当前位置:文档之家› 几个常用函数的导数 说课稿 教案 教学设计

几个常用函数的导数 说课稿 教案 教学设计

几个常用函数的导数  说课稿  教案  教学设计
几个常用函数的导数  说课稿  教案  教学设计

几个常见函数的导数

教学目标:

1.使学生应用由定义求导数的三个步骤推导四种常见函数y c =、y x =、2y x =、1y x

=

的导数公式; 2.掌握并能运用这四个公式正确求函数的导数. 教学重点:四种常见函数y c =、y x =、2

y x =、1y x

=的导数公式; 教学难点:四种常见函数y c =、y x =、2y x =、1y x =的导数公式. 教学过程设计

(一)、情景引入,激发兴趣。

【教师引入】我们知道,导数的几何意义是曲线在某一点处的切线斜率,物理意义是运动物体在某一时刻的瞬时速度.那么,对于函数()y f x =,如何求它的导数呢?

由导数定义本身,给出了求导数的最基本的方法,但由于导数是用极限来定义的,所以求导数总是归结到求极限这在运算上很麻烦,有时甚至很困难,为了能够较快地求出某些函数的导数,这一单元我们将研究比较简捷的求导数的方法,下面我们求几个常用的函数的导数.

【教师过渡】 :“为解决这一问题,我们先研究一些生活中的具体实例”

(二)、探究新知,揭示概念

探究1.函数()y f x c ==的导数

根据导数定义,因为()()0y f x x f x c c x x x

?+?--===??? 所以00

lim lim 00x x y y ?→?→?'===

0y '=表示函数y c =图像

(图3.2-1)上每一点处的切线的斜率都为0.若y c =表示路程关于时间的函数,则0y '=可以解释为某物体的瞬时速度始终为0,即物体一直处于静止状态.

探究2.函数()y f x x ==的导数

因为()()1y f x x f x x x x x x x

?+?-+?-===??? 所以00

lim lim11x x y y x ?→?→?'===?

1y '=表示函数y x =图像

(图3.2-2)上每一点处的切线的斜率都为1.若y x =表示路程关于时间的函数,则1y '=可以解释为某物体做瞬时速度为1的匀速运动.

探究3.函数2

()y f x x ==的导数 因为22

()()()y f x x f x x x x x x x

?+?-+?-==??? 222

2()2x x x x x x x x

+?+?-==+?? 所以00

lim lim(2)2x x y y x x x x ?→?→?'==+?=?

2y x '=表示函数2y x =图像(图3.2-3)上点(,)x y 处的切线的斜率都为2x ,说明随着x 的变化,切线的斜率也在变化.另一方面,从导数作为函数在一点的瞬时变化率来看,表明:当0x <时,随着x 的增加,函数2y x =减少得越来越慢;当0x >时,随着x 的增加,函数2y x =增加得越来越快.若2

y x =表示路程关于时间的函数,则2y x '=可以解释为某物体做变速运动,它在时刻x 的瞬时速度为2x . 探究4.函数1()y f x x

==

的导数 因为11()()y f x x f x x x x x x x -?+?-+?==??? 2()1()x x x x x x x x x x

-+?==-+??+?? 所以220011lim lim()x x y y x

?→?→?'==-=-?

探究5.函数()y f x ==的导数

因为()()y f x x f x x x x ?+?-==???

=

= 所以

0lim lim x x y y x ?→?→?'===?

(2)推广:若*()()n y f x x n Q ==∈,则1()n f x nx -'=

(四)、知识应用,深化理解

例1. 求下列函数的导数.

⑴3x ⑵21

x ⑶x

解:⑴=')(3x 133-x 23x =

⑵='??? ??21x )(2'-x 32--=x 32

x -=

⑶=')(x )(21

'x 12121-=x 2121-=x .21

x =

求下列函数的导数。

(1)5=y (2)x y = (3)2x y = (4)2

y x

=

简单复合函数求导

简单复合函数的导数 一、基础知识梳理: (一)常用的求导公式 11.(),'()0;2.(),'();3.()sin ,'()cos ;4.()cos ,'()sin ;5.(),'()ln (0);6.(),'();1 7.()log ,'()(0,1); ln 8.n n x x x x a f x c f x f x x f x nx f x x f x x f x x f x x f x a f x a a a f x e f x e f x x f x a a x a -========-==>====>≠公式若则公式若则公式若则公式若则公式若则公式若则公式若则且公式若1()ln ,'();f x x f x x == 则 (二)复合函数的求导数公式 若u=u(x),v=v(x)在x 处可导,则 2 )()()()(v v u v u v u u c cu v u v u v u v u v u '-'='' =''+'='?'±'='± (三)复合函数求导法则 1、二重复合:若)(u f y =, )(x u φ= 且)(x u φ=在点x 处可导。 则)()('?'='x u f y φ 2、多次复合函数求导法则类推 二、典型例题分析: 例1、求下列函数的导数; 1)、3 (23)y x =- 2)、ln(51)y x =+

练习:求下列函数的导数 1)、2 (23)y x =+ 2)、3 (13)y x =- 例2、求下列函数的导数; 1)、1 31 y x = - 2)、cos(12)y x =- 练习:求导数; 1)、1ln y x = 2)、2x y e = 3)、求曲线sin 2y x =在点P (,0π)处的切线方程。 例题3 已知(5)5,'(5)3,(5)4,'(5)1f f g g ==== ,根据下列条件 求(5)h 及'(5)h 1)、()3()2()h x f x g x =+ 2)、 ()()()1h x f x g x =+ 3)、()2 ()() f x h x g x +=

《3.3.1函数的单调性与导数》教学案

3.3.1《函数的单调性与导数》教学案 教学目标: 1.了解可导函数的单调性与其导数的关系; 2.能利用导数研究函数的单调性,会求函数的单调区间,对多项式函数一般不超过三次; 教学重点: 利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间 教学难点: 利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间 教学过程: 一.创设情景 函数是客观描述世界变化规律的重要数学模型,研究函数时,了解函数的赠与减、增减的快与慢以及函数的最大值或最小值等性质是非常重要的.通过研究函数的这些性质,我们可以对数量的变化规律有一个基本的了解.下面,我们运用导数研究函数的性质,从中体会导数在研究函数中的作用. 二.新课讲授 1.问题:图3.3-1(1),它表示跳水运动中高度h 随时间t 变化的函数2() 4.9 6.510h t t t =-++的图像,图3.3-1(2)表示高台跳水运动员的速度v 随时间t 变化的函数'()()9.8 6.5v t h t t ==-+的图像. 运动员从起跳到最高点,以及从最高点到入水这两段时间的运动状态有什么区别? 通过观察图像,我们可以发现: (1)运动员从起点到最高点,离水面的高度h 随时间t 的增加而增加,即()h t 是增函数.相应地,'()()0v t h t =>. (2) 从最高点到入水,运动员离水面的高度h 随时间t 的增加而减少,即()h t 是减 函数.相应地,'()()0v t h t =<. 2.函数的单调性与导数的关系 观察下面函数的图像,探讨函数的单调性与其导数正负的关系. 如图3.3-3,导数'0()f x 表示函数()f x 在 点00(,)x y 处的切线的斜率. 在0x x =处,'0()0f x >,切线是“左下右上”式的,

简单复合函数的导数

简单复合函数的导数 1. 函数f(x)=cos(?2x)的导函数是( ) A.2cos2x B.?2cos2x C.2sin2x D.?2sin2x 2. 已知函数f(x)=e2x+1?3x,则f′(0)=( ) A.0 B.?2 C.2e?3 D.e?3 3. 设函数f(x)=?cos x?x4的导函数为g(x),则|g(x)|的图象大致是( ) A. B. C. D. 4. 设f(x)=sin x cos x,则f(x)在点(π 6,f(π 6 ))处的切线的斜率为( ) A.1 2B.√3 2 C.?1 2 D.?√3 2 5. 函数f(x)=ln x x ,则f′(e)值为( ) A.0 B.1 C.1 e D.1 e2 6. 若函数f(x)=(2x?x2)e x的导数为f′(x),则f′(x)=() A.2(x+1)e x B.(2?x2)e x C.(2+x?x2)e x D.2(x?1)e x 7. 已知函数f(x)=x3?2x2+x?3,则f′(2)=( ) A.?1 B.5 C.4 D.3 8. 已知函数,则的导函数() A. B. C. D. 9. 函数y=x2sin x的导函数为________. 10. 函数f(x)的导数为f′(x),且f(x)=x2+2f′(0)x+tan x,则f′(0)+f(0)=________. 11. 设函数f(x)=x2+1 e x . (1)求f(x)的导数f′(x);

(2)求曲线y=f(x)在点(0,f(0))处的切线方程. 12. 求下列函数的导数: (1)f(x)=x3+6x?2 ; x (2)f(x)=cos x ; e x x. (3)f(x)=(x?1)2log 2 13. 已知函数f(x)=(2x?1)2+5x. (1)求f′(x); (2)求曲线y=f(x)在点(2,19)处的切线方程.14. 分别求下列函数的导数. (1)y=e x ; x (2)y=(2x2?1)(2x+1)+2sin x?cos x.

三次函数与导数--例题与练习答案

三次函数与导数例题与练习答案 例1.(14全国大纲卷文21,满分12分)函数32()33(0)f x ax x x a =++≠. (1)讨论函数()f x 的单调性; (2)若函数()f x 在区间(1,2)是增函数,求a 的取值范围. 解:(Ⅰ)2()363f x ax x '=++,2 ()3630f x ax x '=++=的判别式△=36(1-a ). (ⅰ)当a ≥1时,△≤0,则()0f x '≥恒成立,且()0f x '=当且仅当1,1a x ==-,故此时()f x 在R 上是增函数. (ⅱ)当1a <且0a ≠,时0>?,()0f x '= 有两个根:12x x = = , 若01a <<,则12x x <, 当2(,)x x ∈-∞或1(,)x x ∈+∞时,()0f x '>,故()f x 在 21(,),(,)x x -∞+∞上是增函数;当21(,)x x x ∈时,()0f x '<,故()f x 在21(,)x x 上是减函数; 若0,故()f x 在),(21x x 上是增函数; (Ⅱ)当0>a 且0>x 时, 0363)(2 >++='x ax x f ,所以 当0a >时,()f x 在区间(1,2)是增函数. 当0a <时, ()f x 在区间(1,2)是增函数,当且仅当(1)0f '≥且(2)0f '≥,解得5 04 a - ≤<. 综上,a 的取值范围是5 [,0)(0,)4 -+∞U . 例2.(14安徽文数 20)(本小题满分13分) 设函数23()1(1)f x a x x x =++--,其中0a >。(1)讨论()f x 在其定义域上的单调性; (1) 当[0,1]x ∈时,求()f x 取得最大值和最小值时的x 的值. (Ⅰ) ()f x 的定义域为(,)-∞+∞,2 ()123f x a x x '=+-- 令()0f x '=,得121211,33 x x x x --+= =< 所以12()3()()f x x x x x '=--- 当1x x <或2x x >时,()0f x '<;当12x x x <<时,()0f x '>, 故()f x 在12(,)(,)x x -∞+∞和内单调递减,在12(,)x x 内单调递增 (Ⅱ)因为0a >,所以120,0x x <> (ⅰ)当4a ≥时,21x ≥,由(Ⅰ)知,()f x 在[0,1]上单调递增, 所以()f x 在 0x =和1x =处分别取得最小值和最大值 (ⅱ)当04a <<时,21x <,由(Ⅰ)知,()f x 在[0,2x ]上单调递增,在[2x ,1] 上单调递减,因此()f x 在213 x x -+==处取得最大值 又(0)1,(1)f f a ==,所以 当01a <<时,()f x 在1x =处取得最小值; 当1a =时,()f x 在0x =和1x =处同时取得最小值; 当04a <<时,()f x 在0x =处取得最小值。 例4.(14年天津文科19,满分14分)已知函数232 ()(0),3 f x x ax a x R =->∈ (1) 求()f x 的单调区间和极值;(2)若对于任意的1(2,)x ∈+∞,都存在 2(1,)x ∈+∞,使得12()()1f x f x ?=,求a 的取值范围 解:(Ⅰ)由已知,有2 ()22(0)f x x ax a '=->

函数的极值与导数优秀教学设计

函数的极值与导数教学设计 【内容分析】 本节内容选自人民教育出版社A版的理科选修2-2或者文科选修1-1的导数及其应用的内容,这些是在学生学习了函数的单调与导数的下一节课的内容,函数是描述客观世界变化规律的重要数学模型,而导数是研究函数的最有效的工具,运用导数研究函数的性质,从中可以体会到导数在研究函数中的巨大作用. 【学情分析】 在高一就学习了函数的最大(小)值,这与本小节所要研究的对象——函数极值有着本质区别的,学生容易产生混淆,易把极大值当做最大值,极小值当做最小值.在认识理解导数大小与函数单调性的关系后,结合函数图像直观地引入函数极值的概念,强化极值是描述函数局部特征的概念,使得学生对极值与最值的概念区分开来,也为下节“函数的最值与导数”做好铺垫. 【教学目标】 (1)理解极大值、极小值的概念. (2)能够运用判别极大值、极小值的方法来求函数的极值. (3)掌握求可导函数的极值的步骤 【教学重点】 极大、极小值的概念和判别方法,以及求可导函数的极值的步骤. 【教学难点】 极大、极小值概念的理解,熟悉求可导函数的极值的步骤 【学法指导】阅读自学、探究交流、合作展示. 【数学思想】数形结合、合情推理. 【知识百科】 1.函数的最值 函数最值一般分为函数最小值与函数最大值.简单来说,最小值即定义域中函数值的最小值,最大值即定义域中函数值的最大值.函数最大(小)值的几何意义---函数图像的最高(低)点的纵坐标即为该函数的最大(小)值. 2.函数的极值 函数在其定义域的某些局部区域所达到的相对最大值或相对最小值.当函数在其定义域的某一点的值大于该点周围任何点的值时,称函数在该点有极大值;当函数在其定义域的某一点的值小于该点周围任何点的值时,称函数在该点有极小值.这里的极大值和极小值只具有局部意义.函数极值点的几何意义---函数图像的某段子区间内上极

复合函数的求导法则(导案)

当堂检测 1.根据基本初等函数的导数公式和导数运算法则,求下列函数的导数. (1)4 x x y = ; (2)1ln 1ln x y x -=+. (3)2(251)x y x x e =-+?; (4)sin cos cos sin x x x y x x x -=+ 解: (1)''''224(4)144ln 41ln 4()4(4)(4)4 x x x x x x x x x x x x x y ?-??-?-====, '1ln 44x x y -=。 (2)''''221 1ln 212()(1)2()21ln 1ln 1ln (1ln )(1ln ) x x y x x x x x x -==-+==?=+++++ '2 2(1ln )y x x =+ (3)'2'2'(251)(251)()x x y x x e x x e =-+?+-+? 22(45)(251)(24)x x x x e x x e x x e =-?+-+?=--?, '2(24)x y x x e =--?。 (4)''sin cos ()cos sin x x x y x x x -=+ '' 2(sin cos )(cos sin )(sin cos )(cos sin )(cos sin ) x x x x x x x x x x x x x x x -?+--?+=+ 2 (cos cos sin )(cos sin )(sin cos )(sin sin s )(cos sin )x x x x x x x x x x x x xco x x x x -+?+--?-++= + 2 sin (cos sin )(sin cos )s (cos sin )x x x x x x x x xco x x x x ?+--?=+ 2 2 (cos sin )x x x x =+。 2 ' 2(cos sin )x y x x x =+

数学选择性必修二 第五章 5.2.3 简单复合函数的导数

5.2.3简单复合函数的导数 学习目标 1.进一步运用导数公式和导数运算法则求函数的导数.2.了解复合函数的概念,掌握复合函数的求导法则. 知识点复合函数的导数 1.复合函数的概念 一般地,对于两个函数y=f(u)和u=g(x),如果通过中间变量u,y可以表示成x的函数,那么称这个函数为函数y=f(u)和u=g(x)的复合函数,记作y=f(g(x)). 思考函数y=log2(x+1)是由哪些函数复合而成的? 答案函数y=log2(x+1)是由y=log2u及u=x+1两个函数复合而成的. 2.复合函数的求导法则 一般地,对于由函数y=f(u)和u=g(x)复合而成的函数y=f(g(x)),它的导数与函数y=f(u),u=g(x)的导数间的关系为y′x=y′u·u′x,即y对x的导数等于y对u的导数与u对x的导数的乘积. 1.y=cos 3x由函数y=cos u,u=3x复合而成.(√) 2.函数f(x)=sin(2x)的导数为f′(x)=cos 2x.(×) 3.函数f(x)=e2x-1的导数为f′(x)=2e2x-1.(√) 一、求复合函数的导数 例1求下列函数的导数: (1)y=1 (1-3x)4 ; (2)y=cos(x2); (3)y=log2(2x+1); (4)y=e3x+2. 解(1)令u=1-3x,则y=1 u4=u -4, 所以y′u=-4u-5,u′x=-3. 所以y′x=y′u·u′x=12u-5= 12 (1-3x)5 .

(2)令u =x 2,则y =cos u , 所以y ′x =y ′u ·u ′x =-sin u ·2x =-2x sin(x 2). (3)设y =log 2u ,u =2x +1, 则y x ′=y u ′u x ′=2u ln 2=2 (2x +1)ln 2. (4)设y =e u ,u =3x +2, 则y x ′=(e u )′·(3x +2)′ =3e u =3e 3x + 2. 反思感悟 (1)求复合函数的导数的步骤 (2)求复合函数的导数的注意点:①分解的函数通常为基本初等函数;②求导时分清是对哪个变量求导;③计算结果尽量简洁. 跟踪训练1 求下列函数的导数: (1)y = 1 1-2x ; (2)y =5log 2(1-x ); (3)y =sin ????2x +π3. 解 (1)() 12 =12,y x -- 设y =12 u -,u =1-2x , 则y ′x =()1212u 'x '?? - ???- ()32212u -?? -? ??? =- ()32 =12x .- - (2)函数y =5log 2(1-x )可看作函数y =5log 2u 和u =1-x 的复合函数, 所以y ′x =y ′u ·u ′x =5(log 2u )′·(1-x )′ = -5u ln 2=5 (x -1)ln 2 .

用导数研究三次函数

用导数研究三次函数 一、知识点解析 1定义: 定义1、形如y =ax3?bx2? CX ?d(a =0)的函数,称为“三次函数”。 定义2、三次函数的导函数为二次函数:f / (x) = 3ax2 2bx c(a = 0),我们把 2 2 =4b -12ac=4(b -3ac),叫做三次函数导函数的判别式。 2、三次函数图象与性质的探究: 1、单调性 2 3 2 一般地,当b -3ac二0时,三次函数y = ax bx ?cχ?d(a=0)在R上是单调函数;当b -3ac 0时,三次函数y = ax bx CX d(a 0)在R上有三个单调区间。 2、对称中心 3 2 三次函数f (x) = ax bx CX d (^?-z 0)是关于点对称,且对称中心为点 b b (—I f (—)),此点的横坐标是其导函数极值点的横坐标。 3a 3a y= f(x)图象的对称中心在导函数y=∕'O)的对称轴上,且又是两个极值点的中点, 同时也是二阶导为零的点。 3、三次方程根的问题 (1)当.?, =b2 _3ac乞0时,由于不等式「(X)恒成立,函数是单调递增的,所以原方程仅有一个实根。 ■ 0时,由于方程f(X)= 0有两个不同的实根x1, X2,不妨设 (2)当厶=b2 _3ac X i :::x2, 可知,(χ1,f(χj)为函数的极大值点,(X2, f(x2))为极小值点,且函数y = f(x)在(」:,X1)和(x2, ■--)上单调递增,在"x1,x2 I上单调递减。 此时: ①若f (x1) f (x2) 0 ,即函数y = f (x)极大值点和极小值点在X轴同侧,图象均与X轴只有一个交点,所以原方程有且只有一个实根。 ②若f (χ1) f (χ2) :::0 ,即函数y = f (x)极大值点与极小值点在X轴异侧,图象

导数与函数的单调性教学设计

《导数与函数的单调性》教学设计 【课题】导数与函数的单调性 【课时】1课时 【教材分析】 导数与函数的单调性是人教版选修2-2第三章第一节的内容。函数单调性是高中阶段刻划函数变化的一个最基本的性质。在高中数学课程中,对于函数单调性的研究分成两个阶段:第一个阶段是用定义研究单调性,知道它的变化趋势,是高一需要了解的知识点;第二阶段用导数的性质研究单调性,知道它的变化快慢,是高二需要掌握的知识内容。 在学习本节课之前学生已经学习了导数、函数及函数单调性等概念,对单调性有了一定的感性和理性的认识,同时在第二章中已经学习了导数的概念,对导数有了一定的知识储备。 函数的单调性是高中数学中极为重要的一个知识点。以前学习了利用函数单调性的定义、函数的图象来研究函数的单调性,学习了导数以后,利用导数来研究函数的单调性,是导数在研究处理函数性质问题中的一个重要应用。同时,在本章第二节要学习利用导数研究函数的极值,学习了导数研究函数的单调性,对于研究利用导数求函数的极值有重要的帮助。因此,学习本节内容具有承上启下的作用。【学情分析】 课堂学生为高二年级的的学生,学生基础一般,高一阶段对于单调性概念的理解不够准确且现在早已忘记;同时导数是高中学生新接触的概念,如何将导数与函数的单调性联系起来是一个难点。 在本节课之前学生已经学习了导数的概念、导数的几何意义和导数的四则运算,初步接触了导数在几何中的简单应用,但对导数的应用还仅停留在表面上。本节课应着重让学生通过探究来研究利用导数判定函数的单调性。 【教学目标】 知识与能力: 一是能探索并应用函数的单调性与导数的关系求单调区间;二是掌握判断函数单调性的方法;三是能由导数信息绘制函数大致图象。 过程与方法: 通过利用导数研究单调性问题的研究过程,体会从特殊到一般的、数形结合的研究方法。 情感态度与价值观: (1)通过导数方法研究单调性问题,体会到不同数学知识间的内在联系,认识到数学是一个有机整体。 2)通过导数研究单调性的基本步骤(即算法)的形成和使用,使得学生认识到导数使得一些复杂的问题就变得有矩可循,因而认识到导数的实用价值。 【教学重点】

导数与函数的单调性 省优质课教学设计

《导数与函数的单调性》教学设计 教材分析:《导数与函数的单调性》是北师大版选修2-2第三章1.1节的内容,也是高考的重点内容之一。本节内容的学习与掌握有助于学生深入的研究函数的性质,尤其借助导数知识求解函数的单调区间起到推波助澜的作用。学生已经掌握了基本的求导公式和导数的四则运算规则,对于导数也有了初步认识,通过本节课的学习,是学生认识到导数可以作为一种工具来进一步研究函数,对于求解较复杂函数的单调区间是一个捷径。 教学目标: 1.知识与技能: 理解导数与函数单调性的关系,会用导数法确定函数的单调区间,能确定函数的大致图像。 2.过程与方法: (1)通过导数与函数单调性关系的探究过程,体会从特殊到一般、数形结合的思想方法。 (2)通过导数法求单调区间基本步骤的形成,体会算法思想。 3.情感、态度与价值观: 通过导数法求单调区间,体会不同数学知识间的内在联系,体会导数的实用价值。 教学重点:函数单调性的判定和单调区间的求法 教学难点:理解为何将导数与函数单调性联系起来 教法学法: 1、教法:整堂课围绕“一切为了学生发展”的教学原则,突出①动--师生互动、共同探索;②导--教师指导、循序渐进 (1)新课引入--较简单的数学问题引入,帮助学生联想。 (2)理解导数的内涵,组织学生自主探索,获得用函数的导数判断函数单调性的法则。 (3)例题处理--始终从问题出发,层层设疑,让他们在探索中自得知识。 (4)练习--深化对用函数的导数判断函数单调性的法则内涵的理解,巩固新知识。 2、学法: (1)合作学习:引导学生分组讨论,合作交流,共同探讨问题。 (2)自主学习:引导学生动口、动脑、参与数学活动。 (3)探究学习:引导学生发挥主观能动性,主动探索新知。

1.3.1函数的单调性与导数教案

1.3.1函数的单调性与导数教案 谷城一中杨超 教学目标 1.正确理解利用导数判断函数的单调性的原理; 2.掌握利用导数判断函数单调性的方法 教学重点:探索函数的单调性与导数的关系,求单调区间. 教学难点:利用导数判断函数的单调性 教学过程 一.回顾与思考 1、函数单调性的定义是什么? 2、判断函数的单调性有哪些方法?比如判断y=x2的单调性,如何进行?(分别用定义法、图像法完成) 3、函数x =怎么判断单调性呢?还有其他方法吗? 22+ x y ln 二.新知探究函数的单调性与导数之间的关系 【情景引入】函数是客观描述世界变化规律的重要数学模型,研究函数时,了解函数的增与减、增减的快与慢以及函数的最大值或最小值等性质是非常重要的.通过研究函数的这些性质,我们可以对数量的变化规律有一个Array基本的了解.函数的单调性与函数的导数一样都是反 映函数变化情况的,那么函数的单调性与函数的导数 是否有着某种内在的联系呢? 【思考】如图(1),它表示跳水运动中高度h随 时间t变化的函数2 =-++的图像,图 h t t t () 4.9 6.510 (2)表示高台跳水运动员的速度v随时间t变化的函 数' ==-+的图像.运动员从起跳到最 v t h t t ()()9.8 6.5 高点,以及从最高点到入水这两段时间的运动状态有什么区别? 【引导】随着时间的变化,运动员离水面的高度的变化有什么趋势?是逐渐增大还是逐步减小? 【探究】通过观察图像,我们可以发现: (1)运动员从起点到最高点,离水面的高度h随时间t的增加而增加,即() h t是增函数.相应地,' =>. v t h t ()()0 Array(2)从最高点到入水,运动员离水面的 高h随时间t的增加而减少,即() h t是减函 数.相应地' v t h t ()()0 =<, 【思考】导数的几何意义是函数在该点 处的切线的斜率,函数图象上每个点处的切 线的斜率都是变化的,那么函数的单调性与

1.3.1函数的单调性与导数教案

§1.3.1函数的单调性与导数 【教学目标】 1.正确理解利用导数判断函数的单调性的原理; 2.掌握利用导数判断函数单调性的方法。 【教学重点】利用导数判断函数单调性。 【教学难点】利用导数判断函数单调性。 【内容分析】 以前,我们用定义来判断函数的单调性. 对于任意的两个数x 1,x 2∈I ,且当x 1<x 2时,都有f (x 1)<f (x 2),那么函数f (x )就是区间I 上的增函数. 对于任意的两个数x 1,x 2∈I ,且当x 1<x 2时,都有f (x 1)>f (x 2),那么函数f (x )就是区间I 上的减函数。 在函数y=f(x)比较复杂的情况下,比较f(x 1)与f(x 2)的大小并不很容易. 如果利用导数来判断函数的单调性就比较简单。 【教学过程】 一、复习引入 1. 常见函数的导数公式: 0'=C ;1)'(-=n n nx x ;x x cos )'(sin =;x x sin )'(cos -=. 2.法则1 )()()]()([' ' ' x v x u x v x u ±=±. 法则2 [()()]'()()()'()u x v x u x v x u x v x '=+, [()]'()Cu x Cu x '=. 法则3 ' 2 '' (0)u u v uv v v v -??=≠ ??? . 3.复合函数的导数:设函数u =?(x )在点x 处有导数u ′x =?′(x ),函数y =f (u )在点x 的对应点u 处有导数y ′u =f ′(u ),则复合函数y =f (? (x ))在点x 处也有导数,且x u x u y y '''?= 或f ′x (? (x ))=f ′(u ) ?′(x ). 4.复合函数求导的基本步骤是:分解——求导——相乘——回代. 5.对数函数的导数: x x )'(ln = e x x a a log 1 )'(log =. 6.指数函数的导数:x x e e =)'(; a a a x x ln )'(=. 二、讲解新课 1. 函数的导数与函数的单调性的关系: 我们已经知道,曲线y=f(x)的切线的斜率就是函数y=f(x)的导数.从函数 342+-=x x y 的图像 可以看到: 在区间(2,∞+)内,切线的斜率为正,函数y=f(x) 的 y =f (x )=x 2-4x +3 切线的斜率 f ′(x ) (2,+∞) 增函数 正 >0 (-∞,2) 减函数 负 <0 3 2 1 f x () = x 2-4?x ()+3 x O y B A

高三数学复习教案:简单复合函数的导数

高三数学复习教案:简单复合函数的导数 【高考要求】:简单复合函数的导数(B). 【学习目标】:1.了解复合函数的概念,理解复合函数的求导法则,能求简单的复合函数(仅限于形如f(ax+b))的导数. 2.会用复合函数的导数研究函数图像或曲线的特征. 3.会用复合函数的导数研究函数的单调性、极值、最值. 【知识复习与自学质疑】 1.复合函数的求导法则是什么? 2.(1)若,则 ________.(2)若,则 _____.(3)若,则 ___________.(4)若,则 ___________. 3.函数在区间_____________________________上是增函数, 在区间__________________________上是减函数. 4.函数的单调性是_________________________________________. 5.函数的极大值是___________. 6.函数的值,最小值分别是______,_________. 【例题精讲】 1. 求下列函数的导数(1) ;(2) . 2.已知曲线在点处的切线与曲线在点处的切线相同,求的值. 【矫正反馈】 1.与曲线在点处的切线垂直的一条直线是___________________. 2.函数的极大值点是_______,极小值点是__________.

(不好解)3.设曲线在点处的切线斜率为 ,若 ,则函数的周期是 ____________. 4.已知曲线在点处的切线与曲线在点处的切线互相垂直, 为原点,且 ,则的面积为______________. 5.曲线上的点到直线的最短距离是___________. 【迁移应用】 1.设 , , 若存有 ,使得 ,求的取值范围. 2.已知 , ,若对任意都有 ,试求的取值范围.

函数的极值与导数(教案

1.3.2 函数的极值与导数(教案) 一、教学目标 1 知识与技能 〈1〉结合函数图象,了解可导函数在某点取得极值的必要条件和充分条件 〈2〉理解函数极值的概念,会用导数求函数的极大值与极小值 2过程与方法 结合实例,借助函数图形直观感知,并探索函数的极值与导数的关系。 3情感与价值 感受导数在研究函数性质中一般性和有效性,通过学习让学生体会极值是函数的局部性质,增强学生数形结合的思维意识。 二、重点:利用导数求函数的极值 难点:函数在某点取得极值的必要条件与充分条件 三、教学基本流程 四、教学过程 〈一〉、创设情景,导入新课 1、通过上节课的学习,导数和函数单调性的关系是什么?

(提高学生回答) 2.观察图1.3.8 表示高台跳水运动员的高度h 随时间t 变化的函数 ()h t =-4.9t 2 +6.5t+10的图象,回答 以下问题 (1)当t=a 时,高台跳水运动员距水面的高度最大,那么函数()h t 在t=a 处的导数是多少呢? (2)在点t=a 附近的图象有什么特点? (3)点t=a 附近的导数符号有什么变化规律? 共同归纳: 函数h(t)在a 点处h /(a)=0,在t=a 的附近,当t <a 时,函数()h t 单调递增, ()'h t >0;当t >a 时,函数()h t 单调递减, ()'h t <0,即当t 在a 的附近从小到大经过a 时, ()'h t 先正后负,且()'h t 连续变化,于是h /(a)=0. 3、对于这一事例是这样,对其他的连续函数是不是也有这种性质呢? <二>、探索研讨 1、观察1.3.9图所表示的y=f(x)的图象,回答以下问题: a o h t

高中数学 第一章 导数及其应用 1.2.3 简单复合函数的导数习题 苏教版选修2-2

1.2.3 简单复合函数的导数 明目标、知重点 1.了解复合函数的概念,掌握复合函数的求导法则.2.能够利用复合函数的求导法则,并结合已经学过的公式、法则进行一些复合函数的求导(仅限于形如f(ax+b)的导数). 1.复合函数的概念 一般地,对于两个函数y=f(u)和u=g(x),如果通过变量u,y可以表示成x的函数,那么称这个函数为y=f(u)和u=g(x)的复合函数,记作y=f(g(x)). 2.复合函数的求导法则 复合函数y=f(g(x))的导数和函数y=f(u),u=g(x)的导数之间的关系为y x′=y u′·u x′.即y对x的导数是y对u的导数与u对x的导数的乘积. 探究点一复合函数的定义 思考1 观察函数y=2x cos x及y=ln(x+2)的结构特点,说明它们分别是由哪些基本函数组成的? 答y=2x cos x是由u=2x及v=cos x相乘得到的;而y=ln(x+2)是由u=x+2与y=ln u(x>-2)经过“复合”得到的,即y可以通过中间变量u表示为自变量x的函数,所以y=ln(x+2)称为复合函数. 思考2 对一个复合函数,怎样判断函数的复合关系? 答复合函数是因变量通过中间变量表示为自变量的函数的过程.在分析时可以从外向里出发,先根据最外层的主体函数结构找出y=f(u);再根据内层的主体函数结构找出函数u=g(x),函数y=f(u)和u=g(x)复合而成函数y=f(g(x)). 思考3 在复合函数中,内层函数的值域A与外层函数的定义域B有何关系? 答A?B. 小结要特别注意两个函数的积与复合函数的区别,对于复合函数,要掌握引入中间变量,将其分拆成几个基本初等函数的方法. 例1 指出下列函数是怎样复合而成的: (1)y=(3+5x)2;(2)y=log3(x2-2x+5); (3)y=cos 3x. 解(1)y=(3+5x)2是由函数y=u2,u=3+5x复合而成的; (2)y=log3(x2-2x+5)是由函数y=log3u,u=x2-2x+5复合而成的;

第07讲(三次函数的导数问题)(原卷版)

第07讲(三次函数的导数问题) 【目标导航】 运用三次函数的图像研究零点问题, 三次函数的单调性问题, 三次函数的极值与最值问题。 【例题导读】 例1、若13 x 3-x 2+ax -a =0只有一个实数根,求实数a 的取值范围. 例2、 已知函数f (x )=13x 3-k +12x 2,g (x )=13 -kx ,若函数f (x )与g (x )的图象有三个不同的交点,求实数k 的取值范围. 例3、设函数f (x )=13x 3-a 2x 2+1,其中a >0,若过点(0,2)可作曲线y =f (x )的三条不同切线,求实数a 的取值范围. 例4、已知函数f (x )=14 x 3-x 2+x . (1)求曲线y =f (x )的斜率为1的切线方程; (2)当x ∈[-2,4]时,求证:x -6≤f (x )≤x ; (3)设F (x )=|f (x )-(x +a )|(a ∈R ),记F (x )在区间[-2,4]上的最大值为M (a ).当M (a )最小时,求a 的值. 例5、已知函数f(x)=?????-x 3+x 2,x<0,e x -ax ,x≥0,其中常数a ∈R . (1) 当a =2时,求函数f (x )的单调区间; (2) 若方程f (-x )+f (x )=e x -3在区间(0,+∞)上有实数解,求实数a 的取值范围;

例6、已知函数32()1f x x ax bx a b =+++∈,,R . (1)若20a b +=, ① 当0a >时,求函数()f x 的极值(用a 表示); ② 若()f x 有三个相异零点,问是否存在实数a 使得这三个零点成等差数列?若存在,试求出a 的值;若不存在,请说明理由; 例7、已知函数32()1(0,)f x x ax bx a b =+++>∈R 有极值,且导函数'()f x 的极值点是()f x 的零点.(极值点是指函数取极值时对应的自变量的值) (1)求b 关于a 的函数关系式,并写出定义域; (2)证明:33b a >; (3)若(),'()f x f x 这两个函数的所有极值之和不小于72 -,求a 的取值范围. 例8、已知函数f(x)=2x 3-3(a +1)x 2+6ax ,a ∈R . (1) 曲线y =f (x )在x =0处的切线的斜率为3,求a 的值; (2) 若对于任意x ∈(0,+∞),f (x )+f (-x )≥12ln x 恒成立,求a 的取值范围; (3) 若a >1,设函数f (x )在区间[1,2]上的最大值、最小值分别为M (a ),m (a ),记h (a )=M (a )-m (a ),求h (a )的最小值.

《函数的极值与导数》教学设计

3.3.2 函数的极值与导数教学设计 一、教学目标 1 知识与技能 〈1〉结合函数图象,了解可导函数在某点取得极值的必要条件和充分条件 〈2〉理解函数极值的概念,会用导数求函数的极大值与极小值 2过程与方法 结合实例,借助函数图形直观感知,并探索函数的极值与导数的关系。 3情感与价值 感受导数在研究函数性质中一般性和有效性,通过学习让学生体会极值是函数的局部性质,增强学生数形结合的思维意识。 二、重点:利用导数求函数的极值 难点:函数在某点取得极值的必要条件与充分条件 三、教学基本流程 四、教学过程 〈一〉、创设情景,导入新课 1、通过上节课的学习,导数和函数单 调性的关系是什么? (提问学生回答)

2.观察图1.3.8 表示高台跳水运动员的高度h 随时间t 变化的函数()h t =-4.9t 2+6.5t+10的图象,回答以下问题 (1)当t=a 时,高台跳水运动员距水面的高度最大,那么函数()h t 在t=a 处的导数是多少呢? (2)在点t=a 附近的图象有什么特点? (3)点t=a 附近的导数符号有什么变化规律? 共同归纳: 函数h(t)在a 点处h /(a)=0,在t=a 的附近,当t <a 时,函数()h t 单调递增, ()'h t >0;当t >a 时,函数()h t 单调递减, ()'h t <0,即当t 在a 的附近从小到大经过a 时, ()'h t 先正后负,且()'h t 连续变化,于是h /(a)=0. 3、对于这一事例是这样,对其他的连续函数是不是也有这种性质呢? <二>、探索研讨 1、观察1.3.9图所表示的y=f(x)的图象,回答以下问题: (1)函数y=f(x)在a.b 点的函数值与这些点附近的函数值有什么关系? (2) 函数y=f(x)在a.b.点的导数值是多少? (3)在a.b 点附近, y=f(x)的导数的符号分别是什么,并且有什么关系呢? a o h t

5.简单复合函数的求导法则导学案

主备人: 审核: 包科领导: 年级组长: 使用时间: §5简单复合函数的求导法则 【学习目标】 1、理解复合函数的概念,了解简单复合函数的求导法则; 2、会用简单复合函数的求导法则求一些复合函数的导数。 【重点、难点】 重点:简单复合函数的求导法则; 难点:复合函数的导数。 【使用说明与学法指导】 1、根据学习目标,自学课本内容,限时独立完成导学案; 1、用红笔勾画出疑难点,提交小组讨论; 【自主探究】 1.复合函数 对两个函数)(x f y =和)(x g y =,如果通过变量u ,y 表示成______的函数,我们称这个函数为函数)(x f y =和)(x g y =的复合函数,记作,_________其中为________变量. 2.复合函数的导数 如果函数)(x f 、)(x u 有导数,那么_____='x y 【合作探究】 求下列函数的导数 (1)82)21(x y += (2)33x x y += (3))(cos 2b ax y += (4) )12ln(+-=x y 1、 )ln 1(2x xe y x += (6)x x y -+=11ln 2、曲线x e y x 3cos 2=在)1,0(处的切线与直线l 的距离为5,求直线l 的方程。 3、已知函数2()(2)2x f x ln x a =--,a 为常数。(1)求(3)f '的值;(2)当3x =时,曲线() y f x =在点0(3)y ,处的切线经过点(11)--,,求a 的值。 【巩固提高】 1、求下列函数的导数

(1)y = 2)13(1-x (2)y =21sin2x +sin x (3)y =sin 3(3x +4π) (4)22cos 53sin x x y += 2、已知,)1()(102x x x f ++=求)0()0(f f ' 3、已知曲线23-+=x x y 在点0P 处的切线1l 平行直线014=--y x ,且点0P 在第三象限 (1)求点0P 的坐标 (2)若直线1l l ⊥,且l 也过切点0P ,求直线l 的方程。 【课堂小结】

高中数学_函数的极值与导数教学设计学情分析教材分析课后反思

《离散随机变量的均值》教学设计 课程内容:普通高中人教A版(数学选修2-2)第二章第6节第一课时《函数的极值与导数》。 一.教材分析 本节课选自高中数学人教A版选修2-2教材1.3.2 函数的极值与导数,就本册教材而言本节既是前面所学导数的概念、导数的几何意义、导数的计算、函数的单调性与导数等内容的延续和深化,又为下节课最值的学习奠定了知识与方法的基础,起着承上启下的作用.就整个高中教学而言,函数是高中数学主要研究的内容之一,而导数又是研究函数的主要工具,同时导数在化学、物理中都有所涉及可见它的重要性. 二.教学目标 1. 了解极大值、极小值的概念,体会极值是函数的局部性质; 2. 了解函数在某点取得极值的必要条件与充分条件; 3. 会用导数求函数的极值; 4. 培养学生观察、分析、探究、推理得出数学概念和规律的学习能力; 5. 感受导数在研究函数性质中的一般性和有效性,体会导数的工具作用. 三.重点与难点 重点是会用导数求函数的极值. 难点是导函数的零点是函数极值点的必要不充分条件的理解. 四.学情分析 基于本班学生基础较差,思维水平参差不齐,所以备课上既要考虑到薄弱同学的理解与接受,又要考虑到其他同学视野的拓展,因此在本节课中我设置了许多的问题,来引导学生怎样学,以问答的方式来激发学生的学习兴趣,同时让更多的学生参与到教学中来.学生已经学习了函数的单调性与导数的关系,学生已经初步具备了运用导数研究函数的能力,为了进一步培养学生的这种能力,体会导数的工具作用,本节进一步研究函数的极值与导数. 五.教具教法 多媒体、展台,问题引导、归纳、类比、合作探究发现式教学 六.学法分析 借助多媒体辅助教学,通过观察函数图像分析极值的特征后,得出极值的定义;通过函数图像上极值点及两侧附近导数符号规律的探究,归纳出极值与导数的关系;通过求极值的问题归纳用导数求函数极值的方法与步骤. 七、教学基本流程

函数的单调性与导数教学设计

《函数的单调性与导数》教学设计 教材分析 1、内容分析 导数是微积分的核心概念之一,是高中数学教材新增知识,在研究函数性质时有独到之处,体现了现代数学思想.本节的教学内容属导数的应用,是在学习了导数的概念、运算和几何意义的基础上学习的内容.学好它既可加深对导数的理解,又为研究函数的极值和最值打下了基础. 由于学生在高一已经掌握了函数单调性的定义,并会用定义判定函数在给定区间上的单调性.通过本节课的学习应使学生体验到,用导数判断函数的单调性比用定义要简捷的多(尤其对于三次和三次以上的多项式函数,或图像难以画出的函数而言),充分展示了导数的优越性. 2、学情分析 在必修一中,学生学习了单调函数的定义,并会用定义判断或证明函数在给定区间上的单调性,在前几节,学生学习了导数的概念、几何意义及运算法则,已经掌握了利用导数研究函数单调性的必备知识. 用定义证明函数在给定区间的单调性的方法是作差、变形、判断符号.而对大部分函数而言,变形环节是非常繁琐,甚至是无法做到的,并且不清楚“给定区间”是如何给出的,这就要求同学们积极探索更好的方法来判断函数的单调性和探求函数的单调区间,以此来激发学生的学习兴趣. 教学目标 依据新课标纲要和学生已有的认知基础和本节的知识特点,我制定了以下教学目标: 1、知识与技能目标: 借助于函数的图象了解函数的单调性与导数的关系;培养学生的观察能力、归纳能力,增强数形结合的思维意识.

2、过程与方法目标: 会判断具体函数在给定区间上的单调性;会求具体函数的单调区间. 3、情感、态度与价值观目标: 通过在教学过程中让学生多动手、多观察、勤思考、善总结,引导学生养成自主学习的学习习惯。 教学重点、难点 教学重点:1、利用导数判断函数的单调性. 2、会求不超过三次的多项式的单调区间。 教学难点:1、函数的单调性与导数的关系 2、提高灵活应用导数法解决有关函数单调性问题的能力. 教学重难点的解决方法 通过问题激发学生求知欲,使学生主动参与教学实践活动,在教师的指导下发现、分析和解决问题;通过几何画板的动态演示,使抽象的知识直观化、形象化,以促进学生的理解. 教法设计: 1、自主探究法:让学生自己发现问题,自己归纳总结,自己评析解题对错,从而提高学生的参与意识和数学表达能力. 2、比较法:对同一个问题,采用不同的方法,从中体会导数法的优越性. 教学媒体 根据本节课的教学要求及学生学习的需要,我对本节课的教学媒体设计如下 1:多媒体辅助教学:制作直观,有效地多媒体课件,可以节省课堂时间,也给学生直观认识和感觉; 2:投影仪的辅助教学:利用投影把学生的解题过程及方法及时展示,可以提高学生学习数学的兴趣. 课型:新授课 教学过程 教学过程设计意图

相关主题
文本预览
相关文档 最新文档