当前位置:文档之家› 第八节多元函数的极值及其求法

第八节多元函数的极值及其求法

第八节多元函数的极值及其求法
第八节多元函数的极值及其求法

第八节 多元函数的极值及其求法

要求:理解多元函数极值的概念,会用充分条件判定二元函数的极值,会用拉格朗日乘数法求条件极值。

重点:二元函数取得极值的必要条件与充分性判别法,拉格朗日乘数法求最值实际问题。 难点:求最值实际问题建立模型,充分性判别法的证明。

作业:习题8-8(71P )3,5,8,9,10

问题提出:在实际问题中,往往会遇到多元函数的最大值,最小值问题,与一元函数相

类似,多元函数的最大值,最小值与极大值,极小值有密切的关系,因此以二元函数为例,先来讨论多元函数的极值问题.

一.多元函数的极值

定义 设函数),(y x f z =在点),(00y x 的某个邻域内有定义,对于该邻域内的所有

),(),(00y x y x ≠,如果总有),(),(00y x f y x f <,则称函数),(y x f z =在点),(00y x 处有极大值;如果总有),(),(00y x f y x f >,则称函数),(y x f z =在点),(00y x 有极小值.

函数的极大值,极小值统称为极值,使函数取得极值的点称为极值点.

例1.函数xy z =在点)0,0(处不取得极值,因为在点)0,0(处的函数值为零,而在点

)0,0(的任一邻域内总有使函数值为正的点,也有使函数值为负的点.

例2.函数2

243y x z +=在点)0,0(处有极小值.

因为对任何),(y x 有0)0,0(),(=>f y x f .

从几何上看,点)0,0,0(是开口朝上的椭圆抛物面2243y x z +=的顶点,曲面在点)0,0,0(处有切平面0=z ,从而得到函数取得极值的必要条件.

定理1(必要条件)

设函数),(y x f z =在点),(00y x 具有偏导数,且在点),(00y x 处有极值,则它在该点的

偏导数必然为零,即0),(00=y x f x ,0),(00=y x f y .

证明 不妨设函数),(y x f z =在点),(00y x 处有极大值,依定义,在该点的邻域上均

),(),(00y x f y x f <,),(),(00y x y x ≠

成立.

特别地,取0y y =而0x x ≠的点,有000(,)(,)f x y f x y <也有成立.

这表明一元函数),(0y x f 在0x x =处取得极大值,因而必有

0),(00=y x f x .

类似地可证 0),(00=y x f y .

几何解释

若函数),(y x f z =在点),(00y x 取得极值0z ,那么函数所表示的曲面在点)

,,(000z y x 处的切平面方程为

))(,())(,(0000000y y y x f x x y x f z z y x -+-=-

是平行于xoy 坐标面的平面0z z =.

类似地有三元及三元以上函数的极值概念,对三元函数也有取得极值的必要条件为

0),,(000=z y x f x ,0),,(000=z y x f y ,0),,(000=z y x f z

说明 上面的定理虽然没有完全解决求极值的问题,但它明确指出找极值点的途径,即

只要解方程组???==0),(0),(0

000y x f y x f y x ,求得解),(),(),,(2211n n y x y x y x ??,那么极值点必包含在其中,这些点称为函数),(y x f z =的驻点.

注意1.驻点不一定是极值点,如xy z =在)0,0(点.

怎样判别驻点是否是极值点呢?下面定理回答了这个问题.

定理2(充分条件)

设函数),(y x f z =在点),(00y x 的某邻域内连续,且有一阶及二阶连续偏导数,又

0),(00=y x f x ,0),(00=y x f y ,

令 A y x f xx =),(00,B y x f xy =),(00,C y x f yy =),(00,则

(1)当02

>-B AC 时,函数),(y x f z =在点),(00y x 取得极值,且当0

大值00(,)f x y ,当0>A 时,有极小值00(,)f x y ;

(2)当02<-B AC 时,函数),(y x f z =在点),(00y x 没有极值;

(3)当02=-B AC 时,函数),(y x f z =在点),(00y x 可能有极值,也可能没有极值,

还要另作讨论.

求函数),(y x f z =极值的步骤:

(1)解方程组0),(00=y x f x ,0),(00=y x f y ,求得一切实数解,即可求得一切驻点

),(),(),,(2211n n y x y x y x ??;

(2)对于每一个驻点),(i i y x (1,2,)i n =,求出二阶偏导数的值C B A ,,;

(3)确定2B AC -的符号,按定理2的结论判定),(i i y x f 是否是极值,是极大值还是极

小值;

(4)考察函数),(y x f 是否有导数不存在的点,若有加以判别是否为极值点.

例3.考察22y x z +-=是否有极值.

解 因为22y x x x z +-=??,22y x y y z +=??在0,0==y x 处导数不存在,但是对所

有的)0,0(),(≠y x ,均有0)0,0(),(=

注意2.极值点也不一定是驻点,若对可导函数而言,怎样?

例4.求函数x y x y x y x f 933),(2

233-++-=的极值.

解 先解方程组?????=+-==-+=063096322y y f x x f y x ,求得驻点为)2,3(),0,3(),2,1(),0,1(--, 再求出二阶偏导函数66+=x f xx ,0=xy f ,66+-y f yy .

在点)0,1(处,0726122

>=?=-B AC ,又0>A ,所以函数在点)0,1(处有极小值为5)0,1(-=f ;

在点)2,1(处,0722

<-=-B AC ,所以)2,1(f 不是极值;

在点)0,3(-处,0722<-=-B AC ,所以)0,3(-f 不是极值;

在点)2,3(-处,0722>=-B AC ,又0

二.函数的最大值与最小值

求最值方法:

⑴ 将函数),(y x f 在区域D 内的全部极值点求出;

⑵ 求出),(y x f 在D 边界上的最值;即分别求一元函数1(,())f x x ?,2(,())f x x ?的

最值;

⑶ 将这些点的函数值求出,并且互相比较,定出函数的最值.

实际问题求最值

根据问题的性质,知道函数),(y x f 的最值一定在区域D 的内部取得,而函数在D 内

只有一个驻点,那么可以肯定该驻点处的函数值就是函数),(y x f 在D 上的最值.

例4.求把一个正数a 分成三个正数之和,并使它们的乘积为最大.

解 设y x ,分别为前两个正数,第三个正数为y x a --,

问题为求函数 )(y x a xy u --=在区域D :0>x ,0>y ,a y x <+内的最大值. 因为)2()(y x a y xy y x a y x

u --=---=??,)2(x y a x y u --=??, 解方程组???=--=--0

202x y a y x a ,得3a x =,3a y =. 由实际问题可知,函数必在D 内取得最大值,而在区域D 内部只有唯一的驻点,则函数必在该点处取得最大值,即把a 分成三等份,乘积3)3(a

最大.

另外还可得出,若令y x a z --=,则

33)3(

)3(z y x a xyz u ++=≤= 即 3

3z y x xyz ++≤. 三个数的几何平均值不大于算术平均值.

例5.由一宽为cm 24的长方形铁板,把它两边折起来做成一断面为等腰梯形的水槽,

问怎样折法才能使断面的面积最大?

解 设折起来的边长为xcm ,倾斜角为α,那么梯形断面的下底长为x 224-,上底

长为αcos 2224x x +-,高为αsin x ,则断面面积

ααsin )224cos 2224(2

1x x x x A ?-++-=

即 ααααcos sin sin 2sin 2422x x x A +-=,

D :120<

α<≤,

下面是求二元函数),(αx A 在区域 D :120<

上取得最大值的点),(αx . 令 ???=-+-==+-=0

)sin (cos cos 2cos 240

cos sin 2sin 4sin 242222αααααααααx x x A x x A x

由于0sin ≠α,0≠x 上式为

2122cos 0(1)24cos 2cos (2cos 1)0(2)

x x x x αααα-+=??-+-=?将212cos x x α-=代入(2)式得8x =,再求出1cos 2α=,则有0603==πα,于是方程组的解是0603

==πα,cm x 8=. 在考虑边界,当2π

α=时,函数2224x x A -=为x 的一元函数,求最值点,由

0424=-='x A x

,得 6=x . 所以722sin 622sin 624)2,6(2=?-?=π

π

π

A ,

833483

cos 3sin 83sin 823sin 824)3,8(22≈=+?-?=πππππA . 根据题意可知断面面积的最大值一定存在,并且在区域D :120<

<内取得,通过计算得知2π

α=时的函数值比060=α,cm x 8=时函数值为小,又函数在D 内

只有一个驻点,因此可以断定,当cm x 8=,060=α时,就能使断面的面积最大.

三.条件极值,拉格朗日乘数法

引例 求函数22y x z +=的极值.

该问题就是求函数在它定义域内的极值,前面求过在)0,0(取得极小值;

若求函数2

2y x z +=在条件1=+y x 下极值,这时自变量受到约束,不能在整个函数定义域上求极值,而只能在定义域的一部分1=+y x 的直线上求极值,前者只要求变量在定义域内变化,而没有其他附加条件称为无条件极值,后者自变量受到条件的约束,称为条件极值.

如何求条件极值?有时可把条件极值化为无条件极值,如上例从条件中解出x y -=1,

代入22y x z +=中,得122)1(222+-=-+=x x x x z 成为一元函数极值问题,令024=-='x z x ,得21=x ,求出极值为2

1)21,21(=z . 但是在很多情形下,将条件极值化为无条件极值并不这样简单,我们另有一种直接寻求条件极值的方法,可不必先把问题化为无条件极值的问题,这就是下面介绍的拉格朗日乘数法.利用一元函数取得极值的必要条件.

求函数),(y x f z =在条件

0),(=y x ?

下取得极值的必要条件.

若函数),(y x f z =在00(,)x y 取得所求的极值,那么首先有

00(,)0x y ?=.

假定在00(,)x y 的某一邻域内函数),(y x f z =与均有连续的一阶偏导数,且00(,)0y x y ?≠. 有隐函数存在定理可知,方程0),(=y x ?确定一个单值可导且具有连续导数的函数()y x ψ=,将其代入函数),(y x f z =中,得到一个变量的函数

(,())z f x x ψ=

于是函数),(y x f z =在00(,)x y 取得所求的极值,也就是相当于一元函数(,())z f x x ψ=在0x x =取得极值.由一元函数取得极值的必要条件知道

00

0000(,)(,)0x y x x x x dz dy f x y f x y dx dx ===+=, 而方程0),(=y x ?所确定的隐函数的导数为

00000(,)(,)

x x x y x y dy

dx x y ??==-

. 将上式代入00000(,)(,)

0x y x x dy

f x y f x y dx =+=中,得

00000000(,)(,)(,)0(,)

x x y y x y f x y f x y x y ??-=, 因此函数),(y x f z =在条件0),(=y x ?下取得极值的必要条件为

0000000000(,)(,)(,)0(,)(,)0x x y y x y f x y f x y x y x y ????-=???=?

为了计算方便起见,我们令

0000(,)

(,)y y f x y x y λ?=-,

则上述必要条件变为

0000000000(,)(,)0(,)(,)0(,)0x x y y f x y x y f x y x y x y λ?λ??+=??+=??=?

容易看出,上式中的前两式的左端正是函数

),(),(),(y x y x f y x F λ?+=

的两个一阶偏导数在00(,)x y 的值,其中λ是一个待定常数.

拉格朗日乘数法

求函数),(y x f z =在条件0),(=y x ?下的可能的极值点.

⑴ 构成辅助函数

),(),(),(y x y x f y x F λ?+=,(λ为常数)

⑵ 求函数F 对x ,对y 的偏导数,并使之为零,解方程组

?????==+=+0

),(0),(),(0),(),(y x y x y x f y x y x f y y x x ?λ?λ?

得λ,,y x ,其中y x ,就是函数在条件0),(=y x ?下的可能极值点的坐标;

⑶ 如何确定所求点是否为极值点?在实际问题中往往可根据实际问题本身的性质来判定.

拉格朗日乘数法推广

求函数),,,(t z y x f u =在条件(,,,)0x y z t ?=,(,,,)0x y z t ψ=下的可能的极值点. 构成辅助函数

12(,,,)(,,,)(,,,)(,,,)F x y z t f x y z t x y z t x y z t λ?λψ=++

其中21,λλ为常数,求函数F 对z y x ,,的偏导数,并使之为零,解方程组

121212120000

(,,,)0(,,,)0

x x x y y

y z z z t t t f f f f x y z t x y z t λ?λψλ?λψλ?λψλ?λψ?ψ++=??++=??++=??++=??=?=??

得z y x ,,就是函数),,,(t z y x f u =在条件(,,,)0x y z t ?=,(,,,)0x y z t ψ=下的极值点. 注意:一般解方程组是通过前几个偏导数的方程找出,,x y z 之间的关系,然后再将其代

入到条件中,即可以求出可能的极值点.

例6.求表面积为2

a 而体积为最大的长方体的体积.

解 设长方体的三棱长分别为z y x ,,,则问题是在条件

0222),,(2=-++=a xz yz xy z y x ?

下,求函数xyz v = )0,0,0(>>>z y x 的最大值.

构成辅助函数)222(),,(2a xz yz xy xyz z y x F -+++=λ,

求函数F 对z y x ,,偏导数,使其为0,得到方程组 ???????=-++=++=++=++0

2220

)(20)(20)(22a xz yz xy y x xy z x xz z y yz λλλ

)4()3()2()1( 由)1()2(,得 z y z x y x ++=, 由 )2()3( , 得 z

x y x z y ++=, 即有, ()(),x y z y x z x y +=+= ,()(),y x z z x y y z +=+=,

可得z y x ==,将其代入方程02222

=-++a xz yz xy 中,得 a z y x 6

6===. 这是唯一可能的极值点,因为由问题本身可知最大值一定存在,所以最大值就是在这可能的极值点处取得,即在表面积为2a 的长方体中,以棱长为a 6

6的正方体的体积为最大,最大体积为336

6a v =. 例7.试在球面2224x y z ++=上求出与点(3,1,1)-距离最近和最远的点.

解 设(,,)M x y z 为球面上任意一点,则到点(3,1,1)-距离为

d =但是,如果考虑2

d ,则应与d 有相同的最大值点和最小值点,为了简化运算,故取 2222(,,)(3)(1)(1)f x y z d x y z ==-+-++,

又因为点(,,)M x y z 在球面上,附加条件为222

(,,)40x y z x y z ?=++-=.

构成辅助函数(,,)F x y z 222(3)(1)(1)x y z =-+-++222(4)x y z λ+++-.

求函数F 对z y x ,,偏导数,使其为0,得到方程组 2222(3)202(1)202(1)20

4x x y y z z x y z λλλ-+=??-+=??++=??++=?

)

4()3()2()1( 从前三个方程中可以看出,,x y z 均不等于零(否则方程两端不等),以λ作为过渡,把这三个方程联系起来,有

311x y z x y z λ--+-===或311x y z

--==, 故3,x z y z =-=-,将其代入2224x y z ++=中,得

222(3)()4z z z -+-+=,

求出z =,再代入到3,x z y z =-=-中,即可得 11x =,11y =,

从而得两点(

,, 对照表达式看出第一个点对应的值较大,第二个点对应的值较小,所以最近点为

,最远点为(.

思考题

1.若二元函数),(y x f z =在某区域内连续且有唯一的极值点,那么这个点就是函数在该区域上的最大值点或最小值点吗?

2.利用拉格朗日乘数法求函数),,(z y x f u =在条件0),,(,0),,(==z y x z y x ψ?下极值的方法是怎样的?

多元函数的极值与最值例题极其解析

多元函数的极值与最值 1.求函数z=x3+y3?3xy的极值。 步骤: 1)先求驻点(另偏导数等于0,联立) 2)再求ABC A=f xx(x0, y0) B=f xy(x0, y0) C=f yy(x0, y0) 3)(1)当B2-AC<0时,f(x,y)在点(x o,y o)处取得极值, 且当A<0时取得极大值f(x o,y o),当A>0时取得极小值f(x o,y o),当A<0时取得极大值f(x o,y o); (2)当B2-AC>0时,f(x o, y o )不是极值; (3)当B2-AC=0时,f(x o,y o)是否为极值不能确定,需另做讨论. =3x2?3y=0 解:?z ?x ?z =3y2?3x=0 ?y 联立得驻点为(0,0),(1,1) A=f xx(x0, y0)=6x(对x求偏导,再对x求偏导) B=f xy(x0, y0)=-3(对x求偏导,再对y求偏导) C=f yy(x0, y0)=6y(对y求偏导,再对y求偏导) 在点(0,0)处,A=0,B=-3,C=0,由B2-AC=9>0,故在此处

无极值。 在点(1,1)处,A=6,B=-3,C=0, B2-AC=-27<0,又因为 A>0,故在此处为极小值点,极小值为 F (1, 1) =x3+y3?3xy=?1 2.求函数f(x, y)=x2+(y?1)2的极值。 解:f x’=2x=0 F y’=2y-2=0 联立得驻点为(0,1) A=f xx(x0, y0) =2 B=f xy(x0, y0) =0 C=f yy(x0, y0) =2 在点(0,1)处A=2,B=0,C=2由B2-AC=-4<0,又因为A>0,故在此处为极小值点,极小值为 F (0, 1) = 0 3.制造一个容积为a的无盖长方体,使之用料最少,则长宽高为多少? 解:另长宽高分别为x, y, z 故xyz=a, z=a xy S=xy+2(x a xy +y a xy )=xy+2(a y +a x ) S x’=y+2(?a x2 )=0 S y ’= x+2(?a y )=0

多元函数极值充分条件

定理10.2(函数取得极值的充分条件) 设函数(,)f x y 在点000(,)P x y 的邻域内存在二阶连续 偏导数,且00(,)0x f x y =,00(,)0y f x y =.记00(,)xx f x y A =, 00(,)xy f x y B =,00(,)yy f x y C =,则有 (1) 当20A C B ->时,00(,)x y 是极值点.且当0A >时,000(,)P x y 为极小值点;当0A <时,000(,)P x y 是极大值点. (2) 当20A C B -<时,000(,)P x y 不是极值点. (3) 当20A C B -=时,不能判定000(,)P x y 是否为极值点,需要另外讨论. 证 (1) 利用二元函数的一阶泰勒公式,因 0000(,)(,)f x h y k f x y ++- 20000001(,)(,)(,)2x y f x y h f x y k h k f x h y k x y q q 轾抖犏=+++++犏抖臌, 01q << 由已知条件,00(,)0x f x y =,00(,)0y f x y =,故 20000001(,)(,)(,)2f x h y k f x y h k f x h y k x y q q 轾抖犏++-=+++犏抖臌 220000001(,)2(,)(,)2 xx xy yy f x h y k h f x h y k hk f x h y k k q q q q q q 轾=++++++++犏臌 利用矩阵记号, 记h r k 骣÷?÷?=÷?÷?÷桫,(,)r h k ¢=,0()A B Hf P B C 骣÷?÷?=÷?÷?÷桫 ,000(,)P r x h y k q q q +=++ 0000 0()()()()()xx xy xy yy f P r f P r Hf P r f P r f P r q q q q q 骣++÷?÷?+=÷?÷++÷?桫, 可改写上式为 00()()f P r f P +-000 0()()1(,)()()2xx xy xy yy f P r f P r h h k k f P r f P r q q q q 骣骣++÷÷??÷÷??=÷÷??÷÷++?÷÷?桫桫01()2r Hf P r r q ¢=+ 01q << (1) 进一步,又有 00()()f P r f P +-00011()[()()]22 r Hf P r r Hf P r Hf P r q ⅱ= ++- (2) 当20A C B ->且0A >时,二次型0()r Hf P r ¢正定,因此对于任何00h r k 骣骣÷÷??÷÷??= ÷÷??÷÷?麋桫桫,0()0r Hf P r ¢>。特别地,在单位圆{22(,)1}Q x y x y +=上,连续函数0()Q Hf P Q ¢ 取得的最小值0m >。 因此,对任何00h r k 骣骣÷÷??÷÷??= ÷÷??÷÷ ?麋桫桫,我们有 22 00()(())r r r Hf P r r Hf P r m r r ⅱⅱ = ¢ 另一方面,由于(,)f x y 二阶偏导数在点000(,)P x y 连续,对任何:02 m e e <<,总可取0d >,使得0r d ¢<<时,有 00()()xx xx f P f P r q e -+<,00()()xy xy f P f P r q e -+<,00()()yy yy f P f P r q e -+< 从而, 220000[()()][()()]2r Hf P r Hf P r r Hf P r Hf P r r r q q e ⅱ+-W+-? 于是,

二元函数的极值与最值

二元函数的极值与最值 二元函数的极值与最值问题已成为近年考研的重点,现对二元函数的极值与最值的求法总结如下: 1.二元函数的无条件极值 (1) 二元函数的极值一定在驻点和不可导点取得。对于不可导点,难以判断是否是极值点;对于驻点可用极值的充分条件判定。 (2)二元函数取得极值的必要条件: 设),(y x f z =在点),(00y x 处可微分且在点),(00y x 处有极值,则0),('00=y x f x ,0),('00=y x f y ,即),(00y x 是驻点。 (3) 二元函数取得极值的充分条件:设),(y x f z =在),(00y x 的某个领域内有连续上二阶偏导数,且=),('00y x f x 0),('00=y x f y ,令A y x f xx =),('00, B y x f xy =),('00,C y x f yy =),('00,则 当02<-AC B 且 A<0时,f ),(00y x 为极大值; 当02<-AC B 且A>0,f ),(00y x 为极小值; 02 >-AC B 时,),(00y x 不是极值点。 注意: 当B 2-AC = 0时,函数z = f (x , y )在点),(00y x 可能有极值,也可能没有极值,需另行讨论 例1 求函数z = x 3 + y 2 -2xy 的极值. 【分析】可能极值点是两个一阶偏导数为零的点,先求出一阶偏导,再令其为零确定极值点即可,然后用二阶偏导确定是极大值还是极小值,并求出相应的极值. 【解】先求函数的一、二阶偏导数: y x x z 232 -=??, x y y z 22-=??. x x z 62 2 =??, 22 -=???y x z , 2 2 2 =??y z . 再求函数的驻点.令x z ??= 0,y z ??= 0,得方程组???=-=-. 022,0232x y y x 求得驻点(0,0)、),(3 2 32. 利用定理2对驻点进行讨论:

多元函数求极值(拉格朗日乘数法)

第八节多元函数的极值及其求法 教学目的:了解多元函数极值的定义,熟练掌握多元函数无条件极值存在的判定 方法、求极值方法,并能够解决实际问题。熟练使用拉格朗日乘数法求条件极值。 教学重点:多元函数极值的求法。 教学难点:利用拉格朗日乘数法求条件极值。 教学内容: 一、 多元函数的极值及最大值、最小值 定义设函数),(y x f z =在点),(00y x 的某个邻域内有定义,对于该邻域内异于 ),(00y x 的点,如果都适合不等式 00(,)(,)f x y f x y <, 则称函数(,)f x y 在点),(00y x 有极大值00(,)f x y 。如果都适合不等式 ),(),(00y x f y x f >, 则称函数(,)f x y 在点),(00y x 有极小值),(00y x f .极大值、极小值统称为极值。使函数取得极值的点称为极值点。 例1 函数2 243y x z +=在点(0,0)处有极小值。因为对于点(0,0)的任 一邻域内异于(0,0)的点,函数值都为正,而在点(0,0)处的函数值为零。从 几何上看这是显然的,因为点(0,0,0)是开口朝上的椭圆抛物面 2 243y x z +=的顶点。

例2函数2 2y x z +-=在点(0,0)处有极大值。因为在点(0,0)处函 数值为零,而对于点(0,0)的任一邻域内异于(0,0)的点,函数值都为负, 点(0,0,0)是位于xOy 平面下方的锥面2 2y x z +-=的顶点。 例3 函数xy z =在点(0,0)处既不取得极大值也不取得极小值。因为在点(0,0)处的函数值为零,而在点(0,0)的任一邻域内,总有使函数值为正的点,也有使函数值为负的点。 定理1(必要条件)设函数),(y x f z =在点),(00y x 具有偏导数,且在点),(00y x 处有极值,则它在该点的偏导数必然为零: ),(,0),(0000==y x f y x f y x 证不妨设),(y x f z =在点),(00y x 处有极大值。依极大值的定义,在点),(00y x 的某邻域内异于),(00y x 的点都适合不等式 ),(),(00y x f y x f < 特殊地,在该邻域内取0y y =,而0x x ≠的点,也应适合不等式 000(,)(,)f x y f x y < 这表明一元函数f ),(0y x 在0x x =处取得极大值,因此必有 0),(00=y x f x 类似地可证 ),(00=y x f y

多元函数极值的判定

. .. . 目录 摘要 (1) 关键词 (1) Abstract............................................................................................................. .. (1) Keywords.......................................................................................................... .. (1) 引言 (1) 1定理中用到的定义 (2) 2函数极值的判定定理.............................................................. .. (5) 3多元函数极值判定定理的应用 (7) 参考文献 (8)

多元函数极值的判定 摘要:通过引入多元函数的导数,给出了多种方法来判定多元函数的极值. 关键词:极值;条件极值;偏导数;判定 The judgement of the extremum of the function of many variables Abstract:This paper passes to lead into the derivative of the function of many variables, and give several methods to judge the extremum of the

function of many variables and the conditional extremum of the function of many variables . Keywords : extremum; conditional ;partial derivative 引言 在现行的数学分析教材中,关于多元函数的极值判定,一般只讲到二 元函数的极值判定,在参考文献[1]和[3]中有关多元函数极值的判定是都是在实际情况中一定有极值的问题,本文将引入多元函数的偏导数把二元函数的极值判定推广到多元函数极值问题中去. 1 定理中用到的定义 定义1.1[]1 函数f 在点000(,)P x y 的某领域0()U P 有定义.若对于任何点 0(,)()P x y U P ∈,成立不等式 0()()f P f P ≤(或0()()f P f P ≥), 则称函数f 在点0P 取得极大值(或极小值),点0P 称为f 的极大值(或极小值)点. 定义1.2[]1 设函数(,)z f x y =, (,)x y D ∈.若00(,)x y D ∈,且0(,)f x y 在 0x 的某一领域有定义,则当极限 0000000(,)(,)(,) lim x xf x y f x x y f x y x x →+-= 存在时,称这个极限为函数f 在点00(,)x y 关于x 的偏导数,记作 00(,) x y f x ??. 定义1.3[]3 设n D R ?为开集,12(,, ,)n P x x x D ∈,00 0012 2(,,,)P x x x D ∈ :f D R →,若在某个矩阵A ,使当0()P U P ∈时,有 000 ()()() lim P P f P f P A P P P P →----, 则称n 元函数12(,, ,)n f x x x 在点0P 可导.称A 为在点0P 处的导数,记为

多元函数求极值(拉格朗日乘数法)

第八节 多元函数的极值及其求法 教学目的:了解多元函数极值的定义,熟练掌握多元函数无条件极值存在的判定 方法、求极值方法,并能够解决实际问题。熟练使用拉格朗日乘数法 求条件极值。 教学重点:多元函数极值的求法。 教学难点:利用拉格朗日乘数法求条件极值。 教学内容: 一、 多元函数的极值及最大值、最小值 定义 设函数),(y x f z =在点),(00y x 的某个邻域内有定义,对于该邻域内异于),(00y x 的点,如果都适合不等式 00(,)(,)f x y f x y <, 则称函数(,)f x y 在点),(00y x 有极大值00(,)f x y 。如果都适合不等式 ),(),(00y x f y x f >, 则称函数(,)f x y 在点),(00y x 有极小值),(00y x f .极大值、极小值统称为极值。使函数取得极值的点称为极值点。 例1 函数2243y x z +=在点(0,0)处有极小值。因为对于点(0,0)的任 一邻域内异于(0,0)的点,函数值都为正,而在点(0,0)处的函数值为零。从

几何上看这是显然的,因为点(0,0,0)是开口朝上的椭圆抛物面 2243y x z +=的顶点。 例2 函数22y x z +-=在点(0,0)处有极大值。因为在点(0,0)处函 数值为零,而对于点(0,0)的任一邻域内异于(0,0)的点,函数值都为负, 点(0,0,0)是位于xOy 平面下方的锥面22y x z +-=的顶点。 例3 函数xy z =在点(0,0)处既不取得极大值也不取得极小值。因为在点(0,0)处的函数值为零,而在点(0,0)的任一邻域内,总有使函数值为正的点,也有使函数值为负的点。 定理1(必要条件) 设函数),(y x f z =在点),(00y x 具有偏导数,且在点),(00y x 处有极值,则它在该点的偏导数必然为零: 0),(,0),(0000==y x f y x f y x 证 不妨设),(y x f z =在点),(00y x 处有极大值。依极大值的定义,在点 ),(00y x 的某邻域内异于),(00y x 的点都适合不等式 ),(),(00y x f y x f < 特殊地,在该邻域内取0y y =,而0x x ≠的点,也应适合不等式 000(,)(,)f x y f x y < 这表明一元函数f ),(0y x 在0x x =处取得极大值,因此必有 0),(00=y x f x

(整理)多元函数的极值及其求法

第六节 多元函数的极值及其求法 在实际问题中,我们会大量遇到求多元函数的最大值、最小值的问题. 与一元函数的情形类似,多元函数的最大值、最小值与极大值、极小值密切的联系. 下面我们以二元函数为例来讨论多元函数的极值问题. 内容分布图示 ★ 引例 ★ 二元函数极值的概念 例1-3 ★ 极值的必要条件 ★ 极值的充分条件 ★ 求二元函数极值的一般步骤 ★ 例4 ★ 例5 ★ 求最值的一般步骤 ★ 例6 ★ 例7 ★ 例8 ★ 例9 ★ 例10 ★ 例11 ★ 条件极值的概念 ★ 拉格郎日乘数法 ★ 例12 ★ 例 13 ★ 例 14 ★ 例 15 ★ 例 16 *数学建模举例 ★ 最小二乘法 ★ 线性规划问题 ★ 内容小结 ★ 课堂练习 ★ 习题6-6 ★ 返回 内容提要: 一、二元函数极值的概念 定义1 设函数),(y x f z =在点),(00y x 的某一邻域内有定义, 对于该邻域内异于),(00y x 的任意一点),(y x , 如果 ),,(),(00y x f y x f < 则称函数在),(00y x 有极大值;如果 ),,(),(00y x f y x f > 则称函数在),(00y x 有极小值; 极大值、极小值统称为极值. 使函数取得极值的点称为极值点. 定理1 (必要条件) 设函数),(y x f z =在点),(00y x 具有偏导数, 且在点),(00y x 处有极值, 则它在该点的偏导数必然为零,即 .0),(,0),(0000==y x f y x f y x (6.1) 与一元函数的情形类似,对于多元函数,凡是能使一阶偏导数同时为零的点称为函数的驻点. 定理2 (充分条件) 设函数),(y x f z =在点),(00y x 的某邻域内有直到二阶的连续偏导

多元函数的极值及其求法

第十一讲 二元函数的极值 要求:理解多元函数极值的概念,会用充分条件判定二元函数的极值,会用拉格朗日乘数法求条件极值。 问题提出:在实际问题中,往往会遇到多元函数的最大值,最小值问题,与一元函数相类似,多元函数的最大值,最小值与极大值,极小值有密切的关系,因此以二元函数为例,来讨论多元函数的极值问题. 一.二元函数的极值 定义 设函数),(y x f z =在点),(00y x 的某个邻域内有定义,对于该邻域内的所有 ),(),(00y x y x ≠,如果总有),(),(00y x f y x f <,则称函数),(y x f z =在点),(00y x 处有 极大值;如果总有),(),(00y x f y x f >,则称函数),(y x f z =在点),(00y x 有极小值. 函数的极大值,极小值统称为极值,使函数取得极值的点称为极值点. 例1.函数xy z =在点)0,0(处不取得极值,因为在点)0,0(处的函数值为零,而在点 )0,0(的任一邻域内总有使函数值为正的点,也有使函数值为负的点. 例2.函数2 2 43y x z +=在点)0,0(处有极小值. 因为对任何),(y x 有0)0,0(),(=>f y x f . 从几何上看,点)0,0,0(是开口朝上的椭圆抛物面2 2 43y x z +=的顶点,曲面在点 )0,0,0(处有切平面0=z ,从而得到函数取得极值的必要条件. 定理1(必要条件) 设函数),(y x f z =在点),(00y x 具有偏导数,且在点),(00y x 处有极值,则它在该点的偏导数必然为零,即0),(00=y x f x ,0),(00=y x f y . 几何解释 若函数),(y x f z =在点),(00y x 取得极值0z ,那么函数所表示的曲面在点),,(000z y x 处的切平面方程为 ))(,())(,(0000000y y y x f x x y x f z z y x -+-=- 是平行于xoy 坐标面的平面0z z =. 类似地有三元及三元以上函数的极值概念,对三元函数也有取得极值的必要条件为 0),,(000=z y x f x ,0),,(000=z y x f y ,0),,(000=z y x f z

多元函数条件极值的求解方法

多元函数条件极值求解方法 摘要:本文研究的是代入法、拉格朗日乘数法、标准量代换法、不等式法等九种方法在解 多元函数条件极值问题中的运用,较为全面的总结了多元函数条件极值的求解方法,旨在 解决相应的问题时能得以借鉴,找到合适的解决方法。 关键词:多元函数;条件极值;拉格朗日乘数法;柯西不等式 Abstract: This paper studies the substitution method, the Lagrange multiplier method, standard substitution method, inequality of nine kinds of method in solving multivariate function extremum problems, the application conditions are summed up the diverse functions of conditional extreme value method, to solve the corresponding problem is able to guide, to find the right solution. Key words: multiple functions; Conditional extreme value; Lagrange multiplier method; Cauchy inequality 时比较困难,解题过程中选择一种合理的方法可以达到事半功倍的效果,大大减少解题时间,拓展解题的思路。下面针对多元函数条件极值问题总结了几种方法供大家借鉴。 1.消元法 对于约束条件较为简单的条件极值求解问题,可利用题目中的约束条件将其中一个量用其他量表示,达到消元的效果,从而将条件极值转化为无条件极值问题。 例1 求函数(,,)f x y z xyz =在条件x -y+z=2下的极值. 解: 由x -y+z=2 解得 2z x y =-+ 将上式代入函数(,,)f x y z ,得 g(x,y)=xy(2-x+y) 解方程组 2 2 '2y 20 220 x y g xy y g x xy x ?=-+=??'=+-=?? 得驻点 12 22 P P =33 (0,0),(,-) 2xx y ''=-g ,222xy g x y ''=-+,2yy g x ''= 在点1P 处,0,2,0A B C === 22=0240AC B ?-=-=-<,所以1P 不是极值点 从而函数(,,)f x y z 在相应点(0,0,2)处无极值;

(完整版)求函数极值的几种方法

求解函数极值的几种方法 1.1函数极值的定义法 说明:函数极值的定义,适用于任何函数极值的求解,但是在用起来时却比较的烦琐. 1.2导数方法 定理(充分条件)设函数()f x 在0x 处可导且0()0f x '=,如果x 取0x 的左侧的值时,()0f x '>,x 取0x 的右侧的值时,()0f x '<,那么()f x 在0x 处取得极大值,类似的我们可以给出取极小值的充分条件. 例1 求函数23()(1)f x x x =-的单调区间和极值 解 23()(1)f x x x =- ()x -∞<<+∞, 3222()2(1)3(1)(1)(52)f x x x x x x x x '=-+-=--. 令 ()0f x '=,得到驻点为10x =,22 5 x = ,31x =.列表讨论如下: 表一:23()(1)f x x x =-单调性列表 说明:导数方法适用于函数()f x 在某处是可导的,但是如果函数()f x 在某处不可导,则就不能用这样的方法来求函数的极值了.用导数方法求极值的条件是:函数()f x 在某点0x 可导. 1.3 Lagrange 乘法数方法 对于问题: Min (,)z f x y = s.t (,)0x y =

如果**(,)x y 是该问题的极小值点,则存在一个数λ,使得 ****(,)(,)0x x f x y g x y λ+= ****(,)(,)0y y f x y g x y λ+= 利用这一性质求极值的方法称为Lagrange 乘法数 例2 在曲线3 1(0)y x x = >上求与原点距离最近的点. 解 我们将约束等式的左端乘以一个常数加到目标函数中作为新的目标函 数2231 ()w x y y x λ=++- 然后,令此函数对x 的导数和对y 的导数分别为零,再与原等式约束合并得 43 320201x x y y x λλ?+=?? +=???=? 解得 x y ?=? ?= ?? 这是唯一可能取得最值的点 因此 x y == . 说明:Lagrange 乘法数方法对于秋多元函数是比较方便的,方法也是比较简单的 :如果**(,)x y 是该问题的极小值点则存在一个数λ,使得 ****(,)(,)0x x f x y g x y λ+= ****(,)(,)0y y f x y g x y λ+= 这相当于一个代换数,主要是要求偏导注意,这是高等代数的内容. 1.4多元函数的极值问题 由极值存在条件的必要条件和充分条件可知,在定义域内求n 元函数()f p 的极值可按下述步骤进行:①求出驻点,即满足grad 0()0f p =的点0p ;②在0 p

多元函数的极值及其应用

多元函数的极值及其应用 作者:程俊 指导老师:黄璇 学校:井冈山大学 专业:数学与应用数学

【摘要】 多元函数的极值是函数微分学中的重要组成部分,本文对几种特殊的多元函数进行了简单的介绍,对多元函数的极值常见的求法进行了研究,并引入其在生活中、生产中解决实际问题的广泛应用,突显这一学术课题在生活中的重大意义。如今构建经济型节约社会慢慢成为我们共同努力的方向,而最优化问题是达到这一目标的有效途径,其常常有与多元函数的极值息息相关。对函数极值的研究不仅把理论数学推上一个高度,给经济方面,生活方面带来的益处不容小觑,本人浅谈极值问题,为了抛砖引玉,希望这一课题能有更广大额发展空间 【关键词】:多元函数;极值;生活中的应用

目录 Ⅰ引言 (1) Ⅱ多元函数极值的介绍………………………………………… 2.1什么是多元函数………………………………………… 2.2函数的极值理论………………………………………… Ⅲ几种函数的极值的常见求法……………………………… 3.1高中极值求法的弊端………………………………… 3.2拉格朗日乘数法……………………………………… 3.3消元法…………………………………………………… 3.4均值不等式法…………………………………………… Ⅳ多元函数在生活中的应用……………………………………

引言 历史表明,重要数学概念对数学发展的作用是不可估量的,函数概念对数学发展的影响,可以说是贯穿古今、旷日持久、作用非凡,回顾函数概念的历史发展,看一看函数概念不断被精炼、深化、丰富的历史过程,是一件十分有益的事情,它有助于我们提高对函数的认识。而函数的极值的作用已经蔓延到经济领域,在各种解决最优化中应用广泛,从而引发了本人对该课题的研究兴趣。 编者 2014年2月

多元函数条件极值的几种求解方法

多元函数条件极值的几种求解方法 摘 要 本文主要讨论了多元函数条件极值的求解问题,其中包括无条件极值、条件极值的概念介绍,对多元函数条件极限值的几种求解方法的概括,其中包括了直接代入法,拉格朗日乘数法,柯西不等式等方法,其中拉格朗日乘数法还着重介绍了全微分和二阶偏导数即Hesse矩阵法等。介绍关于求解多元函数条件极值的几种方法目的是在解决相应的问题中时能得以借鉴,找到合适的解决问题的途径。 关键词 极值;拉格朗日乘数法;柯西不等式 Multivariate function of several conditional extreme value solution Abstract This paper mainly discusses the multivariable function conditional extreme value problem solving, including the unconditional extreme value, conditional extreme value concept of multivariate function is introduced, and several methods of solving condition limit the wraparound, including direct generation into law, Lagrange multiplier method, methods of cauchy inequality, including Lagrange multiplier method also introduces the differential and second-order partial derivative namely Hesse matrix method, etc. This paper introduces the multivariable function about solving several methods of conditional extreme value, which can provide in solving the relevant question readers may be reference when, find the appropriate way to solve the problem. Meanwhile introducing method also has some deficiencies in its done, and further discussion. Key words Extreme; Lagrange multiplier method; Cauchy inequality

(整理)多元函数的极值.

实验六 多元函数的极值 【实验目的】 1. 多元函数偏导数的求法。 2. 多元函数自由极值的求法 3. 多元函数条件极值的求法. 4. 学习掌握MATLAB 软件有关的命令。 【实验内容】 求函数3282 4-+-=y xy x z 的极值点和极值 【实验准备】 1.计算多元函数的自由极值 对于多元函数的自由极值问题,根据多元函数极值的必要和充分条件,可分为以下几个步骤: 步骤1.定义多元函数),(y x f z = 步骤2.求解正规方程0),(,0),(==y x f y x f y x ,得到驻点 步骤3.对于每一个驻点),(00y x ,求出二阶偏导数,,,22222y z C y x z B x z A ??=???=??= 步骤4. 对于每一个驻点),(00y x ,计算判别式2B AC -,如果02 >-B AC ,则该驻点是极值点,当0>A 为极小值, 0

MATLAB 中主要用diff 求函数的偏导数,用jacobian 求Jacobian 矩阵。 可以用help diff, help jacobian 查阅有关这些命令的详细信息 【实验方法与步骤】 练习1 求函数3282 4-+-=y xy x z 的极值点和极值.首先用diff 命令求z 关于x,y 的偏导数 >>clear; syms x y; >>z=x^4-8*x*y+2*y^2-3; >>diff(z,x) >>diff(z,y) 结果为 ans =4*x^3-8*y ans =-8*x+4*y 即.48,843y x y z y x x z +-=??-=??再求解正规方程,求得各驻点的坐标。一般方程组的符号解用solve 命令,当方程组不存在符号解时,solve 将给出数值解。求解正规方程的MATLAB 代码为: >>clear; >>[x,y]=solve('4*x^3-8*y=0','-8*x+4*y=0','x','y') 结果有三个驻点,分别是P(-2,-4),Q(0,0),R(2,4).下面再求判别式中的二阶偏导数: >>clear; syms x y; >>z=x^4-8*x*y+2*y^2-3; >>A=diff(z,x,2) >>B=diff(diff(z,x),y) >>C=diff(z,y,2) 结果为 A=2*x^2 B =-8 C =4 由判别法可知)2,4(--P 和)2,4(Q 都是函数的极小值点,而点Q(0,0)不是极值点,实际上,)2,4(--P 和)2,4(Q 是函数的最小值点。当然,我们可以通过画函数图形来观测极值点与鞍点。 >>clear; >>x=-5:0.2:5; y=-5:0.2:5; >>[X,Y]=meshgrid(x,y);

第八节多元函数的极值及其求法

第八节 多元函数的极值及其求法 要求:理解多元函数极值的概念,会用充分条件判定二元函数的极值,会用拉格朗日乘数法求条件极值。 重点:二元函数取得极值的必要条件与充分性判别法,拉格朗日乘数法求最值实际问题。 难点:求最值实际问题建立模型,充分性判别法的证明。 作业:习题8-8(71P )3,5,8,9,10 问题提出:在实际问题中,往往会遇到多元函数的最大值,最小值问题,与一元函数相 类似,多元函数的最大值,最小值与极大值,极小值有密切的关系,因此以二元函数为例,先来讨论多元函数的极值问题. 一.多元函数的极值 定义 设函数),(y x f z =在点),(00y x 的某个邻域内有定义,对于该邻域内的所有 ),(),(00y x y x ≠,如果总有),(),(00y x f y x f <,则称函数),(y x f z =在点),(00y x 处有极大值;如果总有),(),(00y x f y x f >,则称函数),(y x f z =在点),(00y x 有极小值. 函数的极大值,极小值统称为极值,使函数取得极值的点称为极值点. 例1.函数xy z =在点)0,0(处不取得极值,因为在点)0,0(处的函数值为零,而在点 )0,0(的任一邻域内总有使函数值为正的点,也有使函数值为负的点. 例2.函数2 243y x z +=在点)0,0(处有极小值. 因为对任何),(y x 有0)0,0(),(=>f y x f . 从几何上看,点)0,0,0(是开口朝上的椭圆抛物面2243y x z +=的顶点,曲面在点)0,0,0(处有切平面0=z ,从而得到函数取得极值的必要条件. 定理1(必要条件) 设函数),(y x f z =在点),(00y x 具有偏导数,且在点),(00y x 处有极值,则它在该点的 偏导数必然为零,即0),(00=y x f x ,0),(00=y x f y . 证明 不妨设函数),(y x f z =在点),(00y x 处有极大值,依定义,在该点的邻域上均 有 ),(),(00y x f y x f <,),(),(00y x y x ≠ 成立. 特别地,取0y y =而0x x ≠的点,有000(,)(,)f x y f x y <也有成立.

第八节 二元函数的极值

第八节二元函数的极值 教学目的与要求:理解多元函数极值和条件极值的概念,会求二元函数的极值,了解求条 件极值的拉格朗日乘数法,会求解一些较简单的最大值和最小值的应用 问题 教学重难点:二元函数的极值的充分条件,拉格朗日乘数法 教法:讲授 课时:2 课时 一、引例 伴随着社会进步和生产力的不断发展,在工程技术,科学研究,经济活动分析诸多领域都提出了大量最优化问题。这些问题的本质特征是:在一定的投入水平下,如何寻求最大的效益或与之等价的含义,在设定的效益水平下,如何降低投入。刻划这类问题的数学语言是:对于变量之间的函数,当自变量取何值时,函数变量的值能达到相对的最大或最小。这就是构成多元函数极值问题的实际背景。 实例:某商店卖两种牌子的果汁,本地牌子每瓶进价 1 元,外地牌子每瓶进价 1.2 元,店 主估计,如果本地牌子的每瓶卖元,外地牌子的每瓶卖元,则每天可卖出 瓶本地牌子的果汁,瓶外地牌子的果汁问:店主每天以什么价格卖两种牌子的果汁可取得最大收益? 每天的收益为 求最大收益即为求二元函数的最大值. 注:对于多元函数的极值问题,我们将重点研究二元函数。 二、二元函数极值的一般概念 1 、二元函数极值定义设函数z= f( x, y) 在点( x0 , y0 ) 的某个邻域内有定义, 如果对于该邻域内任何异于( x0 , y0 ) 的点( x, y) , 都有f( x, y)< f( x0 , y0 ) ( 或f( x, y)> f( x0 , y0 )) , 则称函数在点( x0 , y0 ) 有极大值( 或极小值) f( x0 , y0 ) .

极大值、极小值统称为极值。使函数取得极值的点称为极值点。 例1 讨论函数在点的状态。 因为,而当x,y 不同时为零时,恒 大于零,所以函数在(0,0 )取得的函数值是函数的一个极小值。这个结论由图一可看出其正确性。 由于的图形是顶点在(0,0,0) 的开口向上的 旋转抛物面,(0,0,0) 恰为它的顶点。 例如,函数z= 3 x2 + 4 y2 在点(0 , 0) 处有极小值。 当( x, y) = (0 , 0) 时, z= 0 , 而当( x, y) 1 (0 , 0) 时, z> 0 . 因此z= 0 是函数的极小值。 例如,函数在点(0 , 0) 处有极大值。 当( x, y) = (0 , 0) 时, z= 0 , 而当( x, y) 1 (0 , 0) 时, z< 0 . 因此z= 0 是函数的极大值。例如,函数z= xy在点(0 , 0) 处既不取得极大值也不取得极小值。 因为在点(0 , 0) 处的函数值为零, 而在点(0 , 0) 的任一邻域内, 总有使函数值为正的点, 也有使函数值为负的点。 以上关于二元函数的极值概念, 可推广到n元函数。 注:关于多元函数极值的概念应注意理解好两个要点: 一是极值点指的是某个区域的内点而不能是边界点。

二元函数的极值与最值

2. 二元函数的极值与最值 二元函数的极值与最值问题已成为近年考研的重点, 现对二元函数的极值与 最值的求法总结如下: 1.二元函数的无条件极值 (1) 二元函数的极值一定在 驻点 和不可导点 取得。对于不可导点,难以判断 是否是极值点;对于驻点可用极值的充分条件判定。 (2)二元函数取得极值的 必要条件 : 设 z f (x,y) 在点(x 0,y 0) 处可微分且在 点(x 0, y 0 )处有极值,则 f 'x (x 0,y 0) 0, f 'y (x 0, y 0) 0,即 (x 0,y 0) 是驻点。 (3) 二元函数取得极值的 充分条件 :设 z f (x,y) 在(x 0,y 0) 的某个领域内有 连续上 二阶偏导数,且 f 'x (x 0,y 0) f 'y (x 0, y 0) 0 ,令 f'xx (x 0,y 0) A , f'xy (x 0,y 0) B , f 'yy (x 0,y 0) C ,则 当B 2 AC 0且 A<0 时, f ( x 0 , y 0 )为极大值; 当B 2 AC 0且 A>0, f ( x 0 , y 0 )为极小值; B 2 AC 0 时,(x 0, y 0) 不是极值点。 注意: 当 B 2-AC = 0时,函数 z = f (x, y)在点( x 0 , y 0 )可能有极值,也可能没有 极值,需另行讨论 例 1 求函数 z = x 3 + y 2 - 2xy 的极值. 【分析】可能极值点是两个一阶偏导数为零的点, 先求出一阶偏导, 再令其为零 确定极值点即可, 然后用二阶偏导确定是极大值还是极小值, 【解】先求函数的一、二阶偏导数: 并求出相应的极值 . 2 z 2 z z 3x 2y , 2y 2x . 2 6x , x y x 2 z xy 2 z 2 y 2 再求函数的驻点.令 z = 0, x 得方程组 2 3x 2y 0, 2y 2x 0.

推荐-多元函数极值的判定

目录 摘要.................................................................... .. (1) 关键词.................................................................... .. (1) Abstract............................................................. .. (1) Keywords............................................................. .. (1) 引言.................................................................... . (1) 1定理中用到的定义................................................................ .. (2) 2函数极值的判定定理.............................................................. . . (5) 3多元函数极值判定定理的应用..................................................................

.7

参考文献.................................................................... (8) 多元函数极值的判定 摘要:通过引入多元函数的导数,给出了多种方法来判定多元函数的极 值. 关键词:极值;条件极值;偏导数;判定 The judgement of the extremum of the function of many variables Abstract:This paper passes to lead into the derivative of the function of many variables, and give several methods to judge the extremum of the function of many variables and the conditional extremum of the function of many

相关主题
文本预览
相关文档 最新文档