当前位置:文档之家› 基于质谱的蛋白质组学分析

基于质谱的蛋白质组学分析

基于质谱的蛋白质组学分析
基于质谱的蛋白质组学分析

基于质谱分析的蛋白质组学

在21世纪,生命科学的研究进入了后基因组时代,蛋白质组学作为其中的一个重要分支于20世纪90年代中期应运而生。由于蛋白质的复杂性,传统的蛋白质鉴定方法如末端测序等已无法满足蛋白质组学研究中的一系列需要。因此,质谱技术作为蛋白质组学研究的一项强有力的工具日趋成熟,并作为样品制备和数据分析的信息学工具被广泛地应用。质谱技术具有灵敏度、准确度、自动化程度高的优点,能准确测量肽和蛋白质的相对分子质量,氨基酸序列及翻译后修饰、蛋白质间相互作用的检测[1],因此质谱分析无可争议地成为蛋白质组学研究的必然选择。

1.蛋白质组学

蛋白质组学(proteomics)是从整体水平上研究细胞内蛋白质的组成、活动规律及蛋白质与蛋白质的相互作用,是功能基因组学时代一门新的科学。包括鉴定蛋白质的表达、修饰形式、结构、功能和相互作用等。根据研究目的,蛋白质组学可以分为表达蛋白质组学、结构蛋白质组学和功能蛋白质组学。表达蛋白质组学用于细胞内蛋白样品表达的定量研究。以绘制出蛋白复合物的结构或存在于一个特殊的细胞器中的蛋白为研究目的的蛋白质组学称为结构蛋白质组学,用于建立细胞内信号转导的网络图谱并解释某些特定蛋白的表达对细胞的作用[2]。功能蛋白质组学以细胞内蛋白质的功能及蛋白质之间的相互作用为研究目的,通过对选定的蛋白质组进行研究和分析,能够提供有关蛋白质的磷酸化、糖基化等重要信息。

蛋白质组学研究的核心就是能够系地的鉴定一个细胞或组织中表达的每一个蛋白质及蛋白质的性能。蛋白质组学的主要相关技术有双向凝胶电泳、双向荧光差异凝胶电泳、质谱分析等[2]。由于蛋白质的高度复杂性和大量低丰度蛋白质的存在,对分析技术提出了巨大挑战,生物质谱技术则是适应这一挑战的必然选择。

2.生物质谱技术

质谱是带电原子、分子或分子碎片按质量的大小顺序排列的图像。质谱仪是一类能使物质离子化并通过适当的电场、磁场将它们按空间位置、时间先后或轨道稳定与否实现质量比分离,并检测强度后进行物质分析的仪器。质谱仪主要由

分析系统、电学系统和真空系统组成。

质谱技术的基本原理是:使用电离技术将经酶切后的蛋白质肽段或完整蛋白质带上电荷,然后通过它们质荷比的差异使其得到分离并检测出其质量。生物质谱仪通常包含三个部分,即离子源、测定离子的质荷比的质量分析器和检测器。传统的有机质谱仅用于小分子挥发物质的分析,近年来生物质谱技术取得了飞速发展,其中最为显著的莫过于基质辅助激光解吸离子化质谱(matrix-assisted laser desorption ionization MS,MALDI-MS)和电喷雾离子化质谱(electrospray ionization MS,ESI-MS)。

基质辅助激光解吸电离技术(MALDI-MS)[3]是将分析物分散在机制分子中并形成晶体,当用激光照射晶体时,由于基质分子经辐射所吸收的能量,导致能量蓄积并迅速产热,从而使基质晶体升华,致使基质和分析物膨胀并进入气相。MALDI所产生的质谱图多为单电荷离子,因而质谱图中的离子与多肽和蛋白质中的质量有一一对应的关系。使用基质的目的是为了保护待分析物不会因过强的激光能量导致化合物被破坏。研究表明不同的基质对分析物的解吸效果不同,基质的选择对分析物的离子化作用起着至关重要的作用。一般认为好的基质应具备下述条件[4]:①强烈吸收入射的激光②较低的气化温度③与待测物可找到共同的溶剂④在固相体系中能分离和包围被分析分子而不形成共价键。MALDI-MS操作简便,灵敏度高,检测限度达到飞摩尔级(10-15),同许多蛋白分离方法相匹配。

同MADLI-MS在固态下完成不同,ESI-MS是在液态下完成的,其通过在毛细管的出口处施加一高电压,所产生的高电场使从毛细管流出的液体雾化成细小的液滴,随着溶剂蒸发,液滴表面的电荷强度逐渐增大,最后液滴崩解为大量带一个或多个电荷的离子,致使分析物以单电荷或多电荷离子的形式进入气相。电喷雾离子化的特点是产生高电荷离子而不是碎片离子,使质量电荷比降低到多数质量分析仪器都可以检测的范围,故而极大扩展分子量的分析范围。电喷雾质谱的优势在于它可以和多种分离技术联用,如在用ESI-MS离子化前使用高效液相色谱(high performance liquid chromatography,HPLC)和气象色谱(gas chromatography,GC)将待测样品去除杂质和分离。

质量分析器是质谱的核心元件,决定着生物质谱的灵敏度、分辨率、质量准确度和生成含大量信息的碎片离子谱图的能力。目前应用于蛋白质组研究的质量分析器主要有四种[4],即离子阱(IT)、飞行时间(TOF)、四级杆(Q)和傅里叶变换离子回旋共振(FTICR)。它们的设计和构造各不相同,因此各有优势和劣势。

这些分析器可以独立使用,也可以串联起来使用以充分发挥各自的优点。TOF分析器通常和MALDI连接用以测定肽段质量数,通常飞行时间越长,获得肽段的分辨率和准确度就越高。三级四级杆分析器通常和ESI相连以选择离子并产生被选择前体地碎片离子谱图(碰撞诱导解离谱图CID)。另外一种较常用的分析器为IT,在IT中,离子以一定的时间间隔被捕获,然后进行MS和多级MS分析。在蛋白质组研究中获得应用的FTICR-MS也是一类捕捉式质谱仪[5],它是在高真空和强磁场中俘获粒子。

3.生物质谱在蛋白质组学中的研究利用

目前,生物质谱以其无可比拟的优越性成为蛋白质组学研究中必不可少的技术平台。随着质谱的灵敏度、精确度和高通量的不断发展,质谱在蛋白质组学研究中扮演者越来越重要的角色。它在蛋白质鉴定、序列分析、定量、翻译后加工及蛋白质的相互作用等方面已得到了较广泛的应用。

3.1蛋白质的鉴定

实现对复杂蛋白质的分离、鉴定和定量是蛋白质组学研究首先要解决的问题。目前,有两种主要的蛋白质鉴定体系[6],一种是基于二维凝胶电泳(2DE)和生物质谱的鉴定方法,其优点是二维凝胶电泳可以提供通过其他技术所不能得到的分辨率,能够有效地呈现出蛋白质的等电点和相对分子质量等信息;但由于二维凝胶电泳所固有的局限性,如检测的线性范围窄,难以分离相对分子质量高于十万的蛋白质、极酸、极碱及疏水性高的蛋白质,虽然也有很好的2DE前的样本预处理和分离技术等,但仍很难改善2DE/MS技术体系在分析上述蛋白质时存在的缺陷。第二种方法是多维液相色谱与质谱的连接,常用的多维分离模式为离线或在线强阳离子交换与反向色谱连接。

基于生物质谱的鉴定方法主要有MALDI-TOF-PMF,串联质谱的肽序列标签(peptide sequence tag,PST)以及肽段的从头测序(de novo sequencing)。MALDI-TOF-PMF仅需要少量的酶解肽段溶液即可,由于采用了离子反射器和延迟提取技术,MALDI-TOF-PMF的质量误差可达到10~30ppm[5]。目前,样品的制备、PMF分析和数据库的搜索已经实现了高度自动化。肽质量指纹图谱[6](PMF)即用特异性地酶解或化学水解的方法将蛋白切成小的片段,然后用质谱检测各产物肽的相对分子质量,将所得到的蛋白酶解肽段质量数在相应数据库中检索,寻找相似肽指纹谱,从而绘制“肽图”。MALDI-TOF-PMF只有在得到四个或五个肽段质量并且数据库中存在这种蛋白质时才能得到成功鉴定,因此对有些蛋白点用PMF

法得不到可靠的鉴定结果,这时就需要用PST。肽序列标签[6](PST)即在鉴定蛋白质时需要将读出的部分氨基酸序列与其前后的离子质量和肽段母质量相结合的鉴定方法。PST的优点是数据库搜索的专一性更高,得到的肽段的相对分子质量和序列搜索信息结果更可靠。对于那些数据库中不存在的蛋白质,则需要对其酶解片段进行从头测序,根据肽离子谱直接明确地读取肽序列称为从头测序。从头测序通常使用MALDI和ESI的串联质谱,该方法结合C端核素标记,能克服CID高质量谱难以判断的困难。

3.2蛋白质的定量分析

随着蛋白质组学研究的深入发展,人们已不再满足对一个混合物中蛋白质的定性分析,要求更加准确的定量分析。为此,定量蛋白质组学的概念应运而生。定量蛋白质组学,就是把一个基因组表达的全部蛋白质或一个复杂体系中的所有蛋白质进行精确地定量和鉴定。由于不同蛋白质和多肽在质谱仪中离子化能力不同,从质谱图中不能得到量的信息;而对于具有相同离子化能力的蛋白质或多肽可以通过比较质谱峰的强度或峰面积得到待比较蛋白质的相对量。根据这一原理发展了基于生物质谱的分析方法,包括荧光染色差异显示双向电泳、稳定同位素代谢标记、氨基酸化学标记和肽质谱图谱差异性比较等。

3.2.1荧光染色差异显示双向电泳

该法首先将待比较的两个样本的总蛋白分别用两种不同的荧光标记试剂(Cy2、Cy3或Cy5)进行标记,然后将不同荧光染料标记的两种待比较蛋白质进行等量混合,上样进行双向电泳,2-D凝胶在成像仪上用两种不同的波长激发,分别将两样品的荧光图谱成像,用2D分析软件进行定量分析,对差异的蛋白质点用MALDI-TOF-MS或ESI-MS进行鉴定。该法的优点是可以在同一块凝胶上比较两种不同来源或处理样本的蛋白质表达谱。

3.2.2同位素代谢标记

将一组细胞在正常的培养基中培养,另一组样品在含有一个或多个同位素标记的氨基酸的培养基中培养,经过一段时间培养后,破碎细胞提取蛋白,然后等量混合,通过凝胶电泳分离和染色,从胶上切下差异性蛋白,酶解后进行质谱分析。以上同位素标记的两种蛋白质或多肽仅在分子量上不同,而化学性质基本相同。具有相同的离子化能力,等量混合后它们会成对并相邻的出现在质谱图上,根据其质谱图的强度(峰高度或峰面积),就可以计算这种蛋白在不同状态下的表达差异。

3.2.3氨基酸化学标记

为了在质谱分析的过程中实现对蛋白质的准确定量分析Gugi[7]等引入了同位素编码亲和标签技术(isotope-coded affinity tag,ICAT)。ICAT是一种人工合成的化学试剂,其结构包括专一的化学反应基团(与蛋白质的半胱氨酸反应)、核素标记的连接子和亲核反应基团。其原理是首先利用一对含重元素和轻元素的试剂特异性标记成对蛋白质样品中的半胱氨酸,两种标记试剂的相对分子质量相差8[7]。当两种蛋白样品混合并酶切后,利用亲和色谱提取标记肽段,由于两种同位素标记状态的肽段在化学结构上完全相同,在色谱分离时的保留行为也类似,使得成对肽段在质谱上以大小为8的形式共同出现;比较两个肽段长度,可以实现差异蛋白质组分析。

3.2.4肽质图谱差异比较

肽质图谱差异比较就是对表达的、酶解的或者天然衍生的多肽片段用质谱仪分析得到的肽质图谱,运用生物信息学软件,利用质谱峰强度或者是质谱峰强度结合色谱图进行差别分析。

3.3蛋白质的翻译后加工

大多数真核生物所表达的蛋白质需经一系列的翻译后加工和修饰才能形成最终复杂的功能执行体,所以蛋白质的翻译后修饰成为蛋白质组学研究的重要方面。蛋白质的修饰类型主要有磷酸化、糖基化等,其中蛋白质的磷酸化和去磷酸

基团,可通过化几乎调节着生命活动的整个过程[8]。蛋白质磷酸化是增加了HPO

3

增加80u的氨基酸残基质量数来检测,便可识别蛋白质翻译后修饰信息。

蛋白质磷酸化的质谱分析[9]主要集中在两个方面:一是磷酸化肽段的寻找;二是磷酸化位点和磷酸化数量的确定。其中磷酸化位点的确定是其难点,用质谱来确定蛋白质的磷酸化位点有以下方法:①用磷酸酯酶处理和MALDI-TOF-MS-PME相结合找出肽段中哪一个肽段被磷酸化了②采用三级四级杆串联质谱的前体离子扫描技术进行检测③用傅里叶变换离子回旋质谱的电子捕获解离技术(electron capture dissociation,EDC)鉴定肽片段的磷酸化位点。磷酸化蛋白质是一些低丰度蛋白质,近来富集磷酸化蛋白技术的发展为磷酸化蛋白质组学研究提供了更广泛的研究前景。蛋白质糖基化修饰的通量研究最近也有报道,主要是利用蛋白质组结合生物质谱技术,通过核素标记研究N-糖基化蛋白。

3.4蛋白质的相互作用

大部分蛋白质的功能执行是通过蛋白质-蛋白质相互作用来实现的,因此也使蛋白质相互作用成为蛋白质组学研究的一个重要组成部分。对蛋白质相互作用研究最经典的方法是首先通过生化的方法纯化蛋白质复合体,然后用质谱分析其组分。

用质谱技术研究此类问题主要有两种策略[4~6],一是分离获得结合蛋白,再用SDS-PAGE分离,并进行胶内酶切与串联质谱分析;或将混合蛋白质直接酶解,用多位色谱串联质谱进行鉴定。基于质谱的相互作用研究分三个步骤:诱饵设置、复合物亲和纯化以及相互作用的分析。常用的诱饵设置[10]方法有两种,一种是利用抗体免疫亲和沉淀技术,用抗体去钓取抗原,在该过程中与抗原相互作用的蛋白质将被同时获得;另外一种的方法是将目标蛋白质标记上一个可以选择性提取的标签,在该蛋白质表达后,通过提取标记片段的方法间接提取目标蛋白质,同时获得与其相互作用的蛋白质。由于后一种方法无需制备大量抗体,可以进行高通量的相互作用筛选,是目前通量化蛋白质-蛋白质相互研究中常用的手段[8,10]。

4.展望

质谱已成为生命科学研究中一个非常重要的工具,其为蛋白质组学研究提供了一个必要的技术保障,而蛋白质组学的研究对技术的需求反过来促进了生物质谱技术在通量化、灵敏度、分辨率和准确度上的不断改进。虽然生物质谱技术在蛋白质组学研究中获得了很大的成功,但也要清醒地看到,当前生物质谱技术在对低丰度蛋白的检出能力及质谱数据的软件分析与综合上仍存在不足。生物质谱技术在蛋白质组学中的应用仍需要蛋白质化学修饰及同位素标记技术的发展。精度更高的质谱技术有望很快在蛋白质组学中得到广泛应用。

参考文献

[1]孟凡成,张艳贞,胡英考,晏月明.生物质谱及其在蛋白质组学研究中的应用[J].生物技术通讯,2006,17(3):468

[2]甄艳,施季森.质谱技术在蛋白质组学研究中的应用[J].南京林业大学学报(自然科学版),2006,35(1):103

[3]应万涛,焦丽燕,钱小红.生物质谱与蛋白质组学[J].生物技术通讯,2004,15(3):259

[4]曹东,张养军,钱小红.基于生物质谱的蛋白质组学绝对定量方法研究进展[J].质谱学报,2008,29(3):185

[5]王希,朱友林.现代质谱技术在蛋白质组学中的应用及其最新进展[J].生物技术通讯,2006,7(13):465

[6]Dayin Lin,David L. Tabb,John https://www.doczj.com/doc/566684304.html,rge-scale protein identification using mass spectrometry[J].Biochimica et Biophysica Acta,2003

[7]Xuemei Han,Aaron Aslanian,John R Yates.Mass spectrometry for proteomics[J].Current Opinion in Chemical Biology,2008,12:483-490

[8]尹稳,伏旭,李平.蛋白质组学的应用研究进展[J].生物技术通报,2014,1:32

[9]王岚,刘骁勇.生物质谱技术在蛋白质组学研究中的应用[J].生物技术通讯,2007,18(1):166

[10]邱志楠.蛋白质组研究技术及进展[J].基础科学,2014,2

蛋白质组学研究方法选择及比较

蛋白质组学研究方法选择及比较 目前研究蛋白组学的主要方法有蛋白质芯片及质谱法,本文将从多方面对两种研究方法进行了解与比较; 蛋白质芯片(Protein Array) 将大量不同的蛋白质有序地排列、固定于固相载体表面,形成微阵列。利用蛋白质分子间特异性结合的原理,实现对生物蛋白质分子精准、快速、高通量的检测。 主要类型: ●夹心法芯片(Sandwich-based Array) ●标记法芯片(Label-based Array) ●定量芯片(Quantitative Array) ●半定量芯片(Semi-Quantitative Array) 质谱(Mass Spectrometry) 用电场和磁场将运动的离子按它们的质荷比分离后进行检测,测出离子准确质量并确定离子的化合物组成,即通过对样品离子质荷比的分析而实现对样品进行定性和定量的一种方法。 主要类型:

●二维电泳+质谱(2D/Mass Spectrometry, MS) ●表面增强激光解吸电离飞行时间质谱(Surface-enhanced laser desorption/ionization- time of flight, SELDI) ●同位素标记相对和绝对定量(Isobaric tags for relative and absolute quantitation, iTRAQ) Protein Array or Mass Spectrometry? 如何选择合适的研究方法?以下将从六个方面进行比较与推荐: 1.筛查蛋白组学表达差异 建议选择:RayBiotech(1000个因子的芯片)+质谱 a)不同的方法学有不同的特点:对于质谱,可以筛查到未知的蛋白,但是对于分子量大、 低丰度的蛋白质,质谱的灵敏度和准确性有一定的限制。 b)不同的方法能筛查到的目标不同:根据Proteome Analysis of Human Aqueous Humor 一文中报道,质谱筛查到的差异蛋白集中在小分子与代谢物。而用RayBiotech芯片筛查到的结果,多是集中在细胞因子、趋化、血管、生长等等。 c)质谱筛查到355个蛋白,而RayBiotech抗体芯片也筛查到328个蛋白,且用定量芯片 验证25个蛋白有差异,这些蛋白是质谱找不到的。目前RayBiotech夹心法抗体芯片已经可以检测到1000个蛋白,采用双抗夹心法,尤其是对于低丰度蛋白,有很好的灵敏度和特异性,很多的低丰度蛋白是抗体芯片可以检测出来,而质谱检测不到的,且样品不经过变性和前处理,保持天然状态的样品直接检测,对于蛋白的检测准确度高。 d)质谱的重复性一直是质谱工作者纠结的问题,不同操作者的结果,不同样品处理条件, 峰值的偏移等影响因素都会产生大的影响;RayBiotech的夹心法芯片重复性高。

生物质谱技术在蛋白质组学中的应用

生物质谱技术在蛋白质组学中的应用(北京大学药学院 杨春晖 学号:10389071) 一、 前言[1,2] 基因工程已令人难以置信的扩展了我们关于有机体DNA序列的认识。但是仍有许多新识别的基因的功能还不知道,也不知道基因产物是如何相互作用从而产生活的有机体的。功能基因组试图通过大规模实验方法来回答这些问题。但由于仅从DNA序列尚不能回答某基因的表达时间、表达量、蛋白质翻译后加工和修饰的情况、以及它们的亚细胞分布等等,因此在整体水平上研究蛋白质表达及其功能变得日益显得重要。这些在基因组中不能解决的问题可望在蛋白质组研究中找到答案。蛋白质组研究的数据与基因组数据的整合,将会在后基因组研究中发挥重要作用。 目前蛋白质组研究采用的主要技术是双向凝胶电泳和质谱方法。双向凝胶电泳的基本原理是蛋白质首先根据其等电点,第一向在pH梯度胶内等电聚焦,然后转90度按他们的分子量大小进行第二向的SDS-PAGE分离。质谱在90年代得到了长足的发展,生物质谱当上了主角,蛋白质组学又为生物质谱提供了一个大舞台。他们中首选的是MALDI-TOF,其分析容量大,单电荷为主的测定分子量高达30万,干扰因素少,适合蛋白质组的大规模分析。其次ESI为主的LC-MS 联机适于精细的研究。本文将简介几种常用的生物质谱技术,并着重介绍生物质谱技术在蛋白质组学各领域的应用。 二、 生物质谱技术[3,4] 1.电喷雾质谱技术(ESI)[5] 电喷雾质谱技术( Electrospray Ionization Mass Spectrometry , ESI - MS) 是在毛细管的出口处施加一高电压,所产生的高电场使从毛细管流出的液体雾化成细小的带电液滴,随着溶剂蒸发,液滴表面的电荷强度逐渐增大,最后液滴崩解为大量带一个或多个电荷的离子,致使分析物以单电荷或多电荷离子的形式进入气相。电喷雾离子化的特点是产生高电荷离子而不是碎片离子, 使质量电荷比(m/ z)降低到多数质量分析仪器都可以检测的范围,因而大大扩展了分子量的分析范围,离子的真实分子质量也可以根据质荷比及电荷数算出。 2.基质辅助激光解吸附质谱技术(MOLDI)[5-7] 基质辅助激光解析电离(MOLDI)是由德国科学家Karas和Hillenkamp发现的。将微量蛋白质与过量的小分子基体的混合液体点到样品靶上,经加热或风吹烘干形成共结晶,放入离子源内。当激光照射到靶点上时,基体吸收了激光的能力跃迁到激发态,导致蛋白质电离和汽化,电离的结果通常是基体的质子转移到蛋白质上。然后由高电压将电离的蛋白质从离子源转送到质量分析器内,再经离子检测器和数据处理得到质谱图。TOF质量分析器被认为是与MALDI的最佳搭配,因为二者都是脉冲工作方式,在质量分析过程中离子损失很少,可以获得很高的灵敏度。TOF质量分析器结果简单,容易换算,蛋白质离子在飞行管内的飞行速度仅与他的(m/z)-1/2成正比,因此容易通过计算蛋白质离子在飞行管内的飞

蛋白质组学研究的完整解决方案

蛋白质组学研究的完整解决方案 人体内真正发挥作用的是蛋白质,蛋白质扮演着构筑生命大厦的“砖块”角色,随着破译生命密码的人类基因组计划进入尾声,一个以蛋白质和药物基因学为研究重点的后基因组时代已经拉开序幕,蛋白质将是今后的重点研究方向之一。然而,蛋白质的分离和鉴定非常费时,目前测定蛋白质的技术远远落后于破译基因组的工具,最好的实验室每天只能分离和识别出100种蛋白质。据估计,人体内可能有几十万种蛋白质,这大概需要10年时间进行识别。 为了加快蛋白质组学研究进程,以专业生产蛋白质组学研究设备而著称的美国Genomic Solution Inc.公司开发了完整的蛋白质组学解决方案,由一系列机械手臂与软件,并结合了二维电泳实验设备与质谱仪,可以进行高效、自动化且具重复性的试验分析。在Genomic solution值得信赖的技术平台上,你的研究工作将更富成效,重复性更好。在这一整套Investigator平台上,各仪器之间配合无隙,由于它的整合性及标准性,使得研究进程大大加快,原来需要9—12个月才能获得数据结果发表的时间减少到9—12周。这套完整的系统具备蛋白质组研究所需的众多功能:2-D电泳、图像获取、2-D胶分析、蛋白样品切割、蛋白消化、MALDI样品准备、消化及点样、数据分析整合,再加上制备好的胶、试剂及附件,使研究工作可以立即展开。此套设备为进行蛋白质组学研究的利器,大大加速了蛋白质分离和鉴定的速度。该系统主要由以下几部分组成: 一、2-D电泳系统(Investigator? 2-D Electophoresis System) 该系统主要进行2D PAGE第一向等电聚焦凝胶电泳和第二向SDS-PAGE电泳,设备包括2-D电泳系统所需的各种设备,如pHaser?(IPG胶条电泳)、管状制胶设备、二维电泳装置、电源设备、半导体冷却器及各种相关的蛋白纯化试剂盒。 产品特征: * 提供2D PAGE电泳所需的各种设备,使电泳更加简便,大大节约研究时间 * 高分辨率:有效的第一向等电聚焦凝胶电泳和23cm X 23cm第二向SDS-PAGE大面积板胶提供清晰的电泳图像,有效提高单体、磷酸化和糖基化蛋白的分离 * 大容量:可同时容纳15块1mm一维管状胶,或8块2-3mm管状胶;10块IPG胶条和10块二维电泳板胶 * 灵活性:该系统用于管状胶、IPG 胶条、预制胶、自制胶和SDS PAGE胶使用 * 恒温:高效的半导体制冷装置保证电泳体系温度恒定,温度变化< 0.5℃ * 专门为高分辨率2D PAGE而设计的电源系统 * 提供超纯的相关化学试剂和药品

质谱技术在蛋白质组学研究中的应用

第35卷 第1期2011年1月 南京林业大学学报(自然科学版) Journa l o fN anji n g Forestry Un i v ersity (Natural Sc ience Ed ition) V o.l 35,N o .1Jan .,2011 htt p ://www.n l dxb .com [do :i 10.3969/.j issn .1000-2006.2011.01.024] 收稿日期:2009-12-31 修回日期:2010-10-26 基金项目:国家自然科学基金项目(31000287);江苏省高校自然科学基础研究项目(10KJ B220002) 作者简介:甄艳(1976)),副教授,博士。*施季森(通信作者),教授。E-m ai:l js h @i n jfu .edu .cn 。 引文格式:甄艳,施季森.质谱技术在蛋白质组学研究中的应用[J].南京林业大学学报:自然科学版,2011,35(1):103-108. 质谱技术在蛋白质组学研究中的应用 甄 艳,施季森 * (南京林业大学,林木遗传与生物技术省部共建教育部重点实验室,江苏 南京 210037) 摘要:随着蛋白质组学研究的迅速发展,质谱技术已成为应用于蛋白质组学研究中的强有力工具和核心技术。质谱技术的先进性在于为蛋白质组学研究提供的通量和分子信息。笔者重点概述了基于质谱路线的蛋白质组学研究,介绍了基于质谱的定量蛋白质组学﹑翻译后修饰蛋白质组学、定向蛋白质组学、功能蛋白质组学以及基于串联质谱技术的蛋白质组学数据解析的研究 进展。 关键词:质谱;蛋白质组学;定量蛋白质组学;翻译后修饰;定向蛋白质组学;功能蛋白质组学中图分类号:Q81 文献标志码:A 文章编号:1000-2006(2011)01-0103-06 Application of m ass spectro m etry i n proteo m ics studies Z HEN Yan ,SH I Jisen * (K ey Labo ra t o ry o f F orest G eneti cs and B i o techno l ogy M i n istry o f Educati on , N an ji ng Forestry U n i versity ,N an ji ng 210037,Chi na) Abstrac t :W ith the rap i d develop m ent o f pro teo m i cs ,m ass spec trom etry i s m aturi ng to be a po w erfu l too l and core tech -nology fo r proteo m ics st udies dur i ng the recen t years .The super i or ity o fm ass spectrom etry lies i n providi ng the through -pu t and the m olecu lar infor m ati on ,w hich no other techno logy can be m a tched i n proteom ics .In th i s rev ie w,w e m ade a g lance on the outli ne o fm ass spectrome try -based proteo m ics .A nd then w e addressed on t he advances o f data ana l y si s o f m ass spec trom etry -based proteom ics ,quantitati ve m ass spectro m etry -based pro teom i cs ,post -translati onal m odificati ons based m ass spectrom etry ,targeted proteo m ics and functiona l proteo m ics based -mass spectrome try .K ey word s :m ass spectrome try;proteo m ics ; quantitative pro teom i cs ; post -trans l ation m odifica ti on ; targ eted pro - teo m i cs ;f uncti ona l proteom ics 蛋白质组学(Pr o teo m ics)是从整体水平上研究细胞内蛋白质的组成、活动规律及蛋白质与蛋白质的相互作用,是功能基因组学时代一门新的学科。 目前蛋白质组学的研究主要有两条路线:一是基于双向电泳的蛋白质组学;二是基于质谱的蛋白质组学,其中基于双向电泳的蛋白质组学研究路线最终也离不开质谱技术的应用。自20世纪80年代末,两种质谱软电离方式即电喷雾电离(electro spray ion izati o n,ESI )和基质辅助激光解析离子化(m a -tri x assisted laser desorpti o n i o nization ,MALD I)的发明和发展解决了极性大、热不稳定蛋白质和多肽分 析的离子化和分子质量大的测定问题[1] ,蛋白质组学研究中常用的质谱分析仪包括离子阱(ion trap ,I T),飞行时间(ti m e of fli g h,t TOF),串联飞行时间(TOF -TOF),四级杆/飞行时间(quadr upo le /TOF hybrids),离子阱/轨道阱(I T /orbitrap hybri d )和离子阱/傅里叶变换串联质谱分析仪(I T /Four i e r transfor m ioncyclotron resonance m ass spectro m eters hybr i d s ,I T /FT M S),这些质谱仪具有不同的灵敏度、分辨率、质量精确度和产生不同质量的M S /M S 谱[2] 。质谱作为蛋白质组学研究的一项强有力的工具日趋成熟,并作为样品制备及数据分析的信息学工具被广泛地应用。因此,有学者指出质谱技术 已在蛋白质组学研究中处于核心地位[3] 。目前在通量及所包含的分子信息内容上,基于质谱的蛋白质组学技术在细胞生物学研究中可以鉴定和量化

蛋白质质谱分析

蛋白质质谱分析研究进展作者:汪福源蛋白质质谱分析研究进展摘要:随着科学的不断发展,运用质谱法进行蛋白质的分析日益增多,本文简要综述了肽和蛋白质等生物大分子质谱分析的特点、方法及蛋白质质谱分析的原理、方式和应用,并对其发展前景作出展望。关键词:蛋白质,质谱分析,应用前言:蛋白质是生物体中含量最高,功能最重要的生物大分子,存在于所有生物细胞,约占细胞干质量的50%以上,作为生命的物质基础之一,蛋白质在催化生命体内各种反应进行、调节代谢、抵御外来物质入侵及控制遗传信息等方面都起着至关重要的作用,因此蛋白质也是生命科学中极为重要的研究对象。关于蛋白质的分析研究,一直是化学家及生物学家极为关注的问题,其研究的内容主要包括分子量测定,氨基酸鉴定,蛋白质序列分析及立体化学分析等。随着生命科学的发展,仪器分析手段的更新,尤其是质谱分析技术的不断成熟,使这一领域的研究发展迅速。自约翰.芬恩(JohnB.Fenn)和田中耕一(Koichi.Tanaka)发明了对生物大分子进行确认和结构分析的方法及发明了对生物大分子的质谱分析法以来,随着生命科学及生物技术的迅速发展,生物质谱目前已成为有机质谱中最活跃、最富生命力的前沿研究领域之一[1]。它的发展强有力地推动了人类基因组计划及其后基因组计划的提前完成和有力实施。质谱法已成为研究生物大分子特别是蛋白质研究的主要支撑技术之一,在对蛋白质结构分析的研究中占据了重要地位[2]。1.质谱分析的特点质谱分析用于蛋白质等生物活性分子的研究具有如下优点:很高的灵敏度能为亚微克级试样提供信息,能最有效地与色谱联用,适用于复杂体系中痕量物质的鉴定或结构测定,同时具有准确性、易操作性、快速性及很好的普适性。2.质谱分析的方法近年来涌现出较成功地用于生物大分子质谱分析的软电离技术主要有下列几种:1)电喷雾电离质谱;2)基质辅助激光解吸电离质谱;3)快原子轰击质谱;4)离子喷雾电离质谱;5)大气压电离质谱。在这些软电离技术中,以前面三种近年来研究得最多,应用得也最广泛[3]。3.蛋白质的质谱分析蛋自质是一条或多条肽链以特殊方式组合的生物大分子,复杂结构主要包括以肽链为基础的肽链线型序列[称为一级结构]及由肽链卷曲折叠而形成三维[称为二级,三级或四级]结构。目前质谱主要测定蛋自质一级结构包括分子量、肽链氨基酸排序及多肽或二硫键数目和位置。3.1蛋白质的质谱分析原理以往质谱(MS)仅用于小分子挥发物质的分析,由于新的离子化技术的出现,如介质辅助的激光解析/离子化、电喷雾离子化,各种新的质谱技术开始用于生物大分子的分析。其原理是:通过电离源将蛋白质分子转化为气相离子,然后利用质谱分析仪的电场、磁场将具有特定质量与电荷比值(M/Z值)的蛋白质离子分离开来,经过离子检测器收集分离的离子,确定离子的M/Z值,分析鉴定未知蛋白质。3.2蛋白质和肽的序列分析现代研究结果发现越来越多的小肽同蛋白质一样具有生物功能,建立具有特殊、高效的生物功能肽的肽库是现在的研究热点之一。因此需要高效率、高灵敏度的肽和蛋白质序列测定方法支持这些研究的进行。现有的肽和蛋白质测序方法包括N末端序列测定的化学方法Edman法、C末端酶解方法、C末端化学降解法等,这些方法都存在一些缺陷。例如作为肽和蛋白质序列测定标准方法的N末端氨基酸苯异硫氰酸酯(phenylisothiocyanate)PITC分析法(即Edman法,又称PTH法),测序速度较慢(50个氨基酸残基/天);样品用量较大(nmol级或几十pmol级);对样品纯度要求很高;对于修饰氨基酸残基往往会错误识别,而对N末端保护的肽链则无法测序[4]。C末端化学降解测序法则由于无法找到PITC这样理想的化学探针,其发展仍面临着很大的困难。在这种背景下,质谱由于很高的灵敏度、准确性、易操作性、快速性及很好的普适性而倍受科学家的广泛注意。在质谱测序中,灵敏度及准确性随分子量增大有明显降低,所以肽的序列分析比蛋白容易许多,许多研究也都是以肽作为分析对象进行的。近年来随着电喷雾电离质谱(electrospray ionisation,ESI)及基质辅助激光解吸质谱(matrix assisted laser desorption/ionization,MALDI)等质谱软电离技术的发展与完善,极性肽分子的分析成为可能,检测限下降到fmol级别,可测定分子量范围则高达100000Da,目前基质辅助的激光解吸电离飞行时间质谱法(MALDI

基于质谱的蛋白质组学分析.

基于质谱分析的蛋白质组学 在21世纪,生命科学的研究进入了后基因组时代,蛋白质组学作为其中的一个重要分支于20世纪90年代中期应运而生。由于蛋白质的复杂性,传统的蛋白质鉴定方法如末端测序等已无法满足蛋白质组学研究中的一系列需要。因此,质谱技术作为蛋白质组学研究的一项强有力的工具日趋成熟,并作为样品制备和数据分析的信息学工具被广泛地应用。质谱技术具有灵敏度、准确度、自动化程度高的优点,能准确测量肽和蛋白质的相对分子质量,氨基酸序列及翻译后修饰、蛋白质间相互作用的检测[1],因此质谱分析无可争议地成为蛋白质组学研究的必然选择。 1. 蛋白质组学 蛋白质组学(proteomics )是从整体水平上研究细胞内蛋白质的组成、活动规律及蛋白质与蛋白质的相互作用,是功能基因组学时代一门新的科学。包括鉴定蛋白质的表达、修饰形式、结构、功能和相互作用等。根据研究目的,蛋白质组学可以分为表达蛋白质组学、结构蛋白质组学和功能蛋白质组学。表达蛋白质组学用于细胞内蛋白样品表达的定量研究。以绘制出蛋白复合物的结构或存在于一个特殊的细胞器中的蛋白为研究目的的蛋白质组学称为结构蛋白质组学,用于建立细胞内信号转导的网络图谱并解释某些特定蛋白的表达对细胞的作用[2]。功能蛋白质组学以细胞内蛋白质的功能及蛋白质之间的相互作用为研究目的,通过对选定的蛋白质组进行研究和分析,能够提供有关蛋白质的磷酸化、糖基化等重要信息。 蛋白质组学研究的核心就是能够系地的鉴定一个细胞或组织中表达的每一个蛋白质及蛋白质的性能。蛋白质组学的主要相关技术有双向凝胶电泳、双向荧光差异凝胶电泳、质谱分析等[2]。由于蛋白质的高度复杂性和大量低丰度蛋白质的存在,对分析技术提出了巨大挑战,生物质谱技术则是适应这一挑战的必然选择。 2. 生物质谱技术

质谱技术在蛋白质组学研究中的应用_甄艳

第35卷 第1期2011年1月 南京林业大学学报(自然科学版) J o u r n a l o f N a n j i n g F o r e s t r y U n i v e r s i t y (N a t u r a l S c i e n c e E d i t i o n ) V o l .35,N o .1 J a n .,2011 h t t p ://w w w .n l d x b .c o m [d o i :10.3969/j .i s s n .1000-2006.2011.01.024]  收稿日期:2009-12-31 修回日期:2010-10-26  基金项目:国家自然科学基金项目(31000287);江苏省高校自然科学基础研究项目(10K J B 220002) 作者简介:甄艳(1976—),副教授,博士。*施季森(通信作者),教授。E -m a i l :j s h i @n j f u .e d u .c n 。  引文格式:甄艳,施季森.质谱技术在蛋白质组学研究中的应用[J ].南京林业大学学报:自然科学版,2011,35(1):103-108. 质谱技术在蛋白质组学研究中的应用 甄 艳,施季森 * (南京林业大学,林木遗传与生物技术省部共建教育部重点实验室,江苏 南京 210037) 摘要:随着蛋白质组学研究的迅速发展,质谱技术已成为应用于蛋白质组学研究中的强有力工具和核心技术。质谱技术的先进性在于为蛋白质组学研究提供的通量和分子信息。笔者重点概述了基于质谱路线的蛋白质组学研究,介绍了基于质谱的定量蛋白质组学﹑翻译后修饰蛋白质组学、定向蛋白质组学、功能蛋白质组学以及基于串联质谱技术的蛋白质组学数据解析的研究 进展。 关键词:质谱;蛋白质组学;定量蛋白质组学;翻译后修饰;定向蛋白质组学;功能蛋白质组学中图分类号:Q 81 文献标志码:A 文章编号:1000-2006(2011)01-0103-06 A p p l i c a t i o n o f m a s s s p e c t r o m e t r y i n p r o t e o m i c s s t u d i e s Z H E NY a n ,S H I J i s e n * (K e y L a b o r a t o r y o f F o r e s t G e n e t i c s a n d B i o t e c h n o l o g y M i n i s t r y o f E d u c a t i o n , N a n j i n g F o r e s t r y U n i v e r s i t y ,N a n j i n g 210037,C h i n a ) A b s t r a c t :W i t ht h e r a p i d d e v e l o p m e n t o f p r o t e o m i c s ,m a s s s p e c t r o m e t r y i s m a t u r i n g t o b e a p o w e r f u l t o o l a n dc o r e t e c h -n o l o g y f o r p r o t e o m i c s s t u d i e s d u r i n g t h e r e c e n t y e a r s .T h e s u p e r i o r i t y o f m a s s s p e c t r o m e t r y l i e s i n p r o v i d i n g t h e t h r o u g h -p u t a n d t h e m o l e c u l a r i n f o r m a t i o n ,w h i c hn o o t h e r t e c h n o l o g y c a n b e m a t c h e di np r o t e o m i c s .I nt h i s r e v i e w ,w e m a d e a g l a n c e o n t h e o u t l i n e o f m a s s s p e c t r o m e t r y -b a s e d p r o t e o m i c s .A n dt h e nw e a d d r e s s e d o n t h e a d v a n c e s o f d a t a a n a l y s i s o f m a s s s p e c t r o m e t r y -b a s e dp r o t e o m i c s ,q u a n t i t a t i v em a s ss p e c t r o m e t r y -b a s e dp r o t e o m i c s ,p o s t -t r a n s l a t i o n a l m o d i f i c a t i o n s b a s e d m a s s s p e c t r o m e t r y ,t a r g e t e d p r o t e o m i c s a n df u n c t i o n a l p r o t e o m i c s b a s e d -m a s s s p e c t r o m e t r y . K e yw o r d s :m a s ss p e c t r o m e t r y ;p r o t e o m i c s ;q u a n t i t a t i v ep r o t e o m i c s ;p o s t -t r a n s l a t i o n m o d i f i c a t i o n ;t a r g e t e d p r o -t e o m i c s ;f u n c t i o n a l p r o t e o m i c s 蛋白质组学(P r o t e o m i c s )是从整体水平上研究细胞内蛋白质的组成、活动规律及蛋白质与蛋白质的相互作用,是功能基因组学时代一门新的学科。目前蛋白质组学的研究主要有两条路线:一是基于双向电泳的蛋白质组学;二是基于质谱的蛋白质组学,其中基于双向电泳的蛋白质组学研究路线最终也离不开质谱技术的应用。自20世纪80年代末,两种质谱软电离方式即电喷雾电离(e l e c t r o s p r a y i o n i z a t i o n ,E S I )和基质辅助激光解析离子化(m a -t r i x a s s i s t e d l a s e r d e s o r p t i o n i o n i z a t i o n ,M A L D I )的发明和发展解决了极性大、热不稳定蛋白质和多肽分 析的离子化和分子质量大的测定问题[1] ,蛋白质组学研究中常用的质谱分析仪包括离子阱(i o n t r a p ,I T ),飞行时间(t i m e o f f l i g h t ,T O F ),串联飞行时间(T O F -T O F ),四级杆/飞行时间(q u a d r u p o l e /T O F h y b r i d s ),离子阱/轨道阱(I T /o r b i t r a ph y b r i d ) 和离子阱/傅里叶变换串联质谱分析仪(I T /F o u r i e r t r a n s f o r m i o n c y c l o t r o nr e s o n a n c em a s s s p e c t r o m e t e r s h y b r i d s ,I T /F T M S ),这些质谱仪具有不同的灵敏度、分辨率、质量精确度和产生不同质量的M S /M S 谱[2] 。质谱作为蛋白质组学研究的一项强有力的工具日趋成熟,并作为样品制备及数据分析的信息学工具被广泛地应用。因此,有学者指出质谱技术 已在蛋白质组学研究中处于核心地位[3] 。目前在通量及所包含的分子信息内容上,基于质谱的蛋白质组学技术在细胞生物学研究中可以鉴定和量化

蛋白质组学研究的基本步骤

请简述蛋白质组学研究的基本步骤 1.蛋白质样品的制备:蛋白质样品的制备是蛋白质组学研究的首要环节,也是最为重要的部分。蛋白质样品的质量直接影响到科学研究的真实性和可信度。 2.蛋白质的分离:双向凝胶电泳技术是目前最基础和常用的蛋白质分离方法,它能将数千种蛋白质同时分离与展示的分离技术。双向电泳分为等电聚焦电泳和SDS-PAGE两个步骤,即先进行等电聚焦电泳,按照pI的不同将蛋白分离,然后再进行SDS-PAGE按照分子量的大小不同对蛋白进行分离。IPG胶条的应用,大大提高了双向电泳的重复性。 3. 蛋白质双向电泳凝胶的染色。目前双向电泳凝胶的染色的方法有3种,分别为考马斯亮蓝染色法、银染法和荧光染色法。考马斯亮蓝染色法,操作简便,无毒性,染色后的背景及对比度良好,与下游的蛋白质鉴定方法兼容,但灵敏度较低,可以检测到30~100 ng蛋白质。银染法是一种较为流行的染色方法,银染成本较低,灵敏度高,可检测少到2~5ng的蛋白。荧光试剂显色对蛋白质无固定作用,与质谱兼容性好,而其灵敏度与银染相仿,但线性范围要远高于银染,这使二维电泳分离蛋白质的荧光检测受到普遍关注和应用。 4.双向电泳凝胶图像的采集与分析:图像采集系统通过投射扫描根据吸光度的大小获碍蛋白质点的光密度信息。一般来说,该光密度值与蛋白质点的表达丰度成正比,以便于软件分析时的定量比较。完成图像采集后采用ImageMaster等图像分析软件进行分析。分析步骤:蛋白质点检测、背景消减、归一化处理、蛋白质点匹配。 5.蛋白质鉴定:蛋白质鉴定是蛋白质组学研究中的核心内容。目前蛋白质鉴定技术主要有Edman 降解法测序、质谱。质谱是目前最常用的蛋白质鉴定方法。质谱技术的基本原理是带电粒子在磁场或电场中运动的轨迹和速度依粒子的质量与携带电荷之比质荷比( m/z) 的不同而变化,可以据此来判断粒子的质量和特性。质谱完成后利用蛋白质的各种属性参数如相对分子质量、等电点、序列、氨基酸组成、肽质量指纹谱等在蛋白质数据库中检索,寻找与这些参数相符的蛋白质。

质谱技术在蛋白质组学中的应用发展

万方数据

万方数据

万方数据

质谱技术在蛋白质组学中的应用发展 作者:吴晓歌, 鲁新宇, WU Xiao-ge, LU Xin-yu 作者单位:南京工业大学应用化学系,江苏南京,210009 刊名: 医学研究生学报 英文刊名:JOURNAL OF MEDICAL POSTGRADUATES 年,卷(期):2007,20(10) 被引用次数:5次 参考文献(20条) 1.Diane G Mass spectrometry:gaining mass appeal in proteomics[外文期刊] 2005(06) 2.Taranenko NI;Potter NT;Allman SL Gender identification by atrix-Assisted laser desorption /ionization time-of-flight mass spectrometry[外文期刊] 1999(10) 3.Schurenberg M;Dreisewerd K;Hillenkamp F Laser desorption/ionization mass spectrometry of peptides and proteins with particle suspension matrixes[外文期刊] 1999(01) 4.钱小红;盛龙生生物质谱技术与方法 2003 5.Judith H Product review:Proteomics systems emerge 2001(13) 6.Joerg R;Urs L;Jan M Challenges in mass spectrometrybased proteomics 2004(12) 7.蒋娟娟基质辅助激光解吸离子化中的基质和基质添加剂[期刊论文]-药学进展 2004(08) 8.Krause E;Wenschuh H;Jungblut PR The Dominance of Arginine-containing peptides in MALDI-Derived tryptic mass Fingerprint of proteins[外文期刊] 1999(19) 9.Mpamhanga CP;Chen B;Mclay I Knowledge-based interaction fingerprint scoring:a simple method for improving the effectiveness of fast scoring functions[外文期刊] 2006(02) 10.Yang CY;Wang R;Wang S M-score:a knowledge-based interaction fingerprint scoring:a simple method for improving the effectiveness of fast scoring functions[外文期刊] 2006(20) 11.Wen K;Chungang G;Hongjie Z Use of high-performance liquid chromatography-tandem mass spectrometry to distinguish panax ginseng C.A.Meyer (Asian Ginseng) and Panax quinquefolius L[外文期刊] 2000(21) 12.Josip B;Maria C;Rodriguez G Analysis of murine natural killer cell microsomal proteins using two-dimensional liquid chromatography coupled to tandem electrospray ionization mass spectrometry[外文期刊] 2004(04) 13.张养军;蔡耘;王京兰蛋白质组学研究中的色谱分离技术[期刊论文]-色谱 2003(01) 14.曹晓梅;陈冰;冷伟卫高效液相色谱法同时测定血浆中异烟肼和乙酰烟肼[期刊论文]-医学研究生学报 2005(05) 15.Demirev PA;Ramirez J;Fenselau C Tandem mass spectrometry of intact proteins for characterization of biomarkers from bacillus cereus T spores[外文期刊] 2001(23) 16.Ciminiello P;Dell AC;Fattorusso E The Genoa 2005outbreak.Determination of putative palytoxin in Mediterranean ostreopsis ovata by a new liquid chromatography tandem mass spectrometry method[外文期刊] 2006(17) 17.Ji C;Li L Quantitative proteome analysis using differential stable isotopic labeling and microbore LC-MALDI MS and MS-MS[外文期刊] 2005(03) 18.周济宏;李幼生;曹亚澄稳定性核素测定大鼠小肠蛋白质合成[期刊论文]-医学研究生学报 2006(10) 19.Heng J;Ann ME Quantitative analysis of the yeast proteome by incorporation of isotopically

蛋白质组学的研究进展及应用

《蛋白质工程》 (课程论文)题目名称:蛋白质组学技术的研究进展及应用 所在学院:生命科学与技术学院 专业(班级):生技131班 学生姓名:梁健 授课教师:韩晓菲

蛋白质组学技术的研究进展及应用 生技131班梁健13772025 摘要:随着人类基因组计划全部测序的初步完成,研究重点转到对基因功能的研究上。蛋白质作为基因功能的主要体现者,对其表达模式和功能的研究成为热点,出现了蛋白质组学。研究蛋白质组学有助于了解蛋白的结构、细胞的功能、生命的本质及活动规律,为疾病的诊断、治疗、疫苗及新药开发提供科学依据。关键词:蛋白质组学;进展;应用 蛋白质组学(proteomics)是产生于20世纪90年代中期的一门新兴学科,以 细胞内全部蛋白质的存在及其活动方式为研究对象,是后基因组时代生命科学研究的核心内容。蛋白质组学的产生与发展经历了一个漫长的过程,在这个过程中,研究者不断修正蛋白质组学的发展方向和推进蛋白质组学相关支撑技术的快速 发展,进而拓展蛋白质组学在整个生命科学和生物医学研究中的应用,成为后基因组时代重要的研究新领域,并成功地应用到基础研究及医学研究等各个领域,推进其迅速发展。 1 蛋白质组学的概念及研究内容 1.1蛋白质组学的概念 蛋白质组(proteome)源于protein和genome两词的杂合,最早是由澳大利亚 的WILKINS等于1995年提出,其定义为“一种基因组所表达的全部蛋白质”。早期相对狭义的蛋白质组的概念是指在某一特定的时间和空间条件下,1个细胞的基因组所表达的蛋白质数目的总和。随着研究的深入,人们提出了广义的蛋白质组的概念,用来描述1个细胞、组织、器官或1个物种的生命个体,在其不同的生存及发育条件下所表达的各种蛋白数目的总和。所以蛋白质组所含的蛋白数目及其表达量是随着时间和空间的不同而不断发生变化的。蛋白质组学最有价值的优势是它可以观察在特定的时间下一个完整的蛋白质组或蛋白亚型在某种生理 或病理状态中,发生的相应的变化。 1.2 研究内容 根据研究内容的不同,蛋白质组学可分为差异蛋白质组学(或称表达蛋白质 组学)、结构蛋白质组学和功能蛋白质组学,其中差异蛋白质组学在蛋白质组学 研究中十分常用且应用广泛。差异蛋白质组学主要是研究比较在2种或多种不同条件下蛋白质组表达的差异变化。结构蛋白质组学主要是蛋白质表达模式的研究,包括蛋白质氨基酸序列分析及空间结构的解析。蛋白质表达模式的研究是蛋白质组学研究的基础内容,主要研究特定条件下某一细胞或组织的所有蛋白质的表征问题。功能蛋白质组学主要是蛋白质功能模式的研究,包括蛋白质的功能和蛋白

蛋白质质谱分析研究进展

蛋白质质谱分析研究进展 摘要:随着科学的不断发展,运用质谱法进行蛋白质的分析日益增多,本文简要综述了肽和蛋白质等生物大分子质谱分析的特点、方法及蛋白质质谱分析的原理、方式和应用,并对其发展前景作出展望。 关键词:蛋白质,质谱分析,应用 前言: 蛋白质是生物体中含量最高,功能最重要的生物大分子,存在于所有生物细胞,约占细胞干质量的50%以上,作为生命的物质基础之一,蛋白质在催化生命体内各种反应进行、调节代谢、抵御外来物质入侵及控制遗传信息等方面都起着至关重要的作用,因此蛋白质也是生命科学中极为重要的研究对象。关于蛋白质的分析研究,一直是化学家及生物学家极为关注的问题,其研究的内容主要包括分子量测定,氨基酸鉴定,蛋白质序列分析及立体化学分析等。随着生命科学的发展,仪器分析手段的更新,尤其是质谱分析技术的不断成熟,使这一领域的研究发展迅速。 自约翰.芬恩(JohnB.Fenn)和田中耕一(Koichi.Tanaka)发明了对生物大分子进行确认和结构分析的方法及发明了对生物大分子的质谱分析法以来,随着生命科学及生物技术的迅速发展,生物质谱目前已成为有机质谱中最活跃、最富生命力的前沿研究领域之一[1]。它的发展强有力地推动了人类基因组计划及其后基因组计划的提前完成和有力实施。质谱法已成为研究生物大分子特别是蛋白质研究的主要支撑技术之一,在对蛋白质结构分析的研究中占据了重要地位[2]。 1.质谱分析的特点 质谱分析用于蛋白质等生物活性分子的研究具有如下优点:很高的灵敏度能为亚微克级试样提供信息,能最有效地与色谱联用,适用于复杂体系中痕量物质的鉴定或结构测定,同时具有准确性、易操作性、快速性及很好的普适性。 2.质谱分析的方法 近年来涌现出较成功地用于生物大分子质谱分析的软电离技术主要有下列几种:1)电喷雾电离质谱;2)基质辅助激光解吸电离质谱;3)快原子轰击质谱;4)离子喷雾电离质谱;5)大气压电离质谱。在这些软电离技术中,以前面三种近年来研究得最多,应用得也最广泛[3]。 3.蛋白质的质谱分析 蛋自质是一条或多条肽链以特殊方式组合的生物大分子,复杂结构主要包括以肽链为基础的肽链线型序列[称为一级结构]及由肽链卷曲折叠而形成三维[称为二级,三级或四级]结构。目前质谱主要测定蛋自质一级结构包括分子量、肽链氨基酸排序及多肽或二硫键数目和位置。 3.1蛋白质的质谱分析原理 以往质谱(MS)仅用于小分子挥发物质的分析,由于新的离子化技术的出现,如介质辅助的激光解析/离子化、电喷雾离子化,各种新的质谱技术开始用于生物大分子的分析。其原理是:通过电离源将蛋白质分子转化为气相离子,然后利用质谱分析仪的电场、磁场将具有特定质量与电荷比值(M/Z值)的蛋白质离子分离开来,经过离子检测器收集分离的离子,确定离子的M/Z值,分析鉴定未知蛋白质。 3.2蛋白质和肽的序列分析 现代研究结果发现越来越多的小肽同蛋白质一样具有生物功能,建立具有特殊、高效的生物功能肽的肽库是现在的研究热点之一。因此需要高效率、高灵敏度的肽和蛋白质序列测定方法支持这些研究的进行。现有的肽和蛋白质测序方法包括N末端序列测定的化学方法Edman法、C末端酶解方法、C末端化学降解法等,这些方法都存在一些缺陷。例如作为肽和蛋白质序列测定标准方法的N末端氨基酸苯异硫氰酸酯(phenylisothiocyanate)PITC分析法(即Edman法,又称PTH法),测序速度较慢(50个氨基酸残基/天);样品用量较大(nmol级或几十pmol级);对样品纯度要求很高;对于修饰氨基酸残基往往会错误识别,而对N末端保护的肽链则无法测序[4]。C末端化学降解测序法则由于无法找到PITC这样理想的化学探针,

相关主题
文本预览
相关文档 最新文档