当前位置:文档之家› 钢低温脆性概论

钢低温脆性概论

2.3 脆性及脆性转变温度

4、强化=脆性?4.1材料的屈服与断裂

4.2引起材料破坏的原因

4.2.1外在原因:内部夹杂、裂纹、气体含量超标及环境腐蚀。

4.2.2内在原因:

成分、组织结构影响;

缺陷:点缺陷:空位、

间隙原子、杂质原子等,

晶格畸变;线缺陷:位错;

面缺陷:晶界、亚晶界、

层错、相界等。材料的薄

弱环节,引起材料的破坏。

冷脆

冷脆 冷脆具有体心立方点阵的合金钢,当试验温度降低时,将由韧性断裂转变为脆性断裂。许多工业用钢在室温到零下温度范围将发生脆化,称为冷脆性。

图1 滑移过程形成的裂纹 a--位错塞积;b--两个{110)滑移带相交 合金钢的冷脆性(或低温脆化倾向)用韧性一脆性转化温度Tc表示。高纯铁(0.01%C)的Tc在一100。C,低于此温度则完全处于脆化状态。钢中大多数合金元素都升高钢的韧性一脆性转化温度,增加冷脆倾向。在室温以上韧性断裂时,合金钢的断口为韧窝型断口,而在低温下脆性断裂时为解理断口。合金钢的低温脆化的原因是:(1)形变时位错源产生的位错被障碍物(如晶界、第二相等)阻塞时,局部应力超过钢的理论强度而产生微裂纹(见图1a)。(2)几个塞积的位错在晶界合成一个微裂纹。(3)两个{110)滑移带相交处反应,引起不动位 错%26lt;010%26gt;,呈楔形微裂纹,它可沿{100}解理面裂开(见图1b)。 增加钢冷脆的因素有:(1)固溶强化元素。磷升高韧性一脆性转化温度最强烈;还有钼、钛和钒;含量低时影响不大而含量高时升高韧性一脆性转化温度的元素有,硅、铬和铜;降低韧性一脆性转化温度的有镍,先降低后升高韧性一脆性转化温度的有锰。(2)形成第二相的元素。以第二相增加钢冷脆最重要的元素为碳,随钢中碳含量增加,钢中珠光体含量增加,平均每增加1%珠光体体积,韧性一脆性转化温度平均升高2.2℃。图2为铁素体一珠光体钢中碳含量对脆性的影响。加入钛、铌和钒等微合金化元素,形成弥散分布的氮化物或碳氮化物,引起钢的韧性一脆性转化温度上升。(3)晶粒尺寸影响韧性一脆性转化温度,随晶粒粗化,韧性一脆性转化温度升高。细化晶粒则降低钢的冷脆倾向,这是广为应用的方法。 图2 铁素体-珠光体钢中碳含量对脆性的彰响

(完整版)金属热处理知识点概括

(一)淬火--将钢加热到Ac 3或Ac 1 以上,保温一段时间,使之奥氏体化后,以 大于临界冷速的速度冷却的一种热处理工艺。 淬火目的:提高强度、硬度和耐磨性。结构钢通过淬火和高温回火后,可以获得较好的强度和塑韧性的配合;弹簧钢通过淬火和中温回火后,可以获得很高的弹性极限;工具钢、轴承钢通过淬火和低温回火后,可以获得高硬度和高耐磨性;对某些特殊合金淬火还会显著提高某些物理性能(如高的铁磁性、热弹性即形状记忆特性等)。 表面淬火--表面淬火是将钢件的表面层淬透到一定的深度,而心部分仍保持未淬火状态的一种局部淬火的方法。分类——感应加热表面淬火、火焰加热表面淬火、电接触加热表面淬火、电解液加热表面淬火、激光加热表面淬火、电子束加热表面淬火、离子束加热表面淬火、盐浴加热表面淬火、红外线聚焦加热表面淬火、高频脉冲电流感应加热表面淬火和太阳能加热表面淬火。 单液淬火——将奥氏体化后的钢件投入一种淬火介质中,使之连续冷却至室温(图9-1a线)。淬火介质可以是水、油、空气(静止空气或风)或喷雾等。 双液淬火——双液淬火方法是将奥氏体化后的钢件先投人水中快冷至接近M S 点,然后立即转移至油中较慢冷却(图9-1b线)。 分级淬火——将奥氏体化后的钢件先投入温度约为M S 点的熔盐或熔碱中等温保持一定时间,待钢件内外温度一致后再移置于空气或油中冷却,这就是分级淬火等温淬火--奥氏体化后淬入温度稍高于Ms点的冷却介质中等温保持使钢发生下贝氏体相变的淬火硬化热处理工艺。 等温淬火与分级淬火的区别是:分级淬火的最后组织中没有贝氏体而等温淬火组织中有贝氏体。。。根据等温温度不同,等温淬火得到的组织是下贝氏体、下贝氏体+马氏体以及残余奥氏体等混合组织。 (二)回火--将淬火后的钢/铁,在AC1以下加热、保温后冷却下来的金属热处理 工艺。回火的目的:为了稳定组织,减小或消除淬火应力,提高钢的塑性和韧性,获得强度、硬度和塑性、韧性的适当配合,以满足不同工件的性能要求。 第一类回火脆性:①淬火钢在250~400℃回火后出现韧性降低的现象称为第一类回火脆性,又称为低温回火脆性。几乎所有工业用钢都在一定程度上具有这类回火脆件,而且脆性的出现与回火时冷却速度的快慢无关。 第二类回火脆性:①指合金钢(含有Cr、Ni、Mn、Si等元素的合金钢)淬火并在450~650℃回火后产生低韧性的现象,也称为高温回火脆性。。。。。回火后缓冷促进回火脆性,而快冷抑制回火脆性。 (三)正火--是将工件加热至Ac3或Acm以上40~60℃,保温一段时间后,从 炉中取出在空气中或喷水、喷雾或吹风冷却的金属热处理工艺。 目的:——如果终锻温度比较高和锻造后冷却速度比较慢,会出现网状碳化物的缺陷。这种网状碳化物在球化退火时不易被消除,需要在球化退火前用正火工艺进行消除。 (四)退火——将钢加热到临界温度Ac1以上或以下温度,保温一定时间,然后缓慢冷却(如 炉冷、坑冷、灰冷等)获得接近平衡组织的热处理工艺称为退火 退火作用——退火过程使组织由非平衡向平衡过度,它可以均匀钢的化学成分及组织,消除铸造偏析,细化晶粒;消除内应力,稳定工件尺寸,减小变形,防止开裂;降低硬度,提高切削加工性能,一般硬度的最佳切削范围为170~230HB;提高塑性,便于冷变形加工;消除淬火后的过热组织以便再进行重新淬火;脱氢,防止白点等。6.5.3 退火工艺的分类

低温技术试验

第3章 低温技术实验 低温实验中使用低温液体的注意事项 1、所有盛低温液体的容器都不能完全封死。必须流有供蒸汽逸出的通道,否则由于不 可避免的外界漏热使低温液体逐渐气化,容器中的压强逐渐升高,最后会导致装置损坏甚至 爆炸。实验结束时尤其不可疏忽大意,一定要把可能存有低温液体的密封部件的封口打开。 2、盛有低温液体的杜瓦容器真空夹层的封口必须保护好,切不可突然打开或充入过量 的气体,否则由于绝热破坏,容器内液体迅速蒸发,有可能造成事故。 3、使用玻璃杜瓦瓶时,应小心,要避免骤冷骤热。否则玻璃杜瓦瓶可能破裂。 4、当心不要让低温液体触及人体,否则会造成冻伤。 5、氦气必须回收,使用液氦时必须按照操作规程进行。 实验7 低温固体热导率测量 该实验是使操作者对低温下的热测量有初步的了解,并对纯金属热导率随温度的变化有一些感性的认识。 【预习要求】 了解金属传热的物理过程,热导率与温度的关系。实验表明;金属热导率随温度的变化 在纯金属的传热中晶格热导部分占的比例很小,热量几乎全部都是由自由电子传导的。热阻和电阻的来源相同,一是晶格的热振动,及声子的散射;二是杂质和缺陷的散射。因此,和电阻类似,热阻也可近似表达成 W W W r i =+ (3-7-1) w i 和 w R 分别为声子和杂质因起的热阻 。电阻R和热阻之间的关系由魏弗兰茨(Wiedmann-franz )定律给出: L WT R = (3-7-2) 式中L 称为洛伦兹(Lorentz )常数,数值为2·45×10-8W ·Ω·K -2。公式中分母出现T 的原因是,自由电子 运载的电荷是常数,但运载的热能却正比于温度T 并随温度的一次方变化。这个定律在低温区(杂质散射为主)和高温区(电子散射时能量变化比kT 小得多时)是正确的,在中温区不够满意。 利用(3-7-2)式,我们可以从()T R 的行为推断出()T W 的变化。对杂质散射,R r 是常数,W r 应正比于T -1,在高温区R i ∝T ,W i 应为常数;在中温区,R i 一般按T 5变化,按式(3-7-2),w i 应正比于T 4,实际上W i 是正比于T 2 ,表现和式(3-7-2)的偏离。图3-7-1是热阻W 随温度的变化;图3-7-2是相应的热导λ=1∕W 随问度T 的变化。 图3-7-1 图3-7-2

16Mn钢(热处理课程设计)

目录 第一章金属热处理课程设计简介 (1) 一、课程设计的任务与性质 (1) 二、课程设计的目的 (1) 三、设计内容与基本要求 (1) 四、设计步骤 (2) 第二章材料16Mn基本参数 (2) 一、16Mn材料简介 (2) 二、16Mn材料的性能及用途 (3) 三、16Mn材料化学成分 (3) 四、16Mn物理力学性能 (3) 第三章热处理工艺设计 (4) 一、16Mn热处理概述 (4) 二、16Mn热处理 (4) 三、基本参数确定 (9) 第四章 16Mn钢热处理分析 (10) 一、16Mn钢热处理后组织分析 (10) 二、16Mn钢热处理后材料性能检测 (13) 第五章设计与心得体会 (17) 参考文献 (19)

第一章金属热处理课程设计简介 一、课程设计的任务与性质 《金属热处理原理与工艺》课程是一门重要的专业课程,金属材料热处理工艺设计及实验操作是一种重要的教学环节,通过金属材料热处理工艺金相组织分析、性能检测等实验,可以培养学生掌握热处理实验方法、原理及相关设备,运用热处理的基本原理和一般规律对实验结果进行分析讨论,有助于强化学生解决问题、分析问题的能力。 二、课程设计的目的 1、课程设计属于《金属热处理原理与工艺》课程的延续,通过设计实践,进一步学习掌握金属热处理工艺设计的一般规律和方法。 2、培养综合运用金属学、材料性能学、金属工艺学、金属材料热处理及结构工艺等相关知识,进行工程设计的能力。 3.培养使用手册、图册、有关资料及设计标准规范的能力。 4.提高技术总结及编制技术文件的能力。 5.是金属材料工程专业毕业设计教学环节实施的技术准备。 三、设计内容与基本要求 设计内容:完成合金结构钢(16Mn)的热处理工艺设计,包括工艺方法、路线、参数的确定,热处理设备及操作,金相组织分析,材料性能检测等。 基本要求: 1.课程设计必须独立的进行,每人必须完成不同的某一种钢材热处理工艺设计,能够较清楚地表达所采用热处理工艺的基本原理和一般规律。 2.合理地确定工艺方法、路线、参数,合理选择热处理设备并正确操作。 3.正确利用TTT、CCT图等设计工具,认真进行方案分析。 4.正确运用现代材料性能检测手段,进行金相组织分析和材料性能检测等。 5.课程设计说明书力求用工程术语,文字通顺简练,字迹工整,图表清晰。 四、设计步骤 方案确定: 1.根据零件服役条件合理选择材料及提出技术要求。

有关PPR低温脆性的解释

有关PPR低温脆性的解释 1、PPR管为什么存在低温脆性 答:PP-R是无规共聚聚丙烯,也就是我们所说的Ⅲ型聚丙烯。它是由丙烯单体和少量乙烯单体在加热、加压和催化剂作用下无规共聚得到的。乙烯单体随机地分布到丙烯长链中,其中乙烯单体一般控制在3-5%之间。乙烯含量和乙烯与丙烯的聚合方式决定了其具有冷脆性的特点。在气温较低的情况下,尤其冬季施工过程中,管材在低温下柔韧性有所降低,刚性增强,表现为脆性。在外力冲击或过大的意外载荷作用下,可能出现管材直线开裂等情况。给施工带来不便。为此相关国家规范针对此问题做出了明确的要求。在冬季施工时,应注意建筑给水聚丙烯(PP-R)管道的低温脆性的特点,并制定相应施工方案。GB/T50349-2005对此有详细规定。 2、PPR管材冷脆性在实际应用中的表现形式 答:当环境温度较低时,PPR管材韧性降低,表现为脆性,当管材受到外力的冲击或者重压时,会出现直线开裂现象,并且开裂情况是由内管开始,向外管延伸。管材受到一个点的作用力造成的开裂后,在瞬间内,这种开裂会沿着管材的轴线方向快速增长,这个特性叫做快速裂纹增长。另冬季管材在运输、在工地及安装过程中因外力致伤,会在使用过程中出现脆性和韧性(输送热水时)爆管。 3、大家经常会走入的误区----能砸裂的PPR水管就是差水管 答:这种判断方法是错误的,能否砸裂PPR管,这是一种判断PPR好坏的误区,这并不能检验PPR好坏与否,因为PP-R材料本身性能随着环境温度而发生一定程度的改变。在气温较低的情况下,尤其冬季管材在低温下柔韧性有所降低,刚性增强,表现为脆性。在外力冲击或过大的意外载荷作用下,可能出现管材断裂等情况。给施工带来不便。为此相关国家规范针对此问题做出了明确的要求。在冬季施工时,应注意建筑给水聚丙烯(PP-R)管道的低温脆性的特点,并制定相应施工方案。GB/T50349-2005对此有详细规定。反而是一些添加其它原料的假冒伪劣PPR管,倒是不易砸坏!真正的既能输送高温热水又能输送冷水可管用

钢铁材料相关总结

钢铁材料(黑色金属) 纯铁(熟铁) 铸铁(生铁) 工业用钢 一.分类: 二.命名: 三.性能和应用: 四.成型方法: 五.钢铁生产过程 钢铁材料的力学性能和加工性能 力学性能: 加工性能: 钢铁材料性能的定性总结 型材成型与冷热加工 钢铁材料(黑色金属) 纯铁(熟铁) 含碳量小于0.04%,软、塑性好(可锻),容易变形,强度和硬度较低,用途不广。 铸铁(生铁) 主要由Fe、C、Si、Mn、P、S组成的合金,平均含碳量2.11%—4%,硬而脆、几乎没有塑性,力学性能较

差,只能用铸造的方法成型。 分类:(根据碳的存在形式不同分) 1.白口铸铁(白口生铁):C是以游离碳化铁形式存在,断口呈亮白色。 ●特点:硬度高,脆性大,难加工; ●主要用途:炼钢、做可锻铸铁。 2.灰口铸铁(灰口生铁):C主要以石墨的形式存在,断口呈灰色。 ●分类:(按石墨的存在形状分) 1)灰铸铁:石墨大部分为片层状 命名:“HT”+“φ30mm试棒的最小抗拉强度(MPa)”,eg.HT300; 优点:铸造性能好、切削性能好、减震性能好、减磨性能好、价格低廉; 缺点:塑性差、韧性差、抗拉强度低、焊接性能差。 2)球磨铸铁:石墨大部分为球状 命名:“QT”+“最低抗拉强度—最低伸长率”,eg.QT600-3; 特点:强度高(和钢差不多)、工艺要求高。 3)蠕墨铸铁:石墨大部分为蠕虫状 命名:“RuT”+“最低抗拉强度”,eg.RuT300; 特点:兼具灰铸铁和球墨铸铁的性能。 4)可锻铸铁(玛钢或马铁):对白口铸铁加热到900°C—980°C后长时间保温并分阶段石 墨化,使其内部石墨变成团絮状得来,其实并不能锻造,现已少用。 工业用钢 将生铁进一步冶炼降低含碳量(一般在0.04%—2.11%)、减少杂质元素或加入一些合金元素得到。在保证有害杂质不超标和采用合适的热处理工艺的情况下,影响钢性能的主要因素是含碳量与合金元素含量。 一、分类: 1.按用途分:结构钢、工具钢、专门用途钢、特殊性能钢; 2.按含碳量的多少分:低碳钢(0.04%—0.25%)、中碳钢(0.25%—0.6%)、高碳钢(0.6%—2.11%); 3.按有害杂(S,P)质含量的多少分:普通质量钢、优质钢、高级优质钢; 4.按合金元素含量的多少分:非合金钢、低合金钢、合金钢; 5.按成型方法分:锻钢、铸钢、热轧钢、冷拉钢。 二、命名:按第4种分类方法进行命名 有产品牌号和统一数字代号两种命名方式。 1.非合金钢(碳素钢) ●碳素结构钢: 产品牌号:“Q(屈)”+“屈服点值”+“质量等级(A、B、C、D,其中D最高)”+“〃脱氧程度F(沸腾钢)、b(半镇静钢)、Z(镇静钢)、TZ(特殊镇静钢)”,eg.Q235A〃F。 ●优质碳素结构钢: 产品牌号:两位数字表示钢的平均含碳量,以万分之几来计。分普通含锰量的优质碳素结构钢(eg.45)和较高含锰量的优质碳素结构钢,eg.45Mn。 统一数字代号:U+xxxxx ●碳素工具钢: 产品牌号:“T(碳)”+“平均碳的质量分数,以千分之几计”+“质量等级(A)”,eg.T12A。 ●铸造碳钢: 产品牌号:“ZG(铸钢)”+“屈服点+抗拉强度”,eg.ZG200-400。

钢的热处理总结

1、热处理 定义:把固态金属材料通过一定的加热,保温和冷却以改变其组织和性能的一种工艺。 目的及意义:金属材料改变性能的方法,改变使用性能和工艺性能,充分利用材料的潜能,控制产品质量,节省资源和材料,缩短生产周期、降低成本 2、固态相变 定义:成分、温度、压力等因素改变时,固态物质内部发生的组织结构变化。 研究意义:控制过程→获得预期的组织→得到预期性能。 三种基本变化:成分;结构;有序度 主要特点:相变阻力大,相界面结构关系,存在一定的位向关系和惯习面,非均匀、缺陷处形核,新相有特定形状`,原子迁移率低 驱动力:新/旧两相自由能差,晶体缺陷能 阻力:1,界面能 界面能产生原因:界面有一定厚度和体积;原子错排;结合键受破坏→能量高 三种界面类型:完全共格:界面原子完全匹配,除孪晶外,少见。半共格:界面能与位错密度、错配度有关,借助弹性畸变保持界面的匹配。非共格:界面能最大 2,应变能 产生原因:新/旧相比容不同(比容差应变能)。界面错配→新/旧相硬匹配(共格应变能) 共格界面应变能最大,非共格最小 比容差应变能与新相几何形状有关,球形应变能最大,针状居中,片状最小 3、奥氏体 性能 ←力学性能:塑性好、强度低。 ←物理性能:顺磁性。比容小。热膨胀系数大。导热性能差。 ←化学性能:抗腐蚀;耐热。 形成条件:(1)Ac1、Ac3、Accm以上,有一定的过热度。(2),过热度大,容易形成(3),实际相变温度与加热速度有关,不是固定值,加热速度越快,Ac1、Ac3、Accm越高。 奥氏体形成 (1)形核 ←球化体:优先在晶界的F/碳化物界面上形成,其次在晶内的F/碳化物界面上形成 ←片状P:优先在P团的界面上形成,其次在F/碳化物界面上形成 ←相界形核原因 碳浓度起伏,如F中高浓度区有利于向A转变 结构起伏→晶体结构改组容易 能量起伏→杂质、晶体缺陷多→形核→降低界面能、应变能 (2)长大 ←球化体:A包围碳化物,使碳化物与F分开,A形成F/A和C/A两个界面,双向推进长大。 ←片状P:垂直片方向(在A、F中存在碳浓度差,引起碳在以上两相中的扩散。为维持相界碳浓度的平衡,原始组织F和碳化物相就会不断溶解)。示意图 平行片方向(体扩散+界面扩散) 界面迁移路程短,是主要长大方式→平行方向长大速度快 (3)残余碳化物的溶解(4)奥氏体成分均匀化 影响A形成速度的因素 (1),加热温度:T↑→A化速度↑。(2),加热速度:V↑→转变温度↑,转变时间↓。 (3),含碳量

CRS-RBT70橡胶低温脆性试验机(单试样法)

苏州亚诺天下仪器有限公司YANUO WORLD Physical testing equipment expert CRS-RBT70橡胶低温脆性试验机(单试样) 产品介绍

一、特点及用途:测定硫化橡胶在规定条件下试样受冲击出现破坏时的最高温度,即为脆性温度,可以对塑料及其他弹性材料在低温条件下的使用性能作比较性鉴定。可以测定不同橡胶材料或不同配方的硫化橡胶的脆性温度和低温性能的优劣。因此无论在科学研究材料及其制品的质量检验,生产过程的控制等方面均是不可缺少的。本仪器各项技术指标符合GB/T1682-2014硫化橡胶低温脆性单试样法等国家标准的要求。本仪器再原有设计中,增加了冷井搅拌器,使容器四周温度更均匀,下降温度更快,节约时间,降低了能耗。 二、技术参数 1、试验温度:-60℃—0℃:-70℃—0℃:-80℃—0℃【客户自选】 2、冲击速度:2m/s±0.2m/s 3、恒温后,试验3min时间内温度波动:<±0.5℃ 4、冲击器中心到夹持器下端距离:11±0.5mm 5、外型尺寸:720×700×1380mm 6、功率:1100W 7、冷井容积:3L 三、结构原理 3.1升降夹持器 升降夹持器由带有夹持器的气缸和气缸座组成。 从试样受冲击部位,到夹持器下端的距离为11.0±0.5mm 3.2冲击装置 冲击装置由冲击器和弹簧组成。 3.3冲击器 冲击器头部形状和尺寸。冲击器的重量为200±20g,其工作行程为40±1mm。冲击气缸在复位状态下,冲击器端部到试样的距离为25±1mm。 四、使用方法 4.1接通电源,温控仪和计时器显示灯亮。 4.2向冷井中注入冷冻介质(一般为工业乙醇),其注入量应保证夹持器的下端到液面的距离为75±10mm。 4.3将试样垂直夹在夹持器上。夹的不宜过紧或过松,以防止试样变形或脱落。 4.4按下夹持器,开始冷冻试样,同时启动时序控制开关(或按动秒表)计时。试样冷冻时间规定为3.0±0.5min。试样冷冻期间,冷冻介质温度波动不得超过±1℃。 4.5提起升降夹持器,使冲击器在半秒钟内冲击试样。 4.6取下试样,将试样按冲击方向弯曲成180°,仔细观察有无破坏。 4.7试样经冲击后(每个试样只准冲击一次),如出现破坏时,应提高冷冻介质的温度,否则降低其温度,继续进行试验。 通过反复试验,确定至少有两个试样不破坏的最低温度和至少一个试样破坏的最高温度,如这两个结果相差不大于1℃时,即试验结束。 五、试验标准 5.1规格 试样的长为25.0±0.5mm,宽为6.0±0.5mm,厚为2.0±0.3mm。 5.2要求 试样的表面应光滑,无外来杂质及损伤。成品应经打磨后裁制成相应尺寸。

6低温冲击实验

六、低温冲击实验 一、实验目的: 1. 了解材料的低温脆性,学会测定材料韧脆转变温度的原理和方法; 2. 掌握冲击韧性的实验方法,要求能正确地测试材料的冲击韧性; 3. 熟悉冲击试样的宏观断口特征。 二、实验仪器材料: JB30GD 型冲击实验机、游标卡尺、低温箱、液氮罐、标准夏氏V 型缺口试样 三、实验原理: (一)冷脆与冷脆转变温度T K 有一些金属材料如体心立方晶格的中、低强度结构钢,当其服役温度降低时,其塑性、韧性便急剧降低,使材料脆化,这种现象叫做冷脆。由于温度降低造成金属由韧性状态转变为脆性状态的温度叫做冷脆转变温度,用符T K 表示。不同金属的冷脆转变温度T K 是不同的,T K 愈低,表示脆化倾向愈小,即在低温下使用时危险性愈小。金属的冷脆现象对一些在寒冷地带服役的机械设备(工程机械、运输机械、桥梁、铁路、输油管道等)带来很大危害及影响。因此,对制造这些设备的金属材料,常常需要测定其冷脆转变温度T K 以确定其低温脆化倾向的大小。 (二)冷脆转变温度T K 的测定方法 金属冷脆转变温度T K 可通过低温系列温度冲击实验来测定。所谓低温系列冲击试验就是对同一种金属材料的冲击试样,在低于室温的一系列不同温度下作断口百分数 冲击吸收功温度t/°C 纤维区 晶状区 X100率 分百口断图1 冲击吸收功或断口形貌与温度的关系曲线

冲击试验。根据其冲击吸收功A K 随温度t 的变化关系,或试样冲断后断口形貌随温度t 的变化关系,来确定其冷脆转变温度。图l 为体心立方金属的A K —t 或断口率—温度关系曲线示意图。由图可见,这两种曲线一般都由三个部分组成。第一部分为冲击吸收功变化不大的高冲击吸收功部分(上平台),这部分冲击断口形貌特点是灰暗色、纤维状属于韧性断口;第三部分是冲击吸收功变化不大的低冲击吸收功部分(下平台),这一部分冲击断口形貌特点是结晶状,是典型的脆性断裂断口,曲线的中间部分(第二部分)冲击吸收功变化较大,断口形貌为不同比例的结晶状和纤维状的混合断口,所以在这个温度区间即为冷脆转变温度范围。 根据以上两种曲线,可以分别采用能量法或断口形貌法来确定金属材料的冷脆转变温度。 1、 能量法: 以冲击吸收功降低到某一个具体数值时的温度定位T K 。 对于夏比U 型缺口试样,取冲击能量为0.4A KUmax 所对应的温度为T K 或取12(A KUmax +A KUmin )所对应的温度为T K 。 A KUmax 是指室温下100%韧性断口所对应的 冲击吸收功,而A KUmin 是指刚刚出现100% 结晶状断口时所对应的冲击吸收功。 对于夏比V 型缺口试样,通常规定某 一个冲击吸收功所对应的温度T K 。这个冲 击吸收功是根据构件的使用条件来选取的。 2、 断口形貌法 指冲击断口形貌中纤维区所占面积下 降到50%时所对应的温度为T K ,记为 50%FATT 。这种方法主要适用V 型缺口试样。 3、 综合法 将A KU -t 关系曲线中的上平台开始上升的温度定义为t K 。因为这个温度相当于刚刚开始全部形成结晶状断口形貌时的温度,所以这种t K 也叫无塑性转变温度,常用符号NDT 表示。 四、实验步骤 1. 本实验温度可选择:20o C 、0 o C 、-10 o C 、-20 o C 、-30 o C 、-35 o C 、-40 o C 、-50 o C 八个温度,各温度下的冲击试样不得少于3个。 2. 试样的准备:领取试样,在端部打上编号。用棉纱擦净,再测量试样尺寸,最后检查试样缺口处的加工质量。 3. 了解冲击试验机的构造、工作原理、操作方法及安全注意事项 4. 冷却试样:根据试验温度要求在低温恒温箱内放入试样,进行保温。调节温纤维区晶状区剪切唇 图2 冲击断口形貌

钢的热处理工艺知识大全

钢的热处理工艺知识大全 热处理是将固态金属或合金采用适当的方式加热、保温和冷却以获得所需要的组织结构与性能的工艺。 热处理工艺它能提高零件的使用性能,充分发挥钢材的潜力,延长零件的使用寿命,此外,热处理还可改善工件的工艺性能、提高加工质量、减小刀具磨损。 钢的热处理方法可分为:退火、正火、淬火、回火及表面热处理等五种。 热处理方法虽然很多,但任何一种热处理工艺都是由加热、保温和冷却三个阶段所组成的,因此,热处理工艺过程可用在温度一时间坐标系中的曲线图表示,如下图所示,这种曲线称为热处理工艺曲线。 一、退火 将钢加热到适当温度,保持一定时间,然后缓慢冷却(一般随炉冷却)的热处理工艺称为退火。 退火的主要目的是: (1)降低钢的硬度,提高塑性,以利于切削加工及冷变形加工。 (2)细化晶粒,均匀钢的组织及成分,改善钢的性能或为以后

的热处理作准备。 (3)消除钢中的残余内应力,以防止变形和开裂。常用的退火方法有完全退火、球化退火、去应力退火等几种。 (1)完全退火完全退火是将钢加热到完全奥氏体化(AC3 以上 30?50C),随之缓慢冷却,以获得接近平衡状态组织的工艺方法。 在完全退火加热过程中,钢的组织全部转变为奥氏体,在冷却过程中,奥氏体变为细小而均匀的平衡组织(铁素体+珠光体),从而达到降低钢的硬度、细化晶粒、充分消除内应力的目的。 完全退火主要用于中碳钢及低、中碳合金结构钢的铸件、锻件、热轧型材等,有时也用于焊接结构件,过共析钢不宜采用完全退火,因过共析钢完全退火需加热到AS以上,在缓慢冷却时,钢中将析出网状渗碳体,使钢的力学性能变坏。 (2)球化退火是将钢加热到AG以上20?30C,保温一定时间,以不大于50C /H的冷却速度随炉冷却下来,使钢中碳化物呈球状的工艺方法。 球化退火适用于共析钢及过共析钢,如碳素工具钢、合金工具钢、轴承钢等。这些钢在锻造加工后进行球化退火,一方面有利于切削加工,同时为最后的淬火处理作好组织准备。 (3)去应力退火是将钢加热到略低于A i的温度(一般取500? 650C),保温一定时间后缓慢冷却的工艺方法,其目的是消除由于塑性变形、焊接、切削加工、铸造等形成的残余应力。 工件和零件中存在的内应力是十分有害的,如不及时消除,会在加工和使用过程中发生变形,影响其精度,因此,铸造、锻造、焊接及切削加

钢铁材料概述及其应用

钢铁材料概述及其应用 钢铁是铁与碳、硅、锰、磷、硫以及少量的其他元素所组成的合金。其中除铁外,碳的含量对钢铁的机械性能起着主要作用,故统称为铁碳合金。它是工程技术中最重要、用量最大的金属材料。 钢铁工业是最重要的基础工业,是其他工业发展的物质基础。钢铁工业的发展也有赖于煤炭工业、采掘工业、冶金工业、动力、运输等工业部门的发展。由于钢铁工业与其他工业的关系十分密切,因此许多国家都把发展钢铁工业放在十分重要的地位。 2007年,全球钢铁产量达13.45亿吨。其中我国铁、钢、材产量分别达到4.69 亿吨、4.89亿吨和5.65 亿吨。占全球钢产量份额由 2000年的 15.0%,提高到了 2007年的36.4%。 钢铁按化学成分分类可分为碳素钢和合金钢。碳素钢是指钢中除铁、碳外,还含有少量锰、硅、硫、磷等元素的铁碳合金,按其含碳量的不同可分为:低碳钢(wc≤0.25%)、中碳钢(0.25%0.60%)。合金钢是指为了改善钢的性能,在冶炼碳素钢的基础上,加入一些合金元素而炼成的钢,如铬钢、锰钢、铬锰钢、铬镍钢等。按其合金元素的总含量,可分为低合金钢(η≤5%)、中合金钢(5%<η<10%)、高合金钢(η>10%)。 按冶炼设备分可分为转炉钢、平炉钢、电炉钢。 按钢的品质分可分为普通钢(ws一般≤O.05%,wP≤0.045%)、优质钢(ws、wp≤0.04%)、高级优质钢(ws≤O.03%,wP≤0.035%)。 按钢的用途分可分为结构钢(建筑及工程用结构钢、机械制造用结构钢)、工具钢(碳素工具钢、合金工具钢、高速工具钢等)和特殊钢(不锈耐酸钢、耐热不起皮钢、高电阻合金、耐磨钢、磁钢等)。 按制造加工形式分可分为铸钢、锻钢、热轧钢、冷轧钢和冷拔钢。 下面简要概述具有代表性的钢铁材料的应用: 碳素结构钢是指wc<0.38% ,ws,wp>0.035%的碳钢,可轧制成钢筋、钢板、钢管,用做螺钉、螺帽、铆钉等,也可做桥梁、建筑物等构件。 优质碳素结构钢是指wc<0.70%,ws,wp<=0.035%的碳钢,主要用来制造各种机器零件,如齿轮、轴类、套筒、弹簧等。 碳素工具钢的碳质量分数在0.65%~1.35%之间的碳钢,用来制造各种刃具、量具、模具,如(冲头、凿子、锤子、钻头、刨刀、丝锥、手锯条、锉刀、刮刀等)。 低合金高强度结构钢,碳质量分数不超过0.20%,合金元素以锰为主,主要用于制造桥梁、船舶、车辆、锅炉、高压容器、输油输气管道、大型钢结构等。 合金渗碳钢碳质量分数一般为0.10%~0.25%,零件表层含碳量较高,可达0.85~1.05%,主要合金元素有Cr、Ni、Mn、B等,以提高淬透性。主要用于制造汽车、拖拉机中的变速齿轮,内燃机上的凸轮轴、活塞销等机器零件。 合金调制钢含碳量在0.25~0.50%之间,主加合金元素Cr、Mn、Ni、Si等,常用于制造汽车、机床上的主要零件,如机床的连杆、齿轮、传动轴等。

热处理工艺及设备概述

热处理工艺及设备概述 热处理工艺: 热处理是一种很重要的金属加工工艺方法,也是充分发挥金属材料性能潜力的重要手段。热处理的主要目的是改变钢材的性能,其中包括实用性能工艺性能。钢的热处理工艺特点是将钢加热到一定的温度,经一定时间的保温,然后以某种速度冷却下来,通过这样的过程能使钢的性能发生改变。 热处理之所以能使钢的性能发生显著变化,主要是由于钢的内部组织结构可以发生一系列变化。采用不同的热处理工艺过程,将会使钢得到不同的组织结构,从而获得所需要的性能。 钢的热处理基本方法有以下几种:

(一)钢的热处理工艺 (1)退火与正火 将工件加热到一定温度后保温,然后缓慢冷却(通常随炉冷却)的热处理工艺,称为退火。根据不同目的,可以将工件加热到昨临界温度以上退火,例如完全退火、不完全退火、球化退火;也可以在临界温度以下退火,例如再结晶退火、去应力退火等。 正火与退火相似,区别在于正火的加热温度较高(临界温度以上),冷却速度较快(通常在空气中冷却),因此正火后工件组织细密,强度、硬度都比退火高。生产中常使用正火或退火来消除铸件、锻件热处理件和轧材的组织缺陷,细化均匀组织,消除残余应力,调整硬度,以利于切削加或进一步热处理。 (2)淬火和回火 淬火是将工件加热到临界温度以上保温后快速冷却(通常水冷或油冷)的热处理工艺。其目的在于获得高硬度的马氏体等组织,并配以不同温度的回火,从而赋予工件所需要的组织和性能。所谓回火,则是淬火工件低于临界的重新加热、保温、冷却(一般空冷)的热处理工艺。尺寸不大、形状简单的非合金钢零件,可用一定配方的盐水作为淬火冷却的冷却介质;全金钢零件淬火介质可用矿物油,以避免过快冷却使工件产生过大的内应力导致裂纹。

钢铁材料的特点

钢铁材料的特点 在经历了代用材料的强烈冲击后,人们通过对各种材料的比较,认识到在目前钢铁材料仍然是量大面广的材料。在可预见的未来,还没有任何一种材料能够全面取代钢铁材料,钢铁材料仍将是人类社会占据主导地位的最重要的结构材料,是人类社会和经济发展的物质基础。与其他材料相比,钢铁材料具有以下显著特占. 八、、? (1)良好的综合力学性能。钢铁材料组织性能调幅范围非常宽,目前钢铁 材料的强度范围在几百至几千兆帕内,并且具有良好的塑性和韧性,可以很容易地将其加工成任意形状,满足各领域的需求,是机械系统的首选材料。 (2)质量稳定,价格低廉。钢铁材料是相对比较成熟的材料,人类对钢铁材料的研究与利用已有1500多年的历史。在钢铁材料设计、生产管理以及组织性能控制等方面积累了丰富的经验。钢铁材料的产量目前仅次于水泥,且质带稳定,价格低廉。 (3)资源丰富。钢铁材料的最大特点是资源丰富,其分布遍及世界各地,在地壳中含有约4.2%(质量分数)的铁,为人类社会可持续发展奠定了基础。 (4)回收率高。钢铁材料的回收率可达到90%以上。回收材料的使用不单 单是钢铁资源的循环使用问题,使用回收材料还可以降低Co:的产生,有利于环境保护。钢铁材料作为国民经济的基础材料,其加工、使用以及回收处理要考虑到对环境的影响。由于钢铁材料在今后相当长的时间内仍是最重要的结 构材料,并且其性能大有潜力可挖,因此,钢铁材料不仅关系到国家的经济发展,同时也起到了维护国家安全的重要作用。钢铁材料应用几乎涉及人类社会各个领域,高层建筑、深层地下和海洋设施、大跨度重载桥梁、轻型节能汽车、高速船舶、石油开采和长距离油气输送管线、大型储存容器、工程机械、精密仪器、航空航天、高速铁路、能源设施等国民经济的各个领域都需要综合性能优异、使用寿命长以及成本低的钢铁材料。此外,人类社会的发展对钢铁材料的生产、加工、使用和回收等环节提出了节约能源、节约资源、满足可持续发展战略的要求,因此在保持钢铁材料低成本和易回收等特点的基础上,提高钢铁材料的强度和寿命,开发新一代钢铁材料引起了世界各国的高度重视。 本文来自: 1

低温脆性

中、低合金结构钢的低温脆性及选材低温脆性指温度低于某一温度时,材料由韧性状态变为脆性状态,冲击值明显下降的现象。工程上常用的中、低强度结构钢经常发生此类现象。我国东北许多矿山上用的进口大型机械,在冬季就有低温脆性引起的大梁、车架等断裂现象,另外,日本汽车在东北冬季也出现过车架低温脆断问题。 1935年比利时在Albert运河上建造了大约50座焊接大桥,这些桥梁在以后几年中不断发生脆性断裂事故:38年3月Albert 河上Hasseld桥全长74.5米在气温-20℃时发生脆性断裂,整个桥断成三段坠入河中;以后又陆续发生断裂事故,到1950年就有6座在低温下发生脆断。 在二战期间,美国焊接的轮船在使用中发生大量的破坏断裂事故,其中238艘完全报废,19艘沉没。值得注意的是,大部分脆断是在气温较低的情况下发生的。当时美国船舶技术标准中没有对船舶用钢的低温脆性和缺口敏感性提出要求。人们没有认识到此问题的重要性。 这些是我们在设计、制造高原车需要注意的问题。 1.低温脆性产生的原因: 金属材料在不同温度、应力状态、加载速度和环境的作用下,断

裂形式各不相同。在工程实际使用的钢材中,脆性断裂的微裂纹形成机理是个非常复杂的问题,目前许多文献发表了这方面的研究成果,主要认为: 1.1.钢中的第二相颗粒(夹杂物、碳化物)对钢的脆性裂纹形成影响 很大。脆性微裂纹可以有碳化物本身破碎开始,也可起源于硫化锰夹杂物处。另外,第二相颗粒的大小对裂纹成核也有一定的影响,小的颗粒不易引起裂纹的产生。 1.2.低温脆性可起源于晶界。晶界裂纹形成除了晶界上碳化物影 响之外,微量有害元素偏析于晶界引起晶界脆化也是个重要因素,磷、硫、锑等元素及溶解的氧、氢、氮等气体在晶界偏析,大幅度降低了晶界脆性断裂抗力,提高了脆性转变温度。 1.3.应力及位错理论:主要观点认为金属中脆性断裂可起源于: 金属晶格中的滑移面阻塞处、机械孪晶的交叉处、应力集中处以及前述的晶界处等。 2影响低温脆性的因素: 影响钢的低温脆性的因素很多,几乎方方面面,主要的因素如下:2.1.合金元素: 合金元素对钢的脆性有一定影响,添加合金元素可使金属基体固

钢铁材料

我国在此是以钢材的用途分类作为表示方法分类的基础: 1)碳素结构钢: 表不方法:Q十数字十(质量等级符号)十(脱氧方法符号)十(专门用途的符号) ①钢号冠以“Q”,代表钢材的屈服点; ②“Q”后面的数字表屈服点数值,单位是MPa。例如Q235表T屈服点(σs)为235 MPa的碳素结构钢: ③必要时钢号后面可标出表质量等级和脱氧方法的符号。质量等级符号分别为A, B, C, D。 脱氧方法符号:F表示沸腾钢;b表示半镇静钢:Z表示镇静钢;TZ表示特殊镇静钢,镇静钢可不标符号,即Z和TZ都可不标。例如Q235-AF表示A级沸腾钢。 专门用途的碳素钢:例如桥梁钢、船用钢等,基本上采用碳素结构钢的表示方法,但在钢号最后附加表示用途的字母。 2)优质碳素结构钢 表示方法:数字十(元素符号)十(脱氧方法符号)十(专门用途的符号) ①钢号开头的两位数字表示钢的碳含量,以平均碳含量的万分之几表示,例如平均碳含量为0. 45%的钢,钢号为“45 ",它不是顺序号,所以不能读成45号钢。 ②锰含量较高的优质碳素结构钢,应将锰儿素标出,例如50Mn。 ③沸腾钢、半镇静钢及专门用途的优质碳素结构钢应在钢号最后特别标出,例如平均碳含量为0. 1%的半镇静钢,其钢号为10b。 3)碳素工具钢 表示方法:字母十数字十(元素符号)十(质量等级符号) ①钢号冠以“T",以免与其它钢类相混。 ②钢号中的数字表示碳含量,以平均碳含量的千分之几表示。例如“T8”表示平均碳含量为0. 8%。 ③锰含量较高者,在钢号最后标出“Mn ",例如“T8Mn "。 ④高级优质碳素工具钢的磷、硫含量,比一般优质碳素工具钢低,在钢号最后加注字母“A",以示区别,例如"T8MnA"。

GB15256-2014塑料低温脆化试验机

GB15256-2014塑料低温脆化试验机检查电线之塑料外壳以及硫化橡胶在低温测试时的脆化特性。 The embrittlement of plastic case of the wire and the embrittlement of vulcanized rubber during low temperature test. 用户可以选择TS-BC直线性冲击试验方法或者TS-BT摆锤型冲击试验方法以满足客户对设备的不同需求。 The user can choose the TS-BC linear impact test method or TS-BT pendulum type impact test method to meet the customer's different needs of the equipment. 试验时将试样固定于夹具上,然后将试样浸泡坐在低温介质中5分钟,用2±0.2m/s的线速度冲击试样,最后检查试样在最低温度是否出现裂纹、裂缝、小孔、以及是否完分离成碎片。 Test sample is fixed on the fixture, then soaked samples sitting in low temperature medium in 5 minutes, with 2 + 0.2 M / s line speed impact test specimens, the final inspection sample in the lowest temperature whether cracks, cracks, holes, and whether separates into pieces. 通过转换卡盘托架底座可以连续的进行样品测试,可以节省样品放回原处时间,满足很多样品各自的测试标准。 Through the conversion of the chuck bracket base can be continuous sample test, can save the sample back in place of time, meet a lot of samples of the respective test standard. GB15256-2014塑料低温脆化试验机制冷方式The refrigeration mode of multifunctional plastic cryogenic embrittlement test machine 采用二段式压缩机快速降温制冷,最低温度可达-76℃(如需低于-76℃,可定制)。 Two stage compressor cooling refrigeration, the lowest temperature of up to -76 (for example, can be customized for less than -76). 温度可控性高,低温槽中液体传热介质可启用搅拌马达,使温度均匀性更佳。毎次可测试4组试 样,旋转定位夹具对每组试样进行冲击测试,检査出现脆性破坏的最低温度。 The temperature can be controlled and the heat transfer medium of the liquid in the cryogenic tank can be used for stirring the motor, and the temperature uniformity is better.. Each time 4 groups of samples testing, rotary positioning fixture for each specimen of impact test and laboratory examination appear brittle failure of minimum temperature. GB15256-2014塑料低温脆化试验机测试标准: Standard for testing of multi - functional plastic cryogenic Embrittlement Testing Machine: GB/T5470-2008塑料冲击法脆化温度的测定 Determination of embrittlement temperature of plastic impact method GB/T 12584-2008橡胶或塑料涂覆织物低温冲击试验 Low temperature impact test for rubber or plastic coated fabrics GB/T15256-1994硫化橡胶低温脆性的测定(多试样法)

钢的热处理

实验一钢的热处理 一、实验目的 1.了解钢的基本热处理(退火、正火、淬火及回火)工艺方法。根据工件的加工及使用性能要求,制定热处理工艺规范。 2.了解不同的热处理工艺所获得的不同组织和性能。 3.分析淬火及回火温度对钢性能的影响。 4.了解洛氏硬度试验机的主要结构及操作方法。 二、实验材料及设备 1.碳钢试样(45钢)。 2.热处理炉、洛氏硬度计、金相砂纸等。 三、概述 热处理的主要目的是改变金属材料的性能。钢的热处理基本工艺方法可分为退火、正火、淬火和回火等。 1.退火 完全退火:用于亚共析钢,将钢加热到Ac3以上30~50℃,保温一定时间后,随炉缓慢冷却(或埋在砂中或石灰石中冷却)至500℃以下在空气中冷却,得到铁素体和粗片状珠光体。 球化退火:主要用于共析钢、过共析钢,将钢加热到Ac1以上20~30℃,保温一定时间,然后以不大于50℃/h的冷却速度随炉冷却,得到球状珠光体组织。 2.正火 将钢加热到Ac3或Accm以上30~50℃,保温一定时间后,在空气中冷却,得到细片状珠光体组织。 3.淬火 将钢加热到Ac3或Ac1以上30~50℃,保温一定时间,然后在淬火介质中快速冷却(大于临界冷却速度),得到马氏体组织。 (1)淬火加热温度选择 亚共析钢:淬火加热温度为Ac3以上30~50℃。 共析钢、过共析钢:淬火加热温度为Ac1以上30~50℃。 常用钢种的临界温度见表1。 (2)保温时间的确定 加热保温时间与钢的成分、工件的形状、尺寸及加热介质、加热方法等因素有关。可按下列经验公式计算: T= a ?δ 式中:T—保温时间(min) a—加热系数(min /mm) δ—工件有效厚度(mm) —1—

相关主题
文本预览
相关文档 最新文档