当前位置:文档之家› 高温相变蓄热技术在建筑采暖中的应用

高温相变蓄热技术在建筑采暖中的应用

高温相变蓄热技术在建筑采暖中的应用
高温相变蓄热技术在建筑采暖中的应用

蓄热技术及其应用

蓄热技术及其应用 蓄热技术是缓解人类能源危机的一种重要手段。本文首先介绍了蓄热技术的分类和特点,分析了蓄热技术在国内外的研究情况,又阐述了它在暖通空调等领域的应用状况,最后对蓄热技术的发展进行了展望。 Key words:heat storage technology;phase transition;HV AC;energy saving 在许多能量利用系统中,往往存在着能量供应和需求的时间性差异,造成了能量利用的巨大浪费。蓄热技术是解决该问题的一种有效途径。蓄热技术的核心应用在于调和热能供给与需求在时间和空间上不相匹配的矛盾,在太阳能热利用、电力的“移峰填谷”、废热和余热的回收利用以及建筑节能、暖通空调等领域具有广泛的应用前景。 1.蓄热技术分类及特点 蓄热技术目前主要有显热蓄热、潜热蓄热(相变蓄热)和化学反应蓄热三种。 显热蓄热是利用物质温度的变化来存蓄热量的。常用的显热蓄热介质有水、水蒸气、鹅卵石等。显热蓄热介质来源广泛,价格低廉,系统简单,是目前最成熟、应用最广泛的蓄热方式。 潜热蓄热是利用物质在凝固/熔化、凝结/气化、凝华/升华以及其他形式的相变过程中,吸收或放出相变潜热的原理。由于液气或固气转化时,容积变化非常大,不易控制,在实际工程中较难应用,目前有实际应用价值的是固液相变式蓄热。该技术的优势是:蓄热密度大、相变时温度稳定、所用装置简单、体积小、设计灵活等。 化学反应蓄热是指利用可逆化学反应的结合热储存热能。化学能蓄热的特点是:可逆性好;正逆反应转变的速率快;蓄热密度比显热蓄热和潜热蓄热都大,可以贮存高温热能;也无须绝热保温,可以长时间的蓄热。但化学能蓄热系统复杂、价格也高。 2.蓄热技术国内外研究情况 20世纪30年代以来,相变蓄热的基础理论和应用技术研究在发达国家(如美国、加拿大、日本、德国等)迅速崛起。材料科学,太阳能,航天技术,建筑物空调采暖通风及工业废热利用等领域的相互渗透与迅猛发展为相变蓄热研究和应用创造了条件。在相变蓄热的理论和应用研究方面,美国一直处于领先地位。Dr. Maria Telkes等先后在相变材料的配制和性能研究、相平衡、相变传热、相变材料性能改善等方面做了大量工作,并在马萨诸塞州建起了世界上第一座PCM 太阳能暖房。60年代,随着载人空间技术的迅速发展,美国NASA 大力发展了相变材料热控技术。70 年代早期,日本三菱电子公司和东京电力公司联合进行

相变蓄热技术在热泵中的应用

相变蓄热技术在热泵中的应用 汪南,杨硕,朱冬生 (华南理工大学化学与化工学院传热强化与过程节能教育部重点实验室,广州, 510640) 摘要:本文综述了蓄热技术的研究进展及其在热泵中的应用,并重点介绍了一种相变蓄热式热泵热水器,最后对这种技术的发展进行了展望。 关键词:蓄热相变热泵热水器 0 前言 能源是一个国家经济增长和社会发展的重要物质基础,随着人类对能源的需求量不断增大,能源问题越来越引起人们的重视。但是,大多数能源存在间断性和不稳定性的特点,导致大量热能在时间与空间匹配上的不平衡性,从而使得一方面能源短缺,另一方面又有大量余热被白白浪费。因此,合理利用能源、提高能源利用率是当务之急。 蓄能技术就是采用适当的方式,利用特定的装置,将暂时不用的或者多余的热能通过一定的储能材料储存起来,等到需要时再利用的方法,是提高能源利用效率和保护环境的重要技术。相变蓄热技术在太阳能、工业余热、废热利用以及电力调峰等方面具有很大的潜在应用优势,近年来引起了众多科研工作者的重视。 1 蓄热技术的研究进展 1983年,美国Telkes博士在蓄热技术方面做了大量工作[1]。她对水合盐,尤其是十水硫酸钠(Na2S04?10H2O)进行了长期的研究,对Na2S04?10H2O的相变寿命进行了多达1000次的实验,并预测该材料可相变2000次,并在马萨诸塞州建起了世界上第一座PCM被动太阳房。20世纪70年代早期,日本三菱电子公司和东京电力公司联合进行了用于采暖和制冷系统的相变材料的研究,他们研究了水合硝酸盐、磷酸盐、氟化物和氯化钙。在相变材料应用方面,他们特别强调制冷和空调系统中的储能。东京科技大学工业和工程化学系的Yoneda等人研究了一系列可用于建筑物取暖的硝酸共晶水合盐,从中筛选出性能较好的MgCl2?6H20和Mg(NO3)2?6H2O共晶盐(熔点59.1℃)。位于Ibaraki的电子技术实验室对相变温度范围为200~300℃的硝酸盐及它们的共晶混合物进行了研究。德国GawronK和Schroder J在对-65~0℃的温度范围内相变性能的研究后,推荐在储冷中采用NaF-H20共晶盐(-3.5℃);在低温储热或热泵应用中采用KF?4H20;在建筑物采暖系统中,采用CaCl2?6H20(29℃)或Na2HP04(35℃)。Krichel绘制了大量PCMs的物性图表。他认为石蜡、水合盐和包合盐(elath-rate)是100℃以下储能用相变材料的最佳候选材料。 我国对蓄热相变的理论和应用也进行了广泛的研究[2-9],中国科学技术大学从1978年开始进行相变储热的研究,陈则韶、葛新石、张寅平等人[10~12]在相变材料热物性测定和相变过程导热分析方面做了大量工作,申请了多项专利。1983年,华中师范大学阮德水等[13]对典型的无机水合盐Na2S04?10H2O

建筑节能现状及建筑节能新技术

建筑节能现状及建筑节能新技术随着世界经济的发展,能源的产出与消耗之间的矛盾日益突出,建筑能耗伴随着建筑总量的不断攀升和人们对居住舒适度要求的提高,呈急剧上升趋势,因此建筑节能成为人们共同关注的热点问题。 建筑节能的不断发展,不仅可以促进建筑新技术的不断进步,而且可以缓解能源资源的紧局面,减轻大气污染的程度,有利于我国社会经济、生态环境的发展。除此之外随着现代化建设的发展和人民生活水平的提高,舒适的建筑热环境日益成为人们生活的需要,建筑节能及其新技术的研究应用也成为提高建筑热环境的质量、满足建筑界可持续发展战略的一个关键环节,因此对建筑节能发展现状及其新技术的研究显得尤为重要。 1建筑节能概述 建筑节能是指在建筑材料生产、房屋建筑施工以及使用过程中合理地使用和有效地利用能源,以便在满足同等需要或达到相同目的的条件下,尽可能地降低能耗,达到提高建筑舒适性和节省能源的目标。建筑节能主要包括建筑采暖、空调、照明、热水供应等面的节能。 建筑节能涉及的容广泛、工作面广,是一项系统工程。从建筑技术看,建筑节能包括了众多技术,如围护结构保温隔热技术、太阳能与建筑一体化技术、建筑遮阳技术、照明节能技术、新型供冷供热技术等。从建设程序看,建筑节能与规划、设计、施工、监理等过程都密切相关,不可分割。从建筑材料看,建筑节能包含了节能型门窗、节能玻璃、墙体材料、保温材料等。 2建筑节能现状

我国建筑能耗约占社会总能耗的1/3,1996年中国建筑年消耗3.03亿t标准煤,占能源消耗总量的24%,到2001年已达到3.76亿t,占能源消耗总量的27.6%,年增长比率为5%,随着建筑业的迅猛发展,建筑能耗占全社会能耗的比重将越来越大。目前全国房屋数量有400亿m2左右,建筑节能面积2.3亿m2,在每年近20亿m2的房屋竣工面积中,只有3%是节能建筑,即97%是高能耗建筑,因此我国建筑节能任重而道远。 2.1建筑节能政策现状 我国建筑节能工作从20世纪70年代后期开始,起步较晚,经过30多年的艰苦努力,建筑节能事业已取得多面的发展。如加强了建筑节能的组织管理,制定了一批建筑节能及其相关的技术标准、规。从法律层面上,我国已颁布实施了《节约能源法》,并颁布了《可再生能源法》。这些法律是建筑节能的重要依据,但法律条文难以对建筑节能及新能源建设做出详尽的规定,没有以法的形式明确确定建筑节能中各主体的法律地位,规政府、市场、企业、个人在建筑节能中的行为,制定节能建筑建设税收优惠政策,使建筑节能工作走上法制化的轨道。此外,由于建筑节能设计行业围广,存在职能交叉的问题,要建立行政审批责任制和问责制,按照“谁审批、谁监管、谁负责”的原则,对不按规定办理开工和竣工验收备案手续的,依法追究相关人员责任。建立完整的建筑节能监管体系,保证建筑节能落到实处。 2.2建筑节能的法规与标准现状 我国的建筑节能工作与发达相比起步较晚,直到1986年我国才颁布了建筑节能的行业法规JGJ26-1986民用建筑节能设计标准(采暖居住建筑部分),节能率要求30%。1995年颁布了第二个节能标准JGJ26-1995民用建

相变式蓄热材料

相变蓄热球 基本原理: 相变蓄热是依靠物质相变过程(固-液态转化)中必须吸收或放出大量相变潜热的物理现象进行能量的存储和释放。由于单位体积的相变蓄热材料能够蓄存的能量远远大于单位体积的显热蓄能材料能够承受的范围,因此相变蓄热材料具有极大的应用范围。但合适的相变材料研发一直是全世界的热点和难点。 经过长期研究,开发出具有完全自主知识产权的中温相变蓄热材料SXC-CZ。该蓄热材料依靠物质相变过程中转移大量相变潜热,可提供79摄氏度供热平台,蓄能能力达到同体积常压水的7倍。 相变蓄热球是相变蓄热产品和相变蓄热应用工程中最基础的结构产品。它以良好的热传导材料为载体,填充锦立独有的SXC-CZ相变蓄热材料,在保持良好的相变蓄热性能的情况下,大大方便了产品的安装和工程的实施,它可广泛应用于各种蓄热产品和场所,在相同的效能下,它比取代传统的水蓄热体积将缩小7倍以上。

1. 79摄氏度的相变温度满足多种蓄热要求 2.优秀的蓄热性能,在相同体积下,蓄热能力是石蜡的3倍 3.良好的热传导性,热传导速度是石蜡10倍 4.物理性能非常稳定,可长期使用无衰减 5.标准化设计,易于蓄热产品的开发和蓄热工程中的应用基本参数: 二、 蓄热球产品说明 蓄热球又称球状蓄热体,蓄热小球具有热震稳定性好、蓄热量大、强度高、易清洗、可重复利用等优点。适用于气体及非气体燃料工业炉的蓄热球燃烧系统选用。

联盛高效蓄热球,比表面积可达到240m2/m3。众多蓄热小球将气流分割成很小流股,气流在蓄热体中流过时,形成强烈的紊流,有效的冲破了蓄热体表面的附面层,又由于球径很小,传导半径小、热阻小、密度高、导热性好,故可实现蓄热式烧嘴频繁且快速换向的要求。 蓄热球可利用20~30次/h的换向,高温烟气流经蓄热体床层后内便可将烟气降至130℃左右排放。 高温煤气和空气流经蓄热体在相同路径内即可分别预热到 仅比烟气温度低100℃左右,温度效率高达90%以上。 因蓄热小球体积十分小巧,加之小球床的流通能力强,即使积灰后阻力增加也不影响热换指标。 蓄热球具有抗氧化、抗渣性强的特点。 蓄热球主要用于冶金行业热风炉蓄能蓄热用的耐火球。蓄热球具有纯度、高强度大、热震稳定性好,使用寿命长等优点,蓄热球是一种以AL2O3、高岭土、合成骨料,莫来石晶体等材质制成。按照滚制和机压成型法两种。该产品具有强度高、抗热震性优良、更换清洗方便、使用寿命长等优点。蓄热瓷球主要有陶瓷小球、多孔圆柱瓷球、多孔圆瓷球三种,该产品具有耐高温、抗腐蚀、热震稳定性好、密度高、热阻小、强度高、蓄放热量大、导热性能好等显著优点,特别适应于空气分离设备蓄热器和钢铁厂高炉煤气加热炉作蓄热填料,该技术是通过对煤气和空气进行双预热,即使低热值的劣质

建筑节能技术创新与应用

建筑节能技术创新与应用 1建筑节能概述 1.1关于建筑节能的涵义 建筑节能的涵义是指在建筑进行规划的阶段、设计阶段、建造阶段以及使用期间,符合当下的建筑节能准则,尽可能得提升建筑围护结构热工的性能,通过节能型用能系统以及可再生能源利用系统,在多个专业和领域的相互配合中切实降低建筑能源消耗的活动。 1.2关于建筑节能的意义 建筑节能能够帮助节约资源,合理得利用能源,以缓解当下能源资源有限,制约着经济与社会发展的现状。注重建筑节能在促进经济的可持续发展的同时,更可以起到保护国家资源安全,维护生态环境,提升人民群众生活水平的目的。建筑节能是建立资源节约型,环境友好型社会的重要部分。当前,我国节能供应紧张,影响经济的快速发展,其中建筑上所耗的能量大约占社会总能耗的46.7%。我国从上世纪90年代开始实施建筑节能50%的《民用建筑节能设计标准(采暖居住建筑部分)》,在2014年4月又颁布了《绿色建筑评价标准》(GB/T50378—2014),建筑节能标准的与时俱进是为了促进低能耗建筑的发展和普及,实现节能的目的。建筑节能的重要性主要表现在以下四点:第一,能够缓解能源紧张,是社会经济发展的需要;第二,能够减轻大气污染,保护生态环境;第三,能够提高建筑热环境的质量;第四,是建筑业可持续发展的需要。近年来,随着建筑行业的崛起和腾飞,作为支柱产业的建筑业对国民经济的推动作用越来越显著,因此更要重视好建筑节能工作的开展。

2有关建筑节能方面的新技术的应用 2.1门窗节能技术的应用 门窗作为建筑中不可或缺的一部分,具有促进空气流通,加强采光以及对建筑物起到围护等非常重要的作用。同时,门窗也是建筑中能量最易损失的部分。门窗造成的能量损失主要体现在:门窗的框扇和玻璃造成的传导上的能量损失,辐射热损失,隙缝带来的能力损失等等。当下,门窗节能技术的处理方式有加强门窗材料的保温及隔热的能力,加强门窗封闭性,合理配置建筑物每个朝向的窗墙比,设置恰当的遮阳系统。门窗节能的技术应用当中,较为有效果的一是窗框型材材料和断面型式的选择,而是玻璃的选择。门窗的材料众多,且近年来节能材料发展迅速,技术含量都比较高,有塑木复合型材、铝合金断热型材、钢塑整体挤出型材、铝木复合型材和UPVC塑料型材等,其中属UPVC塑料型材应用最广。UPVC塑料型材由硬质聚氯乙烯高分子的原料制成,生产中污染低,能量消耗较少,且导热系数小,密封性佳,故而保温隔热的效果不错。UPVC塑料门窗目前在西方发达国家已被广泛使用,尤其在德国,大约占到一半的比例。为避免因门窗玻璃造成的能耗量大的现象,目前通过高科技技术的运用,加工制成了诸如中空玻璃,高强度LOW2E防火玻璃(低辐射镀膜防火玻璃)、镀膜玻璃(包括反射玻璃、吸热玻璃),磁控真空溅射方法镀制含金属银层的玻璃和智能玻璃等。智能玻璃可以根据外界光感的不同进行不同的反应,分为两种智能玻璃。一种是光致变色的玻璃,当有光进行照射,玻璃感光自动变暗,使光线减少穿透力,当光的照射停止时,玻璃又恢复透亮,使光线容易穿透。还有一种是电致变色玻璃,两篇玻璃之上进行导电膜和变色物质的镀化,借助电压的调节,使其变色物质发

135电锅炉水蓄热技术的应用实例

电锅炉水蓄热技术的应用实例 现代建筑设计集团上海建筑设计研究院有限公司张伟程 摘要:介绍了电锅炉水蓄热技术在具体工程设计中的应用,并着重介绍了该系统的概况、流程以及各种运行模式下的控制方式。 关键词:电锅炉水蓄热运行模式控制 1 电锅炉水蓄热技术介绍 集中空调的冬季供暖部分,根据热源的类型,可以分为空气(或水)源热泵、燃油、燃煤气(或天然气)、燃煤、用电等几大类。 从用户的角度看,使用电作为热源不需要排废水、废气、废渣,也无明火,不需设置堆煤或储油场地,为最清洁能源,不存在消防、环保等特殊要求,且用电设备可以做到完全自动控制,减少人为操作所带来的浪费及管理难度。 对于以电能作为空调供暖热源的系统,在《公共建筑节能设计标准》GB50189-2005中有明确的规定:“除非夜间可利用低谷电进行蓄热、且蓄热式电锅炉不在日间用电高峰和平时段时间启用的建筑,不得采用电热锅炉、电热水器作为直接采暖和空气调节系统的热源。”故在实际应用时,不得采用电锅炉直供的形式,一般采用电锅炉水蓄热系统,且以全量蓄热为好。 电锅炉水蓄热系统是指在电力低谷期间,以水为介质将电锅炉产生的热量储存在蓄热装置中,适时供应给用热设备的系统[1]。这样在用电高峰时段就可以不开或者少开电锅炉,从而减少高峰时段用电量,起到移峰填谷的作用。电锅炉水蓄热从系统构成上来说只是在常规电热锅炉的基础上增加了一套水蓄热装置,其他各部分在结构上与常规热源系统并无不同,它在使用范围方面也与常规供热系统基本一致。通常水蓄热装置有常温(常压、温度低于100℃)和高温(高压、温度高于100℃)两种,蓄热量有全量和分量两种模式,蓄热系统有串联和并联两种流程。 电锅炉水蓄热系统具有以下几个显著优点: 1)适合在无集中供热与燃气源,而电力充足、供电政策支持和电价优惠的地区使用。 2)采用电能,不存在排放废水、废气、废渣之忧,无燃烧过程,安全可靠性高。 3)由于水蓄热系统是按白天全量负荷在夜间蓄热时段的平均值来确定电锅炉装机容量的,而电锅炉直供系统则是按白天的峰值负荷来确定的。所以相对于电锅炉直供系统,水蓄热系统减少了电锅炉装机容量,其附属运转设备和电力设施的装机容量也相应减少,从而减少了初投资费用。 4)可根据外界空调负荷的变化更及时、灵活、精确地供应储存的热量。 5)利用峰谷电价差,可以明显减少运行费用。有利于平衡用电负荷,缓解供电矛盾[2]。 6)当停电时,用小功率应急发电机带动循环水泵即可继续提供热量,提高了供暖系统的可靠性。 2 工程概况 陆家嘴时代金融中心(B3-5地块)冬季空调供暖设计计算热负荷峰值为5 044 kW:1~6层(裙房)973 kW,8~20层(低区)1 331 kW,22~34层(中区)1 331 kW,36~46层(高区)1 409 kW。考虑到当时的市政能源条件(无集中供热与燃气源,电力充足、供电政策支持和电价优惠)和初投资与运行费用的效益比以及机房安全条件,本工程采用常压型电热水锅炉生产的蓄热水作为空调供暖热源,采用常温全量(不考虑不可预见系数)蓄热模式、并联流程,并根据楼层分布情况分设4套系统,机房分别布置于7层,21层,35层,PH1设备层。每套系统均设有2台675 kW的电锅炉、1个有效容积为200m3的蓄热水箱,其设计蓄热水温为45~90 ℃,蓄热量为10 465 kWh;考虑10%的余量,联合供热(板式换热器的)总供热能力为1 600 kW;板式换热器一次侧的设计进、出水温度为55 ℃/45 ℃、二次侧(空调末端设备)的设计供、回水温度为50 ℃/40 ℃。该水蓄热系统夏季可兼作蓄冷用,其蓄热水箱转变为蓄冷水箱,主要用于新风空调箱的供冷。 系统有冬季电锅炉单蓄热、电锅炉单供热、蓄热水箱单供热、电锅炉与蓄热水箱联合供热(蓄热水箱优先)、电锅炉边蓄热边供热以及夏季制冷机蓄冷、蓄冷水箱放冷共7种运行模式,其原理见图1。

浅析中国建筑节能技术的发展现状

浅析中国建筑节能技术的发展现状 【摘要】建筑能耗是我国能源消耗的重要组成部分,随着城市建筑的快速发展,建筑能耗越来越受到我国领导的关注,目前,有关中国建筑节能以及相关的节能技术的发展正如火如荼的进行中。为了对我国的建筑节能技术有更多的了解,并促进其快速的发展,本文主要从建筑节能的定义、我国建筑节能的发展现状、具体建筑节能技术的应用与发展等三方面进行论述,以供参考。 【关键词】建筑节能;发展现状;节能门窗 0.前言 由于我国经济一直没有从粗放型的增长方式中改变出来,从而引起了一系列的高污染、高能耗的问题,针对这些问题,我国“十二五”规划中明确提出“建设资源节能型、环境友好型社会”的要求,而且建筑能耗占我国能源消耗的大部分,随着建筑业的快速发展,建筑能耗将会以更快的增长方式变化。因此,大力发展建筑节能技术,降低建筑能耗对社会的可持续发展具有重要的意义。 1.建筑节能的定义 建筑节能的定义分为狭义和广义之说,狭义的建筑节能指的是在建筑物正常使用期限内,为了达到降低能源消耗、减轻环境负荷,使环境得到有效的改善的目的,从而充分利用可再生资源,并尽可能的使建筑设备的能效系数得到提高,最大限度的降低建筑物外围结构的能量损失,在既保证建筑功能和要求的前提下,又能达到节省能源的目的。广义的建筑节能指的是在从建筑材料的开采、生产、运输直到建筑寿命期终止这一过程中,保证每个环节上都能充分利用能源材料,并提高其利用率,从而既保证了建筑的功能和要求,又达到了降低能源消耗、减轻环境污染、改善环境的目的。 目前,被普遍认可的定义为在进行建筑物的建造的全过程中,不仅要合理的使用能源,降低能耗,有效的提高能源利用率,而且还要提高建筑的舒适性,保证生活和工作的质量。 同样,建筑能耗,被大家普遍接受的定义为在建筑正常使用期限内,所消耗的能耗均是为了维持建筑的正常功能。 2.我国建筑节能的发展现状 2.1我国建筑能耗现状 长期以来,我国社会发展和国民经济所面临的主要问题就是由于人口过多,人均能源占有量偏低、国民生产总值能耗过高。近些年,随着我国建筑业的蓬勃发展,建筑能耗增长速度急剧变快,其具体原因如下:首先,房屋建筑的数量不

相变蓄热材料综述

相变蓄热材料综述 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

相变虚热材料综述蓄热技术是提高能源利用效率和保护环境的重要技术,可用于解决热能供给与需求失配的矛盾,在太阳能利用、电力“移峰填谷”、废热和余热的回收利用以及工业与民用建筑和空调的节能等领域具有广泛的应用前景,是世界范围内的研究热点.目前,主要的蓄热方法有显热蓄热、潜热蓄热和化学反应蓄热三种.显热蓄热是利用物质的温度升高来存储热量的.利用陶瓷粒、水、油等的热容进行蓄热,把已经高温或低温变换的热能贮存起来加以利用,如固体显热蓄热的炼铁热风炉、蓄热式热交换器、蓄热式燃烧器等,通常的显热蓄热方式简单,成本低,但储存的热量小,其放热不能恒温的缺点化学反应蓄热是指利用可逆化学反应的结合热储存热能.发生化学反应时,可以有催化荆,也可以没有催化剂一种高密度高能量的蓄热方式,它的储能密度一般高于显热和潜热,此种储能体系通过催化剂和产物分离易于能量长期储存.潜热蓄热(相变蓄热)是利用物质在凝固/熔化、凝结/气化、凝华/升华以及其他形式的相变过程中,都要吸收或放出相变潜热的原理来进行能量储存的技术.利用相变材料相变时单位质量(体积)潜热,蓄热量非常大能把热能贮存起来加以利用,如空间太阳能发电用蓄热器,深夜电力调峰用蓄热器,其储能比显热一个数量级,而且放热温度恒定,但其储热介质一般有过冷、相分离、易老化等缺点。 一相变蓄热材料的分类 根据相变种类的不同,相变蓄热一般分为四类:固一固相变、固一液相变、液一气相变及固一气相变。由于后两种相变方式在相变过程中伴随有

建筑节能与绿色建筑应用技术(20210227015122)

建筑节能与绿色建筑应用技术 在当今世界对低碳排放的追求越演愈烈、人们对健康节能的要求越来越髙的背景下,节能减排与绿色生态成为了建筑设汁的发展方向?绿色建筑是我们对周围环境的改变和适应的开发行为。建筑行为要素是自然资源的消耗、改变和转化,绿色建筑行为在各方而都对环境产生重要的影响,也将对经济社会可持续发展产生重大影响。文章试从绿色建筑肖能技术的应用方而进行探讨和分析,以期能为绿色建筑肖能技术的应用提供一些有益的思路。 一、何谓绿色建筑 绿色建筑在概念上主要包含如下几点:(1)肖能,在这里主要是强调要我们减少各种务样的资源浪费;(2)保护环境,在这里主要是强调减少环境污染以及减少二氧化碳的排放数量;(3 )满足人们使用上的要求,为人们提供的使用空间要做到“适用”、“健康"、“髙效"。绿色建筑从设计、建设、使用、维护到拆除每个环节都有各种各样的肖能及环保要求.这意味着在设计阶段就要重点考虑环境因素的利用,还要尽量地降低建设过程对环境造成的不良影响,且确保建筑在运行阶段能为人们提供低耗、舒适、健康的空间,并全力降低拆除时对环境所造成的危害程度。 U、緑色建筑节能技术的应用勺(一)合理的建筑布局能够大幅降低建筑使用过程中的能耗9在一栋建筑的规模、功能、区域确立了以后,建筑外形和朝向对建筑能耗将有重大彫响. 一般认为,建筑体形系数与单位建筑面积对应的外表而积的大小成正比关系,合理的建筑布局可以降低采暧空调系统的电力使用载荷。从热力学与空气动力学的角度出发,较小的体形系数与较小的外部负荷呈现正比关系。而用途为住宅的建筑物外部负荷不稳立其对能戢消耗占主要因素。而对运动场馆、影院等大型公共用途的建筑物而言,其内部的发热量要远远高于外部的发热量,所以在设汁中较大的体形系数更加有利于散热。也就是说普通住宅与大型的公共建筑由于用途不一样,其发热量影响因素也不一样,从石能的角度出发,英体形系数的设汁要求是相反的.,(二)建筑物进行外墙保温能够大幅降低建筑使用过程中的能耗M 建筑物进行外墙保温是一项能够大幅提髙热工性能的绿色肖能工程。其外墙保温材料的铺设厚度与苴保温效果呈现正比例关系?外墙保温工艺的广泛应用不但可以在寒冷的冬季有效地避免室内温度的快速流失,而且在炎热的夏季还可以有效地避免由于太阳光辐射而导致的外墙温度升髙进而带动室内温度的上升,从而减小了空调等制冷设备的工作载荷。这样一来,通过舗设建筑物外墙保温层不但使夏季的隔热性能得到提升还使得冬季的保温性能得以加强。这样就减轻了冬季供暧压力和夏季的降温电力载荷,从而使得建筑物的能耗得到降低。所以,从考虑降低能耗的角度来看,我们应该大力推广建筑物外墙保温工艺与技术进行广泛的实施。9(三)对室内环境进行系统控制以达到综合性系统节能的目的躱色建筑的一大特点就是综合利用空气处理、尽可能地多采用自然光、优化完善自然通风设讣等诸多综合系统,整体性多方位地进行优化与系统整合。将多方面的使用功能有机地进行整合与优化完善,科学系统地从整体上降低建筑物的能耗。在整体性综合控制当中暧通系统占有极其重要的作用, 因为一般的建筑当中暖通系统占英总能耗百分比髙达50%以上。对建筑物的暧通系统进行科学、合理的优化和有机的整合具有极其重要的意义?而要降低暧通系统的能耗,首当其冲就是要从优化暧通系统的设计入手,其节能成败的关键因素是对暧通系统的自动控制。而从当前的暧通空调系统优化设讣方案实施效果来看,肖能效率最高的基本上都是采用集散控制技术的绿色建筑系统,一般地,整个暧通空调系统的节能效率最高可达3 0 %左右。 (四)充分利用洁净丰富的太阳能天然能源勺就目前而言,太阳能为目前已开发的绿色能源中最重要的能源,是取之不尽、用之不竭、广泛存在的天然能源,其具有极为洁净和廉价等诸多显著优点。目前,在住宅建筑中太阳能的利用主要有太阳能空调、太阳能热水器和太阳能电池。对于我国而言太阳能资源相对还是十分丰富的,浙江地区年平均日照时数为171 0?2100小时。这为我国开发利用洁净的太阳能资源提供了良好的条件。现在制约着太阳能利用的最大因素在

建筑节能技术应用与发展的分析分析

建筑节能技术应用与发展 的分析 一、建筑材料节能技术的应用 1.节能墙体材料 新型节能墙体材料品种较多,主要包括砖、块、板等,如粘土空心砖、掺废料的粘土砖、非粘土砖、建筑砌块、加气混凝土、轻质板材、复合板材等。EPS砌块是用阻燃型聚苯乙烯泡沫塑料模块作模板和保温隔热层,而中芯浇筑混凝土的一种新型复合墙体。该类砌块具有构造灵活,结构牢固,施工快捷方便,综合造价低,节能效果好等优点。纳土塔板是由聚苯乙烯、水泥、添加剂和水制成的隔热吸声水泥聚苯乙烯空心板构件经黏合组装成 墙体。整个墙体的内部构成纵横上下左右相互贯通的孔槽,孔槽浇筑混凝土或穿插钢筋后再浇筑混凝土,在墙内形成刚性骨架。纳土塔板无钢筋混凝土墙体的平均抗压强度为20.8 MPa,配钢筋混凝土墙体的平均抗压强度为32~35 MPa。同时,具有良好的防火耐火特征。 2.外墙保温隔热材料 伴随着人们生产生活条件的改善,人们对各种保温隔热材料的需求越来越高,推动了保温材料工业的快速发展,主要有膨胀珍珠岩、矿物棉、玻璃棉、泡沫塑料、耐火纤维、硅酸钙绝热制品等。胶粉聚苯颗粒保温材料是由胶凝材料和聚苯颗粒轻骨料分

别按配比包装组成。胶凝材料选用水泥、粉煤灰、不定型二氧化硅及各种助剂。该材料固化后热导率低,密度小,热工性能好,具有良好的和易性、耐候性,充分考虑了热应力、水、火、风压及地震力的影响,其界面砂浆采用无空腔和逐层渐变柔性释放应力的技术路线,可有效地解决抗裂难题。 3.节能型建筑材料____多功能门窗 新型的节能玻璃主要有真空玻璃、低辐射玻璃、复合玻璃等几种类型,真空玻璃是采用两片或三片玻璃同空气层组合形成,并使密封的两片玻璃玻璃间的玻璃形成真空,使玻璃间的传导热接近零。真空玻璃是现在为止节能效果最好的玻璃。低辐射玻璃也被称为Low-E玻璃,即在普通玻璃的基础上镀行含有银层的膜系,将百分之八十的远红外热辐射反射出去,从而避免二次热传递。复合玻璃是将真空玻璃和低辐射玻璃结合的一种玻璃,即在真空玻璃中至少一块用低辐射玻璃制成,达到取两种玻璃的优点合一的效果。新型门窗框主要有塑钢型材、塑铝型材、玻璃钢型材三种框扇组成。塑钢型材的门窗框有保温性好,耐腐蚀防震系数高,隔声阻燃性能好,但膨胀系数高,但PVC不耐高温,不适用于大尺寸窗及高风压场合。塑铝型材门窗框扇保温性能好且刚性好,适合大尺寸及高风压场合使用,但价格高以致难以广泛普及。玻璃钢型材的框扇隔音性能好,重量轻,寿命长,是国家鼓励发展的重点节能产品。 二、建筑结构设计节能技术

相变蓄热材料综述

相变虚热材料综述 蓄热技术是提高能源利用效率和保护环境的重要技术,可用于解决热能供给与需求失配的矛盾,在太阳能利用、电力“移峰填谷”、废热和余热的回收利用以及工业与民用建筑和空调的节能等领域具有广泛的应用前景,是世界范围内的研究热点.目前,主要的蓄热方法有显热蓄热、潜热蓄热和化学反应蓄热三种.显热蓄热是利用物质的温度升高来存储热量的.利用陶瓷粒、水、油等的热容进行蓄热,把已经高温或低温变换的热能贮存起来加以利用,如固体显热蓄热的炼铁热风炉、蓄热式热交换器、蓄热式燃烧器等,通常的显热蓄热方式简单,成本低,但储存的热量小,其放热不能恒温的缺点化学反应蓄热是指利用可逆化学反应的结合热储存热能.发生化学反应时,可以有催化荆,也可以没有催化剂一种高密度高能量的蓄热方式,它的储能密度一般高于显热和潜热,此种储能体系通过催化剂和产物分离易于能量长期储存.潜热蓄热(相变蓄热)是利用物质在凝固/熔化、凝结/气化、凝华/升华以及其他形式的相变过程中,都要吸收或放出相变潜热的原理来进行能量储存的技术.利用相变材料相变时单位质量(体积)潜热,蓄热量非常大能把热能贮存起来加以利用,如空间太阳能发电用蓄热器,深夜电力调峰用蓄热器,其储能比显热一个数量级,而且放热温度恒定,但其储热介质一般有过冷、相分离、易老化等缺点。 一相变蓄热材料的分类 根据相变种类的不同,相变蓄热一般分为四类:固一固相变、固一液相变、液一气相变及固一气相变。由于后两种相变方式在相变过程中伴随有

大量气体的存在,使材料体积变化较大,因此尽管它们有很大的相变热,但在实际应用中很少被选用,固一固相变和固一液相变是实际中采用较多的相变类型。根据材料性质的不同,一般来说相变蓄热材料可分为:有机类、无机类及混合类相变蓄热材料。其中,石蜡类、脂酸类是有机类中的典型相变蓄热材料;结晶水合盐、熔融盐和金属及合金等是无机类中的典型相变蓄热材料。混合类又可分为:有机混合类、无机混合类及无机一有机混合类。 根据使用温度范围的不同,潜热蓄热材料(相变蓄热)又可分为分为高、中、低温三种. 1低温相变蓄热材料 低温相变蓄热材料主要有无机和有机两类无机相变材料主要包括结晶水合盐、熔融盐、金属或合金.结晶水合盐通常是中、低温相变蓄能材料中重要的一类,具有价格便宜,体积蓄热密度大,熔解热大,熔点固定,热导率比有机相变材料大,一般呈中性等优点.但在使用过程中会出现过冷、相分离等不利因素,严重影响了水合盐的广泛应用决过冷的办法主要有两种,一种是加入微粒结构与盐类结晶物相类似的物质作为成核剂.例如,Dr.Telkes经过千余次试验后发现在Na2SO。·10HzQ中加入硼酸能明显地降低过冷度;另一种是保留一部分固态相变材料,即保持一部分冷区,使未融化的一部分晶体作为成核剂,这种方法文献上称为冷指(Cold finger)法,虽然操作简单,但行之有效∞J.为了解决相分离的问题,防止残留固体物沉积于容器底部,人们也研究了一些方法,一种是将容器做成盘状,将这种很浅的盘状容器水平放臵有助于减少相分离;另一种更有效的方法是在混合物中添加合适的增稠剂,防止混合物中成分的分离,但并不妨碍

目前我国建筑节能主要技术及应用范围

目前我国建筑节能主要技术及应用范围 常规建筑能源结构按专业可分为,给排水、电气、暖通三个部分,其中暖通空调的能耗占建筑能耗30%~50%左右,且在逐年上升。随着人均建筑面积的不断增大,暖通空调系统的广泛应用,用于暖通空调系统的能耗将进一步增大。这势必会使能源供求矛盾的进一步激化。另一方面,现有的暖通空调系统所使用的能源基本上是高品位的不可再生能源,其中电能占了绝对比例,因此要把节能重点放在暖通空调节能技术及其应用上。 第一章暖通节能技术及其应用 暖通节能技术按其功能可分为冷、热源供给机房部分(冷水机组、锅炉、热泵、水泵等)、输送冷、热源介质的管网部分(冷冻水管、热水管)、末端释放部分(风机盘管、地热、暖气片等)、自动控制部分(风机盘管控制器、机房水泵变频控制、BA系统),室内冷、热保持、保温的围护结构五大部分。 一、冷、热源供给机房部分 由传统的冷水机组、VRV空调、分体式挂机、柜机、(燃煤、天然气、柴油)锅炉、集热力管网供热供给方式,改变为下表所列低品位能源供应方式,可实现节能30%~40%左右。 【太阳能热水系统】 工作原理:太阳能光热技术是指将太阳辐射能转化为热能进行利用的技术。 适用范围: 1、除西南地区(四川、重庆、贵州年日照时数仅为:1000—1400h/a,年辐射总量仅为3344—4180 MJ/m2.a)不适用,我国其它地区均适用。 2、主要用于生活热水供应。 3、在具备大面积批量安装条件,满足生活热水供应前提下,将余量热水与热泵系统联合供暖。 4、安装条件:需无遮挡物,采光(阳光直射)较好,又不影响建筑美观的场所安装,且需占用一定 的面积,一般按12~15m2可产1吨40~60℃热水,对项目占地面积测算。 【土壤源热泵】 工作原理:夏季吸收房间中的热量,储存到土壤中,达到制冷效果;冬季将土壤中的热量“提取”出来,利用能量转换对室内供热。 适用范围: 1、同时具有冬、夏空调负荷,并且年冷、热负荷较接近(热平衡)。 2、项目当地地下土壤温度13~19℃之间时土壤换热器具有较好的冬夏取放热特性,这个范围基本上 包括了我国大部分夏热冬冷地区和京、津、唐地区,但在东北和华南地区采用土壤源热泵是不适宜的,其冷热负荷差异过大,热泵冬夏两用的效能难以发挥,而且土壤热平衡难以保证。

电锅炉水蓄热技术的应用实例

电锅炉水蓄热技术的应 用实例 Company number【1089WT-1898YT-1W8CB-9UUT-92108】

电锅炉水蓄热技术的应用实例 现代建筑设计集团上海建筑设计研究院有限公司张伟程 摘要:介绍了电锅炉水蓄热技术在具体工程设计中的应用,并着重介绍了该系统的概况、流程以及各种运行模式下的控制方式。 关键词:电锅炉水蓄热运行模式控制 1 电锅炉水蓄热技术介绍 集中空调的冬季供暖部分,根据热源的类型,可以分为空气(或水)源热泵、燃油、燃煤气(或天然气)、燃煤、用电等几大类。 从用户的角度看,使用电作为热源不需要排废水、废气、废渣,也无明火,不需设置堆煤或储油场地,为最清洁能源,不存在消防、环保等特殊要求,且用电设备可以做到完全自动控制,减少人为操作所带来的浪费及管理难度。 对于以电能作为空调供暖热源的系统,在《公共建筑节能设计标准》 GB50189-2005中有明确的规定:“除非夜间可利用低谷电进行蓄热、且蓄热式电锅炉不在日间用电高峰和平时段时间启用的建筑,不得采用电热锅炉、电热水器作为直接采暖和空气调节系统的热源。”故在实际应用时,不得采用电锅炉直供的形式,一般采用电锅炉水蓄热系统,且以全量蓄热为好。 电锅炉水蓄热系统是指在电力低谷期间,以水为介质将电锅炉产生的热量储存在蓄热装置中,适时供应给用热设备的系统[1]。这样在用电高峰时段就可以不开或者少开电锅炉,从而减少高峰时段用电量,起到移峰填谷的作用。电锅炉水蓄热从系统构成上来说只是在常规电热锅炉的基础上增加了一套水蓄热装置,其他各部分在结构上与常规热源系统并无不同,它在使用范围方面也与常规供热系统基本一致。通常水蓄热装置有常温(常压、温度低于100℃)和高温(高压、温度高于100℃)两种,蓄热量有全量和分量两种模式,蓄热系统有串联和并联两种流程。 电锅炉水蓄热系统具有以下几个显着优点: 1)适合在无集中供热与燃气源,而电力充足、供电政策支持和电价优惠的地区使用。 2)采用电能,不存在排放废水、废气、废渣之忧,无燃烧过程,安全可靠性高。 3)由于水蓄热系统是按白天全量负荷在夜间蓄热时段的平均值来确定电锅炉装机容量的,而电锅炉直供系统则是按白天的峰值负荷来确定的。所以相对于电锅炉直供系统,水蓄热系统减少了电锅炉装机容量,其附属运转设备和电力设施的装机容量也相应减少,从而减少了初投资费用。 4)可根据外界空调负荷的变化更及时、灵活、精确地供应储存的热量。 5)利用峰谷电价差,可以明显减少运行费用。有利于平衡用电负荷,缓解供电矛盾 [2]。 6)当停电时,用小功率应急发电机带动循环水泵即可继续提供热量,提高了供暖系统的可靠性。 2 工程概况 陆家嘴时代金融中心(B3-5地块)冬季空调供暖设计计算热负荷峰值为5 044 kW:1~6层(裙房)973 kW,8~20层(低区)1 331 kW,22~34层(中区)1 331 kW,36~46层(高区)1 409 kW。考虑到当时的市政能源条件(无集中供热与燃气源,电力充足、供电政策支持和电价优惠)和初投资与运行费用的效

几种主要建筑节能技术的发展现状和应用前景

几种主要建筑节能技术的发展现状和应用前景 引言 随着社会经济的发展和生活水平的提高,人们在追求更加舒适的居住环境的同时,也在消耗着越来越多的能源。据文献[1]、[2]报道,在发达国家,建筑能耗约占总能耗的40%,在我国,这一比例为25%左右,居各种能耗首位,其中50%以上消耗在冬季采暖和夏季制冷空调上。随着世界范围内能源供应紧张状况日益加剧,能源将成为制约各国经济的主要因素。为此,我国提出了社会经济和能源可持续发展的战略,建设节约型社会,在实现国民经济快速发展的同时努力降低单位GDP的能源消耗。而建筑行业作为耗能大户,节能潜力巨大,大力发展和推广外墙保温、太阳能光热和光电、地源热泵、热管和相变蓄热材料等新型建筑节能技术,在不断提高人们居住环境舒适度的同时,降低建筑耗能总量,有效缓解能源的供需矛盾,既具有实际经济意义,又具有重要的社会意义和环保价值。 2 外墙保温技术 20世纪90年代初,外墙保温技术开始在我国推广使用并表现出良好的保温和节能效果。其主要方法是在建筑物基层墙体的外侧设置保温层(一般为厚度60mm的聚苯泡沫板),在保温层外面做装饰层。基层墙体和聚苯板之间用专用粘接剂连接,聚苯板用尼龙锚栓固定,然后在保温层外抹聚合物水泥砂浆保护层,并压人耐碱涂塑玻纤网格布,最外层用抗裂腻子和涂料找平和装饰。 2.1外墙保温技术的优点

根据对外墙保温技术实际使用效果进行测试,发现该技术具有如下优点: (1)节能效果明显。由于保温层的敷设具有连续性,可以避免传统墙体结构所产生的热桥现象,而且聚苯板的导热系数较小,只有0.041W/(mK),能够有效地减少室内的热损失和冷损失。采取该保温措施后,在冬季比较寒冷的东北地区,居住建筑的节能效果可以达到50%,在北京地区则能达到65%[3,4]; (2)可以减薄墙体厚度和减轻墙体的重量,从而增大房屋的使用面积。采用外墙保温技术后,在满足节能要求的前提下,可以使普通砖墙的厚度从490mm减薄为320mm,从而增加使用面积2%~4%,同时也节约了土地等资源的消耗; (3)能够增加室内环境的舒适度,并能延长建筑物的使用寿命。由于采取了外保温技术,使得墙体的蓄热功能增大,当室外温度发生变化时,复合墙体的蓄热可以缓冲室内温度的变化,使人感到相对舒适;而且由于基层墙体的温度变化变得比较平缓,产生的热应力也大大减小,使得基层墙体产生裂缝和变形的可能性降低,因此能够延长建筑物的使用寿命; (4)施工工艺简单,使用范围广泛。该技术既适用于多层建筑,又适用于高层建筑;既能满足新建筑物的节能要求,也能满足旧建筑的墙体改造;通过采取一定的技术措施和工艺,还能满足建筑立面设计的装饰要求。 2.2 外墙保温技术的缺点

四新及建筑节能技术应用

“四新”技术和建筑节能技术在工程上的应用开封大宏城市广场一期工程位于郑开大道南侧、一大街与三大街之间,交通便利,环境优美。由2栋高层办公楼、1栋综合商用楼及相连地下车库组成;规划总用地面积40378平方米,总建筑面积183264.38平方米,地下建筑面积59687.49平方米,其中人防21800平方米。工程最终质量目标:确保“中州杯”。根据工程特点,“四新”技术和建筑节能技术在工程上的应用如下: 一、地基基础和空间工程技术 1、抗拔锚杆和抗拔桩技术 本工程地下水位为自然地面下2.00m左右,地下两层,地上五层,地下水对建筑物浮力较大,设计采用抗拔锚杆和抗拔桩。 2、复合土钉墙支护技术 本工程的基坑大部分深度约10.78米,为了保证周围地基土的稳定性和安全性拟采用预应力锚索、预应力土钉+护坡桩支护,增大现场施工场地,减少基坑的开挖量,同其它护坡形成对比,具有良好的技术经济效益。本工程基础边坡全部采用土钉墙支护技术。 二、混凝土裂缝控制技术 砼裂缝已经成为砼工程质量通病,该工程拟对防治砼裂缝采取系统的措施。本工程的筏板基础、框剪结构和框架结构计划应用混凝土防裂技术。在砼内部掺加抗裂防渗剂,使砼裂缝完全处于受控状态,以防止砼内外温差过大。 三、钢筋及预应力技术

1、高强钢筋应用技术 本工程的基础伐板、基础梁、板和框架梁、柱均采用HRB400级钢筋,其强度比普通Ⅱ级钢提高10%~15%,而价格增加不多,保证工程质量,节约钢材,降低成本。 2、大直径钢筋直螺纹连接技术 本工程大量使用HRB400钢筋,主要规格有: 、 、

、、、

、、、

、等十种。其中, 、 、

国内外建筑节能关键技术的发展现状及趋势

国内外建筑节能关键技术的发展现状及趋势 [摘要]建筑能耗将是我国未来能源消费的主要增长点,建筑节能技术的研究应用将对我国未来的能源消费产生深远的影响。为此,本文对当前国内外的建筑节能关键技术进行了比较系统的总结,并从建筑物本体、建筑设备和建筑环境控制系统三个角度重点回顾了我国的建筑节能技术的发展现状,分析了取得的成果的同时研究了各种关键技术的发展障碍。在此基础上,展望了我国未来建筑节能的重点发展领域,并指出了未来应该重点支持的建筑节能关键技术的发展方向。 1 国外建筑节能关键技术的发展现状和趋势 1.1 房间空调器 在世界空调器行业中,60%的市场被日本所占有,并且在制造技术、控制技术上都处于世界最前沿。现以日本空调器的发展为例来说明其变迁过程。空调器的发展过程,大致可以分为五个阶段。在其发展过程中,变频技术和人工神经网络技术在房间空调器上的应用,具有划时代的意义,它不仅为创造舒适环境、实现空调器的高效节能运行提供了技术保证,而且为VRV 空调系统的开发和发展提供了坚强的技术基础。 日本空调器的发展主要集中在三个方面。追求空调器的高效节能,特别是在1972年石油危机以后,改善压缩机、热交换器、风扇的性能,加强对制冷循环特性的研究,优化制冷系统,实现了空调系统的小型化、低能耗、低噪音、高可靠性;追求室内环境的高舒适性,从单一的温度控制发展到室内热环境特性(如PMV等)的综合控制,从简单的双位控制发展到人工神经网络与模糊技术相结合的智能控制,以实现人们对舒适性的要求;追求空调系统的多功能化、多元化,从单冷型窗式空调器发展到热回收型VRV空调系统,极大地拓广了冷剂式空调系统的使用范围,开辟了集中空调系统的新领域。 到了上世纪90年代以后,人们对舒适性的要求,趋向于自然环境的特征。人们希望空调环境具有能感觉到温度和气流的变化、能感觉到温暖和凉爽、有音乐声、有芳香感和明亮感等特征。总的目的是让人处于一个精神愉快的空调环境中,这就是人们追求的“感知空调阶段或动态自然环境阶段”。要实现这种模拟自然环境,必须采用包括“人体感觉输入控制”、“热环境因素综合控制”、“空气质量控制”、“声、光控制”在内的“环境变化控制技术”,环境变化控制技术的实现不仅需要开发出相应的传感器,更重要的是要建立一套符合人体生理和心理需要的人工环境智能控制理论。 1.2 小型中央空调 1.2.1 美国小型中央空调发展现状

相关主题
文本预览
相关文档 最新文档