当前位置:文档之家› 药物配体与生物大分子受体

药物配体与生物大分子受体

药物配体与生物大分子受体
药物配体与生物大分子受体

大分子药物的前景

大分子药物的前景 目前,世界上所开展的所有最尖端、最先进的重大疾病治疗方法,如艾滋病、肿瘤等均与生物大分子药物有关,欧、美、日等国家均认同生物大分子药物将是 21世纪药物研究开发中最有前景的领域之一。在日前举行的以“生物大分子药物 高效化的基础研究”为主题的第282次香山科学会议上,与会学者就如何通过多学科交叉合作,实现生物大分子药物的高效化等基础科学问题进行了研讨。 服务重大疾病防治 会议执行主席、天津大学化工学院长江学者讲座教授杨志民作了题为《生物大分子药物高效化的意义与研究展望》的评述报告。杨志民说,生物大分子药物包括多肽、蛋白质、抗体等,目前主要用于治疗肿瘤、艾滋病、心脑血管病等重大疾病。生物大分子药物的主要优点是,对反应物的选择性及作用具有其他药物无法比拟的高效性;大部分生物大分子药物,如酶类或基因药物等均具有可反复作用的药物活性;大部分生物大分子药物易于用生化方法大量生产;生物大分子药物一般均具有高水溶性,因此易于制备成各型液态药剂。 中国工程院院士、天津医科大学教授郝希山介绍说,近年来,随着对肿瘤研究的不断深入,肿瘤的生物治疗及靶向治疗正日渐成为一个活跃的研究领域,生物大分子药物作为最有发展前途的肿瘤治疗手段之一,已在肿瘤治疗中得到广泛应用。(潘锋) 我国高度重视对生物大分子药物的研究,在《国家中长期科学和技术发展规划纲要(2006,2020年)》中已将“蛋白质药物”列入第四项“重大科学研究计划”中;将“释药系统创制关键技术”列入重点领域中的第八项“人口与健康”的发展思路中,并将生物大分子药物防治的心脑血管病、肿瘤等疾病列入“重大非传染疾病的防治”中。

生物大分子药物讲课讲稿

生物大分子药物

生物大分子药物 近年来,生物大分子药物发展迅猛,受到的关注也越来越多。与传统小分子药物相比,生物大分子药物具有相对分子质量大、不易透过生物膜、给药剂量低、易在体内降解等特点,这导致其具有与小分子药物不同的药代动力学特征。以蛋白多肽药物、单克隆抗体药物、抗体药物偶联物和核酸药物4 类生物大分子药物为例,综述近年来生物大分子药物的药代动力学研究进展,旨在为生物大分子药物及生物类似药的研发提供参考。 [ 关键词] 生物大分子药物;蛋白多肽药物;单克隆抗体药物;抗体药物偶联物;核酸药物;药代动力学 生物大分子药物是指一类利用现代生物技术方法生产的源自生物体内并被用于疾病的诊断、治疗或预防的生物大分子,狭义上也称为生物技术药物。随着分子生物学、基因工程和基因组学的研究发展,生物技术药物得以迅猛发展,其种类也日趋增多。目前生物技术药物包括DNA 重组技术生产的蛋白质、多肽、酶、激素、疫苗、单克隆抗体(mono-clonal antibody,mAb)和细胞因子药物,也包括蛋白质工程技术生产的上述产品的各类修饰物,还包括用于基因治疗的基因、反义寡核苷酸和核酶及病毒和非病毒基因递送载体等。 药代动力学研究对于药物的有效性和安全性评估非常重要,如选择合适的给药途径,设定合适的给药频率和给药剂量,明确药物是否可以到达相应的靶器官等。但不同于传统的小分子化学药物,生物大分子药物具有相对分子质量大、不易透过生物膜、给药剂量低、仅供学习与交流,如有侵权请联系网站删除谢谢2

易在体内降解等特点,使其在生物体内的处置过程变得更为复杂(见表1),也给药代动力学研究提出了新的挑战。本文将分别围绕蛋白多肽药物、mAb 药物、抗体药物偶联物(antibody-drug conjugate,ADC)和核酸药物,对其药代动力学特点进行分析和讨论。 1 生物大分子药物的体内吸收 生物大分子药物包括蛋白多肽药物、核酸药物、ADC 药物和mAb 药物等,与传统小分子药物(相对分子质量为200 ~ 700)相比,其相对分子质量(1 500 ~ 150 000)较大,不易被吸收,同时存在口服后易被消化道酶降解破坏的问题,各种生物大分子药物在吸收方面存在许多相似的特点,在此一并阐述。 1.1 给药方式的选择 由于存在不易被吸收、消化道降解等问题,生物大分子药物口服给药后生物利用度极低。目前绝大多数生物大分子药物均选用肠道外方式给药,主要以静脉注射方式给药,其次是皮下注射给药,少数也可以肌肉注射给药。静脉注射给药时,血药浓度迅速达到峰值,但易产生安全性问题,同时长期多次静脉注射给药存在患者耐受性不好等问题,另外静脉注射给药一般需要在医疗机构完成,容易带来较高的费用。为了解决生物大分子药物给药途径带来的问题,研究主要集中在2 个方面:一是如何实现生物大分子药物的口服用药;二是不同给药方式的药物吸收机制研究。大量研究集中在前者,如近期发现羧甲基纤维素-弹性蛋白(CMC-EIa)作为蛋白酶抑制剂可以很好地抑制胰蛋白酶、弹性蛋白酶等的活性;吸收促进剂如脂肪酸、胆盐等,可以可逆性地打开紧密连接而提高胰岛素的渗 仅供学习与交流,如有侵权请联系网站删除谢谢3

受体——百度百科

受体——百度百科 2014-5-1 摘编 受体是一类存在于胞膜或胞内的,能与细胞外专一信号分子结合进而激活细胞内一系列生物化学反应,使细胞对外界刺激产生相应的效应的特殊蛋白质。与受体结合的生物活性物质统称为配体(ligand)。受体与配体结合即发生分子构象变化,从而引起细胞反应,如介导细胞间信号转导、细胞间黏合、胞吞等过程。 中文名受体外文名 receptor 药理学概念糖蛋白或脂蛋白构成的生物大分子 存在位置细胞膜、胞浆或细胞核内 功能识别特异的信号物质等 特征结合的特异性、高度的亲和力等 目录 1简介 2功能 3特征 4分类 5概括 6本质 7特性 8与生理学和医学的关系 9药理 1简介 受体(receptor) 受体细胞 受体在药理学上是指糖蛋白或脂蛋白构成的生物大分子,存在于细胞膜、胞浆或细胞核内。不同的受体有特异的结构和构型。 受体在细胞生物学中是一个很泛的概念,意指任何能够同激素、神经递质、药物或细胞内的信号分子结合并能引起细胞功能变化的生物大分子。 受体是细胞膜上或细胞内能识别生物活性分子并与之结合的成分,它能把识别和接受的信号正确无误地放大并传递到细胞内部,进而引起生物学效应。 在细胞通讯中,由信号传导细胞送出的信号分子必须被靶细胞接收才能触发靶细胞的应答,接收信息的分子称为受体,此时的信号分子被称为配体(ligand)。在细胞通讯中受体通常是指位于细胞膜表面或细胞内与信号分子结合的蛋白质。 2功能 受体是细胞表面或亚细胞组分中的一种分子,可以识别并特异地与有生物活性的化学信号物质(配体)结合,从而激活或启动一系列生物化学反应,最后导致该信号物质特定的生物效应。 通常受体具有两个功能: 1、识别特异的信号物质--配体,识别的表现在于两者结合。配体,是指这样一些信号物质,除了与受体结合外本身并无其他功能,它不能参加代谢产生有用产物,也不直接诱导任何细胞活性,更无酶的特点,它唯一的功能就是通知细胞在环境中存在一种特殊信号或刺激因素。配体与受体的结合是一种分子识别过程,它靠氢键、离子键与范德华力的作用,随着两种分子空间结构互补程度增加,相互作用基团之间距离就会缩短,作用力就会大大增加,因此分子空间结构的互补性是特异结合的主要因素。同一配体可能有两种或两种以上的不同受体,例如

放射配体受体结合试验方法与技术

第五节放射配体受体结合实验方法与技术 一、基本概念 1、受体(receptor)一类介导细胞信号转导的功能蛋白质,可与周围环境中微量化学物质发生特异性结合,通过信息放大系统,触发后续的生理或药理效应。 2、配体(ligand)能与受体特异结合的物质,如神经递质、药物或激素等。 3、判断受体的标准真正的受体必须具备:饱和性、特异性、可逆性、高亲和性、结构专一性、立体选择性、区域分布性、亚细胞或分子特征、有内源性配体等。 4、受体的基本分类化学门控离子通道受体;G蛋白耦联受体。 5、受体调节的方式 1)共价调节(covalent modification)尤其是蛋白磷酸化反应在受体的脱敏过程中起了非常重要的调节作用。以乙酰胆碱受体为例,细胞内c AMP升高所引起的蛋白磷酸化可使乙酰胆碱受体对乙酰胆碱的脱敏速度增加8~10倍。 2)非共价调节(non-covalent modification)影响受体功能的非共价调节机制包括①膜电位的变化;②机械性改变受体的分布(斑片钳技术);③受体和其他膜蛋白(如G蛋白)或某些小配体(阴离子,阳离子,核苷酸)之间的变构影响;④膜脂质环境的改变等。 3)协同性调节(coordinate regulation)已知不同受体可含有同源受体区如胰岛素受体和上皮生长因子-抗溃疡素受体中的酪氨酸激酶区。由此可推测一种受体被激活后可能通过一共同密码(code)来调节同一细胞上的其他许多受体。 4)链锁反应(receptor cascades)另外一种可能的调控机制,即一个受体被激活之后,可能会释放一种细胞外信使,激活第二个细胞表面受体。称之为放大性的链锁反应。 二、放射配体结合法的应用领域 1、阐明药物作用机制; 2、新药设计和药物筛选; 3、探讨疾病的病因、发病机理,提高临床合理用药和诊断水平; 4、测定组织或血液中药物浓度; 5、探寻新的受体、受体亚型和内源性配体。 三、放射受体结合实验技术简介 1、放射配体的选择需要非常高的选择性,并要求与靶受体有很高的亲和性,解离常数最好小于10nmol/L,还要考虑配体的生物学以及生物化学特征。拮抗剂性配体必须能阻断激动剂与靶受体结合引起的生物学效应。放射性受体结合试验中,最常用的放射性同位素是氚,[3H]配体的主要优点是氚化过程不影响配体的生物活性,使用较安全,其信号必须用闪烁技术加以放大。放射配体的另一个重要特性是特异性结合与非特异性结合的比率,理想的配体应有不少于99%的特异性结合。 2、组织的选择和制备用于放射受体结合试验的理想的组织应含有高密度的靶受体和低密度的与配体非特异结合的受体。用于放射受体结合试验的组织可取自脑、外周组织、天然表达或移植受体的细胞株等。 3、缓冲液最常用的缓冲液是50mmol/L,PH为7.4的Tris-Cl的缓冲液;重碳酸盐、磷酸盐和HEPES缓冲液亦可用于结合试验。 4、非特异性结合的测定非特异性结合的测定原理是加入大量的对靶受体具有药理活性的并可使受体饱和的非放射性配体。特异性结合量是指配体与靶受体结合量,可由总结合量中减去非特异性结合量求出。 5、孵育条件结合实验应该用能产生最大特异结合和适宜的孵育条件。需要经过大量的实验才可摸索出最佳的测定条件。 6、放射配体-受体复合体与游离放射配体的分离

生物大分子药物

生物大分子药物 近年来,生物大分子药物发展迅猛,受到的关注也越来越多。与传统小分子药物相比,生物大分子药物具有相对分子质量大、不易透过生物膜、给药剂量低、易在体内降解等特点,这导致其具有与小分子药物不同的药代动力学特征。以蛋白多肽药物、单克隆抗体药物、抗体药物偶联物和核酸药物4 类生物大分子药物为例,综述近年来生物大分子药物的药代动力学研究进展,旨在为生物大分子药物及生物类似药的研发提供参考。 [ 关键词] 生物大分子药物;蛋白多肽药物;单克隆抗体药物;抗体药物偶联物;核酸药物;药代动力学生物大分子药物是指一类利用现代生物技术方法生产的源自生物体内并被用于疾病的诊断、治疗或预防的生物大分子,狭义上也称为生物技术药物。随着分子生物学、基因工程和基因组学的研究发展,生物技术药物得以迅猛发展,其种类也日趋增多。目前生物技术药物包括DNA 重组技术生产的蛋白质、多肽、酶、激素、疫苗、单克隆抗体(mono-clonal antibody ,mAb )和细胞因子药物,也包括蛋白质工程技术生产的上述产品的各类修饰物,还包括用于基因治疗的基因、反义寡核苷酸和核酶及病毒和非病毒基因递送载体等。 药代动力学研究对于药物的有效性和安全性评估非常重要,如选择合适的给药途径,设定合适的给药频率和给药剂量,明确药物是否可以到达相应的靶器官等。但不同于传统的小分子化学药物,生物大分子药物具有相对分子质量大、不易透过生物膜、给药剂量低、易在体内降解等特点,使其在生物体内的处置过程变得更为复杂(见表1),也给药代动力学研究提出了新的挑战。本文将分别围绕蛋白多肽药物、mAb 药物、抗体药物偶联物(antibody-drug ConjUgate, ADC)和核酸药物,对其药代动力学特点进行分析和讨论。 1 生物大分子药物的体内吸收 生物大分子药物包括蛋白多肽药物、核酸药物、ADC 药物和mAb 药物等, 与传统小分子药物(相对分子质量为200 ~ 700)相比, 其相对分子质量(1 500 ~ 150 000)较大,不易被吸收,同时存在口服后易被消化道酶降解破坏的问题,各种生物大分子药物在吸收方面存在许多相似的特点,在此一并阐述。 1.1 给药方式的选择由于存在不易被吸收、消化道降解等问题,生物大分子药物口服给药后生物利用度极低。目前绝大多数生物大分子药物均选用肠道外方式给药,主要以静脉注射方式给药,其次是皮下注射给药,少数也可以肌肉注射给药。静脉注射给药时,血药浓度迅速达到峰值,但易产生安全性问题,同时长期多次静脉注射给药存在患者耐受性不好等问题,另外静脉注射给药一般需要在医疗机构完成,容易带来较高的费用。为了解决生物大分子药物给药途径带来的问题,研究主要集中在2 个方面:一是如何实现生物大分子药物的口服用药;二是不同给药方式的药物吸收机制研究。大量研究集中在前者,如近期发现羧甲基纤维素-弹性蛋白(CMC-EIa)作为蛋白酶抑制剂可以很好地抑制胰蛋白酶、弹性蛋白酶等的活性;吸收促进剂如脂肪酸、胆盐等,可以可逆性地打开紧密连接而提高胰岛素的渗透性。但蛋白酶抑制剂容易造成体内蛋白酶的缺乏,而吸收促进剂容易损坏生物膜造成局部炎症。此外,载药系统如纳米、微球、脂质体以及衍生化或化学修饰也是研究如何实现生物大分子药物口服用药的主要方法。环孢素是一种预防同种异体器官或组织移植发生排斥反应的药物,特殊的环肽结构使得其口服后具有较好的生物利用度。一项meta 分析数据表明,山地明(环孢素的普通制剂)是新山地明(环孢素微乳

生物大分子药物高效化的基础研究

生物大分子药物高效化的基础研究 生物大分子药物(包括多肽、蛋白质、抗体、聚糖与核酸等)多用于治疗肿瘤、艾滋病、心脑血管病、肝炎等重大疾病,被认是为21世纪药物研究开发中最有前景的领域之一。欲使中国跻身于国际医药开发大国之列,从事生物大分子药物高效化的基础研究己明显成为在竞争中必须抢攻的战略制高点。 日前在北京香山饭店召开了以“生物大分子药物高效化的基础研究”为主题的香山科学会议第282次学术讨论会。天津大学王静康教授、中国医学科学院医药生物技术研究所甄永苏研究员、美国密歇根大学、天津大学杨志民教授以及四川大学张志荣教授担任本次会议执行主席,来自全国近30个单位的40余位专家学者参会。会议中心议题为生物大分子药物在重大疾病方面的应用前景与展望,生物大分子药物高效传送系统,生物大分子药物形态学及其稳定性基础研究等。 杨志民教授作了“生物大分子药物高效化的意义与研究展望”的主题评述报告。他指出,生物大分子药物已被国际公认为21世纪药物研究开发中最有前景的领域之一,在重大疾病的治疗中已经取得重要的进展。但是,目前在生物大分子药物的施用方面仍存在亟待解决的难题与障碍:如难以穿透细胞膜、强免疫原性、难以有效地穿透实体瘤、形态学复杂(存在多晶型、多构象和多尺度问题)、分离纯化困难、稳定性低等问题。因此破解现存问题,实现“生物大分子药物高效化”是当前国际科技界竞相研究的前沿,在从事生物大分子高效化的过程中,除了致力于传送系统的研究、设计与构建外,药物本身的分子结构导致的特殊性质也不容忽视,如目前在使用的依靠高分子聚合物载体(像PLGA,PLA等)来传送生物大分子药物(如蛋白质疫苗、激素等)的系统中,因为其中所包含的药物形成聚合体而丧失药物活性或是无法从载体中完全释放出来的例子层出不穷。另外有关生物大分子药物在纯化与分离过程中因界面/表面与溶剂或分离物质相互作用而引起的结构和活性的缺损以及免疫原性增强方面的报告也屡见不鲜。因此在生物大分子药物高效化研究的过程中,特别是蛋白质与基因药物,其药物本身的分子结构及三维构型稳定化以及在分离纯化过程中的高效复性也均是需要重点研究的科学问题。 克服存在的问题,实现生物大分子药物高效化是当前研究的发展趋向。而设计与构建高效化的生物大分子药物传送系统无疑是解决问题的关键所在。 生物大分子药物在重大疾病方面的应用前景与展望 生物大分子药物目前主要用于治疗癌症、艾滋病、冠心病、糖尿病和一罕见的遗传疾病等,天津医科大学郝希山教授在“恶性肿瘤流行趋势分析及生物大分子药物的应用”的报告中,指出临床治疗癌症的方法主要是手术切除、放疗和化疗,而近十年来,肿瘤的生物治疗及靶向治疗已经成为目前最有前景和最活跃的领域。生物大分子药物作为其中最有发展前途的生物治疗和靶向治疗的手段之一,已经在肿瘤治疗中得到了广泛认可。他强调:生物大分子药物因为其反应性明确及作用的高效率,在肿瘤治疗领域具有较强的优势,显示出强大的应用前景。寻找新的治疗靶点,对生物大分子药物的改造与修饰,以及高效化药物传送系统的创建是亟待解决的问题。 天津药物研究院刘昌孝研究员在“生物大分子药物的生物医学评价”的报告中,强调

生物的技术药物制剂

新疆医科大学教案首页编号:_1-33_

第十八章生物技术药物制剂 第一节概述 一、生物技术的基本概念 1、生物技术或称生物工程(biotechnology),是应用生物体(包括微生物、动物细胞, 植物细胞)或其组成部分(细胞器和酶),在最适条件下,生产有价值的产物或进行有益过程的技术。 2、现代生物技术主要包括基因工程、细胞工程与酶工程、发酵工程(微生物工程)与生 化工程。 二、生物技术药物的结构特点与理化性质 (一)蛋白质的结构特点 蛋白质的组成和一般结构(一、二、三、四级结构) (二)蛋白质的理化性质 1.蛋白质的一般理化性质:旋光性、紫外吸收、蛋白质两性本质与电学性质 (1)旋光性:蛋白质分子总体旋光性由构成氨基酸各个旋光度的总和决定,通常是右旋,它由螺旋结构引起。蛋白质变性,螺旋结构松开,则其左旋性增大。 (2)紫外吸收:大部分蛋白质均含有带苯核的苯丙氨酸、酪氨酸与色氨酸,苯核在紫外280nm有最大吸收。氨基酸在紫外230nm显示强吸收。 (3)蛋白质两性本质与电学性质:蛋白质除了肽链N-末端有自由的氨基和C-末端有自由的羧基外,在氨基酸的侧链上还有很多解离基团,如赖氨酸的 -氨基,谷氨酸的γ羧基等。这些基团在一定pH条件下都能发生解离而带电。因此蛋白质是两性电解质,在不同

pH条件下蛋白质会成为阳离子、阴离子或二性离子。 2.蛋白质的不稳定性 (1)由于共价键引起的不稳定性:水解、氧化和消旋化,此外还有蛋白质的特有反应,即二硫键的断裂与交换 (2)由非共价键引起的不稳定性:聚集(aggregation)、宏观沉淀、表面吸附与蛋白质变性 (三)蛋白质类药物的评价方法: 多种分析方法:液相色谱法、光谱法、电泳、生物活性测定与免疫测定 第二节蛋白质类药物制剂的处方与工艺(注射剂型) 一、蛋白质类药物的一般处方组成:一类为溶液型注射剂,另一类是冻干粉注射剂 二、液体剂型中蛋白质类药物的稳定化:①改造其结构;②加入适宜辅料 蛋白类药物的稳定剂:缓冲液、表面活性剂、糖和多元醇、盐类、聚乙二醇类、大分子化合物、组氨酸、甘氨酸、谷氨酸和赖氨酸的盐酸盐等、金属离子 1.缓冲液因为蛋白质的物理化学稳定性与pH值有关,通常蛋白质的稳定pH值范围很窄,应采用适当的缓冲系统,以提高蛋白质在溶液中的稳定性。例如红细胞生成素采用枸橼酸钠-枸橼酸缓冲剂,而α-N3干扰素则用磷酸盐缓冲系统,人生长激素在5mmol/L 的磷酸盐缓冲液可减少聚集。缓冲盐类除了影响蛋白质的稳定性外,其浓度对蛋白质的溶解度与聚集均有很大影响。组织溶纤酶原激活素在最稳定的pH条件下,药物的溶解度不足以产生治疗效果,因此加入带正电荷的精氨酸以增加蛋白质在所需pH值下的溶解度。 2.表面活性剂由于离子型表面活性剂会引起蛋白质的变性,所以在蛋白质药物,

抗原,抗体,受体,配体,补体,细胞因子的概念

抗原,抗体,受体,配体,补体,细胞因子的概念 1。抗原与抗体: 抗原是一种能诱发机体产生特异性免疫反应的大分子物质,如蛋白质、多糖、核酸等,在自然界中抗原分布很广,如细菌、病毒、组织细胞、血细胞、血清蛋白、毒素、花粉等都含有抗原。通过人工方法也可以改造抗原或合成抗原。外来抗原进入机体以后能诱导机体产生特异的免疫反应(抗原的这种能力叫做抗原性),这种免疫反应是通过淋巴细胞来完成的。淋巴细胞分为T淋巴细胞和B淋巴细胞两种。T淋巴细胞受到抗原刺激就会产生排除抗原的反应。B淋巴细胞受到抗原刺激后就会分经为浆细胞,浆细胞则能产生抗体,抗体也就是免疫球蛋白(Ig),它能够识别相对应的抗原,并且与抗原特异性结合,这样就在体内中和或者排除抗原,保护了机体不受异物的侵犯。抗原有一个最重要的特性就是它具有特异性(即专一性)和选择性。例如抗原甲诱导的免疫反应只针对抗原甲而不针对无关的抗原乙或丙。同样,抗原乙诱导的免疫反应也只针对抗原乙,而不针对无关的抗原甲或丙。因此,抗体也是特异地与某种抗原结合的,如针对感染因素的不同,就有抗细菌抗体、抗病毒抗体、抗真菌抗体、抗寄生虫抗体、抗毒素抗体等等。借助抗原体和抗体之间免疫反应的这种专一的特异性,就可以通过检验方法来鉴定抗原或抗体,用于疾病诊断。 由此看来,人体有一种自我保护的免疫功能,就是认识自身和识别异体,凡是异体的物质即可通过人体的免疫系统排出去。人的血清中也有多种针对自身抗原的抗体,属于生理性抗体,可以清

除衰老、退变的自身组织(这叫作自身免疫反应),这种自身抗体含量极低,不会破坏自身成分,但如果在病理情况下,机体针对自身的组织、血液成分产生大量自身抗体就要严重破坏自身的组织,由此产生的疾病称“自身免疫性疾病”。 2。配体: 同锚定蛋白结合的任何分子都称为配体。在受体介导的内吞中, 与细胞质膜受体蛋白结合,最后被吞入细胞的即是配体。根据配体的性质以及被细胞内吞后的作用, 将配体分为四大类:Ⅰ.营养物, 如转铁蛋白、低密度脂蛋白(LDL)等; Ⅱ.有害物质, 如某些细菌; Ⅲ.免疫物质, 如免疫球蛋白、抗原等; Ⅳ.信号物质, 如胰岛素等多种肽类激素等。 3。受体: 细胞表面或亚细胞组分中的一种分子,可以识别并特异地与有生物活性的化学信号物质(配体)结合,从而激活或启动一系列生物化学反应,最后导致该信号物质特定的生物效应。 通常受体具有两个功能: (1)识别特异的信号物质--配体,识别的表现在于两者结合。配体,是指这样一些信号物质,除了与受体结合外本身并无其他功能,它不能参加代谢产生有用产物,也不直接诱导任何细胞活性,更无酶的特点,它唯一的功能就是通知细胞在环境中存在一种特殊信号或刺激因素。配体与受体的结合是一种分子识别过程,它靠氢键、离子键与范德华力的作用,随着两种分子空间结构互不程度增加,相

放射性配体受体结合试验

放射性配体受体结合试验 1、定义: 放射性配基与受体结合分析简称为受体放射分析(radioassay of receptors),它是应用放射性核素标记配基与特异受体相结合,研究受体的亲和力和受体的数量,以及研究受体亚型的常用方法。 2、原理: 1)、放射性标记配基(激动剂或拮抗剂)和组织、细胞,或含有受体的制剂一起温育,使受体和配基充分结合,形成受体-配基复合物,终止反应后,用过滤或离心的方法除去未被结合的标记物,测定滤膜或沉淀物中的放射性,即可计算出和配基结合的受体的量。 2)、放射配基与受体制备物(含受体的组织或细胞制备物)作用时,其结合形式有两种,一种是配基与受体的特异性结合,其特点是亲和力高;且由于受体有限,故具有饱和性。另一种是配基与受体制备物的非受体分子的结合,称为非特异性结合。其特点是亲和力低但结合点多,不易饱和。用放射性配基研究特异性受体时,必须设法减除非特异性结合。一般采用的方法是制备总结合管和非特异结合管,两者计数之差即为特异性结合量。 总结合管:将放射性配基与受体制备物反应,除去游离的放射性配基,测定结合的放射性配基的计数,(其中包含特异性结合与非特异性结合,称为总结合)。 非特异性结合管:将大量(一般为500-1000倍)非标记特异性配基与标记的放射性配基相混,然后共同与受体制备物反应。由于非标记配基与标记配基两者比例悬殊,所以受体几乎全部被非标记配基饱和,标记配基只能与组织制备物中的非特异结合位点结合。这时测出的标记配基的结合量,反映的是非特异结合量。用总结合管的计数减去非特异结合管的计数,即可得到特异结合计数。

3、分类: RBA用放射性核素来标记配基,与相应的受体进行特异性结合反应,可对受体的性质进行定性和定量的分析。 1、定性RBA:是通过反应的量效关系的变化来判断受体的类型,单位点或多位点结合式,及受体与配体结合的特点,反应的可逆性、协作性等。 2、定量RBA:是在已知配体与受体反应性质的基础上,通过结合反应,给出一定量的组织或细胞中能与该放射性配体结合的受体数及结合的平衡解离常数或结合位点数(最大结合容量)。 4、实验材料: 动物组织 仪器(组织匀浆机、旋涡混合器、低温高速离心机、电热恒温水温箱、-80℃冰箱、制冰机、抽虑瓶、液闪仪等) 材料( 2ml/6ml分离管、10ul/200ul/1ml枪头、微纤维滤纸等) 药品(放射性配基、各种非标计化合物等) 5、实验具体步骤:

生物大分子药物分析选论 -考点 药大的

1.质谱仪组成 进样系统——按电离方式的需要,将样品送入离子源的适当部位; 离子源——用来使样品分子电离生成离子,并使生成的离子会聚成有一定能量和几何形状的离子束; 质量分析器——利用电磁场(包括磁场、磁场和电场的组合、高频电场和高频脉冲电场等)的作用将来自离子源的离子束中不同质荷比的离子按空间位置,时间先后或运动轨道稳定与否等形式进行分离; 检测器——用来接受、检测和记录被分离后的离子信号。 2.生物质谱的应用 分子量的测定、蛋白质、多肽纯度的鉴定、肽质量指纹谱、肽序列测定技术、蛋白质的翻译后修饰鉴定 3.生物大分子色谱填料的特点 孔径问题: 普通介质的孔径6~10纳米:蛋白质、酶和核酸的分子量在1~100万之间,粒径(溶质)和孔径之比大于0.2时,溶质分子的扩散就受限制,不能完全接近固定相内表面。 用于生物大分子分离的介质孔径大多为30纳米,1-3微米的无孔填料 介质的亲水性: 介质表面过多的疏水基团和电荷密度(如硅胶基质残余硅醇基)会引起蛋白质不可逆吸附,甚至变性。 4.生物素-酶标亲和素系统(BAS-ELISA) 概念:生物素(biotin,B):又称辅酶R或维生素H,是在动植物中广泛分布的一种生长因子,以辅酶形式参与各种羧化酶反应;亲和素(avidin,A):又抗生物素蛋白、卵白素或亲和素,是从卵白蛋白中提取的一种碱性糖蛋白;酶联免疫吸附试验(ELISA ):结合在固相载体上的抗原(抗体)与待检抗体(抗原)酶偶联物(标记物)反应后,催化水解或氧化还原酶的相应底物呈色,其颜色深浅与待测抗原(抗体)含量成正比;BA-ELISA是在常规ELISA原理的基础上,结合生物素(B)与亲和素(A)间的高度放大作用,而建立的一种检测系统。原理:利用结合了酶的亲和素分子与结合有特异性抗体的生物素分子产生反应,既起到了多级放大作用,又由于酶在遇到相应底物时的催化作用而呈色,达到检测未知抗原(或抗体)分子的目的。 应用实例:人血清整分子胰岛素放大ELISA 优越性:灵敏度高、特异性强、稳定性好,适用性广、快速、消耗少、实验成本低。 5.抗原-抗体 抗原抗体反应:指抗原与相应杭体之间所发生的特异性结合反应。 抗原抗体反应的特点:特异性、可逆性、比例性。 6.生物大分子药物特点 生物大分子(biomacromolecule) 是由低相对分子量的有机化合物经过聚合而成的多分子体系。生物体内这些分子或人工设计并制备的这类分子被用来治疗预防或诊断疾病则成为药物(顾名思义叫生物大分子药物) 其分子量较大,结构也比较复杂。蛋白质的分子量在一万至数万左右,核酸的分子量有的竟达上百万,多糖的分子量从几万到上百万。且具有多级结构(一,二,三,四)。他们是有生命的分子,一旦高级结构变化,生命也将结束。制备工艺复杂,生物活性强,其它: 剂型, 给药途径, 储存.

用于改善生物大分子药物功效的超多孔水凝胶、纳米粒新型给药载体

用于改善生物大分子药物功效的超多孔水凝胶、纳米粒新型给药 载体 随着科学技术的迅猛发展,以往单一学科及其技术难以解决的关键科学问题经多学科交叉及技术的使用获得突破。本文运用生物科学、材料科学、纳米科学及药剂学等学科的理论和方法,研究可显著改善蛋白质多肽类药物及DNA、siRNA 功效的新型给药载体及其作用机理。 蛋白质多肽、核酸等生物大分子药物药理活性强、特异性高,在肿瘤、糖尿病、感染性疾病等重大疾病的治疗中显示出巨大潜力,但其临床应用主要为注射剂型,多数药物半衰期短,长期用药患者顺应性差。而非注射给药特别是口服给药时,此类亲水性生物大分子药物不易被亲脂性的生物膜摄取,易被体内各种酶降解导致活性降低或失活,生物利用度低。 利用给药系统(Drug Delivery System, DDS)可提高生物大分子药物的体内外稳定性、促进药物吸收、改善药物体内作用功效。其中水凝胶给药载体还可控制药物释放,具有生物黏附、生物相容和生物可降解等特性;纳米给药载体还可增溶难溶性药物,缓控释药物和靶向给药。 同时具有抑制蛋白酶活性、促进药物渗透及黏膜黏附等性质的多功能聚合物给药载体可显著提高蛋白质多肽类药物的口服吸收,能有效突破胞外屏障(吞噬系统、核酸酶)和胞内屏障(细胞膜、内涵体、溶酶体、核膜)的多功能非病毒基因载体有望持续、高效地将基因导入靶细胞和靶组织。据此,设计并研究新型互穿网络聚合物超多孔水凝胶(SPH-IPN),以胰岛素为模型药物,研究SPH-IPN促进蛋白质多肽类药物的口服吸收及作用机理;依据壳聚糖季胺盐(TMC)与巯基化聚合物黏膜黏附及促渗特点,设计一种新型壳聚糖多功能衍生物—巯基化壳聚糖季

相关主题
文本预览
相关文档 最新文档