当前位置:文档之家› 无速度传感器的矢量控制系统仿真

无速度传感器的矢量控制系统仿真

无速度传感器的矢量控制系统仿真
无速度传感器的矢量控制系统仿真

课程设计任务书

学生姓名:专业班级:

指导教师:工作单位:武汉理工大学

题目: 无速度传感器的矢量控制系统仿真

初始条件:

电机参数为:额定电压U=380V、频率50

=、定子电阻s R=0.252Ω、

f Hz

额定功率P=2.2KW、定子自感

L=0.0016H、转子电阻r R=0.332Ω、额定转速

s

n=1420rpm、转子自感r L=0.0016H、级对数p n=2、互感m L=0.08H、转动惯量J=0.6Kgm2

要求完成的主要任务:

(1)设计系统原理图;

(2)用MATLAB设计系统仿真模型;

(3)能够正常运行得到仿真结果,包括转速、转矩等曲线,并将推算转速与实际转速进行比较

参考文献:

[1] 洪乃刚.《电力电子和电力拖动控制系统的MATLAB仿真》.北京:机械

工业出版社,2005:212-215

时间安排:

2011年12月5日至2011年12月14日,历时一周半,具体进度安排见下表

具体时间设计内容

12.5 指导老师就课程设计内容、设计要求、进度安排、评分标准等做具体介

绍;学生确定选题,明确设计要求

12.6-12.9 开始查阅资料,完成方案的初步设计

12.10—12.11 由指导老师审核设计方案,学生修改、完善并对其进行分析

12.12-12.13 撰写课程设计说明书

12.14 上交课程设计说明书,并进行答辩

指导教师签名:年月日

系主任(或责任教师)签名:年月日

摘要

异步电动机具有非线性、强耦合、多变量的性质,要获得高动态调速性能,必须从动态模型出发,分析异步电动机的转矩和磁链控制规律,研究高性能异步电机的调速方案。矢量控制是目前交流电动机较先进的一种动态模型,它又有基于转差频率控制的、无速度传感器和有速度传感器等多种矢量控制方式。无速度传感器控制的高性能通用变频器是当前全世界自动化技术和节能应用中受到普遍关心的产品和开发课题。本文介绍无速度传感器的矢量控制系统的原理和Matlab仿真。

关键词:矢量控制、无速度传感器、Matlab

目录

1矢量控制概述 (1)

2无速度传感器矢量控制系统 (1)

3无速度传感器矢量控制方法 (2)

4无速度传感器矢量控制系统SIMULINK分析 (3)

5仿真结果分析 (8)

6学习心得 (9)

7参考文献 (1)

无速度传感器的矢量控制系统仿真

1矢量控制概述

空间矢量法是一种应用于交流电机变频调速领域的最重要的闭环控制技术之一,并且常用于交流电机动态建模。空间矢量是一个复杂变量,其大小和角度都随时间任意地变化。目前被认为是假定在空间按正弦分布。在矢量控制的应用中,转速和转子的位置都可以通过使用诸如测速发电机或者编码盘等传统的机电传感器来获得。但是,这样增加了驱动系统的体积和成本。如果转速和转子的位置能够估计,我们就不必要再使用传感器。这就是所谓的无传感器控制技术。无传感器控制技术的主要目的就是估计转子的位置和转速并利用此电机速度参数测量电压和电流。

矢量控制,即利用空间坐标变换方法控制交流电机模型。在实现上通过坐标变换将三相坐标系变为两相,再由两相静止坐标系变换到两相旋转坐标系,由此将交流电机模型转化为直流电机模型。由于电机转速是利用转子磁链直接控制的。因此,该系统利用了转子磁链的定向控制原理。

矢量变换控制可以让交流电动机模仿直流电动机的控制规律。实现交流电动机磁通和转矩的相互独立控制,使交流电动机变频调速系统具有直流调速系统的全部优点。为了适应高精度的转速闭环控制及磁场定向的需求。要在电机轴上安装速度传感器。然而,在有些场合不允许外装任何速度和位置检测元件,且安装速度传感器在一定程度上降低了调速系统的可靠性, 增加了速度传感器本身带来的误差。解决这种问题,可以通过无速度传感器的矢量控制系统研究,使用间接计算法求出电机运行的实际转速值作为反馈信号, 实现转速外环控制。

2无速度传感器矢量控制系统

一般说来, 异步电动机无速度传感器控制系统, 把获得转速(或同时获得磁链) 的方法分为三大类一是利用电机的运动方程进行转速的推算; 二是利用电机的状态方程直接

1

进行转速的计算; 三是利用自适应状态观测器观测磁链并同时对转速进行辨识。还有其它一些方法是这几类方法的变形、混合或是不便于把它归结为其中的某一种类型。

这种系统是用一个转速推算器代替速度传感器, 其中转速推算器有4个输入信号和2 个输出信号。转速推算器的一个输出就是电动机运行的实际转速值,以此作为转速反馈信号。其中ACR 为电流调节器。

3无速度传感器矢量控制方法

在电机定子侧装设电压传感器和电流传感器,检测三相电压和三相电流,根据3/2 变换求出静止轴系中的两相电压、、及两相电流、。由定子静止轴系()中的两相电压、电流可以推算定子磁链,估计电机的实际转速。

当二相同步旋转坐标系按转子磁场定向时,异步电机的数学模型为:

ψ(1)

(2)

ψ

ψ

ψ(3)

ψ(4)

ψ(5) 式中: ,,,,——分别为定、转子的电感、互感和电阻;

,,,,——分别为同步转速、转差、真实转速和估算转速;

,,,——分别为按转子磁场定向后定子电压和电流的d、q轴分量;

,——分别为按转子磁场定向后转子磁链的d轴分量、d轴与固定坐标α轴夹角;

,p,——分别为转子电磁时间常数、极对数和负载转矩;

,J ——分别为漏磁系数和转动惯量。

2

3

将(5)代入(2),又由 ,整理得:

(6)

式(6)表明,可以根据电感量、励磁电流 、转矩电流 、转子磁链 和转矩电流 的微分计算得到同步转速 。结合式(1) ,得估算转速:

(7)

由同步转速得磁链角:

(8)

电压变换和电流变换环节根据 将电压和电流变换为按转子磁场定向的同步旋转坐标系下的量;磁链转差计算环节根据式(2)和式 (3)。由励磁电流和转矩电流及电机参数得到转子磁链幅值和转差;同步转速计算环节根据式(6)得到 ; 等于同步转速的积分, 根据式(8)得到;根据式(7)可以得到估算转速 。

4无速度传感器矢量控制系统SIMULINK 分析

为了验证上述方案的可行性,根据前述数学模型和系统结构,在MATLAB /Simulink 中建立仿真模型,进行仿真实验。

考虑到笼型电机转子侧短路,电压为0,异步电机动态数学模型可表示为:

M L L i r

m r r ψ=1 (9) st r r m s i T L ψ=? (10)

r m r m L P T i ψ+=11 (11)

r

r St m e L i L np T ψ= (12) r ψ=1

+p r Sm m T i L (13) 基于以上动态模型建立异步电机仿真模型,可以通过MATLAB/Simulink 中的示波

器观察系统运行过程中各变量的波形,如基于式( 7)的估算转速、基于式( 11 )的电磁转矩和基于式(12)的实际转速等。给定不同转速,任意时刻改变负载,可以得到运行过程中各变量的波形。仿真原理图如图2所示。

图1 仿真原理图

1)SWPWM GENERATOR模块

SVPWM 不仅使电流谐波分量减少, 而且谐波转矩也减少, 从而使电机的转矩脉动得到一定的抑

制。SVPWM 的数学模型是非线性的, 采用通用的软件进行仿真的工作量很大, 开发周期长, 难度较大。随着MATLAB7 1 1 的推广, 新增的SPACE VECTOR GENERATOR 可以很好地解决这个问题

2)基于MRAS的转速推算模块

模型参考自适应的速度推算(MRAS) 是利用转子磁链的电压方程和电流方程分别计算转子磁链。

由于电压模型不含角速度项, 而电流模型有项, 故用电压模型的输出作为转子磁链的期望值, 电流模型的输出作为转子磁链的推算值, 从而得出转速ω r 。其模型如图

4

2所示。

图 2 转速推算模块

3)转子磁链模型结构

对于 MRAS 来说 , 这个模型是很重要的 , 关系到推算的结果的精度。图3和图4分别是电压模型和电流模型结构。

图3转子磁链电压模型

5

图4转子磁链电流模型仿真波形如下:

图3 转子给定转速波形

6

图4 转子实际转速波形

图5 电磁转矩波形

7

图6定子磁链变化曲线

5仿真结果分析

本文提出了一种异步电机无速度传感器矢量控制的方法,在异步电机按转子磁场定向的动态数学模型基础上,由电流微分表达式推导出同步转速的表达式,结合转差表达式可估算出转速。从仿真结果可以看出,无速度传感器矢量控制系统能够满足交流调速的可靠性和快速性的要求,与有速度传感器矢量控制系统相比,减少了检测装置,避免了速度传感器检测本身带来的误差,提高了精度。该系统能够更好地控制电磁转矩,有利于降低成本,提高企业经济效益,有推广应用价值。

利用此估算转速作为反馈信号构成转速闭环,结合电流闭环和磁链闭环构成异步电机无速度传感器矢量控制系统。此方法具有概念清晰、直观性强、算法简单、速度计算无延时的特点,为系统的实现奠定了基础。仿真实验证明了此方法的可行性。实际系统中,电机参数变会影响系统性能,所以实现时要加上参数辨识和误差校正环节来提高系统抗参数变化和干扰的鲁棒性。

8

6学习心得

这次仿真中我根据无速度传感器的矢量控制的基本概念和系统原理图,建立了交流异步电动机专差频率矢量控制系统的仿真,并进行了仿真实验。经过不断的尝试发祥为了减少仿真需要的时间,可以在仿真中减小了电动机的转动惯量,但是过小转动惯量容易使系统发生振荡,要通过调节参数来观测参数变化对系统的影响。仿真结果表明,转差频率矢量控制系统具有良好的控制性能。

通过这次分组实验中,我们小组完成的是无速度传感器的矢量控制系统的仿真,最初遇到了很多困难,最主要的就是参数的正确设定,通过和同组人的讨论分析后,我们仿真出来的图也有了一定的起色,通过网上找资料和翻阅相关图书,再通过自己的不断尝试最终得到了满意的结果,让我知道了学无止境的道理。我们每一个人永远不能满足于现有的成就,人生就像在爬山,一座山峰的后面还有更高的山峰在等着你。这次的课程设计也让我看到了团队的力量,我认为我们的工作是一个团队的工作,团队需要个人,个人也离不开团队,必须发扬团结协作的精神。刚开始的时候,大家就分配好了各自的任务,大家有的绘制原理图,进行仿真实验,有的积极查询相关资料,并且经常聚在一起讨论各个方案的可行性。在课程设计中只有一个人知道原理是远远不够的,必须让每个人都知道,否则一个人的错误,就有可能导致整个工作失败。团结协作是我们成功的一项非常重要的保证。而这次设计也正好锻炼我们这一点,这也是非常宝贵的。这次期末的仿真作业将会成功我人生中一次美好的经历!

9

7参考文献

[1] 洪乃刚.《电力电子和电力拖动控制系统的MATLAB仿真》.北京:机械工业出版社,2005

[2]阮毅.《电力拖动自动控制系统-运动控制系统》.北京:机械工业出版社,2009

[3]陈伯时.《电力拖动自动控制系统》(第2版).北京:机械工业出版社,2004

[4]杨庚辰.《自动控制原理》.西安:西安电子科技大学出版社,2005

[5] A. M. Hava, R. J. Kerkman and T. A. Lipo.《A high-performance generalized discontinuous PWM algorithm》. Ind.Applicat.1998

异步电动机矢量控制系统的仿真

异步电动机矢量控制系统仿真 1.异步电机矢量控制系统的原理及其仿真 1.1 异步电动机矢量控制原理 异步电机矢量变换控制系统和直接转矩控制系统都是目前已经获得使用的高性能异步电机调速系统,对比直接转矩控制系统,矢量变换系统有可以连续控制,调速范围宽的优点,因此矢量变换控制系统为现代交流调速的重要方向之一。 本文采用的是转子磁场间接定向电流控制型交流异步电机矢量控制系统[1],如图1所示。 图1矢量变换控制系统仿真原理图 如果把转子磁链方向按空间旋转坐标系的M轴方向定向,则可得到按转子磁场方式定向下的三相鼠笼式异步电动机的矢量控制方程。 (1) (2) (3) (4)

(5) 上列各式中,是转子励磁电流参考值;是转差角频率给定值;是定子电流的励磁分量;是定子电流的转矩分量;是定子频率输入角频率; 是转子速度;是转子磁场定向角度;是转子时间常数;和分别是电机互感和转子自感。 图4所示控制系统中给定转速和实际电机转速相比较,误差信号送入转速调节器,经转速调节器作用产生给定转矩信号,电机的激磁电流给定信号根据电机实际转速由弱磁控制单元产生,再利用式(1)产生定子电流激磁分量给定信号,定子电流转矩分量给定信号则根据式(2)所示的电机电磁转矩表达式生成。、和转子时间常数Lr一起产生转差频率信号,和ωr相加生成转子磁场频率给定信号,对积分则得到转子磁场空间角度给定信号。和经坐标旋转和2/3相变换产生定子三相电流给定信号、和,和定子三相电流实测信号、和相比较,由滞环控制器产生逆变器所需的三相PWM信号。 1.2 异步电机转差型矢量控制系统建模 在MATLAB/SIMULINK环境下利用电气系统模块库中的元件搭建交流异步电机转差型矢量控制系统[2],电流控制变频模型如图2所示。 图2 电流控制变频模型图 整个仿真图由电气系统模块库中的元件搭建组成,元件的直观连接和实际的主电路相像似,其中主要包括:速度给定环节,PI速度调节器、坐标变换模块、

M440无传感器矢量控制模式

无速度传感器矢量控制(SLVC)基于对转子位置的反复计算,任何原因引起的转子位置信息丢失(定向丢失)将导致不可预知的结果。不正确的电机调试、电源故障引起的温度信息丢失,以及类似的干扰均有可能导致定向丢失。 无速度传感器矢量控制需要精心的调试和设置,这应该由具有MM4 / G120 SLVC 操作经验的调试工程师进行。 重要提示: SLVC 不应用于下列情形: 1. 电机-变频器功率比值小于 1:4 2. 最大输出频率大于 200Hz 3. 多机传动 4. 变频器与电机间接有接触器,变频器运行时,绝对不允许打开接触器 5. 提升机 当变频器定向信息丢失,OFF1 或 OFF3 将不再能够使电机停车,这就是在调试变频器时,必须连接OFF2或脉冲禁止功能的原因(可参考 ID: 7497349 How can the MM440 be shut down in the event of loss o f Vector action?). 推荐的调试方法 正确地输入电机参数以及完成电机识别对于SLVC的正确工作极其重要,执行的顺序也很重要,因为快速调试生成初始电机模型,而电机识别则对这一模型进行改进。

实现过程如下: 1. 快速调试与初始电机模型 P0003 = 2 (访问级别 2) P0010 = 1 (快速调试) P0300 及接下来的电机参数根据电机铭牌进行设置。 P0700, P1000, P1080/P1082, P1120/P1121 选择命令源,选择设定值源,Fmin/Fmax, 斜坡时间等等。 P1300 = 20 无速度传感器矢量控制 P1910 = 1 (A0541 将随之出现> 参见2. 使用P1910进行电机识别) P3900 = 1 计算电机参数时,“busy”将出现在 BOP面板上,持续时间约为1分钟,在特大型变频器上将持续更久。在此之后,A0541将在BOP面板上闪烁。 至此已完成快速调试并生成初始电机模型。 2. 使用P1910进行电机识别 必须完成2项自动测量。 注意:测量必须在冷机状态下进行。还需确保在P0625中已正确输入实际环境温度(工厂设定为20°C),输入环境温度必须在完成快速调试(P3900)之后,执行电机识别之前进行。 P1910 = 1,给一个运行命令:启动电机参数测量。

无速度传感器矢量控制

无速度传感器矢量控制技术的行业现状与展望 The Comprehensive Status Analysis and Future Development Tendency of Sensor-less Vector Control (SVC) Technology 1 引言 交流传动在高性能场合的应用始于矢量控制概念的引入,包括直接磁场定向与间接磁场定向控制。尽管这一概念早在60年代就已出现,并由Siemens 的Blaschke博士于1972年正式提出,但是真正应用还是在微电子技术发展的二十年后。矢量控制从基本原理上讲能够获得优异的动静态特性,但是对电机参数的敏感性却成为实际应用中必须解决的问题。驱动器通过启动前的自整定以及运行过程中的在线整定,适应电机参数变化,保持矢量控制的动静态性能,这些复杂的自适应控制算法都必须通过强大的信号处理器才能完成。 近年来随着半导体技术的发展及数字控制的普及,矢量控制的应用已经从高性能领域扩展至通用驱动及专用驱动场合,乃至家用电器。交流驱动器已在工业机器人、自动化出版设备、加工工具、传输设备、电梯、压缩机、轧钢、风机泵类、电动汽车、起重设备及其它领域中得到广泛应用。随着半导体技术的飞速发展,功率器件在不断优化,开关速度在提高而损耗在下降,功率模块的功率密度在不断增加;数字信号处理器的处理能力愈加强大,处理速度不断提升,交流驱动器完全有能力处理复杂的任务,实现复杂的观测、控制算法,现代交流传动的性能也因此达到前所未有的高度。以代表交流驱动控制最高水平的交流伺服为例,其需求随着新的生产技术与新型加工原料的出现而迅速增长。据相关统计,高性能交流伺服驱动器数量的年增长率超过12%。伺服驱动中应用最多的电机是异步电机及同步电机,额定功率从50W到200kW,位置环、速度环以及转矩环路的典型带宽分别为60Hz、200Hz 以及1000Hz。 交流电机驱动中的大部分问题应当说在当今的驱动器中已经得到解决,相关的成熟技术提供了被业界广泛接受的解决方案,并在许多领域中得到成功应用,因此从基本结构上来讲,交流驱动器的现有设计方案在未来的几年中不会有大的变化。现在,交流驱动器开发的一个重点是如何将驱动器与电机有机地结合在一起,开发出更低成本、高可靠性、高性能“驱动模块”。基于这一思路,为进一步减小成本、提高可靠性,开发人员在如何省去轴侧传感器以及电机相电流传感器进行了深入的研究,特别是高性能无速度传感器矢量控制(SVC)的实现吸引了各国研发人员的广泛关注,并已成为近年来驱动控制研究的热点。随着具有强大处理能力的数字信号处理器的推出,实现该控制方式所需要的高鲁棒性、自适应的参数估计以及非线性状态观测成为可能,新的无速度传感控制方案不断推出。Siemens、Yaskawa、Toshiba GE、Rockwell、Mistubishi、Fuji等知名公司纷纷推出自己的SVC控制产品(本文所指SVC均针对异步电机),控制特性也在不断提高。SVC目前已在印刷、印染、纺机、钢铁生产线、起重、电动汽车等领域中广泛应用,在高性能交流驱动中占有愈来愈重要的地位。 2 无速度传感器矢量控制的优势 概括来说,无速度传感器矢量控制可以获得接近闭环控制的性能,同时省去了速度传感器,具有较低的维护成本。与传统V/Hz控制比较,无速度传感器矢量控制可以获得改进的低速运行特性,变负载下的速度调节能力亦得到改善,同时还可获得高的起动转矩,这在高摩擦与惯性负载的起动中有明显的优势。正是由于这些驱动特性,该控制技术已逐渐成为通用恒转矩驱动应用的选择。事实上,基本上所有的AC驱动厂家都提供该控制模式。 Schneider公司的驱动市场经理Susan Bowler认为,该控制模式的吸引人之处在于利用最小的附加费用获得大大增强的性能,包括低速特性、转矩响应及定位能力等。由于其性能接近伺服驱动,公司在拓展需要更精确负载定位控制的场合。该公司的第三代Altivar无速度传感器驱动产品具有自调谐特性,确保驱动器在电机运行参数随时间发生变化的情况下

异步电机矢量控制Matlab仿真实验

基于Matlab/Simulink异步电机矢量控制系统仿真 一.理论基础 矢量控制系统的基本思路是以产生相同的旋转磁动势为准则,将异步电动机在静止三相坐标系上的定子交流电流通过坐标变换等效成同步旋转坐标系上的直流电流,并分别加以控制,从而实现磁通和转矩的解耦控制,以达到直流电机的控制效果。所谓矢量控制,就是通过矢量变换和按转子磁链定向,得到等效直流电动机模型,在按转子磁链定向坐标系中,用直流电动机的方法控制电磁转矩与磁链,然后将转子磁链定向坐标系中的控制量经变换得到三相坐标系的对应量,以实施控制。其中等效的直流电动机模型如图1-1所示,在三相坐标系上的定子交流电流iA、iB、iC ,通过3/2变换可以等效成两相静止正交坐标系上的交流isα和isβ,再通过与转子磁链同步的旋转变换,可以等效成同步旋转正交坐标系上的直流电流ism和ist。 图1-1 异步电动机矢量变换及等效直流电动机模型 从图1-1的输入输出端口看进去,输入为A、B、C三相电流,输出为转速ω,是一台异步电动机。从内部看,经过3/2变换和旋转变换2s/2r,变成一台以ism和ist为输入、ω为输出的直流电动机。m绕组相当于直流电动机的励磁绕组,ism相当于励磁电流,t绕组相当于电枢绕组,ist相当于与转矩成正比的电枢电流。 按转子磁链定向仅仅实现了定子电流两个分量的解耦,电流的微分方程中仍存在非线性和交叉耦合。采用电流闭环控制,可有效抑制这一现象,使实际电流快速跟随给定值,图1-2是基于电流跟随控制变频器的矢量控制系统示意图。

图1-2矢量控制系统原理结构图 通过转子磁链定向,将定子电流分量分解为励磁分量i sm 和转矩分量i st ,转子磁链r ψ仅由定子电流分量i sm 产生,而电磁转矩e T 正比与转子磁链和定子电流转矩分量的乘积,实现了定子电流的两个分量的解耦。简化后的等效直流调速系统如图1-3所示。 图1-3简化后的等效直流调速系统 二.设计方法 1.电流模型设计 转子磁链在实用的系统中多采用按模型计算的方法,即利用容易测得的电压、电流或转速等信号,借助于转子磁链模型,实时计算磁链的幅值与空间位置。转子磁链模型可以从电动机数学模型中推导出来,也可以利用专题观测器或状态估计理论得到闭环的观测模型。在计算模型中,由于主要实测信号的不同,又分为电流模型和电压模型两种。本设计采用在αβ坐标系上计算转子磁链的电流模型。 由实测的三相定子电流通过3/2变换得到静止两相正交坐标系上的电流i sα和i sβ,在利用αβ坐标系中的数学模型式计算转子磁链在αβ轴上的分量 ?? ? ?? ?? ++-=+--=β αβχαβααωψψψωψψψs r r r s r r r i Tr Lm Tr dt d i Tr Lm Tr dt d 11 (2-1-1) 也可表述为:

异步电动机无速度传感器矢量控制系统设计

肖金凤 1971年1月 生,1994年毕业于湖南大学电气与信息工程学院电机专业,学士学位,2004年毕业于湖南大学电气与信息工程学院控制工程专业,硕士学位,讲师。主要研究方向为电机智能控制、工业过程控制及综合自动化。 异步电动机无速度传感 器矢量控制系统设计 * 肖金凤1 , 黄守道2 , 李劲松 1 (1.南华大学,湖南 衡阳 421001;2.湖南大学,湖南 长沙 410082) 摘要 文章提出一种基于模糊神经网络的模型参考自适应电机转速辨识方法,将其与SVP WM 调制技术控制的变频器系统结合起来,组成了一种基于DSP 的异步电机无速度传感器矢量控制系统。具体介绍了其结构及软硬件的设计。仿真结果表明此系统动态性能好,能准确跟踪电机转速的变化。 关键词 异步电动机 无速度传感器 SVP WM 矢量控制 数字信号处理器 Fiel d Oriented Control Syste m of Speed Sensorless Based on DSP X iao Jinfeng ,Huang Shoudao ,L i Jingsong (1.N anhua Un iversity ;2.H unan Un i v ersity ) Abstract :This paper presents a ne w m et h od of i n ducti o n m otor speed identifica -ti o n .It is the co m binati o n o f f u zzy neural net w ork (FNN )w ith m odel reference adap -ti v e syste m (MRAS).W e co m bi n e this m ethod w it h the i n verter contro lled by space vector pulse w idth m odu lati o n (SVP WM )to for m a field oriented con tro l syste m o f speed senso rless based on DSP . Its struct u re and soft w are and hardw are are ana -l y zed .The S i m u lation results sho w that the contro l syste m has better dyna m ic per -f o r m ance and can accurately track the variati o n of the m otor speed . K ey w ords :I nducti o n m oto r Speed sensorless SVP WM F ield oriented con -tro l (FOC) DSP *湖南省自然科学基金资助项目(编号:02JJ Y 2089) 1 引言 异步电动机的数学模型由电压方程、磁链方 程、转矩方程和运动方程组成,是一个高阶、非线性、强耦合的多变量系统。采用传统的控制策略对其进行控制时,动态控制效果较差。目前异步电动机控制研究工作正围绕几个方面展开:采用新型电力电子器件和脉宽调制控制技术;应用矢量控制技术及现代控制理论、智能控制技术;广泛应用数字控制系统及计算机技术;无速度传感器控制技术。本文以电机控制专用芯片 T M S320F240为核心,采用磁通、转速闭环的矢量控制策略,利用SVP WM 脉宽调制技术、无速度传感器及智能控制技术,设计了一电机控制系统。仿真结果表明该控制系统抗干扰能力强,动态性能好。 2 速度估计策略 模型参考自适应方法(MRAS)是应用较广的速度估计方法。本文设计的模型参考自适应速度估计系统为减少定子电阻的影响选择瞬时无功功率模型,同时为有效解决瞬时无功功率模型参考 40 异步电动机无速度传感器矢量控制系统设计《中小型电机》2005,32(2)

感应电机矢量控制系统的仿真

《运动控制系统》课程设计学院: 班级: 姓名: 学号: 日期: 成绩:

感应电机矢量控制系统的仿真 摘要:本文先分析了异步电机的数学模型和坐标变换以及矢量控制基本原理,然后利用Matlab /Simulink软件进行感应电机的矢量控制系统的仿真。采用模块化的思想分别建立了交流异步电机模块、逆变器模块、矢量控制器模块、坐标变换模块、磁链观测器模块、速度调节模块、电流滞环PWM调节器,再进行功能模块的有机整合,构成了按转子磁场定向的异步电机矢量控制系统仿真模型。仿真结果表明了该系统转速动态响应快、稳态静差小、抗负载扰动能力强,验证了交流电机矢量控制的可行性和有效性。 关键词:异步电机;坐标变换;矢量控制;Simulink仿真 一、异步电机的动态数学模 型和坐标变换 异步电机的动态数学模型是一个 高阶、非线性、强耦合的多变量系统, 异步电机的数学模型由下述电压方 程、磁链方程、转矩方程和运动方程 组成。 电压方程: 礠链方程: 转矩方程: 运动方程: 异步电机的数学模型比较复杂, 坐标变换的目的就是要简化数学模 型。异步电机数学模型是建立在三相 静止的ABC坐标系上的,如果把它变 换到两相坐标系上,由于两相坐标轴 互相垂直,两相绕组之间没有磁的耦 合,仅此一点,就会使数学模型简单 了许多。 (1)三相--两相变换(3/2变换) 在三相静止绕组A、B、C和两相 静止绕组a、b 之间的变换,或称三相 静止坐标系和两相静止坐标系间的变 换,简称 3/2 变换。 (2)两相—两相旋转变换(2s/2r变 换) 从两相静止坐标系到两相旋转坐 标系 M、T 变换称作两相—两相旋转 变换,简称 2s/2r 变换,其中 s 表 示静止,r 表示旋转。

8bit单片机FOC矢量控制PMSM电机无传感器

说明:下面程序取自IFX 8位机无传感器PMSM电机矢量控制程序。整个程序是连续的矢量控制计算函数,其中有图片说明打断,便于更好的理解。其中包括坐标系变换,磁链角估算,PI速度环电流环调节。(单片机XC886,Keil编译器Cavin整理) 坐标系变换说明:双电阻采样得到两相电流(ia, ib),由abc120°静止坐标系Clarke变换到直角坐标系(iα, iβ),由(iα, iβ)静止直角坐标系Park变换到直角旋转坐标系(iq, id)。直流id不变,通过PI速度环电流环得到期望直流iq,进行限幅控制。由旋转坐标系(vq, vd)经过Park逆变换到静止坐标系(vα, vβ),然后再经过矢量调制成PWM控制电机。无传感器角度估算:由Clarke变换得到(iα, iβ)和由Park逆变换得到的(vα, vβ),经过低通滤波器PT1,再由直角坐标系变极坐标系得到磁链估算角 无传感器开环启动策略:在定子中加入幅值及频率都受控的电流,若PLL收敛,切换到FOC闭环控制。 软件流程图:

void FOC_Calculation (void) using 1 { #pragma asm ;************************************** ;* FOC_Calculation ;************************************** ;* ;* this function contains all calculations ;* necessary for the field oriented control. ;* ;* register bank 1 is used ;* ;************************************** ;* push registers ;************************************** push ACC push b push dph push dpl push PSW push SYSCON0 ; use register bank 0x01 mov PSW,#0x08 ;;anl SYSCON0,#0xFE ; use standard SFRs mov CCU6_PAGE,#0xA0 ; select CCU6-page 0 SST2 ;**************************************

永磁同步电机双闭环矢量控制系统仿真实验指导书剖析

题目1:永磁同步电机双闭环矢量控制系统仿真 一.实验目的 .加深理解永磁同步电机矢量控制系统的工作原理1.掌握永磁同步电机驱动系统仿真分析方法2 二.实验要求: 1.永磁同步电机双闭环控制系统建模 2.电流控制器设计 3.电流环动态跟随性能仿真实验 4.转速控制器设计 5.转速环抗负载扰动性能仿真实验 6.给出仿真实验结果与理论分析结果的对比及结论 三.预习内容 注:以下所有找不到的器件均可以通过搜索框搜索 Simulink的启动在MATLAB中键入>>Simulink,进入Simulink library,2014版本的可直接点击MATLAB界面上的Simulink library,在Simulink界面上选择 File->New->Model。如图1所示: 图1 Simulink界面 拖入空白文件作为转速)阶跃函数step(将source一级标题下点击Simulink在.给定,也可用两个ramp函数相减,使转速缓慢达到预定转速,如图2:

图2 转速给定 在Simulink一级标题下点击Ports & Subsystems 选择Subsystem放入空白文件并双击,删除In1和Out1的连线,如图3: 图3 子函数模块 选择Simulink>Continuous下的integrator、Simulink>discontinuous下的Saturation、Simulink>math operation下的gain和Add,连好线后保存并返回,作为PI调节器,其中saturation可设置上下限为100和-100,如图4:

图4 PI子函数模块设置 此PI调节器输出结果作为Iq的电流给定,同样方法得到一个PI调节器,输出结果作为电压给定,并设置saturation上下限为380和-380,Simulink下math operation选择sum双击并修改第二个“+”为“-”,如图5: 图5 转速和电流反馈PI调节 选择Simulink>Ports & Subsystems下的Subsystem 拖入并双击进入子系统,并添加2个In1和1个Out1如图6:

无速度传感器的矢量控制系统仿真

课程设计任务书 学生姓名:专业班级: 指导教师:工作单位:武汉理工大学 题目: 无速度传感器的矢量控制系统仿真 初始条件: 电机参数为:额定电压U=380V、频率50 =、定子电阻s R=0.252Ω、 f Hz 额定功率P=2.2KW、定子自感 L=0.0016H、转子电阻r R=0.332Ω、额定转速 s n=1420rpm、转子自感r L=0.0016H、级对数p n=2、互感m L=0.08H、转动惯量J=0.6Kgm2 要求完成的主要任务: (1)设计系统原理图; (2)用MATLAB设计系统仿真模型; (3)能够正常运行得到仿真结果,包括转速、转矩等曲线,并将推算转速与实际转速进行比较 参考文献: [1] 洪乃刚.《电力电子和电力拖动控制系统的MATLAB仿真》.北京:机械 工业出版社,2005:212-215 时间安排: 2011年12月5日至2011年12月14日,历时一周半,具体进度安排见下表 具体时间设计内容 12.5 指导老师就课程设计内容、设计要求、进度安排、评分标准等做具体介 绍;学生确定选题,明确设计要求 12.6-12.9 开始查阅资料,完成方案的初步设计 12.10—12.11 由指导老师审核设计方案,学生修改、完善并对其进行分析 12.12-12.13 撰写课程设计说明书 12.14 上交课程设计说明书,并进行答辩 指导教师签名:年月日 系主任(或责任教师)签名:年月日

摘要 异步电动机具有非线性、强耦合、多变量的性质,要获得高动态调速性能,必须从动态模型出发,分析异步电动机的转矩和磁链控制规律,研究高性能异步电机的调速方案。矢量控制是目前交流电动机较先进的一种动态模型,它又有基于转差频率控制的、无速度传感器和有速度传感器等多种矢量控制方式。无速度传感器控制的高性能通用变频器是当前全世界自动化技术和节能应用中受到普遍关心的产品和开发课题。本文介绍无速度传感器的矢量控制系统的原理和Matlab仿真。 关键词:矢量控制、无速度传感器、Matlab

矢量控制异步电动机调速系统仿真设计

摘要 近年来,随着电力半导体器件及微电子器件特别是微型计算机及大规模集成电路的发展,再加上现代控制理论,特别是矢量控制技术向电气传动领域的渗透和应用,使得交流电机调速技术日臻成熟。以矢量控制为代表的交流调速技术通过坐标变换重建电机模型,从而可以像直流电机那样对转矩和磁通进行控制,交流调速系统的调速性能已经可以和直流调速系统相媲美。因此,研究由矢量控制构成的交流调速系统已成为当今交流变频调速系统中研究的主要发展方向。最后,综合矩阵变换的控制策略及异步电动机转子磁场定向理论,采用计算机仿真方法分别建立了矩阵变换仿真模型以及基于矩阵变换的异步电动机矢量控制系统仿真模型,对矩阵变换的控制原理、输入、输出性能以及矢量控制系统的优质的抗扰能力及四象限运行特性进行分析验证,展现了该新型交流调速系统的广阔发展前景,并针对基于矩阵变换的异步电动机矢量控制系统的特点,着重对矢量控制单元进行了软件设计。本设计研究的是矢量控制的异步电动机的调速系统,采用MATLAB软件在其simulink中进行仿真。 关键词:坐标变换矢量控制异步电动机MATLAB simulink仿真

ABSTRACT In recent years, with the development of the power semiconductor device,the microelectronics component, the microcomputer and large-scale integrated circuit and modern control theory, especially the penetration from vector control technology to electric drive field and application, the feasible AC motor speed regulation technology has become more mature day by day. Depend on the control principle of the MC and the rotor-flux orientation theory, and using the computer simulation technology, the simulation model of the MC and the matrix converter fed induction motor vector control drive system has been build. The input-output characteristic and the ability of four-quadrant

转差频率控制的异步电动机矢量控制系统的仿真建模

转差频率控制的异步电动机矢量控制系统 的仿真建模 *** (江南大学物联网工程学院,江苏无锡214122) 摘要:矢量控制是目前交流电动机的先进控制方式,本文对异步电动机的动态数学模型、转差频率矢量控制的基本原理和概念做了简要介绍,并结合Matlab/Simulink软件包构建了异步电动机转差频率矢量控制调速系统的仿真模型,并进行了试验验证和仿真结果显示,同时对不同参数下的仿真结果进行了对比分析。该方法简单、控制精度高,能较好地分析交流异步电动机调速系统的各项性能。 关键词:转差频率;交流异步电动机;矢量控制;Matlab Modeling and Simulation of induction motor vector control system Based on Frequency control Luxiao (School of Communication and Control, Jiangnan University, Wuxi, Jiangsu 214036,China) Abstract: Vector control is an advanced AC motor control, this paper dynamic mathematical model of induction motor, slip frequency vector control of the basic principles and concepts are briefly introduced, and combined with Matlab / Simulink software package ,give the slip frequency vector Control System of the simulation model of the induction motor .Showed the simulation results, and simulation results under different parameters were compared. The method is simple, high control precision, can better analyze the AC induction motor drive system of the performance. Keywords: AC asynchronism motor; vector control; modeling and simulation; Matlab; 引言: 由于交流异步电动机属于一个高阶、非线性、多变量、强耦合系统。数学模型比较复杂,将其简化成单变量线性系统进行控制,达不到理想性能。为了实现高动态性能,提出了矢量控制的方法。所谓矢量控制就是采用坐标变换的方法,以产生相同的旋转磁势和变换后功率不变为准则,建立三相交流绕组、两相交流绕组和旋转的直流绕组三者之间的等效关系,从而求出异步电动机绕组等效的直流电机模型,以便按照对直流电机的控制方法对异步电动机进行控制。因此,它可以实现对电机电磁转矩的动态控制,优化调速系统的性能。 Matlab是一种面向工程计算的高级语言,其Simulink环境是一种优秀的系统仿真工具软件,使用它可以大大提高系统仿真的效率和可靠性。本文在此基础上构造了一个矢量控制的交流电机矢量控制调速系统,包含了给定、PI调节器、函数运算、二相/三相坐标变换、PWM脉冲发生器等环节,并给出了仿真结果。 1.异步电动机的动态数学模型 异步电动机的动态数学模型是一个高阶、非线性、强耦合的多变量系统。在研究异步电动机的多变量非线性数学模型时,常作如下的假设: 1)忽略空间谐波,设三相绕组对称,在空间中互差120°电角度,所产生的磁动势沿

无速度传感器简介

无速度传感器 在高性能的异步电机矢量控制系统中,转速的闭环控制环节一般是必不可少的。通常,采用光电码盘等速度传感器来进行转速检测,并反馈转速信号。但是,由于速度传感器的安装给系统带来一些缺陷:系统的成本大大增加;精度越高的码盘价格也越贵;码盘在电机轴上的安装存在同心度的问题,安装不当将影响测速的精度;电机轴上的体积增大,而且给电机的维护带来一定困难,同时破坏了异步电机的简单坚固的特点;在恶劣的环境下,码盘工作的精度易受环境的影响。因此,越来越多的学者将眼光投向无速度传感器控制系统的研究。国外在20世纪70年代就开始了这方面的研究,但首次将无速度传感器应用于矢量控制是在1983年由R.Joetten完成,这使得交流传动技术的发展又上了一个新台阶,但对无速度传感器矢量控制系统的研究仍在继续。 2无速度传感器的控制方法 在近20年来,各国学者致力于无速度传感器控制系统的研究,无速度传感器控制技术的发展始于常规带速度传感器的传动控制系统,解决问题的出发点是利用检测的定子电压、电流等容易检测到的物理量进行速度估计以取代速度传感器。重要的方面是如何准确地获取转速的信息,且保持较高的控制精度,满足实时控制的要求。无速度传感器的控制系统无需检测硬件,免去了速度传感器带来的种种麻烦,提高了系统的可靠性,降低了系统的成本;另一方面,使得系统的体积小、重量轻,而且减少了电机与控制器的连线,使得采用无速度传感器的异步电机的调速系统在工程中的应用更加广泛。国内外学者提出了许多方法。 (1)动态速度估计法主要包括转子磁通估计和转子反电势估计。都是以电机模型为基础,这种方法算法简单、直观性强。由于缺少无误差校正环节,抗干扰的能力差,对电机的参数变化敏感,在实际实现时,加上参数辨识和误差校正环节来提高系统抗参数变化和抗干扰的鲁棒性,才能使系统获得良好的控制效果。 (2)PI自适应控制器法其基本思想是利用某些量的误差项,通过PI自适应控制器获得转速的信息,一种采用的是转矩电流的误差项;另一种采用了转子q轴磁通的误差项。此方法利用了自适应思想,是一种算法结构简单、效果良好的速度估计方法。 (3)模型参考自适应法(MRAS)将不含转速的方程作为参考模型,将含有转速的模型作为可调模型,2个模型具有相同物理意义的输出量,利用2个模型输出量的误差构成合适的自适应律实时调节可调模型的参数(转速),以达到控制对象的输出跟踪参考模型的目的。根据模型的输出量的不同,可分为转子磁通估计法、反电势估计法和无功功率法。转子磁通法由于采用电压模型法为参考模型,引入了纯积分,低速时转子磁通估计法的改进,前者去掉了纯积分环节,改善了估计性能,但是定子电阻的影响依然存在;后者消去了定子电阻的影响,获得了更好的低速性能和更强的鲁棒性。总的说来,MRAS是基于稳定性设计的参数辨识方法,保证了参数估计的渐进收敛性。但是由于MRAS的速度观测是以参考模型准确为基础的,参考模型本身的参数准确程度就直接影响到速度辨识和控制系统的成效。 (4)扩展卡尔曼滤波器法将电机的转速看作一个状态变量,考虑电机的五阶非线性模型,采用扩展卡尔曼滤波器法在每一估计点将模型线性化来估计转速,这种方法

无传感器矢量控制技术

1、PG卡是变频器控制带编码器电机时的选件.构成闭环控制.主要是实现高精度的带编码器(PG)矢量闭环控制.PG卡和带编码器的电机是变频器实现最高的控制精度的方式.可实现电机速度控制和位置控制(定位). 2、变频器的无PG矢量控制怎么接线? 无PG矢量控制接线与其它的变频器一样接线。(与PG矢量控制区别就是没有电机编码器的接线了。) 主要是控制方式选择PG矢量控制,并且要进行电机的自学习,以供变频器采集电机的必要参数。 3、变频器中说的有PG矢量控制中的PG指的是什么啊? PG:pulse Quantizer 就是脉冲编码器 有PG矢量控制,就是有编码器的矢量控制,也就是闭环矢量控制 4、变频器的VF控制和无PG 矢量控制什么区别怎么使用 区别在于无PG反馈矢量控制机械硬度较好,控制精度和调速范围更好些,但要求较多.V/F控制适用于大多数控制. 5、无PG矢量控制一般用在什么样的负载上呢?速度和转矩与VF控制有什么区别 回答 无PG反馈的矢量变频器通过变频器内部的检测电流测出三相输出电压和电流值矢量,通过变换电路得到两个相互垂直的电流信号,再用这两个信号通过运算调节器控制逆变电路的输出。整个过程全部在变频器内完成,工程上称为无PG反馈的矢量变频器。3.变频器矢量控制功能的设置只设置“用”或“不用”即可。4.设置矢量控制功能时应符合的条件(1) 变频器只能连接一台电动机;(2) 电动机应使用变频器厂家的原配电动机,若不是原配电动机,应先进行自整定操作;(3) 所配备电动机的容量比应配备电动机的容量最多小一个等级; (4) 变频器与电动机之间的电缆长度应不大于50m。(5) 变频器与电动机之间接有电抗器时,应使用变频器的自整定功能改写数据。 在需要较高精度的控制场合下,可选用无PG反馈的控制,比如数控车床:作为主轴电动机的驱动系统,可以根据切削需要改变主轴的转速,随着工件直径的变化,主轴转速亦随着变化,保持刀具的恒线速切削。还可以由数控系统控制主轴运行、停止,正、反转以及与进刀系统保持严格的传动比关系,完成工件的自动加工,从而大大提高工作效率和工件的成品率。一般可选用普通U∕f控制变频器,为了提高控制精度选用矢量控制变频器效果更好。 V/F控制方式在低速下输出机械转矩有所下降(如需要可设置转矩补偿,升高输出电压),后者低速高速转矩都一样;在转速方面都是一样的,只是对V/F控制来说,当负载转矩波动时会出现转速的变化.

矢量控制系统仿真课程设计

矢量控制系统仿真课程设计 初始条件: 根据转差频率矢量控制系统原理图设计对应的simulink 仿真模型,电机参数为:额定功率power=2.2KW,线电压2203L V U =,额定频率50f Hz =;定子电阻0.435s R =Ω,漏感0.002ls H L =;转子电阻, 0.816r R =Ω,漏感, 0.002lr H L =;互感 0.069m H L =,转动惯量0.089.^2J kg m =,极对数2P =,其余参数为0。 要求完成的主要任务: (1)用MATLAB 建立矢量控制系统仿真模型; (2)根据仿真结果分析起动时定子电流励磁分量和转矩分量; (3)根据仿真结果分析起动时转速与转子磁链。 摘 要 因为异步电动机的物理模型是一个高阶、非线性、强耦合的多变量系统,需要用一组非线性方程组来描述,所以控制起来极为不便。异步电机的物理模型之所以复杂,关键在于各个磁通间的耦合。如果把异步电动机模型解耦成有磁链和转速分别控制的简单模型,就可以模拟直流电动机的控制模型来控制交流电动机。 直接矢量控制就是一种优越的交流电机控制方式,它模拟直流电机的控制方式使得交流电机也能取得与直流电机相媲美的控制效果。本文研究了矢量控制系统中磁链调节器的设计方法。并用MATLAB 最终得到了仿真结果。 关键词:矢量控制 非线性 MATLAB 仿真 矢量控制系统仿真 1设计条件及任务 1.1设计条件

根据转差频率矢量控制系统原理图设计对应的simulink 仿真模型,电机参数为:额定 功率power=2.2KW,线电压2203L V U =,额定频率50f Hz =;定子电阻0.435s R =Ω,漏感 0.002ls H L =;转子电阻,0.816r R =Ω ,漏感,0.002lr H L =;互感0.069m H L =,转动惯量0.089.^2J k g m =,极对数2P =,其余参数为0。 1.2设计任务 (1)用MATLAB 建立矢量控制系统仿真模型; (2)根据仿真结果分析起动时定子电流励磁分量和转矩分量; (3)根据仿真结果分析起动时转速与转子磁链。 2 异步电动机矢量控制原理及基本方程式 2.1矢量控制基本原理 矢量控制系统的基本思路是以产生相同的旋转磁动势为准则,将异步电动机在静止三相坐标系上的定子交流电流通过坐标变换等效成同步旋转坐标系上的直流电流,并分别加以控制,从而实现磁通和转矩的解耦控制,以达到直流电机的控制效果。所谓矢量控制,就是通过矢量变换和按转子磁链定向,得到等效直流电动机模型,在按转子磁链定向坐标系中,用直流电动机的方法控制电磁转矩与磁链,然后将转子磁链定向坐标系中的控制量经变换得到三相坐标系的对应量,以实施控制。其中等效的直流电动机模型如图2-1所示,在三相坐标系上的定子交流电流,,A B C i i i ,通过3/2变换可以等效成两相静止正交坐标系上的交流s i α和s i β再通过与转子磁链同步的旋转变换,可以等效成同步旋转正交坐标系上的直流电流sm i 和st i 。m 绕组相当于直流电动机的励磁绕组,sm i 相当于励磁电流,t 绕组相当于电枢绕组,st i 相当于与转矩成正比的电枢电流。其中矢量控制系统原理结构图如图2-2所示。 图2-1 异步电动机矢量变换及等效直流电动机模型

无速度传感器说明

无速度传感器说明: 在现代交流调速系统中,为了获得高性能的转速控制,采用了速度闭环控制,必须在电机轴上安装速度传感器。但在实际系统中,速度传感器的安装往往受到一些限制,主要存在以下几个问题[3,4]: 1) 速度传感器的安装降低了系统的鲁棒性和简单性; 2) 高精度的速度传感器价格一般比较贵,增加了系统成本; 3) 在一些恶劣的条件下(如高温、潮湿等),速度传感器的安装会降低系统 的可靠性; 4) 速度传感器的安装存在一些困难,如果安装不当会成为系统的一个故障 源。 为了避免这些问题,使得人们转而研究无需速度传感器的电机转速辨识方法。近年来,这项研究也成为交流传动的一个热点问题。国外在20世纪70年代开始了这方面的研究。而首次将无速度传感器应用于矢量控制是在1983年由R.Joetten 完成的,这使得交流传动技术的发展又上了一个新的台阶。在其后的十几年中,国内外的学者在这方面做了大量的工作,到目前为止,提出了许多种方法,大体上可以分为:①动态转速估计器;②模型参考自适应(MRAS );③基于PI 调节器法;④自适应转速观测器;⑤转子齿谐波法;⑥高频注入法;⑦基于人工神经元网络的方法。 以下分别讨论动态转速估计器,模型参考自适应(MRAS ),基于PI 调节器法,滑模变结构观测器,在第二章建立的异步电机矢量控制仿真实验平台上仿真。 动态转速估计器[3] 这种方法从电机的电磁关系式,转速的定义中得到关于转差的表达式。电机角速度等于同步角速度s ω与转差角速度sl ω之差。 s sl ωωω=- (3-1) 同步角速度可以由静止坐标系下的定子电压方程式推得,由图3-1矢量关系可知 2 2 s s s s s s s s s s d d arctg dt dt p p βαβααβ αβ ωθψ? ?==?? ψ?? ψψ-ψψ= ψ+ψ (3-2)

交流异步电动机的矢量控制系统设计原理

交流异步电动机的矢量控制系统设计原理 本文主要利用电机矢量控制系统原理,提出了一种异步电机矢量控制系统及其控制策略总体设计方案,采用Simulink工具构建了矢量变频调速系统数学模型,详细介绍了各个子模块的构建方法和功能。通过仿真可得系统的动态及稳态性能,表明系统具有较高的响应能力和鲁棒性,为矢量控制技术提供了一种前期检验方法和研究手段。 0引言 异步电动机的动态数学模型是一个高阶、非线性、强耦合的多变量系统,矢量控制是电机控制系统的一种先进控制方法,由于其交流调速时的优越性被广泛应用到异步电机调速系统中。基于Simulink的交流异步电机仿真可以验证系统设计方案的有效性,在实验室应用过程中可能遇到系统设计难题。 本文以双闭环矢量控制系统为研究对象,在Simu-link中进行仿真来验证控制系统的有效性。通过分析仿真结果得到矢量控制系统的动静态特性,从而证实了本设计方案的可行性。 1矢量控制原理 矢量控制系统,简称VC系统,坐标变换是核心思想。矢量控制的基本思想是以产生同样的旋转磁动势为准则,将异步电动机在静止三相坐标系上的定子交流电流等效成两相静止坐标系上的交流电流,在通过坐标旋转变换将其等效成同步旋转坐标系上的直流电流,等效过程中实现磁通和转矩的解耦控制,达到直流电机的控制效果,得到直流电动机的控制量。便可将三相异步电动机等效为直流电动机来控制,获得与直流调速系统接近的动、静态性能。 矢量控制中矢量变换包括三相-两相变换和同步旋转变换,将d轴沿着转子总磁链矢量φr的方向称为M轴,将q轴逆时针转90°,即垂直于矢量φr的方向称为T轴,经过变换电压-电流方程改写为式(1),磁链方程为式(2):

相关主题
文本预览
相关文档 最新文档