当前位置:文档之家› 硅烷对注射成形粘结磁体性能的影响

硅烷对注射成形粘结磁体性能的影响

硅烷对注射成形粘结磁体性能的影响
硅烷对注射成形粘结磁体性能的影响

硅烷对注射成形粘结磁体性能的影响1

段柏华,曲选辉,陶思武,张深根,田建军

北京科技大学材料科学与工程学院,北京(100083)

E-mail :dbh72@https://www.doczj.com/doc/507723846.html,

摘 要:研究了硅烷处理对喂料流动性及粘结磁体性能的影响规律。结果表明:硅烷能有效改善NdFeB 磁粉与尼龙粘结剂的相容性,从而使得喂料具有更小的表观粘度及流动性,并分析了其改性作用机理;同时,硅烷改性能改善磁粉/粘结剂的混炼效果及其粘结磁体的耐热、耐腐性。

关键词:注射成形;粘结钕铁硼磁体;硅烷;表面处理

1. 引 言

注射成形粘结NdFeB 磁体具有尺寸精度高、能制成复杂形状及薄形元器件、耐热性好、加工性能好、生产效率高、材料利用率高、成本低及能与其它部件一体化成形等一系列优点,满足了磁性材料及器件向“小型化、轻型化、智能化及高性能化”方向发展的趋势,有望在电子信息、汽车、测量仪表、办公自动化、家用电器等工业领域中得到广泛应用[1,2]。近年来研制高性能注射成形粘结钕铁硼磁体已成为国内外的研究热点,但由于在高温混炼及注射过程中NdFeB 磁粉极易氧化,给研究工作带来了很大的困难[3]。为了解决NdFeB 磁粉的氧化问题,人们一方面通过改进磁粉化学组成及结构来防止氧化,但到现在仍未获得较理想的结果;另一方面,对NdFeB 磁粉进行表面处理,如表面镀锌、等离子聚合、溶液覆膜及硅烷表面改性等 [4~6]。硅烷是一种较好的改性剂,以往研究多集中在对粉末的抗氧化方面。本文侧重研究硅烷对NdFeB 粘结磁体制备加工等方面的影响。

2. 实验过程

2.1 实验原料

NdFeB 磁粉采用日本爱知制钢公司的HDDR 各向异性磁粉(牌号为MFP-12)。磁粉磁性能为:最大磁能积(BH)max 265kJ/m 3、剩磁Br 1.29T 、内禀矫顽力H cj 964 kA/m 及磁感矫顽力H cb 684 kA/m 。粉末呈多角不规则状,平均粒径约为54.5μm ,磁粉形貌及粒度分布分别如图1及2所示。

累积百分数 / %颗粒直径D / μm

图1 Nd-Fe-B 磁粉形貌图 图2 Nd-Fe-B 磁粉粒度分布图

2.2 磁粉表面处理

1本课题得到高等学校博士学科点专项科研基金资助项目(20040008015)的资助。

硅烷表面包覆处理NdFeB 磁粉:将磁粉置于浓度为5wt%KH550硅烷乙醇溶液中进行表面包覆处理。用超声波分散处理30min ,随后浸泡12h 后于真空中110℃下烘干以得到具有抗氧层的磁粉。

2.3 注射成形粘结磁体的制备及性能测试

将包覆后磁粉按63VOL%装载量与烘干的尼龙12粉末及各种添加剂充分混合均匀,随后在高效盘式挤出机中熔融混炼均匀、制粒得到喂料,并在磁场注射成形机上制得规格为Φ20╳9mm 的各向异性粘结NdFeB 磁体。

用Instron3221型毛细流变仪测定喂料的流变性能;采取开路磁通法测定不同状态下的磁通,并据此计算出不可逆磁通损失率;采用扫描电镜分析观察混炼界面状态。

3. 实验结果与讨论

3.1硅烷处理对喂料流变性能影响

磁粉和粘结剂混合料(喂料)的粘度对注射成形粘结磁体的制备与性能有很大关系,粘度太大,则不仅使喂料充模困难甚至造成短射,而且会增加磁粉磁场取向的阻力,从而降低粘结磁体磁性能。对表面处理前后磁粉的喂料于255℃条件下进行流变实验,把实验结果双对数处理作图,如图3所示。

l g η /P a ·s lgγ/ s -1

图3 不同粉末喂料的流变性能

从喂料的表观粘度-剪切速率双对数曲线可知:此种尼龙体系别喂料的粘度均随着剪切速率的增大而减少,而且经表面处理后磁粉制得喂料的表观粘度值要小于未经处理磁粉的粘度值。这是由于注射成形粘结磁体的装载量一般较高,粉末之间容易堆集成团并形成网络结构,加之无机磁粉与有机粘结剂相容性又不好,因而其粘度高、流动性不好;当磁粉用硅烷处理后,不仅降低了其表面能,使网络结构的强度大大降低,而且改变了其表面极性,从而使磁粉更易分散于粘结剂中,因而表观粘度下降。

这种符合“剪切变稀”流体特性的喂料属于假塑性流体,还可以用下式表达[8]:

η = K γm-1 或 lg η = A + (m-1) lg γ

其中,γ为剪切速率S -1 ;η为表观粘度Pa·s ;K 、A 为常数;m 为流体指数,其值越小,则体系对剪切速率的变化越敏感。通过对图中直线进行线性回归分析,可以求得A 值及m 值。对于表面处理粉, A=3.66,m=0.37;对于原粉,A=4.56,m=0.25。可见,经表面处理后其m 值较大,说明其磁体生产工艺相对稳定,其加工性能好。

3.2 硅烷对NdFeB/粘结剂界面作用机理及效果,

硅烷Y-R-SiX 3是一种界面改性剂,同时含有亲水基团和疏水基团,当用于磁粉/粘结剂

体系中,一方面其烷氧基-X发生水解反应形成硅醇,Y-R-SiX3 + H2O → Y-R-Si- (OH)3 + 3ROH,产生的亲水基团-OH与磁粉形成氢键,经脱水缩合后而在磁粉表面产生化学键作用,其作用过程如图4所示,使之与磁粉紧密结合而阻止氧的扩散进入;另一方面,外层的疏水

基团YR-即可通过范德华力与粘结剂分子链互吸、互溶、互扩散,并进一步自聚/交联而深

入到粘结剂基体内部,若粘结剂选用的是尼龙体系,则硅烷中的活性基团Y(环氧基或胺基)可与尼龙中的酰胺基产生氢键及化学键合作用,并在界面处形成半互穿网络,从而显著增强

粉末与尼龙粘结剂的相互作用力,其界面能更低,相容性更好。

图4 硅烷改性Nd-Fe-B磁粉表面作用示意图

粉末/粘结剂的相互作用大小既可以用润湿角θ,也可以用粉末活化指数来来衡量[9]。活

化指数等于漂浮于水面上的粉体质量/加入水中的粉体总质量。表1给出了经不同用量硅烷

处理后的活化指数。可见随着硅烷改性剂用量增多,磁粉的活化指数越高,对水的亲和力越低;在用量为磁粉质量的0.035%时,其粉末全部漂浮于水中(实物图见图2-18),此时磁粉

表现为完全疏水性,换句话说,它对疏水性物质表现更大的亲和力并有着较小的润湿角。

按照杨氏方程:γSG=γSL+γLG cosθ,润湿角θ越小,则液固界面的表面自由能γLG越小,

从而磁粉越易于分散于粘结剂基体中,其界面越稳定。

表1 硅烷偶联剂用量对磁粉活化指数的影响

硅烷用量mass% 0 0.005 0.01 0.0150.02 0.0250.03 0.035 0.04 活化指数 % 0 26.3 50.5 73.1 89.6 95.4 99 100 100

表面改性前后粉末制得喂料的SEM照片清楚显示(图5),未改性粉喂料中的磁粉在粘

结剂尼龙中有明显的聚集,分散效果差,而改性后磁粉在尼龙中分布均匀,且结合更紧密。这

更直观地证明硅烷能显著改善粘结剂-粉末相互作用的效果。

图5 喂料的SEM图(a-未改性粉;b-改性粉)

3.3 硅烷处理对注射成形粘结磁体耐热耐蚀性能的影响

把改性前后磁粉制得的粘结磁体,分别置于湿热环境(100℃,相对湿度98%以上)及浓度为5%的NaCl 溶液中放置不同时间,用放大镜观察磁体表观变化并用磁滞回线仪测定其前后磁性变化,结果见表2所示。未改性磁粉制取的磁体分别在52h 及2h 后即在磁体突起、转角及有缺陷部位开始出现明显锈点,而改性后磁粉的生锈时间得以大大延长,因此而造成的磁性能损失也得以降低。

表2 磁粉表面改性对粘结磁体的耐蚀性影响

100 98%℃湿热环境 5%NaCl 溶液 粘结磁体

未改性 改性粉 未改性 改性粉 开始生锈时间/h

52 125h 仍未生锈 2 5.5 (BH )max 损失率% 5.7% 1.5% 3.6% 0.9%

图6则显示,磁粉表面改性能有效地降低粘结磁体(φ20×8.6mm)在80℃、100℃、120℃及150℃下时效处理5h 的开路磁通不可逆损失率,提高磁体的耐热性,其降幅分别为13.2%、13.6%、8.2%、7.8%。究其原因主要是由于磁粉改性后不仅在表面形成了磷酸铁及硅烷有机膜双层保护膜,同时改善了磁粉/粘结剂的界面特性,使磁粉更为均匀而紧密地弥散于粘结剂中。这层紧紧包覆在粉体外的粘结剂就相当于另一层保护层,不仅能有效地阻止或延缓氧及水汽扩散到粉体表面,还能起到较好的隔热作用,从而延缓因高温受热而引起的磁粉原子中原子磁矩无序取向的进程,使不可逆磁通损失下降。

-10

-20

-30-40

150℃

100℃80℃不可逆磁损失h i r r /%时效温 度 T /℃

图6 磁粉表面改性对粘结磁体耐热性的影响

4. 结 论

1) 磁粉经硅烷处理后,磁粉/粘结剂喂料体系具有更小的表观粘度,表现出更好的流动性能及生产工艺稳定性;

2) NdFeB 磁粉经具有双亲基团的硅烷表面处理后,它基团分别与亲水性磁粉表面及疏水性粘结剂发生化学键合作用,从而改善磁粉在粘结剂中的分散性及两者的润湿性;

3) 硅烷处理能显著提高注射成形粘结NdFeB 磁体的耐蚀性和耐热性,扩大其应用范围。

参考文献

1 段柏华,曲选辉,李云平.注射成形粘结NdFeB磁体:工艺·性能·应用[J].磁性材料及器件,2003,34(4):36~39

2罗阳.日本稀土粘结磁体的发展现状 [J].电工材料,2003,(1):31~34

3 D.S.Edgley,J.M.Le Berton,S.Steyaert,et al.Characterisation of high temperature oxidation of Nd-Fe-B magnets[J]. Journal of Magnetism and Magnetic Materials,1997,173:29~42

4L.Y.Zhu,T.Hirae. Microstructural improvement of NdFeB magnetic powder by the Zn vapor sorption treatment[J].Materials Transactions,2002,43(11):2673~2677

5M.Higuchi,M.Tsuchida. Effect of plasma treatment on thermal stability and magnetic properties of Nd-Fe-B series plastic magnets[J].Journal of Materials science,1992,27:5795~5800

6郑强,彭懋,益小苏.聚合物基永磁复合材料研究进展[J].功能材料,1998,29(6):561~565

7段柏华,曲选辉,叶斌,等.磁粉表面改性及粒度对注射成形粘结NdFeB磁体性能的影响[J].功能材料,2005,36(1):29~31

8李益民,曲选辉,黄伯云.金属注射成形喂料的流变性能的评价.材料工程,1999,(7):32~35

9郑水林. 粉体表面改性. 北京:中国建材工业出版社, 1995

The effect of silane treatment on the properties of the

injection-molded bonded magnet

Duan Bohua, Qu Xuanhui, Tao Siwu, Zhang Shengen, Tian Jianjun School of Materials Science and Engineering, University of Science and Technology Beijing,

Beijing (100083)

Abstract

The effects of the silane treatment on the rheological properties of feedstock and the properties of its injection-molded bonded magnet are investigated. The results show that the better rheological properties and the lower viscosity of the silane treated powder feedstock are obtained, due to the improvement in interface compatibility between magnetic powder and Nylon binder by silane treatment,and the modification mechanism is analysed and discussed. Finally, with the silane treatment, the mixing effects of powder/binder system become better, which improve the heat-resistant and erosion-resistant of its injection-molded bonded magnet.

Keywords: Injection molding ; Bonded NdFeB magnet ; Surface treatment ; Silane

作者简介:段柏华(1972.9—),男,副教授,博士,研究方向:粉末注射成形技术及磁性材料。

塑料粘接-常用方法

塑料粘接常用方法 瞬干胶或快干胶:α氰基丙稀酸酯。 分类: 民用市场中常见产品是502胶水。工业生产对瞬干胶性能要求更加严格。特别在强度,耐温性,耐湿性,白化性,老化性要求较高。

◆—热塑性塑料、热塑性聚酯; ?—热固性塑料。 热塑性树脂:热塑性树脂具有受热软化、冷却硬化的性能,而且不起化学反应,无论加热和冷却重复进行多少次,均能保持这种性能。凡具有热塑性树脂其分子结构都属线型。它包括含全部聚合树脂和部分缩合树脂。 热塑性树脂有:PE-聚乙烯、PP-聚丙烯、PVC-聚氯乙烯、PS-聚苯乙烯、PA-聚酰胺、POM-聚甲醛、PC-聚碳酸酯、聚苯醚、聚砜、橡胶等。热塑性树脂的优点是加工成型简便,具有较高的机械能。缺点是耐热性和刚性较差。 热固性树脂(thermosetting resin),是指树脂加热后产生化学变化,逐渐硬化成型,再受热也不软化,也不能溶解的一种树脂。 热固性树脂在固化后,由于分子间交联,形成网状结构,因此刚性大、硬度高、耐温高、不易燃、制品尺寸稳定性好,但性脆。 瞬干胶对常用橡胶如三元已丙,聚氨酯橡胶,丁氰橡胶,合成橡胶有效粘接。3MDP8005,DP460可以对PVC,PC,PMMA,PA,ABS等材料无需表面处理直接粘接。DP8005可以粘接PE,PP。可以达到材料破坏的强度。 UV 光固化胶在强度,白化性,耐老化性能方面优于瞬干胶,但有一种材料必须是透明材质,因此限制其应用。常用于光电子行业。对PET,PBT,PP,PVC,PC等都有良好的粘接强度。在紫外线

灯照射下可数秒固化。对于难粘材料需要电晕处理。国际市场中常见UV胶。如乐泰UV胶,DYMAX UV胶,DELO UV胶。 热熔胶也是常用塑料粘接材料。通过高温把同种或不同种材料联接在一起。 溶剂胶是塑料粘接常用方法。主要应用于易溶液塑料。如ABS,PA,PMMA,PVC,PC等材料。一般主些材料可以氯仿或丙酮及其溶液粘接。对于难溶材料如PP,PTFE,硅橡胶等溶剂胶无法粘接。对于塑料韧性粘接可以选用3M 4693。 环氧胶应用于塑料料粘接需要改性,并对塑料表面进行处理。国际市场用于塑料粘接环氧类胶粘剂有3M DP460, DP420 等。也可以用LORD305,LORD306,施敏打硬等胶粘剂。 难粘塑料包括聚乙烯(PE)、聚丙烯(PP)等聚烯烃和聚四氟乙烯、氟塑料46等含氟类高分子材料。这些材料很难用胶粘剂很好地粘接,只有通过特殊的表面处理才能达到较好的粘接效果。然而这些难粘塑料常常具有其他高分子材料所不具有的优点,如聚乙烯等聚烯烃类塑料,它们的成本低廉,性能优良,易于加工成各种型材,所以被广泛地应用于日常生活中;而聚四氟乙烯俗称塑料王,是综合性能非常优良的塑料,有极好的耐热、耐寒和耐化学腐蚀性,被广泛应用于电子行业及一些尖端领域。正因为这些难粘塑料有如此广泛的应用,使得它们的表面处理技术显得尤为重要,多年来,研究人员从表面改性出发,进行了多方面的研究,积累了很多的方法。 难粘塑料难粘的原因

粘结钕铁硼永磁体的应用和发展_卢冯昕

RARE EARTH INFORMATION 总第346期2013年 过度的节制有违于节制的初衷,而适度的节制则有助于战胜过度的放纵。 粘结钕铁硼永磁体自面世以来,由于具有尺寸精度高、形状复杂、磁性能均匀优良等综合优点在硬盘驱动器、光盘驱动器、汽车微电机、磁传感器和其它精密电机中获得了广泛的应用。随着粘结钕铁硼永磁体的制造技术不断提升,尤其是利用注射成型工艺和挤出成型工艺生产的磁体,可以具有复杂或者特殊的形状,在一些新的领域逐渐获得了重要的应用。同时,由于硬盘、光驱的体积越来越小,转速越来越高,这些趋势对传统的粘结钕铁硼永磁体也提出新的技术要求。 粘结钕铁硼磁体自面世以来由于具有尺寸精度高、磁性均匀性好、形状可塑性强、原料利用率高、易于大批量生产等优点,在信息技术、办公自动化、消费类电子、家用电器、汽车工业等领域获得了广泛的应用,是现代工业不可缺少的功能材料之一。近年来,随着全球“节能减排”和“新能源”的发展呼声,消费类电子产品、家用电器和汽车关联产品都在向“小型化、轻 量化、节能化”趋势发展,粘结钕铁硼磁体的特性正迎合了这种发展趋势,除了2009年金融危机将全球带入不景气年份以外,粘结钕铁硼磁体平均每年都以近8%的量增长。2011年国家稀土政策的重大调整,给整个稀土行业、特别是稀土永磁行业带来了历史性的利好时机,虽然部分新的应用开发因为成本原因延缓了推进计划,但随着2014年7月日立金属基本成分专利失效日的逐步逼近,未来几年对粘结钕铁硼磁体的需求量将进一步增大。 1.粘结钕铁硼永磁体的应用分类 粘结钕铁硼磁体的磁性能不及烧结钕铁硼,但因其能大批量方便 地制造多极充磁环形磁体,性能一致性和均匀性极佳的特点,以及远高于粘结铁氧体的磁性能,被广泛应用于各类微型电机和传感器系统中。粘结钕铁硼的具体用途,主要可分为数字化产品:其中的硬盘驱动器磁体(HDD)和光盘驱动器磁体(ODD)是粘结钕铁硼永磁体中最主流、应用量最大的品种;各类办公OA 产品,主要包括:打印机用传动电机、扫描仪用电机、复印机用步进电机(STP)以及激光打印机磁辊等;汽车用电机及磁传感器产品,包括EPS 助力转向传感器磁体、雨刮器电机、摇窗电机、座椅调节器电机等;其他各类工业用和家用电机,主要包括各类伺服电机、电动工具用电机、空调制冷马达等。 粘结钕铁硼永磁体的应用和发展 卢冯昕饶晓雷 李纲 表1粘结钕铁硼永磁体主要应用领域 产业聚焦 S Domain Focu

各类永磁体综合性能比较

各类永磁体综合性能比较 根据各类永磁材料的特点,采用不同生产工艺可以得到不同种类的永磁体。目前常用的永磁体主要有铝镍钴(AlNiCo)、永磁铁氧体、钐钴1:5型(SmCo5)、钐钴2:17型(Sm2Co17)、烧结钕铁硼(NdFeB)、粘结钕铁硼(NdFeB)和橡胶磁等几类。不同类型的永磁体,其磁性能及其它各参数均有所不同。下面将这几类永磁体的特点及性能参数作简单介绍: (1)铝镍钴(AlNiCo) AlNiCo的磁性能属于中等偏低水平,目前生产的AlNiCo的最大磁能积可达到8~103 kJ/m3,即1~13 MGOe。由于其居里温度为Tc=890 ℃,其最高使用温度可高达600 ℃,同时其温度系数很低,为-0.02%/℃。铝镍钴磁体具有较好的抗氧化和腐蚀性能。AlNiCo的可加工性是永磁材料中的佼佼者,因为永磁铁氧体和稀土永磁的硬度和脆性远比AlNiCo大。以HPMG的AlNiCo产品为例,其几何尺寸的可加工精度可达0.02mm,最小的Alnico 元件为Φ2mm×2mm 和Φ5mm×Φ2mm×8mm,这对烧结SmCo、NdFeB 和铁氧体永磁来说是难以实现的。此外在一些场合采用Alnico 制成小型化和微型化的复杂形状的永磁元件,其成本几乎是最低的。由于Alnico 优良的机械性能,所以它可以作为复杂磁路的结构零件,而稀土永磁和铁氧体永磁一般只能作为功能材料使用。此外,Alnico 还可以直接与塑料、尼龙及粉末冶金零件等实现一体化高温(600℃)加工与组合,显示了Alnico良好的可加工性。由于AlNiCo中含有战略金属Ni和Co,使其价格要高于铁氧体,处于中等水平。AlNiCo磁体的缺点是矫顽力非常低(通常小于160kA/m),因此铝镍钴磁铁虽然容易被磁化,同样也容易退磁。 (2)永磁铁氧体 永磁铁氧体的综合磁性能较低,其最大磁能积约为0.8~5.2 MGOe。但其具有原材料丰富,平均售价低,性价比高,抗退磁性能优良,不存在氧化问题等优点。永磁铁氧体局里温度约为450 ℃,其最高使用温度为300 ℃。由于其脆性比较大,使得其机械加工性能一般。 (3)钐钴1:5型(SmCo5)和钐钴2:17型(Sm2Co17) 钐钴磁体的磁性能属于中等偏上水平,其中1:5型磁体磁性能要低于2:17型磁体。目前生产的两种磁体的磁能积分别为15~24 MGOe和22~32 MGOe。二者居里温度分别为740 ℃和926 ℃,最高使用温度分别为250 ℃和550 ℃,2:17型磁体要远高于1:5型磁体。近年来钐钴磁体发展的主要是2:17型磁体,由于其居里温度高,矫顽力温度系数小,因此在高温环境能够保持足够高的定磁性能,是高温应用的最佳选择。钐钴磁体具有很强的抗氧化和腐蚀性,因此不需要镀层

一文看懂金属注射成型(MIM)常用材料

一文看懂金属注射成型(MIM)常用材料 一金属注射成型简介 金属注射成型(Metal Injection Molding,MIM)是一种适于生产小型、三维复杂形状以及具有特殊性能要求制品的近净成形工艺。该技术是将现代塑料注射成形技术引入粉末冶金领域而形成的一门新型粉末冶金近净形成形技术。 其基本工艺过程是:将各种微细金属粉末(一般小于20μm)按一定的比例与预设粘结剂,制成具有流变特性的喂料,通过注射机注入模具型腔成型出零件毛坯,毛坯件经过脱除粘结剂和高温烧结后,即可得到各种金属零部件。流程图如下:二理想的MIM金属粉末什么样? 粉末粒度、振实密度和颗粒形状是决定粉末能否成功用于MIM工艺的关键性能指标。MIM工艺要求原料粉末很细(~10μm) , 以保证均匀的分散度、良好的流变性能和较大的烧结速率。金属粉末微观结构(*2500倍) 理想的MIM 用粉末为:粉末粒度2~8μm ;松装密度 40 %~50 % ;振实密度50 %以上;粉末颗粒为近球形、比表面大。目前,MIM金属粉末原料包括铁、镍、钛、不锈钢、贵金属、超合金等多种材料。同时更在向多样化发展,例如结构材料、功能材料、磁性材料等。生产MIM粉末的方法主要有:羰基法、超高压水雾化法、高压气体雾化法、

等离子体雾化法以及层流雾化法。不同的粉末制备技术对粉末的粒度、颗粒形状、微观结构、化学性质、制造成本等都有不同的影响。 雾化制粉图片来源Lemtech MIM金属粉末相关企业如下:Sandvik(山特维克)Epson ATMIX日本太平洋卡彭特特种金属(常熟)有限公司湖南恒基粉末科技有限责任公司江西悦安超细金属有限公司中泰合金材料有限公司江苏天一超细金属粉末有限公司广州有色金属研究院晋江市中和特种粉末材料公司浙江泰堡金属制品有限公司玉溪大红山矿业有限公司粉末冶金科技分公司苏州豪昇粉末五金制品有限公司深圳威泰克斯粉末冶金股份有限公司深圳市铂科新材料股份有限公司大陆塑天实业有限公司昆山纳诺新材料科技有限公司晋江市中和特种磁性材料有限公司湖南宁乡吉唯信金属粉体有限公司飞而康快速制造科技有限责任公司秦皇岛市雅豪新材料科技有限公司东莞市顶鑫不锈钢公司石家庄利德粉末材料有限责任公司湖州慧金材料科技有限公司大同特殊钢(上海)有限公司广东鸿海金属材料有限公司安泰科技粉末与制品分公司东莞市酬勤包装制品有限公司绵阳西磁新材料有限公司………… 三MIM如何选择粘结剂? 图:小尺寸工件对粘结剂稳定性的要求越来越高图片来源Makepolo

粘接前塑料表面处理方法

粘接前塑料表面处理方法 塑料可分为热塑性塑料和热固性塑料两大类。在通常情况下,热固性塑料要比热塑性塑料容易胶接。但它们的表面能量均低于玻璃、陶瓷、金属等亲水性材料,而且它们表面常会粘附脱模剂或逸出增塑剂,因此不易为胶粘剂所浸润,从而影响胶接强度。因此,一般均需对塑料进行表面处理。由于塑料的品种众多,各种性能差别很大,因此表面处理的方法也就很不相同。以下介绍几种常见的塑料表面处理方法。 [方法1] 本方法主要适用于聚乙烯、聚丙烯、聚异丁烯、聚氯乙烯、过氯乙烯。 上述塑料的脱脂溶剂为丙酮和丁酮。 脱脂后,进行氧化焰处理:先用砂布使其粗化,将其置于氧化焰上烧3-5s,连续三次。再用30%的氢氧化钠溶液,65-70°C浸渍3-5min,用冷水冲洗,然后用下述溶液活化,65-70°C浸渍5-10min: 铬酸10浓硫酸 20水40 经水洗,再在下述溶液中70-75°C氧化5-7min: 重铬酸钾 10浓硫酸 50水340 然后在70-75°C的热水中洗涤5-7min,用蒸馏水洗净后在65-70°C干燥。

[方法2] 本方法适用对象同上。 在下述溶液中于20°C下处理90min: 重铬酸钠5硫酸(d=1.84 ) 100水8 用冷水洗净后,在室温下干燥。 [方法3] 本方法适用于对象同上。 在电晕放电活化的下述任一气体中进行暴露处理: (1)干空气,15min; (2)一氧化氮,10min; (3)湿空气,5min; (4)氮气中,5min。 处理后应在15min内进行胶接。 [方法4] 本方法适用于聚苯乙烯及其改性品种,如ABS 和AS 等。 喷砂或砂布打磨后脱脂。 脱脂溶剂:丙酮、无水乙醇。 脱脂后在铬酸溶液中60°C下浸渍20min。 [方法5] 本方法适用于尼龙。 脱脂溶剂:丙酮、无水乙醇、醋酸乙酯、丁酮,在表面涂一层10%的尼龙-苯酚溶液,在60-70°C保持10-15min,然后用溶剂

改性环氧树脂对粘结NdFeB磁体性能的研究

改性环氧树脂对粘结NdFeB磁体性能的研究 发布日期:2013-05-30 浏览次数:274 核心提示:改性环氧树脂对粘结NdFeB磁体性能的研究 摘要:用改性环氧树脂作粘结剂,在不同工艺条件下制备粘结NdFeB磁体,并对其性能进行了研究。结果表明,改性环氧树脂粘结NdFeB磁体性能高于传统环氧树脂粘结Nd FeB磁体,在模压温度130℃、保压时间2min、固化时间120min、固化温度120℃条件下制备的磁体,其磁性能最佳。粘结磁体自八十年代中期问世以来,人们已研究了多种粘结剂材料,如非磁性高分子化合物环氧树脂(热塑性)、酚醛树脂(热固性)、尼龙、聚苯硫醚、聚乙烯、橡胶和低熔点金属Bi,Sn,Pb,Zn,Al等[1-3]。刘颖等人[4]研究了二茂金属高分子铁磁粉对粘结永磁复合材料性能的影响。陈德波等人[5]研究了环氧树脂用量对磁体性能的影响,结果表明粘结剂含量为2。5%时磁体具有较佳的性能。李军等人[6]研究了硅烷处理对磁体性能的影响,表明磁粉经适当硅烷处理后有利于磁性能提高。张虹等人[7]研究了5种不同的环氧树脂对磁体性能的影响,认为常温下为固态、环氧值较高且与磁粉表面相容性好的树脂是制备粘结NdFeB磁体的理想粘结剂。 单一的酚醛树脂经化学反应固化后的产物耐热性好,但性质较脆,因此纯酚醛树脂的胶结强度不高。在大多数情况下,用热塑性树脂或合成树脂等将其进行改性。未改性的酚醛树脂胶只能胶结木材、硬质泡沫塑料及其他多孔材料。以其他高聚物改性的酚醛树脂为基料的胶粘剂,在结构胶中占有重要地位。本文用KY-2055改性环氧酚醛树脂作粘结剂,制备出了磁性能良好的粘结NdFeB磁体。 1实验方法 1.1实验原料、仪器和设备

金属注射成型综述要点

金属注射成型综述要点

河南工程学院 《机械工程材料与成形工艺》考查课 专业论文 金属注射成型 学生姓名: 学院: 专业班级: 专业课程: 任课教师: 201 年月日

摘要 金属注射成形(Metal Injection Molding,简称MIM)是一种从塑料注射成形行业中引伸出来的新型粉末冶金近净成形技术,众所周知,塑料注射成形技术低廉的价格生产各种复杂形状的制高、耐磨性好的 制品,近年来,这一想法已发展演变为最大限度地提高固体粒子的含量并且在随后的烧结过程中完全除去粘结剂并使成形坯致密化。这种新的粉末冶金成形方法称为金属注射成形。金属注射成形的基本工艺步骤是:首先是选取符合MIM要求的金属粉末和粘结剂,然后在一定温度下采用适当的方法将粉末和粘结剂混合成均匀的喂料,经制粒后在注射成形,获得的成形坯经过脱脂处理后烧结致密化成为最终成品。 关键词:金属注射成形粘结剂脱脂烧制

一、金属粉末注射成型的发展现状及现状 1. 国外概况 金属粉末注射成型工艺技术的开拓者是美国的Parmatech公司。该公司的航天燃料专家Wiech博士于1973年发明了MIM技术。以Riverst和Wiech于70年代发明的专利为起点,开始了金属粉末注射成形技术。Parmatech于70年代末注射成型铌火箭喷嘴获得MPIF 奖。但由于该技术的独特优点和先进性,被美国列为不对外扩散技术加以保密,直到1985年才向全世界公布这一技术,而在这期间美国国内的MIM技术得以成熟并迅速发展形成产业化。该项技术向世界披露后得到世界各国政府、学术界、企业界的广泛重视,并投入了大量人力物力和财力予以开发研究。其中日本在研究上十分积极而且表现突出,许多大型株式会社参与了MIM技术的工业化推展。目前日本有四十余家企业从事MIM制品的生产,每家公司的利润都十分可观。2000年世界粉末冶金会议在日本召开,并专门设立了MIM技术论坛。继日本快速发展之后,台湾、韩国、新加坡、欧洲和南美的MIM 产业也雨后春笋般的发展起来,其中德国的BASF公司以其独特的黏结剂配方成立了专门的MIM产品喂料生产线,在全世界范围内进行技术辅导和喂料的销售,获得了较大的商业利润。 德国BASF公司的Bloemacher于90年代初开发的MIM工艺成为MIM实现产业化的一个重大突破。它采用聚醛树脂作为粘结剂,并在酸性气氛中快速催化脱脂,不仅大大缩短了脱脂时间,而且这种催化脱脂能在低于粘结剂的软化温度下进行,避免了液相的生成,有利于

多种工程塑料的粘接方法

聚苯醚(PPO)粘接方法 一.聚苯醚的性能及用途 聚苯醚(PPO)系由2,6-二甲苯酚经缩聚而得的聚合物,全称为聚二甲苯醚,简称聚苯醚。其分子结构式为:聚苯醚是一种热塑性工程塑料,性能优于一般的工程塑料,力学强度好,有较高的拉伸强度、拉伸弹性模量、硬度,并有足够的冲击韧性。它的使用温度范围广(工作温度为-160~190℃),即使在这样宽广的温度范围内,仍有很高的力学强度和刚性。它的高温蠕变性在所有热塑性工程塑料中是优异的。例如:在120℃及15.0MPa负荷下500h蠕变值仅0.98%。 聚苯醚吸水性小,成型收缩率和热膨胀系数小,尺寸稳定。适于制做精密制品。另外,它具有优良的耐酸、耐碱、耐化学试剂等性能,对水解作用很稳定,制件在高压蒸汽中反复使用,性能均无明显变化。 基于其优良的综合性能,可用于制作较高温皮下工作的油轮、轴承、化工管道、阀门等。能代替不诱钢做各种化工设备及零部件以及螺钉等紧固件相连接件、电气制品、电视零件,航空器具及外科手术器械等。 二、聚苯醚的粘接方法 聚苯醚以及改性聚苯醚的成型品、挤出制品,是能够用溶剂胶粘剂或者胶粘剂溶液进行粘接的。粘接时和其它塑料一样,必须将表面的杂质和污染完全除去。 1.溶剂胶粘剂粘接 常用的溶剂为芳香烃和氯化烃,如甲苯、二氯乙烷、三氯乙烷等。表中列举出聚苯醚用溶剂胶粘剂粘接的数据,以供参考: 2.合成胶粘剂粘接 经表面处理后,聚苯醚可用环氧-聚硫胶粘接,在80℃下固化。用聚氨酯类胶粘剂也能达到相当高的粘接强度。此外硅树脂类和合成橡胶类胶粘剂也可使用。

塑料粘接:聚烯烃-聚乙烯、聚丙烯 塑料粘接:(1)聚烯烃 一、聚烯烃的性能及用途 聚烯烃包括聚乙烯、聚丙烯、聚丁烯及其它改性品种,生产聚烯烃树脂的原料极为丰富,它的价格低、用途广。着重介绍其中最重要的聚乙烯和聚丙烯两个品种。 (一)聚乙烯的性能及用途 聚乙烯是塑料品种中产旦最大的一个品种之一,由乙烯聚合而成。聚乙烯按其密度可分为低密度(0.910,0.925),中密度(0.926,0.940)和高密度(0.941,0.965)三种。 高密度聚乙烯比低密度聚乙烯有较高的力学强度,较好的耐磨性、不透水性、抗化学药品性,较高的软化点。但共其柔软性、耐骤冷、骤热性能较差。 聚乙烯塑料有很好的化学稳定性,在室温下面溶剂性好。只有在较高温度下才能够溶解在烃类溶剂中。几乎不被非氧比性的酸、碱和盐类所侵蚀。有一定的透气性,与其它塑料相比,聚乙烯有突出的电绝缘性能,由于它是非极性材料,其介质损耗和介电常数几乎与温度和频率无关,但介电常数与聚乙烯的密度有直接关系。在受热的情况下,密度降低会导致介电常数降低。由于聚乙烯只含有碳氢两种元素,没有极性元素存在,所以有良好的抗水性。 高密度聚乙烯主要用于各种中空制品、化工设备的贮槽的耐腐蚀衬里、化工耐腐蚀管道、阀件、离心泵、旋塞等,也可做小负荷齿轮、轴承以及高频、水底或一般电缆包皮等。 低密度聚乙烯主要用于挤塑包装薄膜、农用薄膜和薄板、层压板、层压纸、包装容器。其次可做电缆、线包皮等。 聚乙烯为无毒塑料,加工制得的各种容器、薄膜等供作食品包装。 (二)聚丙烯的性能及用途 聚丙烯是发展最快的一种聚烯短树脂,它是由丙烯在特殊催化剂作用下聚合而得聚台物。目前大规模生产的是等规聚丙烯。 聚丙烯的密度小,约为0.90~0.91g/cm3,是现有商品化树脂中最轻的一种。聚丙烯与聚乙烯都是非极性烃类结晶聚合物。其力学性能如拉伸强度、屈服强度、压缩强度、硬度及弹性模量均优于低压聚乙烯,且具有特殊的刚性、延伸性。当聚丙烯经过定向拉伸之后,本身可以当作铰链,可弯曲100万次不变白,柔韧性也持久不变。耐磨性比聚苯乙烯好,但不及聚氯乙烯和有机玻璃。 聚丙烯的电绝缘性能优越,特别对于高频率的介电特性特别好,加以吸水率低,可用于无线电、电视的耐热绝缘材料。 它有较好的化学稳定性,除了对浓琉酸、浓硝酸外其它的化学药品几乎都很稳定。 聚丙烯的用途广泛,可制作各种机械零件,如活栓、法兰.齿轮、泵叶轮、汽车零件等,也可制作包装瓶、薄膜、容器医疗器皿、管材、水槽.电视机壳以及海底电缆;电线、人工心脏等。 聚烯烃的粘接方法 (一)热封法 对于聚乙烯薄膜的粘合:因为聚乙烯的熔点低,一般采用热封法。热封的温度为225~250℃,常使用玻璃纸和热封器。 聚丙烯薄膜的粘合:因为聚丙烯的熔点高,不能使用玻璃纸和聚乙烯所用的热封器,而使用脉冲热封器、加热熔断热封器、高频热封器、超声波热封器等。如使用聚乙烯所用的热封器,可在聚丙烯薄膜表面涂覆一层低熔点树脂,即热封用涂覆剂(密胺树脂、聚偏氯乙烯、

磁体与磁场-练习

《磁体与磁场》专项练习 1.磁体上 叫做磁极,一个磁体具有 个磁极,它们分别是 极和 极。 2.把条形磁铁从中间断为两段,那么这两个断面再靠近时, 将 ;如图将喇叭上的圆形磁铁截断后,再让原 断处相对,两半磁铁之间将 (选填“相互吸引” 或“相互排斥”或“不发生相互作用”)。 3.具有软磁性、硬磁性或其它电磁特性的材料统称为磁性材料,磁性材料在现代生活 和科学技术中得到广泛应用,请你举两个例子(1) (2) 。 4.如图所示,磁铁吸住两根铁钉的一端, 那么这两根铁钉的另一端将 ( ) A .互相吸引,如图甲 B .互相排斥,如图乙 C .既不吸引也不排斥,如图丙 D .以上三种情况都有可能 5.两根缝衣针甲和乙,当把甲针用细线悬挂后,再用乙针尖端接近甲针尖端时,发现 甲针尖端向乙针尖端靠拢,由这个现象可以判断 ( ) A .甲针有磁性 B .乙针有磁性 C .两针都有磁性 D .两针中至少有一针有磁性 6.甲、乙两个磁极之间有一个小磁针,小磁针静止时的指向如图所示。那么( ) A .甲、乙都是N 极 B .甲、乙都是S 极 C .甲是N 极,乙是S 极 D .甲是S 极,乙是N 极 7.小明用水平放置的一根条形磁针的一端吸起一根较小的铁钉,如图所示,若他用一 根同样的条形磁铁的S 极与原来的磁铁N 极靠近合并时,将看到的现象是 ( ) A .铁钉的尖端被吸向右端磁铁 B .铁钉将落下 C .铁钉的尖端被向左端磁铁 D .铁钉被吸得更牢 8.如图,在弹簧测力计下端吊一块条形磁铁,将弹簧测力计 水平向右移动时,弹簧测力计的示数将 ( ) A .逐渐变大 B .逐渐变小 C .先变小后变大 D .先变大后变小 9.有一条形铁块,上面的标记已模糊不清,你能用两种方法判断它是否具有磁性吗试 试看。 甲 乙 甲 乙

耐热SmFeN(各向异性)粘结磁体(III)

耐热SmFeN(各向异性)粘结磁体 罗阳IEEE-TC永磁委员会委员 近年来,每届国际磁材会议上,人们总对比烧结与粘结NdFeB磁体的产量,发现两者的发展明显失衡:烧结磁体的产量增长远高于粘结磁体的,原因固然是多方面的,但问题的关键在于供粘结磁体用的MQ粉价格多年来维持高价,而磁体最终价格却每年递减,极大地压缩了磁体厂家的利润空间,严重制约了粘结磁体产量的正常增长。所幸,今天MQ粉已不是高性能粘结磁体的唯一用粉,可供粘结磁体选用的磁粉已多样化:除各向同性MQ粉外,已开发了各向异性的NdFeB磁粉,它们既有由MQ粉演变—借热应变感生各向异性而得的,也有通过氢化-歧化-脱氢-再结合(HDDR)反应而得的。此外,还开发了各向同性和各向异性的SmFeN和NdFeN磁粉。为促进粘结磁体产业的进一步发展,拟分别系统地介绍各类新磁粉的性能和用途,本文是系列文章的第三篇,重点介绍日本住友金属矿山公司(SMM)研究开发的各向异性SmFeN磁粉及粘结磁体的制备和用途。 1. 引言 日本住友金属矿山公司(SMM)用还原/扩散工艺制备了Sm2Fe17合金粉,经氮化处理而得Sm2Fe17N3磁粉,可供制备粘结磁体,此工艺的特点是可利用廉价的Sm2O3作原料[1]。用震动样品磁强计(VSM)测量的Sm2Fe17N3磁粉磁性能为:Br = 11 kG,iHc = 11.3 kOe,(BH)MAX = 40.6 MGOe。制备的磁粉粒度极细,显然,其首要问题是热稳定性,为此专门开发了耐热型非饱和酚甲醛系树脂(即简称UP树脂)[2],成功地用以制备注塑成型磁体。此外,SMM与MagX合作用挤压成型工艺制备柔性磁体[3]。所得磁体性能如下:注塑成形磁体(BH)MAX=14.4MGOe,实验室最佳值:(φ10x7mm)磁体密度ρ=5.14g/cm3,剩磁Br=0.828T,内禀矫顽力μO H CJ=0.881T,最大磁能积(BH)MAX=125kJ/m3=15.7MGOe。 挤压成形磁体(BH)MAX=6~8MGOe,最高可达10MGOe 2. 粘结剂的选择 最近采用非饱和高聚合树脂(polyester resin)通过注塑成型而开发出各向异性Sm-Fe-N 耐热粘结磁体。此处将讨论这种磁体的某些特性。磁体成形的自由度很大,而磁性与形状的相关性很小,因为复合材料的粘滞度在模具内迅速降低,从磁性和机械加工的角度看,磁体的使用温度相当高,由于此材料的线膨胀系数和成形后的收缩率很小,因此集成成形后的界面应力或粘附于其它部件上的应力都可以达到很微小的程度,从而可达到很高的尺寸精度。 稀土类粘结磁体市场容量的年产值已达到200亿日元,即1.6亿美元,其中绝大多数磁体采用美国MQI公司的各向同性NdFeB磁粉(即MQ粉),用压制成型工艺制备粘结磁体,其最大磁能积为80kJ/m3(10MGOe)。大量用作CD-RON,HDD,DVD中主轴电机用的磁环。但采用压制成型工艺有下列缺点: 1)磁体的形状受限制,而且难于和其它部件一体成型; 2)成形后必须经过固化处理才能定形; 3)工艺过程各个环节均可产生废品,所以要求产品逐个进行检验。 住友矿山公司用还原扩散工艺成功生产各向异性SmFeN磁粉(简称SFN),成为上世纪末上市的高性能磁粉。采用多种成型工艺制备粘结磁体以满足多种用途的需求,各种成型工艺与粘结剂的组合列于表1。

EVA热熔胶对金属与塑料粘结性能的研究

研究#开发 弹性体,2009-02-25,19(1):33~34 CH IN A EL A ST O M ERICS 收稿日期:2008-09-25作者简介:刘文胜(1968-),男,河南永城人,工程师,主要从事机电工程方面的研究工作。 *河南神火集团煤电公司和许昌新龙公司梁北煤矿研究 资助项目。 EVA 热熔胶对金属与塑料粘结性能的研究 * 刘文胜 (河南神火集团煤电公司许昌新龙公司,河南许昌461000) 摘 要:研究了乙烯与醋酸乙烯共聚物(EV A)热熔胶及其主要成分,讨论了不同成分配比对热熔胶粘结性能的影响,最终确定当m (EV A )B m (松香)B m (石蜡)=100B 60B 20时,热熔胶对金属和塑料的粘结剪切强度最大为3.46M Pa 。填料碳酸钙质量分数小于10%可降低生产成本且剪切强度下降不大,质量分数超过10%时,剪切强度明显下降。 关键词:EV A 热熔胶;金属;塑料;粘结性能 中图分类号:T Q 433;T Q 437 文献标识码:A 文章编号:1005-3174(2009)01-0033-02 热熔胶是以热塑性树脂或热塑性弹性体为主要成分,添加增塑剂、增粘树脂、抗氧剂、阻燃剂及填料等成分,经熔融混合而制成的不含溶剂的固 体状粘合剂[1]。其中由于乙烯与醋酸乙烯共聚物(EVA)热熔胶制备方法简便,广泛应用于机械化包装、家具制作、制鞋、无线装订、电子元件及日常用品粘接,用量居热熔胶之首[2] 。又由于其具有粘接迅速、应用面广、无毒害、无污染等特点而被誉为/绿色胶粘剂0,引起越来越多的关注[3~6]。这也是当今世界胶粘剂发展的一个方向。随着塑料产品不断应用于机械行业,有关塑料与金属粘结问题成为现阶段人们研究的热点。本文研究了不同组分加入量对热熔胶粘结金属及塑料的性能影响,从而确定最佳配比。 1 实验部分 1.1 主要原材料 EVA 树脂:工业品,北京有机化工厂;松香:市售;石蜡:工业品,锦西化工五厂;轻质碳酸钙:工业品,佛山市玉峰粉体材料有限公司;PP 塑料:工业品,大连联合化工有限公司;铝片:市售。1.2 仪器设备 转矩流变仪:XSS -300型,上海科创橡塑机械 设备公司;万能材料试验机:CM T 52002型,深圳新三思电子公司。 1.3 样品制备 将原材料按一定配比,在温度150e 、转速30r/m in 的条件下,在密炼机中混合20min 左右,至完全熔化混均,倒入涂有防粘剂的器皿中制得热熔胶样。1.4 性能测试 按照GB/T 13936)92标准,对热熔胶粘结金属和PP 塑料的试验片进行测试,拉伸速度为15mm/min 。 2 结果与讨论 将密炼好的样品按照图1所示,粘结金属铝片与塑料PP 片,以备测试。 图1 金属与塑料PP 连接试样图示(单位:mm ) 2.1 松香加入量对剪切强度的影响 聚合物熔融时粘度大,对被粘材料的浸润性和热粘性不好。增粘剂可以增加胶对基材的润湿

磁体磁场知识点

磁体磁场知识点 一、认识磁体 1.磁性:物体具有吸引_____、_____、______等物质的性质,就说此物体具有磁性 2.磁体:有磁性的物体叫做________。 磁体可分为____ ___磁体和__ ___磁体。 3.磁极:磁体上___________的部分叫做磁极。 注:任何磁体都有个磁极,一个叫______,也叫极;一个叫_______,也叫极。磁体具有指向_________的性质。__________就是根据磁体的指向性原理工作的。 南极(S极):。北极(N极):。 4.磁极之间的作用规律:同名磁极互相_______,异名磁极相互________. 5.磁化:______________________________________________________________. 磁化后不能保留磁性的物质叫做_______磁性物质,磁化后能够保留磁性的物质叫做___磁性物质。我们常用_____制造永磁体。 二、用小磁针探究磁体周围的磁场 1.磁场:是一种______、_______的特殊物质,它是_____存在的。 磁体间的相互作用是通过传递的。 磁场的基本性质 ....就是对放入其中的磁体产生磁的作用。 2.磁场的基本性质:磁场对放入其中的______会产生______的作用。 磁场具有方向性,物理学中规定,小磁针静止后,小磁针极的指向为点的磁场方向。 3.磁场的方向:规定小磁针______时,_____极的指向就是该点的磁场方向。 ▲活动:用小磁针探究磁体周围的磁场 现象:在磁体周围不同的位置放上很多小磁针,不同位置小磁针的指向不同 说明:磁场中不同位置的磁场方向是________(填“相同”或“不同”) 【我们怎样知道磁体周围更多点的磁场方向?】 ▲活动:用铁屑探究磁体周围的磁场 现象:用铁屑代替小磁针探究条形磁体(蹄形磁体、同名磁极、异名磁极间)的磁场。 归纳。引入磁感线:形象地描述空间磁场分布和方向的曲线。 1.磁感线的方向:在磁体外部,磁感线从磁体_____极出发回到磁体_____极。 2.磁场越强的地方,磁感线分布越密集,磁感线上任意一点的切线方向表示该点的____方向.活动九:用磁感线描述条形磁体、蹄形磁体、同名磁极和异名磁极间的磁场。 (三)地磁场:地球本身是一个巨大的磁体, 地球周围空间存在的磁场叫做______场. 地磁北极在地理____极附近,地理南极在地磁_____极附近 阅读:地磁两极和地理两极并不重合(磁偏角);我国宋代学者是最早发现磁偏角存在的人

钕铁硼材料基本知识

钕铁硼材料基本知识
主要内容:
第一章 第二章 第三章 第四章 磁物理基础 磁性材料的发展概况 钕铁硼的主要特点及应用 钕铁硼生产工艺及设备
1

第一章
1 物质的磁现象
磁性材料:magnetic material 钕铁硼磁铁:nd-fe-b magnet 铁氧体磁铁:ferrite magnet 牛磁棒:magnetic bar for cattle? 磁力架:magnetic separator
磁物理基础
物质的磁性是一个历史悠久的研究领域 , 约在三千年前就已受到人们的注 意。中国是最早应用磁性的国家,公元前四世纪,我国制成了世界上最早的指南 针, 成为中国的四大发明之一。 磁学史上第一部关于磁性的专著是英国(WGilbert) 吉耳伯特的《论磁石》 (1600 年) ,这本书介绍了那时书籍有关的磁性知识。然 而,磁性作为一门科学却到 19 世纪前半期才开始发展。 1820 年,丹麦物理学家奥斯特发现电流的磁效应,拉开了磁电之间联系的 序幕; 1820 年末,法国物理学安培证明通电圆形线圈和普通的磁铁一样具有吸引 和排斥的现象。 1831 年,英国科学家法拉第发现了电磁感应现象,并提出电磁感应定律, 从而揭示电和磁之间的内在联系; 后来,苏格兰科学家麦克斯韦,将电磁的联系建立起严密的电磁场理论。他 发展了法拉第的思想, 用数学的形式总结出电场和磁场的联系, 即麦克斯韦方程。
2 磁性的起源
物质的磁性起源于原子磁矩。 原子物理学告诉我们,组成物质的最小单元是原子,原子又由电子和原子核 组成。电子的排布遵循三大原则:1 洪特规则,2 泡利不相容规则,3 能量最低 原理。 原子中的电子绕着原子核进行高速运转, 电子运转时同时有两种运动形式, 即电子绕原子核的轨道运动和电子绕本身轴的旋转。前者叫电子轨道运动,后者 叫电子自旋。处于旋转运动状态的电子相当于电流闭合回路,必然伴随有磁矩的 发生,电子轨道和电子自旋产生的总磁矩称为原子磁矩。
3 主要磁物理参数
2

MIM金属粉末注射成形工艺介绍与对比

1 一、MIM 概念及工艺流程 金属粉末注射成形是传统粉末冶金技术与塑料注射成形技术相结合的高新技术,是小型复杂零部件成形工艺的一场革命。它将适用的技术粉末与粘合剂均匀混合成具有流变性的喂料,在注射机上注射成形,获得的毛坯经脱脂处理后烧结致密化为成品,必要时还可以进行后处理 生产工艺流程如下 配料→混炼→造粒→注射成形→化学萃取→高温脱粘→烧结→后处理→成品 二、MIM 技术特点 金属粉末注射成形结合了粉末冶金与塑料注射成形两大技术的优点,突破了传统金属粉末模压成形工艺在产品形状上的限制,同时利用塑料注射成形技术能大批量、高效率生产具有复杂形状的零件:如各种外部切槽、外螺纹、锥形外表面、交叉通孔、盲孔、凹台、键销、加强筋板,表面滚花等 ·MIM 技术的优点 a.直接成形几何形状复杂的零件,通常重量0.1~200g b.表面光洁度好、精度高,典型公差为±0.05mm c.合金化灵活性好,材料适用范围广,制品致密度达95%~99%,内部组织均匀,无内应力和偏析 d.生产自动化程度高,无污染,可实现连续大批量清洁生产 ·MIM 与精密铸造成形能力的比较 ·MIM 与其他成形工艺的比较

三、MIM常用材质 四、几种MIM材料的基本性能 五、MIM产品典型应用领域 航空航天业:机翼铰链、火箭喷嘴、导弹尾翼、涡轮叶片芯子等 汽车业:安全气囊组件、点火控制锁部件、涡轮增压器转子、座椅部件、刹车装置部件等 电子业:磁盘驱动器部件、电缆连接器、电子封装件、手机振子、计算机打印头等 军工业:地雷转子、枪扳机、穿甲弹心、准星座、集束箭弹小弹等 日用品:表壳、表带、表扣、高尔夫球头和球座、缝纫机零件、电动玩具零件等 机械行业:异形铣刀、切削工具、电动工具部件、微型齿轮、铰链等 医疗器械:牙矫形架、剪刀、镊子、手术刀等 六、适合材质 不锈钢Fe合金Fe-Ni-Co合金钨钛合金工具钢高速钢硬质合金氧化铝氧化锆 2

磁体与磁场教案

总第课时 课题磁体与磁场(一) 教学目标: 一、知识与技能 (1)通过磁铁等磁性物质,感知物质的磁性和磁化现象。 (2)认识磁场及其方向性,初步知道磁体的磁场分布状况; (3)能探究出磁极间的相互作用。 二、过程与方法 (1)学会通过观察实验,得出科学结论的方法; (2)通过观察物理现象的过程,能简单描述观察到的物理现象的主要 特征,增强观察能力; (3)学会利用铁屑、小磁针来研究磁场,从而进一步抽象出磁感应线 描述磁场的方法。 三、情感态度与价值观 (1)培养学生养成实事求是、尊重自然规律的科学态度; (2)让学生在解决问题中增强克服困难的信心和决心; (3)激发学生民族自豪感与振兴科学的民族责任感。 教学重点: 磁极间相互作用;磁场;探究磁场分布的过程。 教学难点: 探究磁场分布的过程、磁场的理解. 教学方法: 实验探究、分析讲解、自主训练 教学器具: 玻璃水盆一只、马蹄形磁体、几张纸。 教学过程: 一、自主检查(实验) 生甲:磁体能够吸引大头针、硬币等物体。 师:能吸引铁、钴、镍等物质的性质称为磁性。 生乙:磁体的两端吸引的大头针多,说明 师:我们把磁体上磁性最强的两端称为磁极,一端叫北(N 端叫南(S)极。

生丙:把两个北(N)极或两个南(S)极靠近,发现它们相互排斥, 把一个北(N)极和一个南(S)极靠近,发现他们相互吸引。师:我们能不能用一句话来概括它们的相互作用规律呢? 生丙:同名磁极相互排斥,异名磁极相互吸引。 师:用被磁体吸引过的大头针去靠近别的大头针会发现什么现象?生齐答:相吸。 师:像大头针这样原来没有磁性的物体获得磁性的过程叫做磁化。师:磁体对物体发生作用一定要直接接触吗? 生齐答:不要。 师:那磁体靠什么物质传递力的作用呢? 生:磁场。 师:磁场是一种存在于磁体周围,看不见也摸不着的物质,我们用什么方法可以探知它的存在、它的强弱呢? 师:请你将小磁针放在条形磁体的不同位置,观察小磁针N极的指向一致吗?有什么规律? 生:磁场中不同位置小磁针N极指向不同,说明磁场是有方向的。师:磁场的方向就用放在该处的小磁针静止时N极的指向表示 小结:怎样判断物体是否具有磁性? 二、自主检查 1.l.7万吨海南沙子用于北京奥运会沙滩排球场地。“磁选”是对沙子进行处理的工序之一,“磁选”是选走沙子中的: A.粗的沙子和小石块 B.铁钉、铁片 C.玻璃和塑料碎片 D.铜、铝碎片 2.如下图所示,一条形磁铁的周围放着能自由转动的小磁针 甲、乙、丙、丁,这四根磁针静止时磁极指向画错的是(磁针的黑端表示N极) () A.磁针甲B.磁针乙C.磁针丙D.磁针丁 3.判断两根钢条甲和乙是否有磁性时,可将它们的一端靠近小磁针的N极或S极.当钢条甲靠近时,小磁针自动远离;当钢条乙靠近时,小磁针自动接近.由此可知() A.两根钢条均有磁性B.两根钢条均无磁性

取向磁场发生位置及发生方式对各向异性粘结NdFeB磁体性能的影响

科技信息 1.试验方案 为了弄清楚各向异性粘结NdFeB磁体取向成型时压制模具的冲头在什么位置时对磁粉进行磁场取向能够制得更高性能的磁体,本文研究了各向异性粘结NdFeB磁体在压制成型过程中取向磁场发生位置及方式对磁体磁性能的影响,压制时励磁电压为1600V,取向磁场强度为 1.816T。 2.试验原材料 2.1各向异性粘结NdFeB磁粉 试验中所选用的磁粉为自制磁粉,其名义成分为Nd12.5Fe74.8Co6B6.2Ga0.3Nb0.2,试验中分别将其筛选为粒度小于60目(250μm)、120~60目(124~250μm)、200~120目(74~124μm)和大于200目(74μm)的几种粒径的磁粉。 2.2粘结剂的选用 试验中所用粘结剂为粒径小于178μm的环氧树脂微粉。 2.3磁粉混炼 利用干混和湿混两种工艺混炼各向异性NdFeB磁粉,其中干混是直接将磁粉和粘结剂按比例混合的混炼方法;湿混是先将粘结剂溶于丙酮等有机溶剂中,然后再将磁粉放入进行混合的混炼方法。本实验主要采用的是湿混的方法进行混练,并对部分磁粉进行预取向。 3.试验设备 本实验所使用的各向异性粘结NdFeB磁体的自动压制成型设备主要由以下几部分组成:10t自动粉末机械压机;DCD-2000/15-12WBQ 型电容式充磁电源及一对电磁线圈,在磁体成型过程中提供取向脉冲磁场,取向电压为0~2000V;此外还有一套冷却水循环装置,对电磁线圈进行冷却。其原理如图1所示,可以看出使用纵向取向成型方式其取向磁场方向与磁体的压制方向是相同的。 图1纵向取向成型压机示意图 4.实验步骤 4.1取向磁场发生相对位置磁体性能的影响 1-上冲头;2-阴模;3-下冲头;4-磁粉(体) 图2压制成型机上冲头压入阴模位置示意图 分别研究了取向成型时,上冲头压入阴模0,1/4,1/2,3/4和1位置时取向充磁对磁体性能的影响,如图2所示。 图2是压制成型时上冲头压入阴模不同位置时的示意图。试验中,分别在上述各种情况下对磁粉进行磁场取向,以得到能够使磁体性能最好的取向磁场发生位置。从图中可以看出,随着上冲头压入阴模深度的增大,磁粉的密度是在不断增大的。 图3取向磁场发生位置与各向异性粘结NdFeB磁性能关系曲线 图3是各向异性粘结NdFeB磁体的磁性能与取向磁场发生位置的关系曲线。从图中可以看出,随着取向磁场发生位置的不断深入,各向异性粘结NdFeB磁体的磁性能是逐渐降低的,即在磁粉完全松装的状态下对磁体进行磁场取向制得的磁体可以取得良好的磁性能,而当上冲头完全压入阴模时再取向制得的磁体的性能是最低的。这是由于磁粉在松装状态时,如图4(a)所示(图中,用椭球代表磁粉,椭球的长轴方向代表易磁化方向),磁粉相互之间以及磁粉与模壁之间的摩擦力是最小的,此时进行磁场取向,磁粉颗粒的旋转和转移都很容易,有利于磁粉的易磁化方向最大限度的沿取向磁场方向排列分布,如图4(b)所示,因而在压制成型后使磁粉的易磁化方向还能够保持较好的沿取向方向的排列,也就使成型后的磁体具有更高的取向度,如图4(c)所示;从而使磁体的性能较高;而随着冲头压入深度的增加,磁粉的密度逐渐增大,磁粉之间以及磁粉与模壁之间的摩擦力也会增大,此时再对磁粉进行磁场取向,磁粉在向取向磁场方向转动和位移的过程中会遇到更大的阻力,使得能够沿取向方向排列分布的磁粉的数量减少,致使制得的各向异性粘结NdFeB的取向程度也会降低;试验证明,当在图2(e)所示位置再对磁粉进行取向充磁时,由于此时磁粉已经基本被压制成磁体,磁场取向基本上不会起到什么作用,所制得的磁体的性能与各向同性粘结NdFeB磁体的性能大体相同。 (a)松装未取向;(b)松装取向;(c)取向成型 图4磁粉在不同状态的模型示意图 4.2取向磁场发生方式对磁体性能的影响 各向异性粘结NdFeB磁体在取向成型时在上 取向磁场发生位置及发生方式 对各向异性粘结NdFeB磁体性能的影响 盖军辉1张青1韩笑2翟秀芹1孙素敏1薛健1娄丽娜1 (1.山东省科学院情报研究所 2.山东轻工业学院理学院) [摘要]模压成型工艺是目前制造各向异性粘结NdFeB磁体最主要的方式之一。压制成型过程中的取向方法,会影响磁粉颗粒的易磁化方向的排布,从而对最终成型的永磁体的磁性能产生重要的影响。因此,研究压制成型过程中取向方法对取向效果的影响,是十分必要的。本文研究发现,在压制过程中,磁体的取向度与取向磁场发生时磁粉颗粒的松散程度有很大的关系,在磁粉处于完全松装的状态下对其进行取向更有利于制造高性能的磁体。 [关键词]各向异性粘结NdFeB取向磁场发生位置 发生方式 (下转第160页)— —158

相关主题
文本预览
相关文档 最新文档