

中考数学专题训练:定值和最值问题解析版解析

中考数学专题训练:定值和最值问题解析版解析
中考数学专题训练:定值和最值问题解析版解析

定值问题解

1、如图,在平面直角坐标系x O y 中,矩形AOCD 的顶点A 的坐标是(0,4),现有两动点P 、Q ,点P 从点O 出发沿线段OC (不

包括端点O ,C )以每秒2个单位长度的速度,匀速向点C 运动,点Q 从点C 出发沿线段CD (不包括端点C ,D )以每秒1个单位长度的速度匀速向点D 运动.点P ,Q 同时出发,同时停止,设运动时间为t 秒,当t=2秒时PQ=52. (1)求点D 的坐标,并直接写出t 的取值范围;

(2)连接AQ 并延长交x 轴于点E,把AE 沿AD 翻折交CD 延长线于点F,连接EF ,则△A EF 的面积S 是否随t 的变化而变化?若变化,求出S 与t 的函数关系式;若不变化,求出S 的值. (3)在(2)的条件下,t 为何值时,四边形APQF 是梯形?

【答案】解:(1)由题意可知,当t=2(秒)时,OP=4,CQ=2,

在Rt△PCQ 中,由勾股定理得:PC=(

)

2

222PQ CQ 25

2-=-=4,

∴OC=OP+P C=4+4=8。

又∵矩形AOCD ,A (0,4),∴D(8,4)。 t 的取值范围为:0<t <4。 (2)结论:△AEF 的面积S 不变化。

∵AOCD 是矩形,∴AD∥OE,∴△AQD∽△EQC。 ∴

CE CQ AD DQ =,即CE t 84t =-,解得CE=8t

4t

-。 由翻折变换的性质可知:DF=DQ=4-t ,则CF=CD+DF=8-t 。 S=S 梯形AOCF +S △FCE -S △AOE =

12(OA+CF )?OC+12CF?CE-1

2

OA?OE =12 [4+(8-t )]×8+12(8-t )?8t 4t --12×4×(8+8t 4t

-)。 化简得:S=32为定值。

所以△AEF 的面积S 不变化,S=32。

(3)若四边形APQF 是梯形,因为AP 与CF 不平行,所以只有PQ∥AF。

由PQ∥AF 可得:△CPQ∽△DAF。

∴CP:AD=CQ :DF ,即8-2t :8= t :4-t ,化简得t 2

-12t +16=0, 解得:t 1=6+25,t 2=625-。

由(1)可知,0<t <4,∴t 1=6+25不符合题意,舍去。

∴当t=625-秒时,四边形APQF 是梯形。

2、如图所示,在菱形ABCD 中,AB=4,∠BAD=120°,△AEF 为正三角形,点E 、F 分别在菱形的边BC .CD 上滑动,且E 、F 不与B .C .D 重合.

(1)证明不论E 、F 在BC .CD 上如何滑动,总有BE=CF ;

(2)当点E 、F 在BC .CD 上滑动时,分别探讨四边形AECF 和△CEF 的面积是否发生变化?如果不变,求出这个定值;如果变化,求出最大(或最小)值.

【答案】解:(1)证明:如图,连接AC

∵四边形ABCD 为菱形,∠BAD=120°, ∠BAE+∠EAC=60°,∠FAC+∠EAC=60°, ∴∠BAE=∠FAC。

∵∠BAD=120°,∴∠ABF=60°。 ∴△ABC 和△ACD 为等边三角形。 ∴∠ACF=60°,AC=AB 。∴∠ABE=∠AFC。

∴在△ABE 和△ACF 中,∵∠BAE=∠FAC,AB=AC ,∠ABE=∠AFC, ∴△ABE≌△ACF(ASA )。∴BE=CF。

(2)四边形AECF 的面积不变,△CEF 的面积发生变化。理由如下:

由(1)得△ABE≌△AC F ,则S △ABE =S △ACF 。 ∴S 四边形AECF =S △AEC +S △ACF =S △AEC +S △ABE =S △ABC ,是定值。 作AH⊥BC 于H 点,则BH=2,

22AECF ABC 11

S S BC AH BC AB BH 4322

?==??=?-=四形边。

由“垂线段最短”可知:当正三角形AEF 的边AE 与BC 垂直时,边AE 最短.故△AEF 的面积会随着AE 的变化而变化,且当AE 最短时,正三

角形AEF 的

面积会最小,

又S △CEF =S 四边形AECF ﹣S △AEF ,则此时△CEF 的面积就会最大.

∴S △CEF =S 四边形AECF ﹣S △AEF

(

)()

22

1

432323

3

32

=-??

-

=。

∴△CEF 的面积的最大值是3。

(二)由运动产生的线段和差问题(最值问题)

1、如图所示,已知A 11(,y )2,B 2(2,y )为反比例函数1

y x

=

图像上的两点,动 点P (x,0)在x 正半轴上运动,当线段AP 与线段BP 之差达到最大时,点P 的坐标是【 】

A. 1(,0)2

B. (1,0)

C. 3(,0)2

D. 5(,0)2

【答案】D 。

【考点】反比例函数综合题,待定系数法,曲线上点的坐标与方程的关系,三角形三边关系。 【分析】∵把A 11(,y )2,B 2(2,y )分别代入反比例函数1y x =

得:y 1=2,y 2=1

2

, ∴A(

12 ,2),B (2,1

2

)。 ∵在△ABP 中,由三角形的三边关系定理得:|AP -BP|<AB , ∴延长AB 交x 轴于P′,当P 在P′点时,PA -PB=AB , 即此时线段AP 与线段BP 之差达到最大。

设直线AB 的解析式是y=kx+b ,把A 、B 的坐标代入得:

12=k+b 21=2k+b 2

???????,解得:k=15b=2-?????。∴直线AB 的解析式是5y x 2=-+。

当y=0时,x= 52,即P (5

2

,0)。故选D 。

2、如图,抛物线l 交x 轴于点A (﹣3,0)、B (1,0),交y 轴于点C (0,﹣3).将抛物线l 沿y 轴翻折得抛物线l 1. (1)求l 1的解析式;

(2)在l 1的对称轴上找出点P ,使点P 到点A 的对称点A 1及C 两点的距离差最大,并说出理由;

【答案】解:(1)如图1,设经翻折后,点A .B 的对应点分别为A 1、B 1,

依题意,由翻折变换的性质可知A 1(3,0),B 1(﹣1,0),C 点坐标不变,∴抛物线l 1经过A 1(3,0),B 1(﹣1,0),C (0,﹣3)三点,

设抛物线l 1的解析式为y=ax 2

+bx+c ,则

9a+3b+c=0a b+c=0c=3??-??-?,解得a=1

b=2c=3??

-??-?

。 ∴抛物线l 1的解析式为:y=x 2

﹣2x ﹣3。 (2)抛物线l 1的对称轴为:x=b 2

==12a 2

--

-, 如图2,连接B 1C 并延长,与对称轴x=1交于

点P ,则点P 即为所

求。

此时,|PA 1﹣PC|=|PB 1﹣PC|=B 1C 。 设P′为对称轴x=1上不同于点P 的任意一点,

则有:|P′A﹣P′C|=|P′B 1﹣P′C|<B 1C (三

角形两边之差小于

第三边),

∴|P′A﹣P′C|<|PA 1﹣PC|,即|PA 1﹣PC|最大。

设直线B 1C 的解析式为y=kx+b ,则

k+b=0

b=3-??

-?

,解得k=b=﹣3。∴直线B 1C 的解析式为:y=﹣3x ﹣3。 令x=1,得y=﹣6。∴P(1,﹣6)。

3、如图,已知抛物线y=﹣x 2

+bx+c 与一直线相交于A (﹣1,0),C (2,3)两点,与y 轴交于点N .其顶点为D . (1)抛物线及直线AC 的函数关系式;

(2)设点M (3,m ),求使MN+MD 的值最小时m 的值;

(3)若抛物线的对称轴与直线AC 相交于点B ,E 为直线AC 上的任意一点,过点E 作EF∥BD 交抛物线于点F ,以B ,D ,E ,为顶点的四边形能否为平行四边形?若能,求点E 的坐标;若不能,请说明理由; (4)若P 是抛物线上位于直线AC 上方的一个动点,求△APC 的面积的最大值.

【答案】解:(1)由抛物线y=﹣x 2

+bx+c 过点A (﹣1,0)及C (2,3)得,

1b+c=04+2b+c=3--??-?,解得b=2

c=3

??

?。∴抛物线的函数关系式为2y x 2x 3=-++。 设直线AC 的函数关系式为y=kx+n ,由直线AC 过点A (﹣1,0)及C (2,3)得

k+n=02k+n=3-???,解得k=1

n=1

??

?。 ∴直线AC 的函数关系式为y=x+1。 (2)作N 点关于直线x=3的对称点N′, 令x=0,得y=3,即N (0,3)。

∴N′(6,3)

由()2

2y x 2x 3=x 1+4=-++--得

D (1,4)。

设直线DN′的函数关系式为y=sx+t ,则

6s+t=3s+t=4??

?,解得1s=5

21t=

5

?

-??????。 ∴故直线DN′的函数关系式为1

21y x 55

=-+

。 根据轴对称的性质和三角形三边关系,知当M (3,m )在直线DN′上时,MN+MD 的值最小, ∴12118m 3=555

=-?+

∴使MN+MD 的值最小时m 的值为

185

。 (3)由(1)、(2)得D (1,4),B (1,2),

①当BD 为平行四边形对角线时,由B 、C 、D 、N 的坐标知,四边形BCDN 是平行四边形,此时,点E 与点C

重合,即E (2,3)。

②当BD 为平行四边形边时,

∵点E 在直线AC 上,∴设E (x ,x+1),则F (x ,2x 2x 3-++)。 又∵BD=2

∴若四边形BDEF 或BDFE 是平行四边形时,BD=EF 。 ∴()2x 2x 3x 1=2-++-+,即2x x 2=2-++。

若2x x 2=2-++,解得,x=0或x=1(舍去),∴E(0,1)。 若2x x 2=2-++-,解得,117

x=

±,∴E 1+173+17?? ? ??? ,或E 117317??-- ? ???

,。 综上,满足条件的点E 为(2,3)、(0,1)、1+173+17?? ? ??? ,、117317??

-- ? ???

,。 (4)如图,过点P 作PQ⊥x 轴交AC 于点Q ;过点C 作CG⊥x 轴于点G ,

设Q (x ,x+1),则P (x ,﹣x 2

+2x+3)。

∴22PQ x 2x 3x 1x x 2=

-++--=-++()()。 ∴APC APQ CPQ 1

S S +S PQ AG 2

???==

? 2213127

x x 23x 2228

=-++?=--+

()()。 ∵302

<-,

∴当1x=2时,△APC 的面积取得最大值,最大值为

278

。 4、如图,已知抛物线2y ax bx c =++经过A (4,0),B (2,3),C (0,3)三点. (1)求抛物线的解析式及对称轴.

(2)在抛物线的对称轴上找一点M ,使得MA+MB 的值最小,并求出点M 的坐标.

(3)在抛物线上是否存在一点P ,使得以点A 、B 、C 、P 四点为顶点所构成的四边形为梯形?若存在,请求出点P 的坐标;若不存在,请说明理由.

【答案】解:(1)∵抛物线2y ax bx c =++经过A (4,0),B (2,3),C (0,3)三点,

∴ 16a 4b c 04a 2b c 3 c 3

++=??

++=??=?,解得3a 83b 4c 3

?

=-??

?=??=???

∴抛物线的解析式为:233

y x x 384

=-+

+,其对称轴为:b

x 12a

=-

=。 (2)由B (2,3),C (0,3),且对称轴为x=1,可知点B 、C 是关于对

称轴x=1的对称点。

如图1所示,连接AC ,交对称轴x=1于点M ,连接MB ,则MA +MB=MA +MC=AC ,根据两点之间线段最短可

知此时MA +MB 的值最小。

设直线AC 的解析式为y=kx +b ,

∵A(4,0),C (0,3),∴ 4k b 0 b 3+=??=? ,解得3k 4b 3

?

=-

???=?。

∴直线AC 的解析式为:y=34

-x +3。 令x=1,得y=94 。∴M 点坐标为(1,94

)。 (3)结论:存在。

如图2所示,在抛物线上有两个点P 满足题意: ①若BC∥AP 1,此时梯形为ABCP 1。

由B (2,3),C (0,3),可知BC∥x 轴,则x 轴与抛物线的另一个交点P 1即为所求。 在23

3

y x x 384

=-+

+中令y=0,解得x 1=-2,x 2=4。

∴P 1(-2,0)。

∵P 1A=6,BC=2,∴P 1A≠BC。 ∴四边形ABCP 1为梯形。

②若AB∥CP 2,此时梯形为ABCP 2。 设CP 2与x 轴交于点N ,

∵BC∥x 轴,AB∥CP 2,∴四边形ABCN 为平行四边形。

∴AN=BC=2。∴N(2,0)。

设直线CN 的解析式为y=k 1x+b 1,则有: 111

2k b 0b 3 +=??=?,

解得

3k 2b 3

?

=-

???=?。 ∴直线CN 的解析式为:y=3

2

-x+3。

∵点P 2既在直线CN :y=32-x+3上,又在抛物线:233

y x x 384

=-++上, ∴32-x+3=233 x x 384

-+

+,化简得:x 2

-6x=0,解得x 1=0(舍去)

,x 2=6。 ∴点P 2横坐标为6,代入直线CN 解析式求得纵坐标为-6。∴P 2(6,-6)。 ∵ABCN ,∴AB=CN,而CP 2≠CN,∴CP 2≠AB。∴四边形ABCP 2为梯形。

综上所述,在抛物线上存在点P ,使得以点A 、B 、C 、P 四点为顶点所构成的四边形为梯形,点P 的坐标为

(-2,0)或(6,-6)。

中考数学专题复习最值问题

两点之间线段最短关系密切.在求最短路线时,一般我们先用“对称”的方法化成两点之间的最短距离问题,而两点之间直线段最短,从而找到所需的最短路线.像这样将一个问题转变为一个和它等价的问题,再设法解决,是数学中一种常用的重要思想方法. 类型1 利用“垂线段最短”求最短路径问题 如图所示,AB 是一条河流,要铺设管道将河水引到C ,D 两个用水点,现有两种铺设管道的方案.方案一:分别过C ,D 作AB 的垂线,垂足分别为E ,F ,沿CE ,DF 铺设管道;方案二:连接CD 交AB 于点P ,沿PC 、PD 铺设管道.问:这两种铺设管道的方案中哪一种更节省材料,为什么? 【思路点拨】 方案一管道长为CE +DF ,方案二管道长为PC +PD ,利用垂线段最短即可比较出大小. 本题易错误的利用两点之间线段最短解决,解答时需要准确识图,找到图形对应的知识点. 1.如下左图,点A 的坐标为(-1,0),点B(a ,a),当线段AB 最短时,点B 的坐标为( ) A .(0,0) B .(22,-22) C .(-22,-22) D .(-12,-12 ) 2.在直角坐标系中,点P 落在直线x -2y +6=0上,O 为坐标原点,则|OP|的最小值为( ) A.352 B .3 5 C.655 D.10 3.如上中图,在平面直角坐标系xOy 中,以原点O 为圆心的圆过点A(13,0),直线y =kx -3k +4与⊙O 交于B 、C 两点,则弦BC 的长的最小值为________. 4.如上右图,平原上有A ,B ,C ,D 四个村庄,为解决缺水问题,政府准备投资修建一个蓄水池. (1)不考虑其他因素,请你画图确定蓄水池H 点的位置,使它到四个村庄距离之和最小; (2)计划把河水引入蓄水池H 中,怎样开渠最短并说明根据. 类型2 利用“两点之间线段最短”求最短路径问题 (1)如图1,直线同侧有两点A ,B ,在直线MN 上求一点C ,使它到A 、B 之和最小;(保留作图痕迹不写作法) (2)知识拓展:如图2,点P 在∠AOB 内部,试在OA 、OB 上分别找出两点E 、F ,使△PEF 周长最短;(保留作图痕迹不写作法) (3)解决问题:①如图3,在五边形ABCDE 中,在BC ,DE 上分别找一点M ,N ,使得△AMN 周长最小;(保留作图痕迹不写作法)

中考数学综合专题训练【几何综合题】(几何)精品解析

中考数学综合专题训练【几何综合题】(几何)精品解析 在中考中,几何综合题主要考察了利用图形变换(平移、旋转、轴对称)证明线段、角的数量关系及动态几何问题。学生通常需要在熟悉基本几何图形及其辅助线添加的基础上,将几何综合题目分解为基本问题,转化为基本图形或者可与基本图形、方法类比,从而使问题得到解决。 在解决几何综合题时,重点在思路,在老师讲解及学生解题时,对于较复杂的图形,根据题目叙述重复绘图过程可以帮助学生分解出基本条件和图形,将新题目与已有经验建立联系从而找到思路,之后绘制思路流程图往往能够帮助学生把握题目的脉络;在做完题之后,注重解题反思,总结题目中的基本图形及辅助线添加方法,将题目归类整理;对于典型的题目,可以解析题目条件,通过拓展题目条件或改变条件,给出题目的变式,从而对于题目及相应方法有更深入的理解。同时,在授课过程中,将同一类型的几何综合题成组出现,分析讲解,对学生积累对图形的“感觉”有一定帮助。 一.考试说明要求 图形与证明中要求:会用归纳和类比进行简单的推理。 图形的认识中要求:会运用几何图形的相关知识和方法(两点之间的距离,等腰三角形、等边三角形、直角三角形的知识,全等三角形的知识和方法,平行四边形的知识,矩形、菱形和正方形的知识,直角三角形的性质,圆的性质)解决有关问题;能运用三角函数解决与直角三角形相关的简单实际问题;能综合运用几何知识解决与圆周角有关的问题;能解决与切线有关的问题。 图形与变换中要求:能运用轴对称、平移、旋转的知识解决简单问题。 二.基本图形及辅助线 解决几何综合题,是需要厚积而薄发,所谓的“几何感觉”,是建立在足够的知识积累的基础上的,熟悉基本图形及常用的辅助线,在遇到特定条件时能够及时联想到对应的模型,找到“新”问题与“旧”模型间的关联,明确努力方向,才能进一步综合应用数学知识来解决问题。在中档几何题目教学中注重对基本图形及辅助线的积累是非常必要的。 举例: 1、与相似及圆有关的基本图形

中考数学中的最值问题解法

中考数学中的最值问题解法

角函数定义,特殊角的三角函数值。 【分析】如图,在BA上截取BE=BN,连接EM。 ∵∠ABC的平分线交AC于点D,∴∠EBM=∠NBM。 在△AME与△AMN中,∵BE=BN ,∠EBM=∠NBM,BM=BM, ∴△BME≌△BMN(SAS)。∴ME=MN。∴CM+MN=CM+ME≥CE。 又∵CM+MN有最小值,∴当CE是点C到直线AB的距离时,CE取最小值。 ∵BC=42,∠ABC=45°,∴CE的最小值为 0=4。 例3.(2011四川凉山5分)如图,圆柱底面半径为2cm,高为9cm ,点A、B分别是圆柱两底面圆周上的点,且A、B在同一母线上,用一棉线从A顺着圆柱侧面绕3圈到B,求棉线最短为▲ cm。

【答案】15π。 【考点】圆柱的展开,勾股定理,平行 四边形的性质。 【分析】如图,圆柱展开后可见,棉线 最短是三条斜线,第一条斜线与底面圆周长、13 高组成直角三角形。由周长公式,底面圆周长为4cm π,13 高为3cm π,根据勾股定理,得斜线长为5cm π,根据平行四边形的性质,棉线最短为15cm π。 例4. (2012四川眉山3分)在△ABC 中,AB =5,AC =3,AD 是BC 边上的中线,则AD 的取值范围是 ▲ . 【答案】1<AD <4。 【考点】全等三角形的判定和性质,三角 形三边关系。 【分析】延长AD 至E ,使DE=AD ,连接CE .根 据SAS 证明△ABD≌△ECD,得CE=AB ,再根 据三角形的三边关系即可求解: 延长AD 至E ,使DE=AD ,连接CE 。 ∵BD=CD ,∠ADB=∠EDC ,AD=DE , ∴△ABD≌△ECD(SAS )。 ∴CE=AB。 在△ACE 中,CE -AC <AE <CE +AC ,即2<2AD

福建省惠安县广海中学2020年九年级中考数学专题-定点定值问题(无答案)

广海中学中考数学复习提纲—定点定值问题 班级 姓名 号数_______ 一、定点问题——由字母参数产生的定点 例1.阅读以下内容,然后解决问题 无论m 为任何实数,函数 的图像总会经过的点是( ). A. (1,3) B. (1,0) C. (-1,3) D. (-1,0) 方法1:变换主元法 ①x x x y x y -=+-=???==??? 1020 1 32 , 解得 这类问题一般解法是根据直线或抛物线的动因,先选择适当的参数,用参数表示出直线或 抛物线方程,然后按参数整理,并令参数的系数为0得方程组,解方程或方程组求出定点坐标。 方法2:特殊值法 任意给m 赋予两个特殊值,不妨设m=0和m=2。 y x x y x =+=+?????2 2 22 ,解得 所以,无论m 为何值时,该二次函数的图像恒过定点(1,3)。故应选A 。 练习. 一次函数33(0)y kx k k =+-≠的图象一定过定点________________ 抛物线y=(k-1)x 2 +(2-2k)x+1,那么此抛物线必定经过______和____ 二、定值问题 1.线段长度为定值 例2.若直线y=8k 与二次函数L :y=kx 2 ﹣4kx+3k (k ≠0)交于E 、F 两点。 (1)直接抛物线的对称轴直线__________; (2对于不同的k 的值,线段EF 的长度是否发生变化?如果不会, 请求出EF 的长度;如果会,请说明理由. 练习2.如图,扇形OAB 的半径OA=3,圆心角∠AOB=90°.点C 是AB ⌒上异于A ,B 的动点,过点C 作CD ⊥OA 于点D ,作CE ⊥OB 于点E.连接DE ,点G ,H 在线段 DE 上,且DG=GH=HE.在CD ,CG ,DG 中,是否存在长度不变的线段?若存在,请写出出该线段的长度. B O A C E H G D

(完整版)中考数学动点问题专题讲解

动点及动图形的专题复习教案 所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题. 关键:动中求静. 数学思想:分类思想函数思想方程思想数形结合思想转化思想 注重对几何图形运动变化能力的考查 从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力.图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。 二期课改后数学卷中的数学压轴性题正逐步转向数形结合、动态几何、动手操作、实验探究等方向发展.这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等.从数学思想的层面上讲:(1)运动观点;(2)方程思想;(3)数形结合思想;(4)分类思想;(5)转化思想等.研究历年来各区的压轴性试题,就能找到今年中考数学试题的热点的形成和命题的动向,它有利于我们教师在教学中研究对策,把握方向.只的这样,才能更好的培养学生解题素养,在素质教育的背景下更明确地体现课程标准的导向.本文拟就压轴题的题型背景和区分度测量点的存在性和区分度小题处理手法提出自己的观点. 函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢?下面结合中考试题举例分析.

2019年中考数学最值问题专题卷(含答案)

2019年中考数学最值问题专题卷(含答案) 一、单选题 1.如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C逆时针旋转得到△A'B'C,M是BC的中点,P是A'B' 的中点,连接PM.若BC=2,∠BAC=30°,则线段PM的最大值是() A. 4 B. 3 C. 2 D. 1 2.如图,点A(a,3),B(b,1)都在双曲线y= 上,点C,D,分别是x轴,y轴上的动点,则四边形ABCD周长的最小值为() A. B. C. D. 3.如图,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE最小,则这个最小值为() A. B. 2 C. 2 D. 二、填空题 4.如图,四边形ABCD中,∠A=90°,AB=3,AD=3,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为________ . 5.如图所示,正方形ABCD的边长为6,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为________. 6.如图,正方形ABCD的边长为1,中心为点O,有一边长大小不定的正六边形EFGHIJ绕点O可任意旋转,在旋转过程中,这个正六边形始终在正方形ABCD内(包括正方形的边),当这个正六边形的边长最大时,AE的最小值为________.

7.如图,AB是⊙O的弦,AB=6,点C是⊙O上的一个动点,且∠ACB=45°.若点M,N分别是AB,BC的中点,则MN长的最大值是________ 三、综合题 8.如图,将边长为6的正三角形纸片ABC按如下顺序进行两次折叠,展平后,得折痕AD,BE(如图①),点O为其交点. (1)探求AO到OD的数量关系,并说明理由; (2)如图②,若P,N分别为BE,BC上的动点. (Ⅰ)当PN+PD的长度取得最小值时,求BP的长度; (Ⅱ)如图③,若点Q在线段BO上,BQ=1,则QN+NP+PD的最小值= .

中考数学压轴题(定值问题)

1. ( 2009 ?株洲)如图,已知△ ABC 为直角三角形,/ ACB=90 ° AC=BC ,点A 、C 在x 轴上,点 B 坐标为 (3,m )(m >0),线段AB 与y 轴相交于点D ,以P (1, 0)为顶点的抛物线过点 B 、D . (1) 求点A 的坐标(用m 表示); (2) 求抛物线的解析式; (3) 设点Q 为抛物线上点P 至点B 之间的一动点,连结 PQ 并延长交BC 于点E ,连结BQ 并延长 交AC 于点 F ,试证明:FC(AC + EC)为定值. 解析:(1 )由B(3,m)可知OC =3, BC=m ,又△ ABC 为等腰直角三角形, AC = BC = m , OA = m -3,所以点 (2)T ODA "OAD =45 .OD =OA =m - 3,则点D 的坐标是( 又抛物线顶点为 P(1,0),且过点B 、D , 2 y =a(x-1),得: a(3 -1) =m 解得 a i a(0 -1)2 =m -3 m =4 .抛物线的解析式为 y =x 2 -2x ? 1 (3)过点Q 作QM _ AC 于点M ,过点Q 作QN _ BC 于点N ,设点Q 的坐标是(x, x 2 - 2x T), 则 QM =CN =(x -1)2, MC =QN =3-x . 2 ?/ QM //CE /. . PQM s . :PEC .型=空 即(x-1) _ x -1,得 EC=2(x — 1) EC PC EC 2 ?/ QN // FC /? BQN s . BFC . QN 即 3 ~x _4 -(x_1)2 ,得 FC 二丄 FC 一 BC FC 4 x + 1 4 又??? AC =4 . FC (AC EC) [4 2(x -1)]二 x+1 二、定长、定角、定点、定值类型 1. ( 2011?东营)如图所示,四边形 OABC 是矩形,点 A 、C 的坐标分别为(-3, 0) , (0, 1),点D 1 是线段BC 上的动点(与端点 B 、C 不重合),过点D 作直线y=—^-x + b 交折线OAB 于点E . (1) 记厶ODE 的面积为S ,求S 与b 的函数关系式; (2) 当点E 在线段OA 上时,且tan /DEO=<-.若矩形OABC 关于直线DE 的对称图形为四边形 O 1A 1B 1C 1,试探究四边形 O 1A 1B 1C 1与矩形OABC 的重叠部分的面 积是否发生变化,若不变,求出该重叠部分的面积;若改变,请说 明理由. 考点:一次函数综合题。 > 分析:(1 )要表示出△ ODE 的面积, 卄” 要分两种情况讨论,①如果点E 在OA B --------------------------- C 边上,只需求出这个三角形的底边 OE 长(E 点横坐标)和高(D 点纵坐标), _ \ 代入三角形面积公式即可; ②如果点 ? - 【中考数学压轴题】 ?、乘积、比值类型 定值问题 即FC(AC + EC)为定值8. …12分 (2x 2) 2(x 1)=8 7分

2020年中考数学必考34个考点专题33:最值问题

专题33 最值问题 在中学数学题中,最值题是常见题型,围绕最大(小)值所出的数学题是各种各样,就其解法,主要为以下几种: 1.二次函数的最值公式 二次函数y ax bx c =++2 (a 、b 、c 为常数且a ≠0)其性质中有 ①若a >0当x b a =-2时,y 有最小值。y ac b a min =-442; ②若a <0当x b a =-2时,y 有最大值。y ac b a max =-442。 2.一次函数的增减性 一次函数y kx b k =+≠()0的自变量x 的取值范围是全体实数,图象是一条直线,因而没有最大(小)值;但当m x n ≤≤时,则一次函数的图象是一条线段,根据一次函数的增减性,就有最大(小)值。 3. 判别式法 根据题意构造一个关于未知数x 的一元二次方程;再根据x 是实数,推得?≥0,进而求出y 的取值范围,并由此得出y 的最值。 4.构造函数法 “最值”问题中一般都存在某些变量变化的过程,因此它们的解往往离不开函数。 5. 利用非负数的性质 在实数范围内,显然有a b k k 2 2 ++≥,当且仅当a b ==0时,等号成立,即a b k 2 2 ++的最小值为k 。 6. 零点区间讨论法 用“零点区间讨论法”消去函数y 中绝对值符号,然后求出y 在各个区间上的最大值,再加以比较,从中确定出整个定义域上的最大值。 7. 利用不等式与判别式求解 在不等式x a ≤中,x a =是最大值,在不等式x b ≥中,x b =是最小值。 8. “夹逼法”求最值 在解某些数学问题时,通过转化、变形和估计,将有关的量限制在某一数值范围内,再通过解不等式获取问题的答案,这一方法称为“夹逼法”。 专题知识回顾 专题典型题考法及解析

中考数学专题训练:类比探究类问题解析版

类比探究类问题解析版 1、如图,在矩形ABCD中,AD=4,M是AD的中点,点E是线段AB上一动 点,连结EM并延长交线段CD的延长线于点F. (1) 如图1,求证:AE=DF; (2) 如图2,若AB=2,过点M作 MG⊥EF交线段BC于点G,判断△GEF的形状,并说明 理由; 2,过点M作 MG⊥EF交线段BC的延长线于点G. (3) 如图3,若AB=3 ① 直接写出线段AE长度的取值范围; ② 判断△GEF的形状,并说明理由. 【答案】解:(1)在矩形ABCD中,∠EAM=∠FDM=900,∠AME=∠FMD。 ∵AM=DM,∴△AEM≌△DFM(ASA)。∴AE=DF。 (2)△GEF是等腰直角三角形。理由如下: 过点G作GH⊥AD于H, ∵∠A=∠B=∠AHG=90°, ∴四边形ABGH是矩形。∴GH=AB=2。 ∵MG⊥EF,∴∠GME=90°。 ∴∠AME+∠GMH=90°。 ∵∠AME+∠AEM=90°,∴∠AEM=∠GMH。 又∵AD=4,M是AD的中点,∴AM=2。∴AN=HG。 ∴△AEM≌△HMG(AAS)。∴ME=MG。∴∠EGM=45°。 由(1)得△AEM≌△DFM,∴ME=MF。 又∵MG⊥EF,∴GE=GF。∴∠EGF=2∠EGM =90°。 ∴△GEF是等腰直角三角形。

(3)①23 3 <AE≤23。 ②△GEF是等边三角形。理由如下: 过点G作GH⊥AD交AD延长线于点H, ∵∠A=∠B=∠AHG=90°,∴四边形ABGH是矩形。 ∴GH=AB=23。 ∵MG⊥EF,∴∠GME=90°。∴∠AME+∠GMH=90°。∵∠AME+∠AEM=90°,∴∠AEM=∠GMH。 又∵∠A=∠GHM=90°,∴△AEM∽△HMG。∴MG GH EM AM =。 在Rt△GME中,∴tan∠MEG=MG GH23 3 EM AM2 ===。∴∠MEG=600。 由(1)得△AEM≌△DFM.∴ME=MF。 又∵MG⊥EF,∴GE=GF。∴△GEF是等边三角形。 2、(1)如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.求证:CE=CF; (2)如图2,在正方形ABCD中,E是AB上一点,G是AD上一点,如果∠GCE=45°,请你利用(1)的结论证明:GE=BE+GD. (3)运用(1)(2)解答中所积累的经验和知识,完成下题: 如图3,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC,E是AB上一点,且∠DCE=45°,BE=4,DE=10, 求直角梯形ABCD的面积. 【答案】解:(1)证明:在正方形ABCD中,∵BC=CD,∠B=∠CDF,BE=DF, ∴△CBE≌△CDF(SAS)。∴CE=CF。 (2)证明:如图,延长AD至F,使DF=BE.连接CF。 由(1)知△CBE≌△CDF,

中考数学例析直线上动点与两定点的距离和的最值问题(最新整理)

“将军饮马”老歌新唱 ——例析直线上动点与两定点的距离和的最值问题 王 柏 校 古希腊有位将军要从 A 地出发到河边去饮马,然后再到 B 地军营视察,问怎样选择饮马地点,才能使路程最短? A 地 B 地 图 1 这是著名的“将军饮马”问题,在河边饮马的地点有很多处,怎样找出使两条线段之和最短的那个点来,我们只要设 L 为河(如图 1),作 AO ⊥L 交 L 于 O 点,延长 AO 至A ' ,使 A ' O =AO ;连结 A ' B ,交 L 于 C ,则 C 点就是所要求的饮马地点。再连结 AC ,则 路程(AC+CB )为最短的路程。 为什么饮马地点选在 C 点能使路程最短?因为 A '是 A 点关于 L 的对称点,AC 与 A ' C 是相等的。而 A ' B 是一条线段,所以 A ' B 是连结 A '、B 这两点间的所有线中,最短的一条, 所以 AC+CB = A ' C+CB = A ' B 也是最短的一条路了。这就是运用轴对称变换,找到的一种最巧妙的解题方法。 这一流传近 2000 年的名题至今还被命题者所喜爱,近年来许多省市中考中出现了以此故事为背景的试题,它们所考查的深度和广度也在不断演变、拓展,而且又常与其他的数学知识相联系,数形结合,突出了数学的思维价值和应用能力,能够有效地体现学生的数学学习能力,现从 2009 年中考试题中撷取与此相关的试题来分类说明,供广大读者参考。 一、演变成与正方形有关的试题 例 1(2009 年抚顺)如图 2 所示,正方形 ABCD 的面积为 12, △ABE 是等边三角形, 点 E 在正方形 ABCD 内,在对角线 AC 上有一点 P ,使 PD + PE 的和最小,则这个最小值为( ) A. 2 B. 2 C.3 D . A B C L A 3 6 6

中考数学综合题专题复习【相似】专题解析

一、相似真题与模拟题分类汇编(难题易错题) 1.如图,已知A(﹣2,0),B(4,0),抛物线y=ax2+bx﹣1过A、B两点,并与过A点的直线y=﹣ x﹣1交于点C. (1)求抛物线解析式及对称轴; (2)在抛物线的对称轴上是否存在一点P,使四边形ACPO的周长最小?若存在,求出点P的坐标,若不存在,请说明理由; (3)点M为y轴右侧抛物线上一点,过点M作直线AC的垂线,垂足为N.问:是否存在这样的点N,使以点M、N、C为顶点的三角形与△AOC相似,若存在,求出点N的坐标,若不存在,请说明理由. 【答案】(1)解:把A(-2,0),B(4,0)代入抛物线y=ax2+bx-1,得 解得 ∴抛物线解析式为:y= x2?x?1 ∴抛物线对称轴为直线x=- =1 (2)解:存在 使四边形ACPO的周长最小,只需PC+PO最小 ∴取点C(0,-1)关于直线x=1的对称点C′(2,-1),连C′O与直线x=1的交点即为P 点. 设过点C′、O直线解析式为:y=kx

∴k=- ∴y=- x 则P点坐标为(1,- ) (3)解:当△AOC∽△MNC时, 如图,延长MN交y轴于点D,过点N作NE⊥y轴于点E ∵∠ACO=∠NCD,∠AOC=∠CND=90° ∴∠CDN=∠CAO 由相似,∠CAO=∠CMN ∴∠CDN=∠CMN ∵MN⊥AC ∴M、D关于AN对称,则N为DM中点 设点N坐标为(a,- a-1) 由△EDN∽△OAC ∴ED=2a ∴点D坐标为(0,- a?1) ∵N为DM中点 ∴点M坐标为(2a,a?1) 把M代入y= x2?x?1,解得 a=4 则N点坐标为(4,-3) 当△AOC∽△CNM时,∠CAO=∠NCM ∴CM∥AB则点C关于直线x=1的对称点C′即为点N

2017-中考数学-压轴专题-最值问题系列(一)

专题最值问题—— 1(几何模型) 一、归于几何模型,这类模型又分为以下情况: 1. 归于“两点之间的连线中,线段最短”。 凡属于求“变动的两线段之和的最小值”时,大都应用这一模型。 2.归于“三角形两边之差小于第三边”。 凡属于求“变动的两线段之差的最大值”时,大都应用这一模型。 3.利用轴对称知识(结合平移)。 4. 应用“点到直线的距离,垂线段最短。”性质。 5. 定圆中的所有弦中,直径最长;以及直线与圆相切的临界位置等等。 二、基础知识模型 (一)“将军饮马”问题 1.如图1,将军骑马从A出发,先到河边a喝水,再回驻地B,问将军怎样走路程最短? 2.如图,一位将军骑马从驻地M出发,先牵马去草地OA吃草,再牵马去河边OB喝水,最后回到驻地M,问:这位将军怎样走路程最短? 图1 图2 3. 如图,A为马厩,B为帐篷,将军某一天要从马厩牵马,先到草地一处牧马,再到河边饮马,然后回到帐篷,请你帮助确定这一天的最短路线。

(二)“造桥选址”问题(选自人教版七年级下册) 1. 如图1,A和B两地在一条河的两岸,现要在河上造一座桥MN,桥造在何处才能使从A到B的路径AMNB最短?(假设河两岸1l、l2平行,桥MN 与河岸垂直) 练习: 1. 如图,在边长为2㎝的正方形ABCD中,点Q为BC边的中点,点P为对角线AC上一动点, 连接PB、PQ,则△PBQ周长的最小值为____________㎝(结果不取近似值). 1题图2题图 2.已知点A是半圆上的一个三等分点,点B是弧AN的中点,点P是半径ON上的动点, 若⊙O的半径长为1,则AP+BP的最小值为__________. 3.如图3,已知点A的坐标为(-4,8),点B的坐标为(2,2),请在x轴上找到一点P,使PA+PB最小,并求出此时P点的坐标和PA+PB的最小值。

中考数学之定值探究(通用版)

中考数学之定值探究(通用版) 近年来,我们经常遇到求线段的和、差、积、商是一个定值的问题,也会遇到在图形的变换过程中,面积是一个定值的问题.这类问题的提出,往往是询问的语气,不能说一定是定值或一定不是定值,需要探讨后才能作出结论.这类题型难度大,运用的知识点多,计算量大,对综合运用知识的能力有较高要求. 本文档将此类型的题目分为几个类型,供各位老师进行探究: 一、α为定值 例1 已知抛物线21y x mx m =-+++与x 轴交于,A B 两点(点A 在点B 的左侧)。如图1,若点M 为抛物线位于x 轴上方图象上一动点,过点M 作MN x ⊥轴,垂足为N ,直线MN 上有一点H ,满足HBA ∠与MAB ∠互余,试判断HN 的长是否变化,若变化?请说明理由,若不变,请求出HN 长. 分析△AMN 的三边随点M 的变化而变化,但因为HBA ∠与MAB ∠互余,所以△AMN ∽△HBN ,从而可以建立比例关系,求出HN 的长. 解 令210y x mx m =-+++=,得 11x =-,21x m =+, ∴(1,0)A -,(1,0)B m +. 设(,0)N t ,则 2(,1)M t t mt m -+++, ∴1NA t =+, 1BN m t =+-,

21MN t mt m =-+++. ∵90HBA MAB ∠+∠=?, 90ANM MNB ∠=∠=?, ∴△AMN ∽△HBN , ∴MN AN NB HN = 即2111t mt m t m t HN -++++=+-, 解得1HN =. 评析本题以二次函数为背景,结合相似三角形,找出等量关系(注意避免使用,AM BH ).其中含有参数的代数式的因式分解是本题难点,合理使用有关线段是解决本题的关键. 二、a b 为定值 例2 如图2,在平面直角坐标系中,点M 在x 轴的正半轴上,⊙M 交x 轴于,A B 两点,交y 轴于,C D 两点,且C 为AE 的中点,AE 交y 轴于点G ,若A 点的坐标为(2,0)-,8CD =. (1)求⊙M 的半径. (2)求AE 的长. (3)如图3,过点D 作⊙M 的切线,交x 轴于点P .动点F 在⊙M 上运动时, OF PF 的比值是否发生变化?若不变,求出比值;若变化,请说明变化规律.

中考数学《压轴题》专题训练含答案解析

压轴题 1、已知,在平行四边形O ABC 中,O A=5,AB =4,∠OCA=90°,动点P 从O 点出发沿射线OA 方向以每秒2个单位的速度移动,同时动点Q从A 点出发沿射线AB 方向以每秒1个单位的速度移动.设移动的时间为t秒. (1)求直线AC 的解析式; (2)试求出当t 为何值时,△O AC 与△PAQ 相似; (3)若⊙P 的半径为 58,⊙Q 的半径为2 3 ;当⊙P 与对角线AC 相切时,判断⊙Q 与直线AC 、B C的位置关系,并求出Q 点坐标。 解:(1)42033 y x =- + (2)①当0≤t≤2.5时,P在O A上,若∠OAQ =90°时, 故此时△OA C与△PAQ 不可能相似. 当t>2.5时,①若∠APQ=90°,则△A PQ ∽△OCA , ∵t>2.5,∴ 符合条件. ②若∠A QP=90°,则△APQ ∽△∠OA C, ∵t>2.5,∴ 符合条件.

综上可知,当 时,△O AC 与△APQ 相似. (3)⊙Q 与直线AC、B C均相切,Q 点坐标为( 10 9 ,5 31) 。 2、如图,以矩形OABC 的顶点O 为原点,OA 所在的直线为x轴,OC 所在的直线为y轴,建立平面直角坐标系.已知OA =3,OC =2,点E 是AB 的中点,在OA 上取一点D ,将△BD A沿BD 翻折,使点A 落在BC 边上的点F 处. (1)直接写出点E 、F 的坐标; (2)设顶点为F 的抛物线交y 轴正半轴...于点P ,且以点E 、F 、P 为顶点的三角形是等腰三角形,求该抛物线的解析式; (3)在x 轴、y轴上是否分别存在点M 、N ,使得四边形MNF E的周长最小?如果存在,求出周长的最小值;如果不存在,请说明理由. 解:(1)(31)E ,;(12)F ,.(2)在Rt EBF △中,90B ∠=, 2222125EF EB BF ∴=+=+=. 设点P 的坐标为(0)n ,,其中0n >, 顶点(1 2)F ,, ∴设抛物线解析式为2 (1)2(0)y a x a =-+≠. ①如图①,当EF PF =时,22 EF PF =,2 2 1(2)5n ∴+-=. 解得10n =(舍去);24n =.(04)P ∴,.24(01)2a ∴=-+.解得2a =. ∴抛物线的解析式为22(1)2y x =-+ (第2题)

初中数学最值问题典型例题(含答案分析)

中考数学最值问题总结 考查知识点:1、“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”。 (2、代数计算最值问题3、二次函数中最值问题) 问题原型:饮马问题造桥选址问题(完全平方公式配方求多项式取值二次函数顶点)出题背景变式:角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等。 解题总思路:找点关于线的对称点实现“折”转“直” 几何基本模型: 条件:如下左图,A、B是直线l同旁的两个定点. 问题:在直线l上确定一点P,使PA PB +的值最小. 方法:作点A关于直线l的对称点A',连结A B'交l于 点P,则PA PB A B' +=的值最小 例1、如图,四边形ABCD是正方形,△ABE是等边三 角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM. (1)求证:△AMB≌△ENB; (2)①当M点在何处时,AM+CM的值最小; ②当M点在何处时,AM+BM+CM的值最小,并说明理由; (3)当AM+BM+CM的最小值为 时,求正方形的边长。 A B A' ′ P l

例2、如图13,抛物线y=ax2+bx+c(a≠0)的顶点为(1,4),交x轴于A、B,交y轴于D,其中B点的坐标为(3,0) (1)求抛物线的解析式 (2)如图14,过点A的直线与抛物线交于点E,交y轴于点F,其中E点的横坐标为2,若直线PQ为抛物线的对称轴,点G为PQ上一动点,则x轴上是否存在一点H,使D、G、F、H四点围成的四边形周长最小.若存在,求出这个最小值及G、H的坐标;若不存在,请说明理由. (3)如图15,抛物线上是否存在一点T,过点T作x的垂线,垂足为M,过点M作直线M N∥BD,交线段AD于点N,连接MD,使△DNM∽△BMD,若存在,求出点T的坐标;若不存在,说明理由.

最新中考数学专题训练:定值和最值问题解析版

定值问题解 1、如图,在平面直角坐标系x O y 中,矩形AOCD 的顶点A 的坐标是(0,4),现有两动点P 、Q ,点P 从点O 出发沿线段OC (不 包括端点O ,C )以每秒2个单位长度的速度,匀速向点C 运动,点Q 从点C 出发沿线段CD (不包括端点C ,D )以每秒1个单位长度的速度匀速向点D 运动.点P ,Q 同时出发,同时停止,设运动时间为t 秒,当t=2秒时PQ=52. (1)求点D 的坐标,并直接写出t 的取值范围; (2)连接AQ 并延长交x 轴于点E,把AE 沿AD 翻折交CD 延长线于点F,连接EF ,则△A EF 的面积S 是否随t 的变化而变化?若变化,求出S 与t 的函数关系式;若不变化,求出S 的值. (3)在(2)的条件下,t 为何值时,四边形APQF 是梯形? 【答案】解:(1)由题意可知,当t=2(秒)时,OP=4,CQ=2, 在Rt△PCQ 中,由勾股定理得:PC=() 2 2 2 2PQ CQ 252-=-=4, ∴OC=OP+P C=4+4=8。 又∵矩形AOCD ,A (0,4),∴D(8,4)。 t 的取值范围为:0<t <4。 (2)结论:△AEF 的面积S 不变化。 ∵AOCD 是矩形,∴AD∥OE,∴△AQD∽△EQC。 ∴ CE CQ AD DQ =,即CE t 84t =-,解得CE=8t 4t -。 由翻折变换的性质可知:DF=DQ=4-t ,则CF=CD+DF=8-t 。 S=S 梯形AOCF +S △FCE -S △AOE = 12(OA+CF )?OC+12CF?CE-1 2 OA?OE =12 [4+(8-t )]×8+12(8-t )?8t 4t --12×4×(8+8t 4t -)。 化简得:S=32为定值。 所以△AEF 的面积S 不变化,S=32。 (3)若四边形APQF 是梯形,因为AP 与CF 不平行,所以只有PQ∥AF。 由PQ∥AF 可得:△CPQ∽△DAF。

中考数学综合题专题复习【圆】专题解析

中考数学综合题专题复习【圆】专题解析 一.教学内容: 1.圆的内容包括:圆的有关概念和基本性质,直线和圆的位置关系,圆和圆的位置关系,正多边形和圆。 2. 主要定理: (1)垂径定理及其推论。 (2)圆心角、弧、弦、弦心距之间的关系定理。 (3)圆周角定理、弦切角定理及其推论。 (4)圆内接四边形的性质定理及其推论。 (5)切线的性质及判定。 (6)切线长定理。 (7)相交弦、切割线、割线定理。 (8)两圆连心线的性质,两圆的公切线性质。 (9)圆周长、弧长;圆、扇形,弓形面积。 (10)圆柱、圆锥侧面展开图及面积计算。 (11)正n边形的有关计算。 二. 中考聚焦: 圆这一章知识在中考试题中所占的分数比例大约如下表: 圆的知识在中考中所占的比例大,题型多,常见的有填空题、选择题、计算题或证明题,近年还出现了一些圆的应用题及开放型问题、设计型问题,中考的压轴题都综合了圆的知识。 三. 知识框图: 圆 圆的有关性质 直线和圆的位置关系圆和圆的位置关系正多边形和圆 ? ? ? ? ? ? ?

圆的有关性质 圆的定义 点和圆的位置关系(这是重点) 不在同一直线上的三点确定一个圆 圆的有关性质 轴对称性—垂径定理(这是重点) 旋转不变性 圆心角、弧、弦、弦心距间的关系 圆心角定理 圆周角定理(这是重点) 圆内接四边形(这是重点) ? ? ? ? ? ? ? ? ? ? ? ? ? ?? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 直线和圆的位置关系 相离 相交 相切 切线的性质(这是重点) 切线的判定(这是重点) 弦切角(这是重点) 和圆有关的比例线段(这是重点难点) ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 圆和圆的位置关系 外离 内含 相交 相切 内切(这是重点) 外切(这是重点)两圆的公切线 ? ? ? ?? ? ? ? ? ? ? ? ? ? ? ? 正多边形和圆 正多边形和圆 正多边形定义 正多边形和圆 正多边形的判定及性质 正多边形的有关计算(这是重点)圆的有关计算 圆周长、弧长(这是重点) 圆、扇形、弓形面积(这是重点) 圆柱、圆锥侧面展开图(这是重点) ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 【典型例题】 【例1】. 爆破时,导火索燃烧的速度是每秒0.9cm,点导火索的人需要跑到离爆破点120m以外的安全区域。这个导火索的长度为18cm,那么点导火索的人每秒钟跑6.5m是否安全? 分析:爆破时的安全区域是以爆破点为圆心,以120m为半径的圆的外部,如图所示:

中考数学中的最值问题解法(学生版)

中考数学几何最值问题解法 在平面几何的动态问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图 形的周 长或面积、角的度数以及它们的和与差)的最大值或最小值问题,称为最值问题。 解决平面几何最值问题的常用的方法有: (1)应用两点间线段最短的公理 求最值;( 2)应用垂线段最短的性质求最值; ( 3)应用轴对称的性质求最 值; 5)应用其它知识求最值。下面通过近年全国各地中考的实例探讨其解法。 应用两点间线段最短的公理(含应用三角形的三边关系)求最值 例 4. 在△ABC 中,AB =5,AC =3,AD 是 BC 边上的中线,则 AD 的取值范围是 练习题: 1. 如图,长方体的底面边长分别为 2cm 和 4cm ,高为 5cm . 若一只蚂蚁从 P 点开始经 过 4 个侧面爬行一圈到达 Q 点,则蚂蚁爬行的最短路径长为【 】 2. 如图,圆柱的底面周长为 6cm , AC 是底面圆的直径,高 BC=6cm ,点 P 是母线 BC 上一 2 点,且 PC= BC .一只蚂蚁从 A 点出发沿着圆柱体的表面爬行到点 P 的最短距离是 【 】 3 含应用三角形的三边关系) 4)应用二次函数求最值; 典型例题: 例 1. 如图,∠ MON=9°0 ,矩形 ABCD 的顶点 A 、 B 分别在边 OM , 运动时, A 随之在边 OM 上运动, 矩形 ABCD 的形状保持不变,其中 程中,点 D 到点 O 的最大距离为 B . 5 C . 145 5 5 D . 例 2. 在锐角三角形 ABC 中, BC=4 2 ,∠ ABC=45°, BD 平分∠ ABC , M 、 N 分别是 BC 上的动点,则 CM+MN 的最小值是 例 3. 如图, 圆柱底面半径为 2cm ,高为 9 cm ,点 上的点,且 A 、B 在同一母线上,用一棉线从 A 顺着圆柱侧面绕 3 圈到 B ,求棉线 最短为 cm 。 A.13cm B.12cm C.10cm D.8cm ON 上,当 B 在边 ON 上 AB=2,BC=1,运动 过 A 、 B 分别是圆柱两底面圆 周

中考数学压轴题定值问题

【中考数学压轴题】---定值问题 一、乘积、比值类型 1.(2009·株洲)如图,已知△ABC 为直角三角形,∠ACB =90°,AC =BC ,点A 、C 在x 轴上,点B 坐标为(3,m )(m >0),线段AB 与y 轴相交于点D ,以P (1,0)为顶点的抛物线过点B 、D . (1)求点A 的坐标(用m 表示); (2)求抛物线的解析式; (3)设点Q 为抛物线上点P 至点B 之间的一动点,连结PQ 并延长交BC 于点E ,连结BQ 并延长 交AC 于点F ,试证明:FC (AC +EC )为定值. 解析:(1)由(3,)B m 可知3OC =,BC m =,又△ABC 为等腰直角三角形, ∴AC BC m ==,3OA m =-,所以点A 的坐标是(3,0m -). 3分 (2)∵45ODA OAD ∠=∠=? ∴3OD OA m ==-,则点D 的坐标是(0,3m -). 又抛物线顶点为(1,0)P ,且过点B 、D ,所以可设抛物线的解析式为: 2 (1)y a x =-,得: 2 2 (31)(01)3 a m a m ?-=??-=-?? 解得14a m =??=? ∴抛物线的解析式为2 21y x x =-+ ………7分 (3)过点Q 作QM AC ⊥于点M ,过点Q 作QN BC ⊥于点N ,设点Q 的坐标是2 (,21)x x x -+,则2 (1)QM CN x ==-,3MC QN x ==-. ∵//QM CE ∴PQM ?∽PEC ? ∴QM PM EC PC = 即2 (1)12x x EC --=,得2(1)EC x =- ∵//QN FC ∴BQN ?∽BFC ? ∴QN BN FC BC = 即2 34(1)4x x FC ---=,得4 1 FC x = + 又∵4AC =∴444()[42(1)](22)2(1)8111 FC AC EC x x x x x x += +-=+=?+=+++ 即FC (AC +EC )为定值8. …12分 二、定长、定角、定点、定值类型 1.(2011?东营)如图所示,四边形OABC 是矩形,点A 、C 的坐标分别为(﹣3,0),(0,1),点D 是线段BC 上的动点(与端点B 、C 不重合),过点D 作直线y =1 2 x +b 交折线OAB 于点E . (1)记△ODE 的面积为S ,求S 与b 的函数关系式; (2)当点E 在线段OA 上时,且tan ∠DEO =1 2 .若矩形OABC 关于直线DE 的对称图形为四边形 O 1A 1B 1C 1,试探究四边形O 1A 1B 1C 1与矩形OABC 的重叠部分的面积是否发生变化,若不变,求出该重叠部分的面积;若改变,请说明理由. 考点:一次函数综合题。 分析:(1)要表示出△ODE 的面积,要分两种情况讨论,①如果点E 在OA 边上,只需求出这个三角形的底边OE 长(E 点横坐标)和高(D 点纵坐标),代入三角形面积公式即可;②如果点 y x Q P F E D C B A O

中考数学专题复习及练习:最值(二)

2020中考数学复习微专题:最值(“胡不归”问题) 突破与提升策略 【故事介绍】 从前有个少年外出求学,某天不幸得知老父亲病危的消息,便立即赶路回家.根据“两点之间线段最短”,虽然从他此刻位置A 到家B 之间是一片砂石地,但他义无反顾踏上归途,当赶到家时,老人刚咽了气,小伙子追悔莫及失声痛哭.邻居告诉小伙子说,老人弥留之际不断念叨着“胡不归?胡不归?…”(“胡”同“何”) 而如果先沿着驿道AC 先走一段,再走砂石地,会不会更早些到家? 【模型建立】 如图,一动点P 在直线MN 外的运动速度为V 1,在直线MN 上运动的速度为V 2,且V 1

即求BC +kAC 的最小值. 【问题解决】 构造射线AD 使得sin ∠DAN =k ,CH /AC =k ,CH =kAC . 将问题转化为求BC +CH 最小值,过B 点作BH ⊥AD 交MN 于点C ,交AD 于H 点,此时BC +CH 取到最小值,即BC +kAC 最小. 【模型总结】 在求形如“P A +kPB ”的式子的最值问题中,关键是构造与kPB 相等的线段,将“P A +kPB ”型问题转化为“P A +PC ”型. 而这里的PB 必须是一条方向不变的线段,方能构造定角利用三角函数得到kPB 的等线段. M M

1.如图,△ABC 中,AB =AC =10,tan A =2,BE ⊥AC 于点E ,D 是线段BE 上的一 个动点,则CD + 的最小值是_______. 【分析】本题关键在于处理 ”,考虑tan A =2,△ABE 三边之比为1:2 sin ∠,故作DH ⊥AB 交AB 于H 点,则DH =. 问题转化为CD +DH 最小值,故C 、D 、H 共线时值最小,此 时 CD DH CH BE +===. 【小结】本题简单在于题目已经将BA 线作出来,只需分析角度的三角函数值,作出垂线DH ,即可解决问题,若稍作改变,将图形改造如下: 则需自行构造α,如下图,这一步正是解决“胡不归”问题关键所在. A B C D E H E D C B A A B C D E H E D C B

相关主题
文本预览
相关文档 最新文档