当前位置:文档之家› 工程数学 数学物理方程与特殊函数第三版 王元明

工程数学 数学物理方程与特殊函数第三版 王元明

工程数学 数学物理方程与特殊函数第三版 王元明
工程数学 数学物理方程与特殊函数第三版 王元明

数理方程期末试题B答案

北 京 交 通 大 学 2007-2008学年第二学期《数理方程与特殊函数》期末考试试卷(B ) (参考答案) 学院_ ____________ 专业___________________ 班级________ ____ 学号_______________ 姓名___________ __ 一、 计算题(共80分,每题16分) 1. 求下列定解问题(15分) 2. 用积分变换法及性质,求解半无界弦的自由振动问题:(15分) 3. 设弦的两端固定于0x =及x l =,弦的出示位移如下图所示。初速度为零,又没有外力 作用。求弦做横向振动时的位移(,)u x t 。 [ 解 ] 问题的定解条件是 由初始条件可得 4. 证明在变换, x at x at ξη=-=+下,波动方程xx tt u a u 2=具有形式解0=n u ξ,并由此求 出波动方程的通解。 5. 用分离变量法解下列定解问题 [ 提示:1) 可以直接给出问题的固有函数,不必推导;2) 利用参数变易法。] [ 解 ] 对应齐次方程的定解问题的固有函数是x l n π sin ,其解可以表示成 把原问题中非齐次项t x t x f l a l π π22sin sin ),(=按照固有函数展开成级数 因此有 利用参数变易法,有 于是 6. 用Bessel 函数法求解下面定解问题 [ 解 ] 用分离变量法求解。令)()(),(t T R t u ρρ=,则可得

以及 设0ρβλn n = 为Bessel 函数)(0x J 的正零点,则问题(II )的特征值和特征函数分别为 问题(I )的解为 于是原问题的解是 由初始条件 得到 故 于是最后得到原问题的解是 二、 证明题(共2分,每题10分) 7. 证明平面上的Green 公式 其中C 是区域D 的边界曲线,ds 是弧长微分。 [证明] 设),(),,(y x Q y x p 在D+C 上有一阶连续偏导数,n 为C 的外法线方向,其方向余弦为βαcos ,cos ,则有 再设u,v 在D 内有二阶连续偏导数,在D+C 上有一阶连续偏导数,令 得到 交换u,v ,得到 上面第二式减去第一式,得到 证毕。 8. 证明关于Bessel 函数的等式:

数理方程与特殊函数教学大纲

数理方程与特殊函数 课程简介:本课程为电子与通信工程类专业的基础课。学分2,周学时2。本课程由“数学物理方程”与“特殊函数”两大部分组成。“数学物理方程”讲授物理学的一个分支——数学与物理所涉及的偏微分方程。主要介绍物理学中常见的三类偏微分方程及其有关的定解问题和这些问题的几种常用解法。“特殊函数”讲授贝塞尔函数与勒让德多项式,以及如何利用这两种特殊函数来解决数学物理方程的一些定解问题的过程。 教学目的与基本要求:通过数理方程与特殊函数课程的学习,使学生系统的掌握工程数学中数学物理方法的知识和技能,培养学生分析问题解决问题的能力,为后续课程的学习及研究奠定重要的数学基础。本课程的先修课程为:高等数学,复变函数,积分变换 主要教学方法:课堂讲授与课外习题。 第零章预备知识(4学时) 复习先修课程中相关的一些内容,主要包括:二阶线性常微分方程解的结构以及常系数情形解的求法;积分学中的一些重要公式和技巧;傅里叶(Fourier)分析;解析函数的极点及其留数;拉普拉斯(Laplace)变换。 第一章典型方程和定解条件的推导(4学时) 在讨论数学物理方程的求解之前,应建立描述某种物理过程的微分方程,再把一个特定物理现象所具有的具体条件用数学形式表达出来。本章学习的重点和难点是了解数学物

理方程的推导及定解问题的确定过程,学会推导一些简单物理过程的微分方程并能确定某些具体物理现象的定解条件。 第一节基本方程的建立 通过几个不同的物理模型,推导出数学物理方程中的三种典型偏微分方程:波动方程、电磁场方程和热传导方程。 第二节初始条件与边界条件 方程决定了物理规律的数学形式,但具体的物理问题所具有的特定条件也应用数学形式表达出来。用以说明某一具体物理现象的初始状态的条件称为初始条件,用以说明其边界上约束情况的条件称为边界条件。 第三节定解问题的提法 由于每一个物理过程都处在特定的条件之下,所以我们要求出偏微分方程适合某些特定条件的解。初始条件和边界条件都称为定解条件。把某个偏微分方程和相应的定解条件结合在一起,就构成了一个定解问题。 本章习题:3-5题 第二章分离变量法(8学时) 本章主要介绍在求解偏微分方程的定解问题时,如何设法把它们转化为常微分方程来求解。本章学习的重点和难点是掌握分离变量法这一“化繁为简”的典型方法的实质,学会求解常见的定解问题。

数学物理方程第三版第一章答案(全)

数学物理方程第三版答案 第一章. 波动方程 §1 方程的导出。定解条件 1.细杆(或弹簧)受某种外界原因而产生纵向振动,以u(x,t)表示静止时在x 点处的点在时刻t 离开原来位置的偏移,假设振动过程发生的张力服从虎克定律,试证明),(t x u 满足方程 ()?? ? ??????=??? ??????x u E x t u x t ρ 其中ρ为杆的密度,E 为杨氏模量。 证:在杆上任取一段,其中两端于静止时的坐标分别为 x 与+x x ?。现在计算这段杆在时刻t 的相对伸长。在时刻t 这段杆两端的坐标分别为: ),();,(t x x u x x t x u x ?++?++ 其相对伸长等于 ),()],([)],([t x x u x x t x u x t x x u x x x ?+=??-+-?++?+θ 令 0→?x ,取极限得在点x 的相对伸长为x u ),(t x 。由虎克定律,张力),(t x T 等于 ),()(),(t x u x E t x T x = 其中)(x E 是在点x 的杨氏模量。 设杆的横截面面积为),(x S 则作用在杆段),(x x x ?+两端的力分别为 x u x S x E )()(x u x x S x x E t x )()();,(?+?+).,(t x x ?+ 于是得运动方程 tt u x x s x ???)()(ρx ESu t x =),(x x x x x ESu x x |)(|)(-?+?+ 利用微分中值定理,消去x ?,再令0→?x 得 tt u x s x )()(ρx ?? = x ESu () 若=)(x s 常量,则得 22)(t u x ??ρ=))((x u x E x ????

数学物理方程谷超豪版第二章课后答案

第 二 章 热 传 导 方 程 §1 热传导方程及其定解问题的提 1. 一均匀细杆直径为l ,假设它在同一截面上的温度是相同的,杆的表面和周围介质发生热交换,服从于规律 dsdt u u k dQ )(11-= 又假设杆的密度为ρ,比热为c ,热传导系数为k ,试导出此时温度u 满足的方程。 解:引坐标系:以杆的对称轴为x 轴,此时杆为温度),(t x u u =。记杆的截面面积4 2 l π为S 。 由假设,在任意时刻t 到t t ?+内流入截面坐标为x 到x x ?+一小段细杆的热量为 t x s x u k t s x u k t s x u k dQ x x x x ????=???-???=?+221 杆表面和周围介质发生热交换,可看作一个“被动”的热源。由假设,在时刻t 到t t ?+在截面为 x 到x x ?+一小段中产生的热量为 ()()t x s u u l k t x l u u k dQ ??-- =??--=11 1124π 又在时刻t 到t t ?+在截面为x 到x x ?+这一小段内由于温度变化所需的热量为 ()()[]t x s t u c x s t x u t t x u c dQ t ????=?-?+=ρρ,,3 由热量守恒原理得: ()t x s u u l k t x s x u k t x s t u c x t ??-- ????=????11 2 24ρ 消去t x s ??,再令0→?x ,0→?t 得精确的关系: ()11 224u u l k x u k t u c -- ??=??ρ 或 ()()11 22 2112244u u l c k x u a u u l c k x u c k t u --??=--??=??ρρρ 其中 ρ c k a =2 2. 试直接推导扩散过程所满足的微分方程。 解:在扩散介质中任取一闭曲面s ,其包围的区域 为Ω,则从时刻1t 到2t 流入此闭曲面的溶质,由dsdt n u D dM ??-=,其中D 为扩散系数,得 ?????= 2 1 t t s dsdt n u D M 浓度由u 变到2u 所需之溶质为 ()()[]???????????ΩΩΩ ??=??=-=2 12 1121,,,,,,t t t t dvdt t u C dtdv t u C dxdydz t z y x u t z y x u C M 两者应该相等,由奥、高公式得: ????????Ω Ω??==????????? ??????+???? ??????+??? ??????=2 12 11t t t t dvdt t u C M dvdt z u D z y u D y x u D x M 其中C 叫做孔积系数=孔隙体积。一般情形1=C 。由于21,,t t Ω的任意性即得方程: ?? ? ??????+???? ??????+??? ??????=??z u D z y u D y x u D x t u C 3. 砼(混凝土)内部储藏着热量,称为水化热,在它浇筑后逐渐放出,放热速度和它所储藏的 水化热成正比。以()t Q 表示它在单位体积中所储的热量,0Q 为初始时刻所储的热量,则 Q dt dQ β-=,其中β为常数。又假设砼的比热为c ,密度为ρ,热传导系数为k ,求它在浇后温度u 满足的方程。 解: 可将水化热视为一热源。由Q dt dQ β-=及00Q Q t ==得()t e Q t Q β-=0。由假设,放 热速度为 t e Q ββ-0 它就是单位时间所产生的热量,因此,由原书71页,(1.7)式得 ??? ? ??-=+??? ? ????+??+??=??-ρρββc k a e c Q z u y u x u a t u t 20222222 2 4. 设一均匀的导线处在周围为常数温度0u 的介质中,试证:在常电流作用下导线的温度满足微分方程 ()2201224.0ρω ρωρc r i u u c P k x u c k t u +--??=?? 其中i 及r 分别表示导体的电流强度及电阻系数,表示横截面的周长,ω表示横截面面积,而k 表示导线对于介质的热交换系数。 解:问题可视为有热源的杆的热传导问题。因此由原71页(1.7)及(1.8)式知方程取形式为

数学物理方程第二版答案

数学物理方程第二版答案 第一章. 波动方程 §1 方程的导出。定解条件 4. 绝对柔软逐条而均匀的弦线有一端固定,在它本身重力作用下,此线处于铅垂平衡位置,试导出此线的微小横振动方程。 解:如图2,设弦长为l ,弦的线密度为ρ,则x 点处的张力)(x T 为 )()(x l g x T -=ρ 且)(x T 的方向总是沿着弦在x 点处的切线方向。仍以),(t x u 表示弦上各点在时刻t 沿垂直于x 轴方向的位移,取弦段),,(x x x ?+则弦段两端张力在u 轴方向的投影分别为 )(sin ))(();(sin )(x x x x l g x x l g ?+?+--θρθρ 其中)(x θ表示)(x T 方向与x 轴的夹角 又 . sin x u tg ??=≈θθ 于是得运动方程 x u x x l t u x ???+-=???)]([22ρ∣x u x l g x x ??--?+][ρ∣g x ρ 利用微分中值定理,消去x ?,再令0→?x 得 ])[(2 2x u x l x g t u ??-??=??。 5. 验证 2 221),,(y x t t y x u --= 在锥2 22y x t -->0中都满足波动方程 222222y u x u t u ??+??=??证:函数2221),,(y x t t y x u --=在锥2 22y x t -->0内对变量t y x ,,有 二阶连续偏导数。且 t y x t t u ?---=??- 23 222)( 22 52222 3 2222 2 ) (3) (t y x t y x t t u ?--+---=??- -

数理方程与特殊函数试卷 3套

2010年6月 一、填空题(20分) 1、微分方程的固有值为 ____________,固有函数为____________。 2、勒让德多项式的母函数为________________________。 3、一长为的均匀直金属杆,x=0端固定,x=l端自由,则纵向震动过程中的边界条件为 ________________________。 4、二阶线性偏微分方程属于____________型方程。 5、微分方程,在条件下的拉氏变换表 达式为____________________________________。 6、埃尔米特多项式的微分表达式为____________________________________。 7、函数是区域内的调和函数,它在上有一阶连续偏导数,则 ____________. 8、定解问题的解为________________________。 9、在第一类奇次边界条件下=____________。 10、=____________,=____________。 二、证明题(10分) 三、建立数学物理方程(10分) 一长为l、截面积为s、密度为、比热容为的均匀细杆,一端保持零度,另一端有恒定的热量q流入,初始温度为试建立热传导方程,写出定界条件(要有必要的步骤)。四、写出下列定解问题的解(35分) 1、

2、 3、 五、将函数展开为广义傅里叶级数(25分) 1、设是的正零点,试将函数展开成的傅里叶贝塞尔级数。 2将函数按埃尔米特多项式展开成级数。 2009年6月 一、填空题(20分) 11、微分方程的固有值为 ____________,固有函数为____________。 12、勒让德多项式的母函数为________________________。 13、一长为的均匀直金属杆,x=0端温度为零,x=l端有恒定的热流流出,则热传导过 程中的边界条件为________________________。 14、二阶线性偏微分方程属于____________型方程。 15、微分方程,在条件下,其拉氏 变换表达式为____________________________________。 16、埃尔米特多项式的微分表达式为____________________________________。 17、函数是区域内的调和函数,它在上有一阶连续偏导数,则 ____________. 18、定解问题的解为 ________________________。 19、在第一类奇次边界条件下=____________。 20、=____________,=____________。 二、证明题(10分)

数学物理方程与特殊函数期末考试试题卷子2011

XXXXX 大学研究生试卷 (考试时间: 至 ,共 2小时) 课程名称 数理方程与特殊函数 教师 学时60 学分 3 教学方式 闭卷 考核日期 2011年 12 月 28 日 成绩 1.化方程2220xx xy yy x y x u xyu y u xu yu ++++=为标准形. (10分) 2. 把定解问题:(10分) 212(0)(0,)(),(,)() (,0)(),(,0)(),(0) tt xx x x t u a u x l u t h t u l t h t u x x u x x x l ?ψ?=<

3.有一带状的均匀薄板(0x a ≤≤,0y ≤<+∞), 边界0y =上的温度为0u ,其余边界上的温度保持零度,并且当y →+∞时,温度极限为零. 求解板的稳定温度分布. (用分离 变量法求解).(20分) 4.求下面的定解问题:(10分) 090,(,0) 0,sin tt xx t t t u u x R t u u x ==-=∈>??? ==??. 第2页

5.求()2 1,1 (),()0,1 x x F f x f x x ?-≤?=?>??,其中()F ?表示Fourior 变换.(10分) 6.求()2(),()sin(),03 L f t f t t t π =-≥,其中()L ?为Laplace 变换.(10分) 第3页 学 号 姓 名 学 院 教师 座位号 ……………………密……………封……………线……………以……………内……………答……………题……………无……………效……………………

数学物理方程第一章答案

第一章 §1 方程的导出。定解条件 1.细杆(或弹簧)受某种外界原因而产生纵向振动,以u(x,t)表示静止时在x 点处的点在时刻t 离开原来位置的偏移,假设振动过程发生的张力服从虎克定律,试证明),(t x u 满足方程 ()?? ? ??????=??? ??????x u E x t u x t ρ 其中ρ为杆的密度,E 为杨氏模量。 证:在杆上任取一段,其中两端于静止时的坐标分别为 x 与 +x x ?。现在计算这段杆在时刻t 的相对伸长。在时刻t 这段杆两 端的坐标分别为: ),();,(t x x u x x t x u x ?++?++ 其 相 对 伸 长 等 于 ),()],([)],([t x x u x x t x u x t x x u x x x ?+=??-+-?++?+θ 令 0→?x ,取极限得在点x 的相对伸长为x u ),(t x 。由虎克 定律,张力),(t x T 等于 ),()(),(t x u x E t x T x = 其中)(x E 是在点x 的杨氏模量。 设杆的横截面面积为),(x S 则作用在杆段),(x x x ?+两端的力分别为 x u x S x E )()(x u x x S x x E t x )()();,(?+?+).,(t x x ?+ 于 是 得 运 动 方 程 tt u x x s x ???)()(ρx ESu t x =),(x x x x x ESu x x |)(|)(-?+?+ 利用微分中值定理,消去x ?,再令0→?x 得 tt u x s x )()(ρx ?? = x ESu () 若=) (x s 常量,则得 22)(t u x ??ρ=))((x u x E x ???? 即得所证。 2.在杆纵向振动时,假设(1)端点固定,(2)端点自由,(3) 端点固定在弹性支承上,试分别导出这三种情况下所对应的边界条 件。 解:(1)杆的两端被固定在l x x ==,0两点则相应的边界条件 为 .0),(,0),0(==t l u t u (2)若l x =为自由端,则杆在 l x =的张力 x u x E t l T ??=)(),(|l x =等于零,因此相应的边界条件为 x u ??|l x ==0 同理,若 0=x 为自由端,则相应的边界条件为 x u ??∣ 00 ==x (3)若l x =端固定在弹性支承上,而弹性支承固定于某 点,且该点离开原来位置的偏移由函数)(t v 给出,则在l x =端支 承的伸长为)(),(t v t l u -。由虎克定律有 x u E ??∣)](),([t v t l u k l x --== 其中k 为支承的刚度系数。由此得边界条件 )( u x u σ+??∣ ) (t f l x == 其中 E k = σ 特别地,若支承固定于一定点上,则,0)(=t v 得边界条件 )( u x u σ+??∣0==l x 。 同理,若0=x 端固定在弹性支承上,则得边界条件 x u E ??∣)](),0([0t v t u k x -== 即 )(u x u σ-??∣).(0t f x -= 3. 试证:圆锥形枢轴的纵振动方程为 2 222)1(])1[(t u h x x u h x x E ??-=??-??ρ 其中h 为圆锥的高(如图1) 证:如图,不妨设枢轴底面的半径为1,则x 点处截面的半径l 为:

研究生数理方程与特殊函数考题2014

科技大学研究生试卷 (考试时间: 至 ,共 2小时) 课程名称 数理方程与特殊函数 教师 学时60 学分 3 教学方式 闭卷 考核日期 2014年 12 月 日 成绩 考核方式: (学生填写) 1.化简方程22222 (,)(,)(,) 1280u x y u x y u x y x x y y ???++=????并求其通解. (10分) 2. 设有一长度为L 的均匀细棒,其侧面和两端均绝热,初始温度分布为已知。(1)求以后时刻的温度分布;(2)证明:当初始温度分布为常数时,以后时刻的温度分布也必为常数. (20分) 第 1页 3.求解定解问题:(15分) 学 号 姓 名 学 院 教师 座位号 ……………………密……………封……………线……………以……………内……………答……………题……………无……………效……………………

200000 (0,0),t xx x x l t u a u x l t q u u u k u u ===?=<<>? ? ==?? ?=?,00,,,a u k q 均为常数. 4.求函数()() 2 1 ()13f s s s =+- 的Laplace 逆变换.(10分) 第2页 5.求下面的定解问题:(15分) 号 效……………………

2 00,(,0) ,sin tt xx t t t u a u x at x R t u x u x ==?-=+∈>?? ==??. 6.求3()J x dx ? .(10分) 第3页 7.写出平面第一象限的Dirichlets 问题对应的Green 函数及其定解问题.(10分)

数学物理方程第一章部分答案

第一章. 波动方程 §1 方程的导出。定解条件 1.细杆(或弹簧)受某种外界原因而产生纵向振动,以u(x,t)表示静止时在x 点处的点在时刻t 离开原来位置的偏移,假设振动过程发生的张力服从虎克定律,试证明),(t x u 满足方程 ()?? ? ??????=??? ??????x u E x t u x t ρ 其中ρ为杆的密度,E 为杨氏模量。 证:在杆上任取一段,其中两端于静止时的坐标分别为 x 与+x x ?。现在计算这段杆 在时刻t 的相对伸长。在时刻t 这段杆两端的坐标分别为: ),();,(t x x u x x t x u x ?++?++ 其相对伸长等于 ),()],([)],([t x x u x x t x u x t x x u x x x ?+=??-+-?++?+θ 令 0→?x ,取极限得在点x 的相对伸长为x u ),(t x 。由虎克定律,张力),(t x T 等于 ),()(),(t x u x E t x T x = 其中)(x E 是在点x 的杨氏模量。 设杆的横截面面积为),(x S 则作用在杆段),(x x x ?+两端的力分别为 x u x S x E )()(x u x x S x x E t x )()();,(?+?+).,(t x x ?+ 于是得运动方程 tt u x x s x ???)()(ρx ESu t x =),(x x x x x ESu x x |)(|)(-?+?+ 利用微分中值定理,消去x ?,再令0→?x 得 tt u x s x )()(ρx ?? = x ESu () 若=)(x s 常量,则得 22)(t u x ??ρ=))((x u x E x ???? 即得所证。 2.在杆纵向振动时,假设(1)端点固定,(2)端点自由,(3)端点固定在弹性支承上,试分别导出这三种情况下所对应的边界条件。 解:(1)杆的两端被固定在l x x ==,0两点则相应的边界条件为

数理方程期末试题B答案

数理方程期末试题B答 案 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

北 京 交 通 大 学 2007-2008学年第二学期《数理方程与特殊函数》期末考试试卷 (B ) (参考答案) 学院_ ____________ 专业___________________ 班级________ ____ 学号_______________ 姓名___________ __ 一、 计算题(共80分,每题16分) 1. 求下列定解问题(15分) 2. 用积分变换法及性质,求解半无界弦的自由振动问题:(15分) 3.设弦的两端固定于0x =及x l =,弦的出示位移如下图所示。初速度为 零,又没有外力作用。求弦做横向振动时的位移(,)u x t 。 [ 解 ] 问题的定解条件是 由初始条件可得 4. 证明在变换, x at x at ξη=-=+下,波动方程xx tt u a u 2=具有形式解0=n u ξ, 并由此求出波动方程的通解。 5. 用分离变量法解下列定解问题

[ 提示:1) 可以直接给出问题的固有函数,不必推导;2) 利用参数变易法。] [ 解 ] 对应齐次方程的定解问题的固有函数是x l n πsin ,其解可以表示成 把原问题中非齐次项t x t x f l a l π π22sin sin ),(=按照固有函数展开成级数 因此有 利用参数变易法,有 于是 6. 用Bessel 函数法求解下面定解问题 [ 解 ] 用分离变量法求解。令)()(),(t T R t u ρρ=,则可得 以及 设0ρβλn n =为Bessel 函数)(0x J 的正零点,则问题(II )的特征值和特征函数分别为 问题(I )的解为 于是原问题的解是 由初始条件 得到 故 于是最后得到原问题的解是 二、 证明题(共2分,每题10分) 7.证明平面上的Green 公式 其中C 是区域D 的边界曲线,ds 是弧长微分。

数学物理方程第一章答案

数学物理方程第一章答案

第一章 §1 方程的导出。定解条件 1.细杆(或弹簧)受某种外界原因而产生纵向振动,以u(x,t)表示静止时在x 点处的点在时刻t 离开原来位置的偏移,假设振动过程发生的张力服从虎克定律,试证明 ),(t x u 满足方程 ()?? ? ??????=??? ??????x u E x t u x t ρ 其中ρ为杆的密度,E 为杨氏模量。 证:在杆上任取一段,其中两端于静止时的坐标分别为 x 与 +x x ?。现在计算这段杆在时刻t 的相对伸长。在时刻t 这段杆两 端的坐标分别为: ),();,(t x x u x x t x u x ?++?++ 其 相 对 伸 长 等 于 ) ,()],([)],([t x x u x x t x u x t x x u x x x ?+=??-+-?++?+θ 令 0→?x ,取极限得在点x 的相对伸长为x u ),(t x 。由虎克 定律,张力),(t x T 等于 ),()(),(t x u x E t x T x = 其中)(x E 是在点x 的杨氏模量。 设杆的横截面面积为),(x S 则作用在杆段),(x x x ?+两端的力分别为 x u x S x E )()(x u x x S x x E t x )()();,(?+?+).,(t x x ?+ 于 是 得 运 动 方 程 tt u x x s x ???)()(ρx ESu t x =),(x x x x x ESu x x |)(|)(-?+?+ 利用微分中值定理,消去x ?,再令0→?x 得 tt u x s x )()(ρx ?? = x ESu () 若=) (x s 常量,则得 22)(t u x ??ρ=))((x u x E x ???? 即得所证。 2.在杆纵向振动时,假设(1)端点固定,(2)端点自由,(3) 端点固定在弹性支承上,试分别导出这三种情况下所对应的边界条件。 解:(1)杆的两端被固定在l x x ==,0两点则相应的边界条 件为 .0),(,0),0(==t l u t u (2)若l x =为自由端,则杆在 l x =的张力 x u x E t l T ??=)(),(|l x =等于零,因此相应的边界条件为 x u ??|l x ==0 同理,若 0=x 为自由端,则相应的边界条件为 x u ??∣ 00 ==x (3)若l x =端固定在弹性支承上,而弹性支承固定于某 点,且该点离开原来位置的偏移由函数)(t v 给出,则在l x =端支 承的伸长为)(),(t v t l u -。由虎克定律有 x u E ??∣)](),([t v t l u k l x --== 其中k 为支承的刚度系数。由此得边界条件 )( u x u σ+??∣ ) (t f l x == 其中 E k = σ 特别地,若支承固定于一定点上,则,0)(=t v 得边界条件 )( u x u σ+??∣0==l x 。 同理,若0=x 端固定在弹性支承上,则得边界条件 x u E ??∣)](),0([0t v t u k x -== 即 )(u x u σ-??∣).(0t f x -= 3. 试证:圆锥形枢轴的纵振动方程为

数学物理方程课程

《数学物理方程》课程 教学大纲 课程代码:B0110040 课程名称:数学物理方程/equation of mathematic physics 课程类型:学科基础课 学时学分:64学时/4学分 适用专业:地球物理学 开课部门:基础课教学部 一、课程的地位、目的和任务 课程的地位:数学物理方程是地球物理学专业的一门重要的专业(或技术)基础课。数学物理方程是反应自然中物理现象的基本模型,也是一种基本的数学工具,与数学其他学科和其他科学技术领域诸如数值分析、优化理论、系统工程、物理、化学、生物等学科都有广泛联系。对于将来从事工程地震技术工作及自然科学研究的学生来说是必不可少的。期望学生通过该门课程的学习,能深刻地理解数学物理方程的不同定解问题所反应的物理背景。 课程的目的与任务:使学生了解数学物理方程建立的依据和过程,认识这门学科与物理学、力学、化学、生物学等自然科学和社会科学以及工程技术的极密切的广泛的联系。掌握经典数学物理方程基本定解问题的提法和相关的基本概念和原理,重点掌握求解基本线性偏微分方程定解问题的方法和技巧。使学生掌握与本课程相关的重要理论的同时,注意启发和训练学生联系自己的专业,应用所学知识来处理和解决实际问题的能力。 二、课程与相关课程的联系与分工 学生在进入本课程学习之前,应修课程包括:大学物理、高等数学、线性代数、复变函数、场论与向量代数。这些课程的学习,为本课程奠定了良好的数学基础。本课程学习结束后,可进入下列课程的学习:四大力学、电磁场与微波技术、近代物理实验等。且为进一步选修偏微分方程理论、数值计算、控制理论与几何分析等课程打下基础。

三、教学内容与基本要求 第一章绪论 1.教学内容 第一节偏微分方程的基本概念 第二节弦振动方程及定解条件 第三节热传导方程及定解条件 第四节拉普拉斯方程及定解条件 第五节二阶线性偏微分方程的分类 第六节线性算子 2.重点难点 重点:物理规律“翻译”成数学物理方程的思路和步骤,实际问题近似于抽象为理想问题 难点:数学物理方程的数学模型建立及数学物理方程的解空间是无限维的函数空间 3.基本要求 (1)了解数学物理方程研究的基本内容,偏微分方程的解、阶、维数、线性与非线性、齐次与非齐次的概念;了解算子的定义。了解三类典型方程的建立及其定解问题(初值问题、边值问题和混合问题)的提法,定解条件的物理意义。 (2)掌握微分算子的运算规律,理解线性问题的叠加原理 (3)了解二阶线性方程的特征理论 (4)掌握两个变量二阶线性偏微分方程分类方法及化简方法 (5)掌握三类方程的标准形式及其化简过程,会三类方程的比较,并能通过标准形式求得某些方程的通解。 第二章分离变量法 1.教学内容 第一节有界弦的自由振动。 第二节有界长杆的热传导问题。 第三节二维拉普拉斯方程的边值问题。 第四节非齐次方程得求解问题。

数学物理方程第二版答案(平时课后习题作业)

数学物理方程第二版答案(平时课后习题作业)

数学物理方程第二版答案 第一章. 波动方程 §1 方程的导出。 定解条件 4. 绝对柔软逐条而均匀的弦线有一端固定,在它本身重力作用下,此线处于铅垂平衡位置,试导出此线的微小横振动方程。 解:如图2,设弦长为l ,弦的线密度为ρ,则 x 点处的张力)(x T 为 ) ()(x l g x T -=ρ 且)(x T 的方向总是沿着弦在x 点处的切线方向。仍以),(t x u 表示弦上各点在时刻t 沿垂直于x 轴方向的位移,取弦段),,(x x x ?+则弦段两端张力在u 轴方向的投影分别为 )(sin ))(();(sin )(x x x x l g x x l g ?+?+--θρθρ 其中)(x θ表示)(x T 方向与x 轴的夹角 又 . sin x u tg ??=≈θθ 于是得运动方程 x u x x l t u x ???+-=???)] ([22ρ∣ x u x l g x x ??--?+] [ρ∣ g x ρ 利用微分中值定理,消去x ?,再令0→?x 得

])[(2 2x u x l x g t u ??-??=??。 5. 验证 2 2 2 1),,(y x t t y x u --=在锥2 22 y x t -->0中都 满足波动方程 2 22222y u x u t u ??+??=??证:函数 2 2 2 1),,(y x t t y x u --= 在锥 2 22y x t -->0内对变量t y x ,,有 二阶连续偏导数。且 t y x t t u ?---=??-2 3 222)( 2 2 52222 32222 2)(3) (t y x t y x t t u ?--+---=??-- ) 2()(22223 222y x t y x t ++?--=- x y x t x u ?--=??- 23 222)( ()() 2 25222232222 23x y x t y x t x u - ---+--=?? ( )( )2 22 252222y x t y x t -+- -=- 同理 ()()22225222222y x t y x t y u +---=??- 所以 ()() .22 22 2225222222 2t u y x t y x t y u x u ??=++--=??+ ??- 即得所证。 §2 达朗贝尔公式、 波的传抪 3.利用传播波法,求解波动方程的特征问题

A-2005级-数理方程与特殊函数B卷

课程编号: 北京理工大学2006-2007学年第二学期 2005级数学物理方程期末试题(B 卷) 班级_______________学号_______________姓名______________成绩_____________ 一、填空(请写在答题纸上,每题5分,共计40分) 1. 设弦一端在0x =处固定,另一端在x l =处做自由运动。则弦振动问题的 边界条件为:________________________________。 2. 边界为Γ的区域Ω上函数u 的第二类边界条件为__________________ 。 3. 三维泊松方程是______________________________。 4. 极坐标下的二维拉普拉斯方程为__________________________。 5. 定解问题2 02||0tt xx t t t u u x u x u ===-∞<<+∞ ???==??, ,的解__________________________。 6. 三维拉普拉斯方程的牛曼内问题为______________________________; 其解存在的必要条件为____________。 7. 设2()J x 为2阶贝塞尔函数,则2 2()d x J kx dx ????=__________________。 8. 写出4阶贝塞尔方程的标准形式_____________________________。 二、(10分)求解定解问题: 200(0)()00()0.t xx x x u a u x l t u t u l t t u x x x l ?=<<>? ==≥??=≤≤? , ,, ,,, , ,0,

数学物理方程(谷超豪)第二版前两章答案

第一章. 波动方程 §1 方程的导出。定解条件 1.细杆(或弹簧)受某种外界原因而产生纵向振动,以u(x,t)表示静止时在x 点处的点在时刻t 离开原来位置的偏移,假设振动过程发生的张力服从虎克定律,试证明),(t x u 满足方程 ()?? ? ??????=??? ??????x u E x t u x t ρ 其中ρ为杆的密度,E 为杨氏模量。 证:在杆上任取一段,其中两端于静止时的坐标分别为 x 与+x x ?。现在计算这段杆 在时刻t 的相对伸长。在时刻t 这段杆两端的坐标分别为: ),();,(t x x u x x t x u x ?++?++ 其相对伸长等于 ),()],([)],([t x x u x x t x u x t x x u x x x ?+=??-+-?++?+θ 令 0→?x ,取极限得在点x 的相对伸长为x u ),(t x 。由虎克定律,张力),(t x T 等于 ),()(),(t x u x E t x T x = 其中)(x E 是在点x 的杨氏模量。 设杆的横截面面积为),(x S 则作用在杆段),(x x x ?+两端的力分别为 x u x S x E )()(x u x x S x x E t x )()();,(?+?+).,(t x x ?+ 于是得运动方程 tt u x x s x ???)()(ρx ESu t x =),(x x x x x ESu x x |)(|)(-?+?+ 利用微分中值定理,消去x ?,再令0→?x 得 tt u x s x )()(ρx ?? = x ESu () 若=)(x s 常量,则得 22)(t u x ??ρ=))((x u x E x ???? 即得所证。 2.在杆纵向振动时,假设(1)端点固定,(2)端点自由,(3)端点固定在弹性支承上,试分别导出这三种情况下所对应的边界条件。 解:(1)杆的两端被固定在l x x ==,0两点则相应的边界条件为

数学物理方法第一章作业答案

第一章复变函数 §1.1 复数与复数运算 1、下列式子在复数平面上个具有怎样的意义? (1)z≤ 2 解:以原点为心,2 为半径的圆内,包括圆周。 (2)z?a=z?b,(a、b 为复常数) 解:点z 到定点a 和 b 的距离相等的各点集合,即a 和 b 点连线的垂直平分线。 (3)Re z>1/2 解:直线x=1/ 2右半部分,不包括该直线。 (4)z+Re z≤1 解:即x2 +y2 +x≤1,则x≤1,y2 ≤1?2x,即抛物线y2 =1?2x及其内部。(5)α<arg z<β,a<Re z<b,(α、β、a、b为实常数) 解: (6)0 0 x 2 2 + +( y y 2 + ? 1 1) 2 > 所以 ,即x <0,x2 +y2 ?1+2x >0 x 0

z -1 ≤(7)1, z +1

2 z-1 x 1 iy x y 1 4y ?+?+?? 2 2 2 ==+ ?? 解:()[()] +++++ iy 1 y2 2 2 z 1 x 1 x ?x 1 y ?+ 2 + 2 所以()[()] x+?+≤++ 2 2 2 y 1 4y2 x 1 y 2 2 2 化简可得x≥0 (8)Re(1 /z) =2 ????? 1 x iy x 解:Re( ?=R e 2 1/ z=? ) R e 2 == ???? ?iy? x ?x ++y+y ?x 2 2 2 即(1/ 4)1/16 x? 2 +y= 2 (9)Re Z2 =a2 解:Re Z2 =x2 ?y2 =a2 +z+z?z=2 z+2 z 2 (10) z 1

数学物理方程与特殊函数第二、三章作业

习 题 2.1 4. 一根长为L 、截面面积为1的均匀细杆,其x=0端固定,以槌水平击其x=L 端,使之获得冲量I 。试写出定解问题。 解:由题意可知定解问题为: ?? ?? ???<<-=-<<=========== )(,)/(,)0(,0,00,0)/(0 00002L x L I u L x u u u u u a u Y u t t t t t x x x xx xx tt εερερ 习 题 2.2 3. 设物体表面的绝对温度为u ,它向外辐射出去的热量,按斯特凡—玻尔兹曼定律正比于u 4,即d Q =k u 4d S d t ,设物体与周围介质之间,只有热辐射而无热传 导,周围介质的绝对温度为已知函数 ),,,(t z y x ?。试写出边界条件。 解:由题意可知: dsdt u dsdt n u k )(44?σ-=??- ∴边界条件为: )(44?σ -- =??u k n u s 习 题 2.3 4. 由静电场Gauss 定理?????= ?V S V S E d 1 d 0 ρε,求证:0 ▽ερ = ?E ,并由此导出静电势u 所满足的Poisson 方程。 证明:由题意可知由静电场高斯定理: ????????= =?V S V V V divE S E d 1 d d 0 ρε ∴ 0 0▽ερερ=??= E divE 习 题 2.4 2. (1) 032=-+yy xy xx u u u 解:由题意可知: △=12-1×(-3)=4﹥0 => 双曲型

03d d 2d d 2 =--?? ? ??x y x y => 3d d =x y 或 -1 令 ???+=-=y x y x ηε3 则 ??? ???-=????????=1113 y x y x Q ηηεε => ??????=??????-??????-??????-=?? ????=??????''''08801113311111132212121122121211 T Q a a a a Q a a a a 00b 0b 21='='=-='=-='f c c L c L ηηεε ∴ )()3()()(016y x g y x f g f u u ++-=+=?=ηεεη (5) 031616=++yy xy xx u u u 解:由题意可知: △=82-16×3=16﹥0 => 双曲型 03d d 16d d 162 =+-?? ? ??x y x y => 43d d =x y 或 41 令 ? ??-=-=y x y x 443ηε 则 ??? ???--=??????? ?=4143 y x y x Q ηηεε => ??????--=??????--????????????--=?? ????=??????''''03232044133881641432212121122121211 T Q a a a a Q a a a a 00b 0b 21='='=-='=-='f c c L c L ηηεε ∴ )4()43()()(064y x g y x f g f u u -+-=+=?=-ηεεη 习 题 2.5 2.试证明:若),,(τt x V 是定解问题 ? ?? ??====><<=-====),(,00,0,0,002ττττx f V V V V t L x V a V t t t L x x xx tt

相关主题
文本预览
相关文档 最新文档