当前位置:文档之家› The UV-optical Galaxy Color-Magnitude Diagram I Basic Properties

The UV-optical Galaxy Color-Magnitude Diagram I Basic Properties

The UV-optical Galaxy Color-Magnitude Diagram I Basic Properties
The UV-optical Galaxy Color-Magnitude Diagram I Basic Properties

a r

X

i

v

:07

6

.

3

9

3

8

v

1

[

a

s

t

r

o

-

p

h

]

2

6

J u

n

2

7

Submitted for publication in the Special GALEX Ap.J.Suppl.Issue The UV-Optical Galaxy Color-Magnitude Diagram I:Basic Properties Ted K.Wyder 1,2,D.Christopher Martin 1,David Schiminovich 3,Mark Seibert 4,Tam′a s Budav′a ri 5,Marie A.Treyer 1,6,Tom A.Barlow 1,Karl Forster 1,Peter G.Friedman 1,Patrick Morrissey 1,Susan G.Ne?7,Todd Small 1,Luciana Bianchi 5,Jos′e Donas 6,Timothy M.Heckman 8,Young-Wook Lee 9,Barry F.Madore 4,Bruno Milliard 6,R.Michael Rich 10,Alex S.Szalay 8,Barry Y.Welsh 11,Sukyoung K.Yi 9ABSTRACT We have analyzed the bivariate distribution of galaxies as a function of ultraviolet-optical colors and absolute magnitudes in the local universe.The sample consists of galaxies with redshifts and optical photometry from the Sloan Digital Sky Survey (SDSS)main galaxy sample matched with detections in the near-ultraviolet (NUV )and far-ultraviolet (F UV )bands in the Medium Imaging Survey being carried out by the Galaxy Evolution Explorer (GALEX)satellite.In the (NUV ?r )0.1vs.M r,0.1galaxy color-magnitude diagram,the galaxies

separate into two well-de?ned blue and red sequences.The(NUV?r)0.1color

distribution at each M r,0.1is not well?t by the sum of two Gaussians due to an

excess of galaxies in between the two sequences.The peaks of both sequences

become redder with increasing luminosity with a distinct blue peak visible up to

M r,0.1~?23.The r0.1-band luminosity functions vary systematically with color,

with the faint end slope and characteristic luminosity gradually increasing with

color.After correcting for attenuation due to dust,we?nd that approximately

one quarter of the color variation along the blue sequence is due to dust with the

remainder due to star formation history and metallicity.Finally,we present the

distribution of galaxies as a function of speci?c star formation rate and stellar

mass.The speci?c star formation rates imply that galaxies along the blue se-

quence progress from low mass galaxies with star formation rates that increase

somewhat with time to more massive galaxies with a more or less constant star

formation rate.Above a stellar mass of~1010.5M⊙,galaxies with low ratios of

current to past averaged star formation rate begin to dominate.

Subject headings:galaxies:evolution—galaxies:fundamental parameters—

galaxies:luminosity function—galaxies:statistics—galaxies:surveys—ul-

traviolet:galaxies

1.Introduction

Galaxies exhibit bimodal distributions in a number of observed properties.The bimodal-ity in galaxy morphologies formed the basis of the original galaxy classi?cation scheme of Hubble(1926).The colors and luminosities of galaxies have been long known to correlate with morphology(e.g.de Vaucouleurs1961;Chester&Roberts1964)with ellipticals being predominantly red and spirals and irregulars blue.

More recently,large statistical samples of galaxies have become available,allowing us to investigate the bimodality of galaxies in a much more quantitative way.In particular, the bimodality appears quite strongly in the galaxy(u?r)color distribution which con-sists of two peaks with a minimum in between them at(u?r)≈2.1?2.2(Strateva et al. 2001).Galaxies in the red peak tend to be predominantly morphologically early-type and high surface brightness galaxies while those in the blue peak are dominated by morpho-logically late-type galaxies with lower surface brightness(Strateva et al.2001;Driver et al. 2006;Blanton et al.2003b;Ball et al.2006).Based upon a sample of low-redshift galaxies from the SDSS,Baldry et al.(2004)investigated the distribution of galaxies in the(u?r) vs.M r color-magnitude diagram(CMD).The galaxies in their sample separate into blue

and red sequences with the distribution in color at each absolute magnitude well-?t by the sum of two Gaussians.The mean color as a function of M r for each sequence consists of an overall reddening with increasing luminosity with a steeper transition in the average color and width of both sequences at a stellar mass of~2×1010M⊙.

In addition to mass,one of the most important other factors suspected of contributing to the galaxy bimodality is the environment.While it has long been known that the mor-phologies of galaxies are correlated with the local density(Dressler1980),the dependence of galaxy colors and luminosities with local density is complicated.Although the ratio of the number of red to blue galaxies varies strongly with the local density,the mean color of the blue and red sequences varies relatively little with environment(Balogh et al.2004). On the other hand,the luminosity of blue sequence galaxies is nearly independent of envi-ronment while both luminous and faint red galaxies are found on average in higher density environments than intermediate luminosity red galaxies(Hogg et al.2003).

The galaxy bimodality has also begun to be investigated based upon large samples of galaxy spectra from the Sloan Digital Sky Survey(SDSS).In particular,Kau?mann et al. (2003a)developed a method that uses the Balmer absorption line index HδA and the4000?A break strength D n(4000)measured from the SDSS?ber spectra in the central3′′of each galaxy to constrain the star formation histories,dust attenuation,and stellar masses for their sample.Based upon these derived parameters,Kau?mann et al.(2003b)showed that galaxies tend to divide into two distinct groups around a stellar mass of3×1010M⊙, similar to the transition mass noted in the optical galaxy CMD(Baldry et al.2004).While galaxies below this mass tend to have younger stellar populations,more massive galaxies tend to be older.In related work,Brinchmann et al.(2004)used the emission lines in the SDSS spectra to determine star formation rates(SFRs)for a large sample of SDSS https://www.doczj.com/doc/588747233.html,ing the speci?c star formation rate,i.e.the current SFR divided by the stellar mass M?,Brinchmann et al.(2004)found that galaxies with108

The evolution of the galaxy color-magnitude diagram out to z~1has begun to be explored(Willmer et al.2006;Faber et al.2006;Blanton2006).These results show that the galaxy bimodality is already in place at z~1.However,the color of both sequences tends to become somewhat bluer with increasing redshift while the luminosity function of both red and blue galaxies shifts to higher luminosities(Blanton2006;Willmer et al.2006). Based upon combining the DEEP2and COMBO17surveys,Faber et al.(2006)argued that the number density of blue galaxies is more or less constant from z~1to z~0,while the

number density of red galaxies has been increasing.Faber et al.(2006)proposed a scenario

to explain their data in which some blue galaxies migrate to the red sequence as a result of gas-rich mergers that use up the remaining gas in an interaction-induced starburst.These galaxies then migrate up the red sequence by a series of gas-free mergers.

The origin of the galaxy bimodality and corresponding transition mass of a few×1010

M⊙is beginning to be understood theoretically.Based upon a semi-analytic model utilizing some simple prescriptions for gas cooling,star formation,and supernova feedback coupled with merging histories of dark matter haloes,Menci et al.(2005)modeled the(u?r)vs.

M r CMD of Baldry et al.(2004).In their model,feedback from supernovae is ine?ective

at regulating star formation for galaxies above a certain threshold halo mass.In these massive galaxies all of the gas is consumed relatively quickly and results in a red sequence galaxy at zero redshift.Blue sequence galaxies,on the other hand,tend to come from less massive progenitors where supernovae feedback is e?ective at regulating star formation,thus allowing star formation to continue down to the present.While their model is successful

at reproducing most of the optical CMD,it predicts too many blue galaxies at M r=?22 compared to the observations.

A di?erent explanation for the origin of bimodality has been suggested by Dekel&Birnboim (2006).According to this model,above a critical halo mass M shock~1012M⊙,a shock is generated in the gas accreting onto the dark matter halo which heats most of the gas and prevents it from cooling and forming stars.In these massive haloes,star formation does happen at z 2due to cold gas that is able to penetrate the hot gas,leading to a burst of star formation,while for z 2heating from Active Galactic Nuclei(AGN)prevents gas from forming any more stars.This naturally leads to the most massive galaxies lying on the red sequence at z~0.For galaxies residing in halos with masses less than1012M⊙,the gas is not shock heated,allowing cold?ows to fuel star formation that is then regulated by supernova feedback.As a result,lower mass galaxies lie on the blue sequence and the location of the bright tip of the blue sequence is due to the onset of the shock in the accreting gas for more massive halos and the feedback from AGN.In this scenario,galaxies tend to move up the blue sequence with time until their masses go above M shock,or they merge into another more massive halo with mass above M shock,after which the gas in the galaxy is no longer allowed

to cool and star formation ceases.Both Cattaneo et al.(2006)and Croton et al.(2006)have coupled semi-analytic models including the transition from shock heating to cold?ows and feedback from supernova as well as AGN with the merging histories of dark matter haloes from N-body simulations.While the details of the modeling of the baryonic physics di?ers somewhat,both groups were able to reproduce the local galaxy CMD by tuning the various parameters a?ecting star formation and feedback in their models.

In this paper,we investigate the galaxy bimodality as revealed in the UV minus optical colors of a large sample of galaxies observed by both the Galaxy Evolution Explorer(GALEX) and the SDSS.While signi?cant contributions to the UV luminosity can come from older evolved stars in red sequence galaxies(e.g.Yi et al.2005;Rich et al.2005),in general the UV light in galaxies is dominated by massive stars with main sequence lifetimes up to~108 yrs.As a result,the emerging UV luminosity is proportional to the recent star formation rate once corrected for light absorbed by dust(Kennicutt1998).The greater sensitivity of the GALEX bands to the recent star formation rate as compared to the SDSS u band would lead us to expect a greater separation between the red and blue sequences.While the measurements from the SDSS spectra are sensitive diagnostics of the stellar populations in galaxies,they are measured only in the central3′′of each galaxy,making somewhat uncertain aperture corrections necessary to account for the portion of each galaxy not sampled.While the UV data presented here is much more susceptible to dust attenuation than in the optical SDSS data,the UV measurements sample the entire galaxy and thus complement the SDSS measurements.

2.Data and Analysis

2.1.GALEX Data

The UV data presented here are derived from the GALEX Medium Imaging Survey (MIS)(Martin et al.2005).GALEX is a50cm diameter UV telescope that images the sky simultaneously in both a F UV and a NUV band,centered at1540?A and2300?A, respectively.The?eld-of-view of GALEX is approximately circular with a diameter of1.?2 and resolution of about5.′′5FWHM in the NUV.The MIS pointings are chosen to overlap areas of sky with imaging and spectroscopy from the SDSS and consist of exposures of at least one to a few orbits with the mode of the exposure time distribution being1700sec. The dataset used in our analysis is taken from the union of the GALEX?rst data release (GR1)with the GALEX internal release IR1.1,a subset of which has been included in the second data release(GR2)publicly available from the GALEX archive.1The IR1.1data was processed with a pipeline very similar to that used in the GR1data and employed the same calibration as used in that release.Details of the GALEX detectors,pipeline,calibration and source extraction can be found in Morrissey et al.(2005,2007).

The GALEX pipeline uses the SExtractor program(Bertin&Arnouts1996)to de-

tect and make measurements of sources in the images.Throughout this paper,we use the”MAG

AUTO aperture and the?at?eld response,exposure time,and sky background at the source position.In addition to the sta-tistical errors,we have added in quadrature an assumed zero-point plus?at?eld uncertainty of2%in the NUV and5%in the F UV(Morrissey et al.2007).The errors increase from the zeropoint uncertainty at the bright end up to≈0.2?0.3mag at23rd mag in both bands.

2.2.GALEX-SDSS Matched Sample

The GALEX MIS catalogs were matched with the SDSS MPA/JHU DR4value-added catalogs.2These catalogs consist of line and index measurements from the SDSS spectra as well as many derived quantities and are described in more detail in a series of papers on the star formation rates,star formation histories,stellar masses,and metallicities of galaxies in the local universe(Kau?mann et al.2003a,b;Brinchmann et al.2004;Tremonti et al.2004). For each GALEX pointing,SDSS sources within0.?6of the GALEX?eld center were matched with the nearest GALEX source within a radius of4′′.When concatenating together the catalogs for all the?elds,we removed duplicate GALEX detections in the overlap regions between adjacent pointings by using the SDSS identi?cation numbers(Plate ID,MJD,Fiber ID)and selecting the GALEX match closest to its?eld center.

After matching the GALEX and SDSS data,we further restricted the sample with various cuts intended to generate a complete statistical sample which are summarized in Table1.For the SDSS photometry,we selected galaxies targetted for spectroscopy in the SDSS main galaxy sample with r-band magnitudes in the range14.5

the sample to galaxies with errorsσr<0.2mag.In addition to the photometry,we further restricted the sample to those galaxies with redshifts z in the range0.010.67.

In addition to the cuts on the SDSS data,we applied several cuts based upon the UV measurements.Since GALEX photometry and astrometry degrade near the edge of the detectors,we only included objects in the sample if their distance from the GALEX ?eld center fov

artifact≤1.This excludes from our sample galaxies that lie within regions expected to be contaminated by re?ections from bright stars within the?eld.Areas of the images with nuv

In the F UV sample,the red edge of the color distribution thus re?ects the UV magnitude limit.

The fraction of SDSS main sample galaxies that lie within0.?55of a GALEX MIS?eld center and that have a GALEX match within our4′′search radius is shown in Figure4as a function of r magnitude.In the NUV sample,the completeness is roughly constant at about90%down to r≈16.5.Fainter than this magnitude,the completeness begins to drop o?.There are very few galaxies with colors redder than(NUV?r)≈6.5.At the GALEX magnitude limit of23mag,a galaxy with this red a color would have r=16.5.Thus,the fraction of SDSS galaxies with a GALEX match begins to drop fainter than this r magnitude due to increasing numbers of red galaxies falling below the GALEX detection limit.For the F UV sample,the reddest galaxies have(F UV?r)≈7.5which corresponds to r=15.5at the limiting magnitude of F UV=23.As expected,the fraction of SDSS galaxies with an F UV match begins to decline at about this r magnitude.

In both the F UV and NUV samples,the match completeness does not reach100% at bright r magnitudes.We have visually inspected all SDSS main sample galaxies with

14.5

a galaxy visible in the GALEX images.However,the UV center measured by the GALEX pipeline for these non-matches lies more than4′′from the SDSS position.Sometimes the GALEX pipeline breaks the galaxy into more than one fragment,none of which are coincident with the SDSS position.In other cases,especially if the galaxy has a low UV surface brightness,the center can be o?set from the SDSS position by more than our search radius even if the GALEX pipeline detects the galaxy as a single object.We assume that the level portion of the match completeness curves in Figure4gives the intrinsic completeness for GALEX detections of the SDSS main galaxy sample.The values we adopt are0.91and0.80 for the NUV and F UV,respectively.

While the completeness of the SDSS photometric sample is nearly100%,some fraction of galaxies that meet the SDSS main galaxy sample selection do not have a redshift measured (Strauss et al.2002).Although some galaxies do not have a redshift due to low signal-to-noise in their spectra,the majority of targeted galaxies without redshifts are missed due to the constraint that SDSS spectroscopy?bers can not be placed closer than55′′to one another.Some of these missed galaxies can be observed in neighboring plates if that region of sky is covered by more than one plate.While the exact completeness is determined by the precise geometry of the spectroscopic plates,the result is that the spectroscopic completeness of the SDSS main galaxy sample is92-94%for the early release data(Strauss et al.2002; Blanton et al.2001).We have adopted a spectroscopic completeness of0.9.Multiplying the GALEX-SDSS match completeness by the SDSS spectroscopic completeness,we estimated

the total completeness of our sample to be0.82in the NUV and0.72in the F UV.In calculating the volume densities below,we correct the number counts by these factors,(i.e. the factor f in equations(5)and(6)below).

In addition to the spectroscopic incompleteness,there is an additional surface brightness selection that is imposed on the SDSS main galaxy sample.As a part of their study of the luminosity function of low luminosity galaxies,Blanton et al.(2005)investigated the com-pleteness as a function of surface brightness and found that the SDSS spectroscopic galaxy sample is greater than90%complete above a half light surface brightness ofμ50,r=22.4 mag arcsec?2with the completeness dropping to50%atμ50,r=23.4mag arcsec?2.Since lu-minosity and surface brightness are correlated,the surface brightness selection preferentially selects against dwarf galaxies.For galaxies brighter than M r=?18,Blanton et al.(2005) have a?t a gaussian to the surface brightness distribution in a series of absolute magnitude bins and have used this model to extrapolate the number of galaxies likely missed due to the surface brightness selection at fainter luminosities.The fraction of galaxies missing from the sample increases from near zero at M r=?18to approximately40%at M r=?16.However, these low luminosity,low surface brightness galaxies do not make a signi?cant contribution to the total luminosity density.Even after correcting for the surface brightness incomplete-ness,about90%of the r-band luminosity density is due to galaxies with M r

2.3.Absolute magnitudes and volume densities

We computed absolute magnitudes for our sample galaxies using,for example for the r-band,

M r,0.1=m r?5log D L?25?K0.1,r(z)+(z?0.1)Q(1) where M r,0.1is the absolute magnitude,m r is the extinction corrected r-band magnitude, D L is the luminosity distance in Mpc,K0.1,r(z)is the K-correction needed to account for the shifting of the galaxy SEDs with respect to the?lter bandpass,and Q is a term to account for luminosity evolution in units of magnitudes per redshift.A positive value for Q means that galaxies get brighter with increasing redshift.Similar equations were used for the other bands.For calculating the luminosity distance we assumed a Hubble constant H0=70km s?1Mpc?1and a?at universe with matter density relative to the critical density of?m=0.3and dark energy density of?Λ=0.7.We calculated the K-corrections using the K

now extended to handle GALEX data(Blanton&Roweis2007).Given the redshift of a galaxy,the K

while that of red galaxies is increasing.

In order to asses the e?ect of color evolution on our results,we have recomputed the absolute magnitudes and volume densities described below for the NUV sample assuming evolution in the r-band of Q r=1.6and in the NUV of Q NUV=3.These choices correspond to a decrease in the(NUV?r)color of a galaxy across our redshift range from0.01

When correcting for Galactic extinction,we assumed the Cardelli et al.(1989)extinction law with R V=A V/E(B?V)=3.1.For the SDSS bands,the ratio of A(λ)/E(B?V)is 5.155,3.793,and2.751for u,g,and r,respectively,while for the F UV the ratio is8.24. Due to the presence of the2175?A bump in the Galactic extinction law,the extinction in the NUV band is no longer strictly proportional to the reddening E(B?V).In order to quantify the e?ect this has on our extinction corrections,we used a small set of42 SEDs from Bruzual&Charlot(2003)that span a representative range of galaxy SEDs from quiescent ellipticals to rapidly star-forming galaxies.3For each intrinsic SED,we applied the Cardelli et al.(1989)extinction law and then computed the resulting NUV AB magnitude as a function of E(B?V).For each SED,we?t a a quadratic function of E(B?V):

A NUV=a1E(B?V)+a2E(B?V)2.(2) For galaxies with some recent star formation,a1=8.24and a2=?0.67while for older galaxies with little or no recent star formation and a SED that falls steeply in the UV with decreasing wavelength,a1is slightly smaller and lies in the range7.5?8.0.For97%of our sample E(B?V)<0.1,and thus the quadratic term can be safely neglected.In addition, the maximum di?erence in the adopted value for A(NUV)for the range of values for a1 among the42SEDs,is only0.07mag at E(B?V)=0.1.Therefore,we assume the value A(NUV)/E(B?V)=8.2for all of our calculations.

PHARE.html.

As argued above,the fraction of SDSS main sample galaxies with GALEX detections is a strong function of the galaxy color.In Figures5and6,we plot contours of the fraction of SDSS galaxies with a GALEX match for the NUV and F UV samples,respectively.In both samples,the completeness for blue galaxies is more than90%while the completeness begins to drop for galaxies with(g?r)0.1>0.8.For the NUV sample the completeness along most of the red sequence is in the range30?60%while the completeness of the red sequence in the F UV sample is lower and in the range10?40%.It is important to note that this drop-o?in the fraction of galaxies with a GALEX match is due to the GALEX magnitude limit and was taken into account below when computing the volume densities of galaxies as a function of absolute magnitude and color.

We used the V max method(Schmidt1968)to determine the volume densities of galaxies in our samples.The value of V max for each galaxy is given by the maximum volume within which the galaxy could have been included in the sample,given our selection limits listed in Table1.We computed a separate V max for the F UV and NUV samples.First,we computed K0.1(z)for0.01

3 π(1+z max)3?D L(z min)3

?M?C 1

that particular color and absolute magnitude bin centered on M r,0.1and(NUV?r)0.1.The corresponding uncertainty in each bin due to counting statistics is given by

δΦ(M r,0.1,(NUV?r)0.1)=f

V2max 1/2.(6)

3.Results

3.1.The Galaxy Color Magnitude Diagram

The number of galaxies in our(NUV?r)0.1and(F UV?r)0.1CMDs are plotted in Figures7and8,respectively.In both plots,the data are plotted as contours where the density of points is high while the locations of individual galaxies are plotted where the density is low.The uncertainty in the colors in both samples is dominated by the errors in the UV measurements.Thus the errors as a function of position in the CMDs are most strongly correlated with color.The median error as a function of color is plotted in Figures7 and8along the left-hand side of each?gure.For blue galaxies,the uncertainty is dominated by the zero-point uncertainty in the GALEX data.For red galaxies,the errors span a larger range from0.1?0.4mag with a median of about0.2mag.

The corresponding volume densities of galaxies as a function of position in the CMD are plotted in Figures9and10,where the weighting was derived from the V max values as in equation(5)with?M=0.5mag and?C=0.2mag.The peak of each sequence from the Gaussian?ts described below are over-plotted as the dashed lines in the(NUV?r)diagram. The volume densities and the errors for the(NUV?r)diagram are given in Tables2and 3while those for the(F UV?r)diagram are given in Tables4and5.

As we have argued in§2.2,the red edge of the color distribution in the NUV sample is real whereas the red edge of the F UV sample is a selection e?ect due to the F UV?ux limit.This is re?ected in the morphology of the galaxy distributions in Figures9and10, where the distribution turns over for the reddest colors in the NUV diagram and does not turn over entirely in the F UV diagram.Throughout the remainder of this paper,we focus on the NUV diagram.

In both the F UV and NUV diagrams,the galaxies separate into two well-de?ned se-quences in addition to a population of galaxies that lie in between.As has been noted before in optical CMDs(e.g.Baldry et al.2004),the most luminous galaxies are on the red sequence,while both sequences become redder with increasing luminosity.In contrast to the optical(u?r)CMD,the blue sequence does not appear to merge at the bright end with the red sequence.

An alternative view of the NUV sample is shown in Figure11where the volume density of galaxies is plotted as a function of the NUV luminosity.The sample reaches signi?cantly fainter NUV absolute magnitudes for the red galaxies due to the SDSS r-band selection. Thus,the slope for the faintest NUV absolute magnitudes included in our sample as a function of color is a selection e?ect.As in Figure9,the sample separates into blue and red sequences.However,there is little,if any,trend of color with M NUV,0.1along either sequence.This is consistent with the conclusions from studies in the optical which indicate that one of the most important factors determining the evolution of a galaxy is its mass, which is much more closely related to the r-band luminosity than to the NUV luminosity (Kau?mann et al.2003b;Brinchmann et al.2004).

3.2.Color Distributions as a Function of M r,0.1

The volume-corrected number density of galaxies as a function of(NUV?r)0.1color is plotted in Figures12?14in0.5magnitude wide bins of M r,0.1.The error bars are the statistical errors only calculated using equation(6).Except for the most luminous bin,there is both a red and blue peak visible in each panel.Similar to previous optical CMDs,the red sequence dominates in the brighter bins.The red and blue sequences reach approximately equal strengths around M r,0.1=?21.75with the blue sequence becoming dominant at fainter luminosities.The relative number of red sequence galaxies reaches50%at about the same luminosity when dividing galaxies using the(u?r)color(Baldry et al.2004).

Following Baldry et al.(2004),we attempted to?t Gaussians to the red and blue peaks in the color distributions in each M r,0.1bin although we employed a somewhat di?erent

methodology.We?t a single Gaussian of the form(1/

their sum falls well below the data in the region between the two sequences.

For the star-forming galaxies in the blue sequence,it is di?cult to generate galaxies with extremely blue colors,i.e.(NUV?r)0.1 1,except with large starbursts or very young ages (e.g.Treyer et al.1998).Clearly,such objects are rare in the local universe.The skew of the blue sequence in the(NUV?r)0.1CMD to redder colors compared to what is observed in the optical would be expected for galaxies with somewhat older average stellar populations or with larger reddening due to dust.Similarly,whereas the red sequence is relatively narrow in the optical,a color distribution skewed towards the blue would be expected for early-type galaxies with some residual star formation(Yi et al.2005).The departure of the blue and red sequences from a Gaussian would imply that we are beginning to resolve some of these e?ects due to the greater sensitivity of the UV light to both variations in the star formation rate and the amount of dust.

Even though a double Gaussian provides a poor?t to the(NUV?r)0.1color distribu-tion,the peak of each Gaussian provides a robust estimate of the peak of each sequence in each absolute magnitude bin.On the other hand,the widthσof each Gaussian should be interpreted with caution as it only gives some information about the blue edge of the blue sequence and the red edge of the red sequence and does not provide a good representation of the entire distribution.The resulting parameters of the Gaussian?ts are plotted in Fig-ure15.In the?gure the circles and squares give the peaks of the red and blue sequences, respectively,whereas the error bars denote theσfor each Gaussian.The values ofσfor the red sequence lie in the range0.3?0.5mag while those for the blue sequence lie in the range 0.5?0.6mag.Also plotted in Figure15are the median photometric errors as a function of color for comparison.While the values forσfor the blue sequence are signi?cantly larger than the photometric errors,the values for the red sequence are comparable to the photo-metric errors in the color,indicating that the fall-o?of the color distribution on the red edge of the red sequence is largely consistent with that expected from the errors.

We have?t a line to the peak color of the red sequence as a function of absolute magnitude with the result(NUV?r)0.1=1.897?0.175M r,0.1.This?t is plotted as the dashed red line in Figure9and the solid red line in Figure15.This?t has the same slope as found by Yi et al.(2005)except with a slightly redder intercept.Yi et al.(2005)analyzed a sample of morphologically selected early type galaxies,some of which appear to harbor some residual star formation,a fact which would tend to pull their?t somewhat towards the blue compared to our color-selected sample.

Following Baldry et al.(2004),we?t the peak color of the blue sequence with the sum

of a line plus a tanh function with the result

(NUV?r)0.1=2.39+0.075(M r,0.1+20)?0.808tanh M r,0.1+20.32

reducedχ2.For values of the faint end slopeα

The luminosity densities are listed in Table6and are plotted as a function of color in the top panel of Figure18while the fraction of the total luminosity density within each color bin is plotted in the bottom panel of the?gure.The largest contribution to the luminosity density comes from galaxies with2<(NUV?r)0.1<3and accounts for≈30%of the total. Galaxies bluer than(NUV?r)0.1=4together contribute64%of the luminosity density while redder galaxies account for36%.Adding up the the contribution to the luminosity density from each color bin,we obtain a total of logρr,0.1=26.903±0.030ergs s?1Hz?1 Mpc?3.This is only slightly larger than the luminosity density of logρr,0.1=26.845±0.012 calculated from a much larger sample of SDSS galaxies by Blanton et al.(2003b),after converting to our value for the Hubble constant.

3.3.2.M NUV,0.1luminosity functions

Similar to the analysis of the M r,0.1luminosity functions described in the previous section,we have computed M NUV,0.1luminosity functions in one magnitude wide bins of (NUV?r)0.1color.As for the r-band,we?t Schechter functions to the distribution within each color bin.The luminosity functions are plotted in Figure19while the best-?tting Schechter function parameters are listed in Table7.The best-?t values for M?NUV,0.1andαare plotted as a function of color in Figure20.Qualitatively,the results are similar to that in the r-band.The faint end slopeαis very steep for the bluest galaxies with a value of?1.8. The faint end slope gradually increases with color up to a value of?0.6at(NUV?r)0.1=3.5. For redder galaxies,the faint end slope remains at about this value until increasing slightly again in the reddest bin.The value of M?NUV,0.1increases dramatically from~?20for the bluest galaxies to~?15for the reddest.

Similar to the r-band,we have computed the NUV luminosity densityρNUV,0.1within each color bin.As before,the luminosity function for the bluest galaxies is near a slope?2 where its integral diverges.Therefore,for the luminosity density in this bin,we have only

integrated the luminosity density down to M NUV,0.1=?12.The value of the luminosity

density as a function of color is plotted in the top panel of Figure21while the bottom

panel shows the fraction of the total luminosity density contributed by the galaxies in each

color bin.As would be expected,the NUV luminosity density is dominated by the blue

sequence galaxies.Speci?cally,≈80%ofρNUV,0.1is coming from galaxies with colors in the

range1<(NUV?r)0.1<3.The bluest galaxies,those with0<(NUV?r)0.1<1,only

contribute≈6%to the NUV luminosity density.Galaxies as blue as(NUV?r)0.1~0are di?cult to produce using models with smoothly decling star formation histories.Such very

blue galaxies can be reproduced by models with a star formation burst lasting10?100Myr,

with little dust and involving a signi?cant fraction of the mass of the galaxy(Treyer et al.

1998).Clearly,such dust-free starburst galaxies are relatively rare in the local universe and

do not contribute much to the total UV luminosity density.The blue sequence could in

principle include galaxies undergoing large starbursts that have relatively large extinctions.

However,we argue in§3.5below that the bulk of the galaxies in the blue sequence do not

have such extreme dust attenuation.

Adding up the total luminosity density for galaxies of all colors,we obtain a value

of logρNUV,0.1=25.791±0.029ergs s?1Hz?1Mpc?3,a value consistent to within the

uncertainties with the value determined by Wyder et al.(2005)from an UV-selected sample.

https://www.doczj.com/doc/588747233.html,parison of(NUV?r)0.1with(u?r)0.1

Although there are a number of qualitative similarities between the(NUV?r)0.1CMD

presented here and the(u?r)diagram from Baldry et al.(2004),there are a few notable

di?erences.As already shown in§3.2,the(NUV?r)0.1color distributions are not well?t

by a double Gaussian function,in contrast to the(u?r)distributions.There is an excess

of galaxies in between the two sequences above that predicted by the double Gaussian.

Moreover,the blue sequence appears to merge with the red sequence for the most luminous

galaxies in the(u?r)diagram while there is still a distinct blue peak visible in Figure12

up to M r,0.1=?22.75.In addition,the separation between the blue and red sequences,

compared to their widths is larger at all luminosities than in the(u?r)distributions.

The reason for these di?erences is relatively easy to understand and related to the greater

sensitivity of the NUV band to changes in the recent star formation rate.To illustrate

this point,we compare directly the(NUV?r)0.1and(u?r)0.1colors for our sample in

Figure22.When generating this?gure,we excluded galaxies with u-band photometric

errors larger than0.3mag.For blue galaxies,the two colors are very well-correlated with

a slope of?(u?r)0.1/?(NUV?r)0.1~0.5.However for galaxies with colors redder than

(NUV?r)0.1≈3.5,there is a change in slope and the(u?r)0.1color begins to increase less quickly with(NUV?r)0.1than for bluer(u?r)0.1colors.As a result,galaxies that are on the red sequence in the(u?r)0.1CMD tend to be more spread out in color in the (NUV?r)0.1diagram.

This behavior is basically that predicted based upon simple galaxy models.In Figure 22,we overplot as red circles the locations of a few Bruzual&Charlot(2003)models with an age of13Gyr,no dust and solar metallicity.The models are plotted for exponentially declining star formation histories with?ve values of the time constantγin the range0.01?7.5 Gyr?1.These models are capable of reproducing the locus of data points in Figure22,and in particular the change in slope for(NUV?r)0.1>3.5.The main resulting di?erence in the observed CMDs is a greater sensitivity of the UV to small changes in the recent star formation rate,especially relevant to galaxies on the red sequence or in between the two sequences.For reference,the solid black line in the?gure indicates the reddening vector in this diagram corresponding to a reddening in the ionized gas of E(B?V)gas=0.5mag, assuming the attenuation law from Calzetti et al.(2000).The reddening vector lies nearly parallel to the blue sequence,meaning that dust would tend to simply move galaxies along the blue sequence in this diagram.

3.5.Correcting for Dust

One of the most important obstacles in interpreting the galaxy CMD is the fact that the UV minus optical color of a galaxy is not only a?ected by the galaxy’s star formation history but by other physical parameters,primarily the amount of dust and the metallicity.We would like to understand how much of the variation in color with luminosity that we observe is due to which of these physical parameters.The most reliable method for determining the UV attenuation is the far-infrared(FIR)to UV?ux ratio because it is almost independent of the age of the stellar population,the dust geometry,or intrinsic dust properties(Gordon et al. 2000).However,the vast majority of our sample have no FIR data available.Thus,we are forced to use more indirect methods.We have estimated the e?ects of dust on the colors of galaxies in our sample using two methods,the?rst using the Balmer lines,and the second using the empirical dust-SFH-color relation derived by Johnson et al.(2006).

3.5.1.Balmer decrement

We have used the Hydrogen Balmer line?uxes measured in the SDSS?ber spectra by Tremonti et al.(2004)to estimate the attenuation for our sample.The intrinsic ratio of Hαto Hβ?ux is relatively independent of the physical conditions within H II regions and has a value of Rαβ,0=2.87(Osterbrock1989).For those galaxies with Hαand Hβemission lines detected,we have computed a reddening in the ionized gas E gas(B?V)using

2.5log(Rαβ/Rαβ,0)

E gas(B?V)=

联想乐Pad A1刷机详细图文教程

联想乐Pad A1刷机详细图文教程 联想乐Pad A1刷机教程,教你如何刷机此帖是一个较为粗略的教程,不过分三种方法,这里是针对第一种方法进行详细说明。 针对一些不太懂刷机的朋友,我这里针对上面帖子里的第一种方法写一篇更为详细的教程,对联想乐Phone刷机不太清楚的机油可以看看。 首先,要下载一个刷机包A107W0_A234_001_008_2375_SC.zip点击下载。值得说明的是,在最早的2035教程中提到的“压缩包中6个文件 Update.zip,Recovery.img,MLO,uImage,u-boot,make_boot_sdcard. zip均拷贝到TF卡根目录下”的步骤,在2493这个版本时,这个步骤中完全可以只拷贝一个Update.zip文件即可,因为其他几个文件在Update.zip中已有,文件完全一样,作用也一样,没有必要再次全部拷贝了。 第二步是把下载完的固件文件改名为update.zip(注意:不是update.zip.zip,部分网友的电脑默认设置是看不到后缀名,所以不要以为就没有后缀名) 第三步,把改名后的update.zip拷贝到TF卡上,TF卡格式化为FAT32,

且确定能在A1系统中被识别。 刷机前必须关机。把联想A1关机(长按电源键10秒可强行关机,请确定保持A1在关机状态)

同时按住“电源键”和“音量小键”,A1会震动一次,这时A1 开机,持续按住两个按键不松手,当第一次出现Lenovo字样的logo 时,松开两个按键。(提醒一下急性子的人,出现logo时候挺一秒,再松手吧。我觉得0.05秒时候是最好)

8500使用说明书

4、问:S8500内存整理软件 答:见附件哦~注册码13个0 5、问:如何鉴别电池真伪 答:大家都知道电池都有序列号的,而且每一颗电池的序列号都是不同的,因此序列号不可能同电池上的其它文字一样一起印刷在贴纸上面(这点懂印刷的应该都知道),所以序列号都是后来打印上去的。因为序列号要求必须耐磨所以对打印机的要求很高,所以只有专用的条码打印机才可以打印。这种打印机往往很昂贵,因此一般的JS是不会采用的。基于以上原因: 1。仔细看序列号文字是后来打印上去的还是跟其它文字一起印刷的,如果是一起印刷的肯定是假的。如果眼神不太好使的,可以用手摸序列号文字,如果很粗糙有凹凸感才有可能是真的。 2. 在第一点的基础上再看文字字体是否有锯齿感(最好有放大镜),如果有恭喜电池是真的,如果文字很平滑则有可能是假的。(因为条码打印机都是针式的,打出来的字不可能会很平滑,除非是600dpi的打印机,但是非常昂贵,所以一般都是用的300dpi的) PS:基于以上种种,假电池的序列号往往都是一样的。以上方法还可以用来鉴别手机另外也有部分厂商用喷码技术来印序列号,出来的字体跟针式打印差不多很粗糙有锯齿感,喷码技术的成本更高,估计不会有JS使用的,呵呵。总之看序列号文字就对了,当然整体做工也是要看的从SN码辨别真伪:三星电池的SN码,包含着电池的生产厂家、生产日期等信息。三星电池SN为11位序号,由数字与字母组成,格式为123-ABCD-EF-GH,其中,第二位“2”代表电芯,用“A”表示三星视界生产,“O”表示SONY公司生产(其它的符号本人不确定,汗一个)第四至七位“ A”、“B”、“CD”分别代表生产年、月、日,用“S”代表2009年,“Z”代表2010年。用1~9分别代表1至9月份,用A、B、C分别代表10月、11月和12月第八位E表示出货的国家第九位F表示颜色,“S”表示银色最后两位表示电池容量。如下图所示,电池SN码是SO1S501AS/5-B,O表示是索尼生产的,S501表示生产日期是2009年5月1号,S表示银色,5-B表示1500毫安,真电池的SN码里的信息和电池上写的生产日期、生产厂家相同下载(146.23 KB)2010-6-30 22:08索尼生产的电池,“生产日期”等文字是空心字,是电池生产完后,用激光将生产日期印上去的,用手摸上去有凹凸感,而假电池的生产日期是在电池生产前直接将所有的信息直接印刷在贴纸上的,当然包含生产日期和SN码三星视界生产的电池,文字都是实心的,从印刷上不易区别,但是SN码里的信息和电池上写的生产日期、生产厂家相同。按以上内容辨别后,如果没有问题就继续按下面的方法鉴别,如果SN码里的信息和电池上写的生产日期、生产厂家不相同,那就可以确定是假电池了,那就没必要再按以下的方法鉴别了。 1、电池装入手机后,应该无间隙、晃动,电池盖盖上后,电池盖的缝隙无增大; 2、电池铜片位置很正、无歪斜,铜片旁边的印有“+”“-”符号的圆孔底面是光面,“+”“-”符号的表面是毛面; 3、铜片端的塑胶部分是软的,用指甲按会留下痕迹,假电池是硬的,按不动(此项不一定); 4、待机时间,这个可以和其他人对比,就不多说了

联想ZUK Z2 Pro(尊享版全网通) 线刷教程_刷机教程

联想ZUK Z2 Pro(尊享版/全网通) 线刷教程_刷机教程 联想ZUKZ2Pro(尊享版/全网通):联想ZUK手机Z2(Z2131)全网通4G双卡双待(4G 运行+64G内存1300万像素5.0英寸。这款手机要怎么刷机呢?请看下面的教程。1:刷机准备 联想ZUKZ2Pro(尊享版/全网通)一部(电量在百分之20以上),数据线一条,原装数据线刷机比较稳定。 刷机工具:线刷宝下载 刷机包:联想ZUKZ2Pro(尊享版/全网通)刷机包 1、打开线刷宝,点击“线刷包”(如图2)——在左上角选择手机型号联想ZUKZ2Pro(尊享版/全网通),或者直接搜索Z2131 (图2) 2、选择您要下载的包(优化版&官方原版&ROOT版:点击查看版本区别。小编建议选择官方原版。), 3、点击“普通下载”,线刷宝便会自动把包下载到您的电脑上(如图3)。

(图3) 1:解析刷机包 打开线刷宝客户端——点击“一键刷机”—点击“选择本地ROM”,打开您刚刚下载的线刷包,线刷宝会自动开始解析(如图4)。 (图4)

第三步:安装驱动 1、线刷宝在解包完成后,会自动跳转到刷机端口检测页面,在刷机端口检测页面(图5)点击“点击安装刷机驱动”, 2、在弹出的提示框中选择“全自动安装驱动”(图6),然后按照提示一步步安装即可。 (图5)

(图6) 第四步:手机进入刷机模式 线刷包解析完成后,按照线刷宝右边的提示操作手机(图7),直到手机进入刷机模式(不知道这么进?看这里!): (图7)第五步:线刷宝自动刷机

手机进入刷机模式,并通过数据线连接电脑后,线刷宝会自动开始刷机: (图8) 刷机过程大约需要两三分钟的时间,然后会提示您刷机成功(图9),您的爱机就OK啦! 刷机成功后,您的手机会自动重启,启动的时间会稍微慢一些,请您耐心等待。直到手机进入桌面,此次刷机就全部完成啦。 刷机失败了? 如果您刷机失败了,可能是刷机过程中出现了什么问题,可以这么解决: 1、按照以上步骤重新刷一遍,特别注意是否下载了和您手机型号完全一样的刷机包; 2、联系我们的技术支持人员解决:>>点击找技术 3、刷机中遇到问题,可以查看常见问题进行解决>>常见问题。 以上就是小编今天关于联想ZUKZ2Pro(尊享版/全网通)如何刷机的介绍。一建刷机,让您从此手机无忧,如论您是小白用户,还是手机维修人员,线刷宝,只为

联想a820刷机教程

联想a820刷机教程(附刷机包、刷机工具、驱动下载) 卡刷刷机是利用第三方recovery来刷机,如果你还没有刷入第三方recovery,请接着往下看: 刷入第三方recovery:联想A820线刷中文recovery卡刷模块教程 联想A820官方线刷工具:点此下载 联想A820含中文recovery卡刷模块线刷包:点此下载 之前有部分机友因驱动未成功安装等原因,导致无法刷,或者出现其他问题,现更新教程,使用的电脑建议采用XP系统!比较安全、易装驱动; 1、先安装好线刷驱动,已经安装过的请跳过,这里就不多介绍安装驱动的方法,具体方法,可移步至 2、先备份好您手机上的短信、图片、软件等信息,然后下载好联想A820官方线刷工具Fla sh_tool,下载地址见最后面,如果已经下载可跳过; 3、下载好最下面的“含中文recovery的线刷包”,如果您之前已经下载官方固件,可无需下载,看最后面的特别说明; 3、打开刷机工具Flash_tool,选择Scatter-loading,选择含中文recovery卡刷模块的线刷包里面的txt文档文件MT6589那个,如图:

4、确定全部勾已经勾选,然后点击Ferware-upgade,然后插上你的联想A820(装电池的),然后进度条会走,四五分钟之后,刷成功,会弹出一个小小的窗口,表示成功刷入中文rec overy。如图: 5.弹出下面的绿色圈圈窗口之后,表示成功刷入中文recovery,拔掉数据线,按住电源键2秒左右,再同时按音量加、减键(此时3个键一起),一直到进入中文recovery模式。或者借助刷机精灵、卓大师等软件重启到recovery模式!

制作U盘启动及联想刷机

刷新方法: 1、制作U盘启动盘。usboot170.rar下载地址: https://www.doczj.com/doc/588747233.html,/d/7043bb9d285353728d2f47862a5839538 eb5d3a47c6b0500 DOS启动版U盘制作方法详解 https://www.doczj.com/doc/588747233.html,/News/technic/200506/2005060815103174 006.shtml 2、将刷新主板BIOS用的文件, markfile和Reset文件夹下所有文 件拷贝到DOS启动 U盘根目录; 3、刷新主板BIOS,和刷新普通主板的BIOS一样; 【进入DOS(开机按F12.选择你的U盘回车)输入MB回车; 开始刷新BIOS】 4、刷新完成重启电脑; 5、重新进入DOS,先运行Reset.BAT, 再运行markfile.BAT。 请各位注意:我上传的BIOS(2UKT070A)是联想彬彬版主提供;没有经过任何修改。 但是MB.BAT批处理有误。 ResetOA2.exe AFUdos4 2UKT070A.ROM /B /P IF errorlevel 1 goto end AMIDEDOS.EXE /Su 00020003000400050006000700080009 IF errorlevel 1 goto end AMIDEDOS.EXE /sp "7339AL2" IF errorlevel 1 goto end

AMIDEDOS.EXE /ss "111111" IF errorlevel 1 goto end :end AFUdos4(错误)修改:AFU417 00020003000400050006000700080009修改成你的UUID号。

联想a60刷机步骤

近来有朋友问怎么刷联想A60于是写了个傻瓜操作流程,希望对需要的人有帮助,共享出来。 本文的内容与软件均来自移动叔叔论坛与网络,本人只是整理了一下,下载链接在金山快盘中,不保证永久有效。 By fjnpcch at 2011.10.14 分成三个步骤: 一、root手机。 1、首先把“联想A60固件USB刷机驱动forXP.rar"解压缩。 下载地址:https://www.doczj.com/doc/588747233.html,/index.php?ac=file&oid=9015011800255251。 2、把手机关机,连上usb线,这时会找到设备,安装驱动。驱动在第1步中的目录中找。 3、下载Lenovo_A60_Flash_Tool_m44.rar,下载地址: https://www.doczj.com/doc/588747233.html,/index.php?ac=file&oid=9015011800255250,将其解压缩。 运行刚解压出来目录中的:Lenovo_A60_Flash_Tool_m44\Lenovo_A60_Flash_Tool_m44.exe 4、选择第二个框后面的,如图中1处红色的。 5、会让你找文件,找到: Lenovo_A60_Flash_Tool_m44\rom\ MT6573_Android_scatter.txt (在第3步中解压出来的目录中)

6、把手机usb线拔下来,记得一定机先拔下来。 7、按软件中的下载,如上图中2处。 8、这里会出现倒计时:如图 9、把手机usb 线插上。 10、出现如下图的黄色条和绿色圈就已经root成功了。 二、刷入第三方recovery。(recover是卡刷系统的前提) 11、下载:下载地址:https://www.doczj.com/doc/588747233.html,/index.php?ac=file&oid=9015011800255250, 解压m44-20110812-a60-2[1].3-recovery.rar,得到m44-20110812-a60-2.3-recovery.img文件。 12、下载https://www.doczj.com/doc/588747233.html,/index.php?ac=file&oid=9015011800255289,得到m44tools.apk 文件。 13、手机开机,把上面两个文件拷贝到手机卡的根目录中。 14、在手机上安装m44tools.apk文件,出现“移动叔叔工具箱”软件。

刷新网卡激活win7-用带有BootRom功能的网卡为系统添加SLIC2

前言: A. 撰写本文的目的是为了学习和交流计算机技术及操作技巧,并不是鼓励大家使用盗版软件或盗版系统,由此引起的一切直接的、间接的责任和损失本人概不负责。请勿引用本文的内容或使用本文中涉及的技术、手段用于商业盈利目的。 B. 文章中的PCI模块程序来自dkpnop大侠,网卡换SLIC工具由zhaoliang大侠开发,驱动程序以及相应工具来自Intel网站或者驱动之家,下文中另外提到的“超级急救盘光盘版”由DOS之家提供。 C. 在此声明,本文内容仅供参考。引用、借鉴、利用本文中提及的技术、软件、方法而引起的一切直接的、间接的责任和损失本人概不负责!! D. 其实关于使用网卡激活Win7的文章论坛上已经有不少了,然后就有朋友就问我为什么还要发表类似的文章?我的回答其实很简单:论坛上曾经发表的文章要么就是太简单,要么就是说的太玄乎让人不敢尝试,正因为这样,在本文中不但有比较详细的操作步骤,同时也对一些会碰到的问题进行了简单的讲解,让大家看了后基本都可以明白,也可以放心大胆的按照步骤操作。当然,这样一来,文章的整体字数就上去了,但对于需要的人来说,具体点总是不错的…… ―――――――――――――――――――――――――――――――――――――――――― ―――――――――――――――――――――――――――――――――――――――――― 需要的硬件及软件工具: ――――――――――――――――――――――――――――――――――――――――――

1. intel 82559或者550ey等带bootrom的网卡,启动芯片为eeprom可带电擦除。 2. intel网卡驱动12.0版或更高版本,包含intel proset工具包。 3. ProBoot工具。 4. PCI模块。 5. 网卡换SLIC工具。 6. 超级急救盘光盘版(DOS之家有最新版下载,请自行刻录成光盘) ――――――――――――――――――――――――――――――――――――――――――

酷派手机怎么双清

酷派手机怎么双清 酷派是一个比较知名的手机品牌了,前几年,酷派和中兴、华为、联想并称“中华酷联”,是中国四家手机品牌。酷派的手机一般是运营商运营商定制销售,前几年是市场份额很高,这两年已经下降了很多,不过市面上的酷派手机还是很多的。那么,酷派的手机要如何双清呢? 什么是双清? 双清就是指清掉手机的数据,包括用户数据和缓存数据。也叫双wipe。wipe的中文翻译就是"擦,拭,擦去,涂上”。所以双wipe,和双清实际上是一个意思。 为什么要双清呢? 1、刷机之前一般要双清,避免之前的数据和新刷机的系统产生冲突; 2、当许多应用都有问题(比如闪退),但是又无法确定问题的原因时,可以使用双清,基本就能解决问题; 3、觉得自己手机内软件垃圾太多了,而无所适从时,可以使用双清,还原一个崭新的系统。

那么再来看看酷派手机要怎么双清呢? 手机双清,需要先进入recovery模式,那么酷派的手机怎么进入recovery模式呢? 一、将手机彻底关机。 二、在关机状态下同时按住:电源按键+音量下,进入Recovery。 三、在recovery模式下使用音量键选择,电源键确认。就可以双清手机了: 1、进入到Recovery模式后,通过“音量-”键选中“wipe data/factory reset”,按“音量+”键确认(进入下一个界面)。 2、通过“音量-”键选中“Yes – delete all user data”,通过“音量+”键确认执行清掉DATA分区数据操作。 3、进入到Recovery模式后,通过“音量-”键选中“Wipe cache partition”,按“音量+”键确认执行清掉CACHE分区数据操作。 4、完成后重启手机。 双清完成,接下来就可以刷机了。 酷派手机线刷工具: https://www.doczj.com/doc/588747233.html,/ashx/downloadTransfer.ashx 酷派手机刷机包下载:https://www.doczj.com/doc/588747233.html,/rom/coolpad/ 酷派手机刷机教程:https://www.doczj.com/doc/588747233.html,/guide?brandId=1666

华为g610-t11刷机步骤

第二步,安装华为G610-T11必需的刷机驱动 打开从第一步解压后的文件夹,找到“MTK智能机USB驱动-刷机必备驱动大全by移动叔叔.rar”,解压后,进入“刷机驱动自动安装版”文件夹,点击“点击安装by移动叔叔.exe”进行驱动安装。如果电脑是64位的,请点击“installdrv64.exe”。 PS:WIN7 64位系统的请更换32位系统来刷机! 识别刷机驱动步骤:安装完驱动,将手机拔掉电池,直接裸机不带电池的和电脑联机,即可弹出发现硬件。 PS:不成功的,请更换USB端口、更换电脑系统为XP。 如华为G610-T11安装驱动过程出错,提示“inf中的段落无效”之类,请下载缺失文件放到windows目录下相关文件夹中。 inf补丁:https://www.doczj.com/doc/588747233.html,/c0tk60b8hc 将mdmcpq.inf 复制到c:/windowsinf 将usbser.sys 复制到c:/windows/system32/drivers 另外考虑到自动安装版驱动未必100%凑效,这里有手动安装版的操作教程,请前往https://www.doczj.com/doc/588747233.html,/thread-291645-1-1.html -------------------------------------------------------------------------------- 第三步,具体图解华为G610-T11刷机教程如下: 刷机的时候需要扣掉电池的刷,简单说明下过程: 数据线接电脑一端,手机关机扣电池出来,刷机软件点download(下载),数据线另一端接手机,这样就会开刷。 PS:供电不足情况下,需要在加装电池的刷!就是手机扣完电池后再装回去才点download,操作类似。 还有,必须将DA DL ALL With Check Sum前面的框框勾上勾勾! 1、单刷recovery教程如下图

联想A68E刷机教程

使用1月23日版集成软件楼主自用版:https://www.doczj.com/doc/588747233.html,/viewthread.php?tid=3196249&page=1&extra=#pid73215718 2月3日版,下载地址:https://www.doczj.com/doc/588747233.html,/thread-3195039-1-1.html 1月23日版,下载地址:https://www.doczj.com/doc/588747233.html,/viewthread.php?tid=3175932&page=1&extra=#pid72305386 增加电池容量的方法实测,待机时间有明显增长:https://www.doczj.com/doc/588747233.html,/thread-3180482-1-1.html 官方S019原版,只修改刷机脚本为recovery刷入其它没有任何改变,为刷机上瘾机油和不满意精简ROM的机油预备。下载地址https://www.doczj.com/doc/588747233.html,/file/c2mvdhxv#A68E_S019_update.zip 我的所有ROM基于官方原版修改,请参考,官网论坛地址 https://www.doczj.com/doc/588747233.html,/forum.php?mod=viewthread&tid=23401&extra=page%3D1 @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@@@@@ ......下面是刷机教程……… @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@@@@@ 失败原因排名:1、驱动没有装好88.88888%,2、杀毒或者安全软件阻扰11.111%, 3、 其他原因0.000000001% 步骤一、首先安装手机驱动(这步很简单,但后面的更简单。很多机油不成功就是这步都没有搞好) 装驱动方法一、电脑装91助手,并运行,手机usb调试打勾,电脑运行基带升级程序“updatetool”。但是什 么都不要做。切忌手痒去按那个“start”。等会91助手就识别出a68e。哈哈!驱动就已经装好了,这个也是很多机油说不能连接91助手的简单解决方法!!(updatetool在步骤三那里下) 装驱动方法二、把手机和电脑连起。手机:设置—应用程序—开发—USB调试—打勾。电脑会自动安装驱动, 如果没有自动安,双击我的电脑。再点击多出来的盘或者光驱。等一会电脑端就安好了三个东西:1、天翼宽带。 2、天翼网盘。 3、手机驱动(前面两个跟Root 和刷机无关,3才是最重要的。它安1和2, 3自然就有了) 装驱动方法三、单独安装电脑端驱动,下载:https://www.doczj.com/doc/588747233.html,/file/c2bq17q8# 如果驱动都装不起那就别刷机了,去大街上找手机维修点刷吧,呵呵!我敢说他们也刷不好

诺基亚手机无法开机后,强刷修复系统的方法

诺基亚手机无法开机后,强刷修复系统的方法 ?最近更新: 2011-07-21 23:41 ?浏览次数: 7840 次 ? 2011年我的手机我做主,手机要玩就要这么玩!! ---idea_wj 以下内容适用于诺基亚BB5型手机,其他机型还不太确定,你可以上网看看你的诺基亚手机是否是BB5型的,一般非智能的都适用,该教程以6303C为例,vista32位操作系统下进行,软件是凤凰刷机软件,资料包(刷机包)code 0583415。为了让本教程大众化,更通俗易懂,先说一些必要内容,刷机和强刷是有一些区别的,刷机是一些港行货使用不便或必须在客服才允许升级的手机,水货等诺基亚官方不提供升级,只能通过杂牌软件刷机才能是自己手机正常使用,刷机是有很大风险的,且失败几率很大,失败后手机将会彻底不能使用,也就是变成人们所说的废铁或板砖;而强刷是指手机成为板砖不能开机,而客服又不提供合理的解决办法,自己只好通过一些别的软件强行修复这已关机的手机,使成为板砖的手机能正常使用,而前提是,这手机成板砖时,按开机键后,usb在电脑上有反应(中间有个重要步骤,待会儿会解释)! 如果你是因为刷机或自己在电脑上ovi套件升级手机失败或一些别的什么原因,致使手机无法开机而成为板砖,不要急着找客服或修手机的,他们九成会说:“无法修复,只能换主板”,拜托,换主板的钱够买台新机子了,更何况,即使他会刷机,会给你强刷,没有100到200块钱,他绝对不给你修,对于你,你会损失几百块,对于他,只是动动鼠标,你心里会平衡吗?学会以下内容,将会为你带来极大的方便,随时随地,你都可以修复你的宝机! 强刷有个优势就是,你可以多次去刷,失败了继续重来,不用担心手机问题,反正已经有问题了。以下内容是通过自己亲自试验后写出的步骤,其中有很多重要步骤,我可以明说,在网上是很难找到的,而每个细节都应该注意,否则你会走很多弯路的,由于兼容问题,vista上安装软件太麻烦,软件光安装就安装了好几次才成功。 工具/原料 ?你得准备这些东西,凤凰软件(可以在凤凰网上找到,我选的是2010年汉语版)、相应的刷机包code(在班塞网上有,我6303c,选的是rm-443 code:0583415。补充:强烈注意:找到的code刷机包的版本必须比手机 成板砖前的版本高,否则刷机会失败,要是实在不清楚自己是哪个版本就 下载个最新的版本) 还有诺基亚官方网站和你手机相应的ovi套件(这是我多次连接失败后,发现的,必须有这个东西,否则你usb连不倒凤凰软件,更别谈强刷),这三样东西是必需的。【除了code外,这些软件我 都库存了,跟前需要的朋友可以直接来取,可以省下不少下载的麻烦】 (注意:你的code是在手机放电话卡旁边的一串数字,7位数基本都是 05开头,找到后再到网上找相应的刷机包)

A820T刷机教程

联想A820T获取ROOT权限教程: (说明:网上好多教程都没用,我试过蘑菇云刷机大师、百度刷机、腾讯一键root···都是显示root成功,但还是不能卸载系统软件,相信多数朋友有相同的苦恼。本人也是走了很多弯路,希望我的经验能帮到你,相信我一定能够成功!) 1、先刷入联想家园网发布的第三方中文recovery卡刷模块 2、将你的A820T手机进入中文recovery模式,进入方法比较多: a、比如用刷机精灵、或者卓大师等自动进入,有重启(进入)到recovery的功能; b、当然,你也可以手动进入中文recovery,进入方法:关机状态下,安装电源键2秒左右,再按住音量加、减两个键(此时3键一起),一直到进入中文recovery模式。 3、进入中文recovery模式之后,选择倒数第二个选项“获取ROOT 权限”-电源键确定,1秒之后提示成功。 4、只要几秒时间,即可成功,完成之后,返回立即重启,你的联想A820t手机就获取ROOT权限了; 具体的步骤: 1、先刷入联想家园网发布的第三方中文recovery卡刷模块(有点麻烦,请耐心看完,也是关键的一步)

⑴首先安装驱动 本教程以win7为例,XP系统也是一样的(建议用XP系统,驱动比较容易装上,本人首先用的win7没有安好驱动,后改为XP成功的) 【步骤一】下载好最后面的A820T线刷驱动之后,解压到最后面,将你的联想A820T手机关机,扣下电池,整个安装驱动的过程,不需要电池; 【步骤二】打开电脑的“设备管理器”(右击我的电脑打开); 【步骤三】手机不要电池,用USB数据线连上电脑,这个时候,注意你电脑的设备管理器,插上的时候,会弹出一个感叹号的驱动(MT65XX Preloader),注意,它只出现几秒的时间,一出现,马上双击它。 【步骤四】双击感叹号的驱动之后,会弹出窗口,选择“更新驱动程序”,如图: 本帖隐藏的内容 【步骤五】如上图所示,选择更新驱动程序之后,选择“浏览计算机以查找驱动程序”,如果是XP的系统,在连上手机的时候,应该会自己自动弹出新驱动的安装,然后一样选择浏览计算机来选择驱动,不要自动搜索。如图:

联想A60卡刷刷机教程-移动叔叔

你的联想A60爱机是不是也想要刷机呢?想知道刷机的步骤么?现在就来个详细的刷机教程吧! 一、root手机 1.还没ROOT的朋友可先参考https://www.doczj.com/doc/588747233.html,/topic/6610 二、刷入第三方recovery。(recovery是卡刷系统的前提) 联想A60要怎么样才能刷入第三方recovery呢?方法很简单,现在就来看联想A60刷recovery教程吧! 2.准备工作:下载下面两个附件(已一起打包在帖子最下面的附件处了) 1).m44-20110812-a60-2.3-recovery.img 2).m44tools.apk 3.开始刷recovery: 1).手机开机,把上面两个文件拷贝到手机卡的根目录中。 2).在手机上安装m44tools.apk文件,出现“移动叔叔工具箱”软件。 3).在手机上运行“移动叔叔工具箱”,找到从“SD卡刷Recovery区”,选择后就能看到” m44-20110812-a60-2.3-recovery.img”。选择它。 4).手机关机,按住音量向上键和电源键启动就能进入recovery状态。 三、刷系统 4、你可以从以下几个中选一个来刷, 1)【完美版】联想A60MTK6573肌肉定制版MIUI天气20110822.zip------是精简过的系统,最好用。下载地址:https://www.doczj.com/doc/588747233.html,/index.php?ac=file&oid=9015011800255157, 2)联想A60_MTK6573_定制卡刷rom_SPB3D主题解决蓝牙问题_2011-08-17.zip也是一个有3d的系统。 下载地址:https://www.doczj.com/doc/588747233.html,/index.php?ac=file&oid=9015011800255159, 3)联想A60最新官方0830rom官方卡刷rom.zip -------联想官方最新系统,刷了要再刷其它系统又要重做过了。 下载地址:https://www.doczj.com/doc/588747233.html,/index.php?ac=file&oid=9015011800255160, 4)这个googleservice.zip不是系统,是谷歌的服务,如果你想用的话可以刷完系统后再刷进去。 下载地址:https://www.doczj.com/doc/588747233.html,/index.php?ac=file&oid=9015011800255220, 5、在第3步进入recovery后,先选择U盘模式,连上usb线就可以把rom文件拷贝到卡的根目录中了。确定用home键(有房子的那个键),上下选择用音量键。回到上一级用返回键。 6、拷贝完文件后,要选择“清除数据/恢复工厂设置”所有的数据会丢失,先要备份通讯录,短信等,可以先在手机系统中下个”QQ同步助手“同步到QQ上去。 7、清完,选择“用sd卡上的zip文件包刷机”,会看到刚才第5步拷贝上去的文件,选择之(不要选择错了)。等几分钟后,有点慢。 8、选择“重启手机”。 9、等一下,如果能启动手机就成功了

三星GALAXY Mega 2(G7508Q双4G)刷机教程_救砖图解

三星GALAXY Mega 2(G7508Q/双4G)刷机教程_救砖图解 三星GALAXYMega2(G7508Q/双4G)搭载三星Exynos4415四核处理器,手机成砖的教程工具摆在面前都难以救回手机。三星GALAXYMega2(G7508Q/双4G)要怎么刷机呢?今天线刷宝小编给大家讲解一下关于三星GALAXYMega2(G7508Q/双4G)的图文刷机教程,线刷教程和救砖教程,一步搞定刷机失败问题,跟着小编一步步做,刷机Soeasy! 三星GALAXYMega2(G7508Q/双4G)搭载联发科MT6572双核处理器,作为一款中端大屏智能手机,支持移动/联通双4G网络,拥有5.98英寸720P大屏幕,显示效果尚可,但不易携带。这款手机要怎么刷机呢?请看下面的教程。 (图1) 1:刷机准备 三星GALAXYMega2(G7508Q/双4G)一部(电量在百分之20以上),数据线一条,原装数据线刷机比较稳定。

刷机工具:线刷宝下载 刷机包:三星GALAXYMega2(G7508Q/双4G)刷机包 1、打开线刷宝,点击“线刷包”(如图2)——在左上角选择手机型号(三星-G7508Q),或者直接搜索G7508Q (图2) 2、选择您要下载的包(优化版&官方原版&ROOT版:点击查看版本区别。小编建议选择官方原版。) 3、点击“普通下载”,线刷宝便会自动把包下载到您的电脑上(如图3)。

(图3) 2:解析刷机包 打开线刷宝客户端——点击“一键刷机”—点击“选择本地ROM”,打开您刚刚下载的线刷包,线刷宝会自动开始解析(如图4)。 (图4) 第三步:安装驱动 1、线刷宝在解包完成后,会自动跳转到刷机端口检测页面,在刷机端口检测页

联想 A820t线刷教程_刷机教程图解,救砖教程

联想A820t线刷教程_刷机教程图解,救砖教程 联想A820t:下载联想A820t安卓ROM刷机包,选线刷宝官网。本站所有联想A820tROM刷机包都经过人工审核检测,更有刷机保为您提供刷机保险,让您无忧刷机!。联想A820t要怎么刷机呢?今天线刷宝小编给大家讲解一下关于联想A820t的图文刷机教程,线刷教程和救砖教程,一步搞定刷机失败问题,跟着小编一步步做,刷机从未如此简单! 联想A820t:采用MT6589WM的1.2GHz高速四核处理器,28nm工艺制程,CPU速度更快,功耗更低。4.5英寸IPS高清绚丽大屏,qHD级别分辨率,16:9宽屏显示,玩转高清视频。这款手机要怎么刷机呢?请看下面的教程。 1:刷机准备 联想A820t一部(电量在百分之20以上),数据线一条,原装数据线刷机比较稳定。 刷机工具:线刷宝下载 刷机包:联想A820t刷机包

1、打开线刷宝,点击“线刷包”(如图2)——在左上角选择手机型号联想A820t,或者直接搜索联想A820t (图2) 2、选择您要下载的包(优化版&官方原版&ROOT版:点击查看版本区别。小编建议选择官方原版。), 3、点击“普通下载”,线刷宝便会自动把包下载到您的电脑上(如图3)。 (图3)

2:解析刷机包 打开线刷宝客户端——点击“一键刷机”—点击“选择本地ROM”,打开您刚刚下载的线刷包,线刷宝会自动开始解析(如图4)。 (图4) 第三步:安装驱动 1、线刷宝在解包完成后,会自动跳转到刷机端口检测页面,在刷机端口检测页面(图5)点击“点击安装刷机驱动”, 2、在弹出的提示框中选择“全自动安装驱动”(图6),然后按照提示一步步安装即可。

联想手机变砖怎么办

联想手机变砖怎么办 中兴、华为、酷派、联想曾是国内几家手机厂商。这两年随着小米、OPPO的火热,联想手机的销量虽然已经不如之前了,但是还是拥有相当一部分市场。几年前的联想手机,现在用起来估计已经比较卡了。很多联想的手机用户就会想着给手机刷一下机,不过如果刷机不正确的话,可能会让手机变砖,也就是无法启动。那么遇到这种情况怎么办呢?不用担心,小编来帮您解决联想手机变砖的问题。 手机变砖,又分为两种情况。俗称“真砖”和“假砖”,要怎么判断呢? 1、手机充电无反应; 2、不能进入任何模式,按手机键没有任何反应; 3、电脑或刷机工具完全检测不到手机; 4、手机硬件损坏。 如果是上面这几种情况,就是真砖,基本上可以判断是手机硬件故障率,这时候可以选择拿到维修店去维修,自己一般来说是没办法解决的。 那什么是假砖呢? 1、手机还可以开机,但是卡在启动界面或者反复重启,无法进入操作系统;

2、无法开机,但是可以进入恢复模式(recovery模式); 3、无法开机,但是可以进入刷机模式; 4、黑屏、按键无反应,但是刷机工具可以识别。 如果是上面这几种情况,那么还有救,而且自己就可以解决。那么具体要怎么做呢? 1:下载安装手机救砖工具线刷宝,下载地址: https://www.doczj.com/doc/588747233.html,/ashx/downloadTransfer.ashx?utm_source=wen ku 2:确认自己的手机型号,然后在线刷宝上找到该型号的刷机包并下载: 第三步:按照联想手机救砖教程开始救砖 在这里 (https://www.doczj.com/doc/588747233.html,/guide?brandId=1583?utm_source=wenku)搜索想要救砖的手机型号,然后按照教程的步骤操作,即可救回您的联想手机啦! 救砖失败了怎么办?

相关主题
文本预览
相关文档 最新文档