当前位置:文档之家› 乙炔生产工艺流程简述

乙炔生产工艺流程简述

生产工艺流程简述:

本项目采用“电石入水法”生产溶解乙炔,其主要原料为电石和水。

(1)电石破碎

人工将电石库内的大块电石破碎成50-200mm的电石。

(2)乙炔发生

将破碎好的电石人工运至发生器间,通过电动葫芦将电石提升至3.5米平台上,采取电石入水的方式进行生产操作。电石和水在乙炔发生器内进行水解反应,生成乙炔气和氢氧化钙(熟石灰)并释放出热量。

粗乙炔气体由发生器顶部逸出,经喷淋预冷器及正、反水封进入乙炔气柜中。电石渣浆流入渣浆槽,发生器的反应过程如下:

主反应:

CaC2+2H2O→Ca(OH)2+C2H2+130kJ/mol

副反应:

CaO+ H2O→Ca(OH)2 +63.6kJ/mol

CaS+ 2H2O→Ca(OH)2 +H2S

Ca3P2+ 6H2O→3Ca(OH)2 +2PH3

Ca3N2+ 6H2O→3Ca(OH)2 +2NH3

Ca3Si+ 4H2O→2Ca(OH)2 +SiH4

Ca3As2+ 6H2O→3Ca(OH)2 +2AsH3

(3)乙炔净化、中和、气水分离

从气柜中出来的乙炔气经过一清塔、二清塔,然后进入中和塔。因电石中含有少量的硫、磷,所以粗乙炔气体中含有少量的H2S、PH3,须在装瓶之前进入清净塔加以净化。在清净塔与含有效氯0.085~0.12%的次氯酸钠溶液直接接触反应,以脱除粗乙炔气中的磷、硫杂质。由清净塔顶排出气体进入中和塔与塔顶喷入的10~15%液碱中和反应后,经气水分离器除去气相中水分,使纯度98.0%以上的精乙炔气送压缩系统。工艺反应式如下:

4NaClO+H2S→H2SO4+4NaCl

4NaClO+PH3→H3PO4+4NaCl

反应生产的酸,再用10~15%的碱液中和,其反应式为:

2NaOH+ H2SO4→Na2SO4+2H2O

3NaOH+ H3PO4→Na3PO4+3H2O

2NaOH+ CO2→Na2CO3+H2O

(4)压缩、油水分离、干燥

净化的乙炔气经低压水封进入压缩机,本工段选用2Z-1.5/25型乙炔压缩机,采用分子筛高压干燥装置。压缩至2.4MPa,温度35℃左右,经高压油分离器油水分离后,进入高压干燥器干燥,送乙炔灌瓶架灌装。

(5)灌装

将压缩后的乙炔气装入有丙酮的乙炔气瓶中,充气速度一次充气<0.6m3/h,二次充气<0.8m3/h,气瓶温度控制在40℃以下,充气重量5-7公斤。充灌时应以冷却水喷淋瓶壁,以移走溶解热。

乙炔生产工艺流程概述

生产工艺流程简述 本项目采用“电石入水法”生产溶解乙炔,其主要原料为电石和水。 (1)电石破碎 人工将电石库内的大块电石破碎成50-200mm的电石。 (2)乙炔发生 将破碎好的电石人工运至发生器间,通过电动葫芦将电石提升至3.5米平台上,采取电石入水的方式进行生产操作。电石和水在乙炔发生器内进行水解反应,生成乙炔气和氢氧化钙(熟石灰)并释放出热量。 粗乙炔气体由发生器顶部逸出,经喷淋预冷器及正、反水封进入乙炔气柜中。电石渣浆流入渣浆槽,发生器的反应过程如下: 主反应: CaC2+2H2O→Ca(OH)2+C2H2+130kJ/mol 副反应: CaO+ H2O→Ca(OH)2 +63.6kJ/mol CaS+ 2H2O→Ca(OH)2 +H2S Ca3P2+ 6H2O→3Ca(OH)2 +2PH3 Ca3N2+ 6H2O→3Ca(OH)2 +2NH3 Ca3Si+ 4H2O→2Ca(OH)2 +SiH4

Ca3As2+ 6H2O→3Ca(OH)2 +2AsH3 (3)乙炔净化、中和、气水分离 从气柜中出来的乙炔气经过一清塔、二清塔,然后进入中和塔。因电石中含有少量的硫、磷,所以粗乙炔气体中含有少量的H2S、PH3,须在装瓶之前进入清净塔加以净化。在清净塔与含有效氯0.085~0.12%的次氯酸钠溶液直接接触反应,以脱除粗乙炔气中的磷、硫杂质。由清净塔顶排出气体进入中和塔与塔顶喷入的 10~15%液碱中和反应后,经气水分离器除去气相中水分,使纯度98.0%以上的精乙炔气送压缩系统。工艺反应式如下: 4NaClO+H2S→H2SO4+4NaCl 4NaClO+PH3→H3PO4+4NaCl 反应生产的酸,再用10~15%的碱液中和,其反应式为: 2NaOH+ H2SO4→Na2SO4+2H2O 3NaOH+ H3PO4→Na3PO4+3H2O 2NaOH+ CO2→Na2CO3+H2O (4)压缩、油水分离、干燥 净化的乙炔气经低压水封进入压缩机,本工段选用2Z-1.5/25型乙炔压缩机,采用分子筛高压干燥装置。压缩至2.4MPa,温度35℃左右,经高压油分离器油水分离后,进入高压干燥器干燥,送乙炔灌瓶架灌装。 (5)灌装

年产5万吨乙炔发生工段工艺流程设计

5万吨/年PVC车间乙炔发生工段工艺流程设计 目录 前言 (1) 一、设计背景 (1) (一)乙炔概述 (1) 1、乙炔在水中的溶解度 (2) 2、原料特性 (2) 3、化学性质 (3) 4、产品的主要用途 (3) 二、设计内容 (4) (一)设计思路 (4) (二)工艺流程选择 (4) 1、湿法乙炔发生 (4) 2、干法乙炔发生 (5) 3、工艺方案的选择 (5) 4、湿法乙炔生产原理及工艺流程设计 (5) (五)工艺流程图 (6) (三)生产流程说明 (7) 1、发生 (7) 2、冷却与调节 (7) 3、次氯酸钠的配制 (8) 4、清净 (8) 5、碱洗和干燥 (8) (四)乙炔发生工段工艺计算 (8) 1、物料衡算 (8) (六)三废处理 (12) 1、废渣 (12) 2、废气 (12)

3、废水 (13) 三、设计总结 (13) 参考文献 (14)

前言 聚氯乙烯PVC是由氯乙烯单体VC均聚或与其他多种单体共聚而制得的合成树脂聚氯乙烯再配以增塑剂稳定剂高分子改性剂填料偶联剂和加工助剂经过提炼塑化成型加工成各种材料当前PVC生产面临着严重的挑战比如生态环境的保护潜在替代品的市场竞争资源的进一步优化配置能量的合理充分利用生产过程的优化和高效率化生产和使用效率的提高应用技术和市场开拓等都在不同程度上影响着PVC的进一步发展在上述问题上仍有大量工作要做对生态环境安全的配套助剂环境保护技术包括PVC废弃物的回收再利用和处理等方面更需要花大力气加以研究。 一、设计背景 (一)乙炔概述 (1)产品名称:乙炔 (2)分子式:C2H2,分子量26.04 (3)产品说明:工业电石乙炔中因含有杂质磷化氢等而有特殊臭味。在温度-836℃和0.1MPa压力下,乙炔变为无色易流动的液体。当温度继续下降即成为白雪状物质;在0℃和01MPa压力下1L液态时,乙炔可得3825L气态。 (4)物理性质 ①在标准大气压下乙炔密度 表1 在不同温度下乙炔的密度 表2 不同温度下乙炔热熔粘度导热系数

溶解乙炔生产工艺及设备2005

溶解乙炔生产工艺及设备 2005-11-24 一、溶解乙炔的生产方法 工业上生产溶解乙炔的方法主要有三种。第一种是用天然气(其主要成分为甲烷)裂解法。 利用甲烷为原料加热至 1500~1600 ℃的高温,然后快速冷却裂解制得乙炔气; 第二种是烃类裂解法。以乙烷、液化石油气、煤油等高碳烃类为原料,经1000℃ 以上的高温裂解制得乙炔气; 第三种方法就是利用电石与水反应生产乙炔气。从以上三种方法制取乙炔比较,前两种裂解法制取的乙炔气纯度较低,裂解反应后除了产生少量乙炔气之外,还有大量的其它副产品(如:氢、一氧化碳及其它气体)等。为了得到高纯度的乙炔气还必须对裂解后的气体进行分离提纯,因而工艺流程长、设备复杂,建厂投入资金大,较难推广。利用电石制取乙炔气已有悠久的历史,并且具有工艺流程短,设备简单,操作方便,产品纯度高,投资资金少等优点,被国内外广泛采用。但用电石法制取乙炔气与裂解法相比生产成本要高一些。 二、溶解乙炔的生产工艺流程溶解乙炔的生产工艺流程有多种。利用电石法制取溶解乙炔的生产工艺流程(如图1)所示。电石水(图1)电石与水在发生器中连续反应生产粗乙炔气,经过冷却分离贮存在贮气柜中。贮气柜内的乙炔气经入净化器,在净化器中用化学方法除硫化氢、磷化氢等杂质气体,从而等到纯乙炔气。纯乙炔气在除去水分后,进入乙炔压缩机,将乙炔气压缩至小于或等于2.5Mpa ,压缩后的高压乙炔气经高压油水分离器、高压干燥器去除乙炔气中的油分和水分。再通过阻火器进入乙炔气灌排,将乙炔气充入已加好丙酮的合格乙炔瓶中,使乙炔气溶解在丙酮里,从而得到溶解乙炔。充装完毕后,乙炔瓶静止一段时间,经检验合格后出厂,供用户使用。电石法生产的溶解乙炔工艺流程,主要由乙炔气发生、粗乙炔气净化、乙炔气

电石法氯乙烯乙炔生产工艺要点.doc

电石法氯乙烯乙炔生产工艺(全版) 生产原理 电石水解反应原理 CaC2+2H2O→Ca(OH)2+C2H2+130KJ/mol(31kcal/mol) 由于工业电石含有大量杂质,CaC2在水解反应的同时,还进行一些副反应,生成相应的杂质气体,其反应式如下: CaO+2H2O→Ca(OH)2+63.6kJ/mol CaS+2H2O→Ca(OH)2+H2S↑ Ca3P2+6H2O→3Ca(OH)2+2PH3↑ Ca3N2+6H2O→3Ca(OH)2+2NH3↑ Ca2Si+4H2O→2Ca(OH)2+SiH4↑ Ca3As2+6H2O→3Ca(OH)2+2AsH3↑ 清净原理: 上述水解反应中,生成的粗乙炔气中含有硫化氢、磷化氢等杂质气体,在清净时主要进行如下 化反应. H2S+4NaClO→H2SO4+4NaCl PH3+4NaClO→H3PO4+4NaCl SiH4+4NaClO→SiO2+2H2O+4NaCl AsH3+4NaClO→H3AsO4+4NaCl 上述反应生成的H2SO4 、H3PO4等酸类物质,部份夹带于气体中,进入中和塔,在塔内与氢氧化钠进行中和反应,主要的反应式如下: H3PO4+3Na OH→Na3PO4+3H2O H2SO4+2NaOH→Na2SO4+2H2O 生成的盐类物质溶解于液相中,通过排碱时排放。 工序任务 将破碎好的电石加入发生器内与水发生水解反应,按生产需要,调节电磁振荡器电流,维持气柜高度,生成的粗乙炔气进行冷却、压缩、清净(除去粗乙炔气中的H2S、PH3等杂质),使其纯度达到98%以上,满足合成工序流量要求。 工序岗位职责 熟悉本工序工艺流程,设备结构,物料性能,掌握操作法及基本生产原理,以及安全、消防环境保护要求。严格遵守岗位操作规程、交接班制度、安全生产制度、巡回检查制度、设备维护保养制度。 严格控制各项工艺控制指标,准确及时填写原始记录,做到无漏项,无涂改,无污迹,字体工整(要求用仿宋体)。 八小时工作负责处理和排除各种生产故障,保证实现优质、高产低消耗,同时保证设备卫生清洁和环境卫生。遵守劳动纪律、不串岗、不睡岗、不擅自离岗,有事离岗必须向班长请假。 服从班组长、工段长的领导和分厂、生产调度的指挥,接受安全巡岗检查。 工序原料质量要求 电石 电石质量应符合(表1)要求。 表1电石质量标准 GB/T10655-89 指标名称指标 优级品一级品二级品三级品 发气量,L/Kg

乙炔发生工艺流程及原理

乙炔发生工艺流程及注意事项 1.1工艺流程简述 经过工厂初步破碎后的合格电石(粒径≤50mm),由工厂送入原料电石贮槽,经电动振动给料机将电石均匀地送入电石高效细碎机进行电石的再破碎,破碎后的电石自流进入斗式提升机,提升至电石振动筛进行筛分处理,合格粒径的电石进入成品电石贮槽后经螺旋输送机入成品电石提升机,通过斗式提升机送至电石 一、二等级加料斗备用。电石振动筛筛分处理的粒径不合格的电石通过输送管进 入电石高效细碎机进行再破碎。 来自电石破碎系统经破碎、筛分处理的合格电石进入电石加料斗,通过双螺旋电石给料机将合格电石均匀地送入干式乙炔发生器,双螺旋电石给料机送来的电石从发生器侧面分别进入发生器的一、二层。在发生器搅拌和相应的水喷射作用下,乙炔气体逸出,从发生器下部乙炔气出口排出,进入除尘冷却塔进行除尘和冷却处理。电石进入发生器一、二层后经搅拌从发生器中心孔下落至第三层,再经过搅拌从发生器三层层板的外周下落至发生器第四层层板,在第四层搅拌的作用下,四层层板上的电石从第四层层板中心孔落下至第五层,如此循环运动,最后电石灰渣从第十层中心孔排出,通过渣排出机的作用,电石渣被送入电石渣输送机,通过斗式提升机送入电石渣贮槽。根据工厂电石渣用途,作输送或外运处理。 来自乙炔发生器的乙炔气通过自压进入除尘冷却塔进行除尘和冷却,除尘冷却塔除尘洗涤水是通过喷淋水泵经喷淋水冷却系统冷却后循环进入喷淋冷却塔进行洗涤冷却的,喷淋冷却塔顶部喷淋水可以是来自清净工序的次氯酸钠废水。 出除尘冷却塔的洗涤水,通过自流进入沉降池,清液通过冷却系统冷却后经喷淋水泵进入除尘冷却塔进行除尘和冷却喷淋。沉降池沉积的电石渣送入压滤系统处理,压滤系统所产清液送入清液池。 发生水来自上水,通过发生水贮槽、发生水泵送入发生器。 出除尘冷却塔的乙炔气经冷却后直接进入正水封送往下工序。

教案乙炔的制备

乙炔的制备 适用学科高中化学适用年级高中三年级 适用区域沪教版适用地区课时时长(分钟)60 知识点乙炔的制备 学习目标1、掌握乙炔的制备方法; 2、掌握乙炔的的性质; 3、了解乙炔的用途; 学习重点1、掌握乙炔实验室制法。 2、掌握乙炔重要的化学性质和用途。 学习难点1、结构与性质的本质联系,乙炔的实验室制法的探究。 学习过程 一、实验目的 1、掌握乙炔的制备方法; 2、掌握乙炔的的性质; 3、了解乙炔的用途; 二、实验试剂及仪器 仪器:止气夹,双孔胶塞,单孔胶塞,水槽,导气管,试管,尖嘴导管,酒精灯,医用针管 药品:电石,体积比为20﹪的乙醇溶液,酸性高锰酸钾溶液,溴水。 三、实验步骤 1、实验装置图如图所示

2、⑴先按上图将乙炔发生装置、除杂装置和气体收集装置连接好,并检查气密性。 ⑵向除杂装置中装入CuSO4溶液。 ⑶向发生装置的试管中加入适量电石(约4小颗)。用医用针管吸2\3的20﹪乙醇溶液,排出针管中的空气。然后将针管插入胶塞,实验开始应缓慢推下针管活塞。 四、反应原理 实验室中,乙炔是由电石与水作用制得的,反应式如下: CaC2+2H2O→C2H2+Ca(OH)2。 工业电石中常含有硫化钙、磷化钙和砷化钙等杂质,它们与水作用可以生成硫化氢、磷化氢和砷化氢等恶臭、有毒的还原性气体,它们不仅污染空气,也干扰乙炔的性质实验。 五、收集气体方法1、 1、排水集气法 六、现象 1、反应很剧烈,有大量的气泡生成,很快就收集得到一试管无色的乙炔气体了,但反应还在继续,产生很多气体,来不及收集就排放到空气中造成浪费了 2、可以闻到臭鸡蛋味。 七、注意事项 ⑴针管中的空气应注意排除尽,否则乙醇溶液将会漏进试管中,使得反应不容易控制。 ⑵点燃乙炔时要注意安全,防止爆炸。 ⑶大家在实验过程中要注意安全,注意观察实验现象并做相应的记录。 八、实验室制备乙炔的几个问题 1、大家注意观察CuSO4溶液中有什么生成?是什么物质? 答、有黑色沉淀产生,是CuS沉淀。 2、乙醇溶液与电石反应和纯水与电石反应反快慢比较? 答、乙醇溶液与电石反应生成乙炔的过程较乙炔与水的反应缓慢。 3、我们将导气管先后通入高锰酸钾溶液和溴水中,大家观察溶液有什么变化? 答、高锰酸钾溶液和溴水颜色都褪了。 九、例题精析 【例题1】气焊和气割都需要用到乙炔.乙炔俗称电石气(化学式为C2H2),是一种无色无

乙炔生产工艺流程简述

生产工艺流程简述: 本项目采用“电石入水法”生产溶解乙炔,其主要原料为电石和水。 (1)电石破碎 人工将电石库内的大块电石破碎成50-200mm的电石。 (2)乙炔发生 将破碎好的电石人工运至发生器间,通过电动葫芦将电石提升至3.5米平台上,采取电石入水的方式进行生产操作。电石和水在乙炔发生器内进行水解反应,生成乙炔气和氢氧化钙(熟石灰)并释放出热量。 粗乙炔气体由发生器顶部逸出,经喷淋预冷器及正、反水封进入乙炔气柜中。电石渣浆流入渣浆槽,发生器的反应过程如下: 主反应: CaC2+2H2O→Ca(OH)2+C2H2+130kJ/mol 副反应: CaO+ H2O→Ca(OH)2 +63.6kJ/mol CaS+ 2H2O→Ca(OH)2 +H2S Ca3P2+ 6H2O→3Ca(OH)2 +2PH3 Ca3N2+ 6H2O→3Ca(OH)2 +2NH3 Ca3Si+ 4H2O→2Ca(OH)2 +SiH4 Ca3As2+ 6H2O→3Ca(OH)2 +2AsH3 (3)乙炔净化、中和、气水分离 从气柜中出来的乙炔气经过一清塔、二清塔,然后进入中和塔。因电石中含有少量的硫、磷,所以粗乙炔气体中含有少量的H2S、PH3,须在装瓶之前进入清净塔加以净化。在清净塔与含有效氯0.085~0.12%的次氯酸钠溶液直接接触反应,以脱除粗乙炔气中的磷、硫杂质。由清净塔顶排出气体进入中和塔与塔顶喷入的10~15%液碱中和反应后,经气水分离器除去气相中水分,使纯度98.0%以上的精乙炔气送压缩系统。工艺反应式如下:

4NaClO+H2S→H2SO4+4NaCl 4NaClO+PH3→H3PO4+4NaCl 反应生产的酸,再用10~15%的碱液中和,其反应式为: 2NaOH+ H2SO4→Na2SO4+2H2O 3NaOH+ H3PO4→Na3PO4+3H2O 2NaOH+ CO2→Na2CO3+H2O (4)压缩、油水分离、干燥 净化的乙炔气经低压水封进入压缩机,本工段选用2Z-1.5/25型乙炔压缩机,采用分子筛高压干燥装置。压缩至2.4MPa,温度35℃左右,经高压油分离器油水分离后,进入高压干燥器干燥,送乙炔灌瓶架灌装。 (5)灌装 将压缩后的乙炔气装入有丙酮的乙炔气瓶中,充气速度一次充气<0.6m3/h,二次充气<0.8m3/h,气瓶温度控制在40℃以下,充气重量5-7公斤。充灌时应以冷却水喷淋瓶壁,以移走溶解热。

乙炔制备生产工艺流程[1]

乙炔制备生产工艺流程 一、电石破碎系统 散装电石由轮式破碎机(02L0101abc)把粒度小于150mm电石加入电石料斗(02L0102ab)料斗上有160 ×160mm网栅清除大块电石。料斗锥体处有分压装置,减压锥防止料块堆积。电石经振动给料机(02L0103ab)振动落入1#电石带式输送机(02L0104ab)经双轨组合行走架(02L01026ab)上安装的永磁除铁器(02L0105ab)除去矽铁等铁杂质后,进入鄂式破碎机(02L0106ab)把电石块破碎到粒度50-80mm后,再经2#带式输送机(02L0107)送至3#带式输送机(02L0108 ),再经电动双轨组合行走架(02L01027a)上安装的永磁除铁器(02L0209a),进一步除铁后,进入4#电石输送机(02L0110)通过电子皮带称(02L0129a )计量后,由带式输送机卸料小车(02L0111 )并经筒仓进料切断阀(02L0112abcdef )拉进电石筒仓(02L0113abc)。 二、电石上料系统 进入筒仓的电石经筒仓减压锥(02L0114a-abcd,b-abcd,c-abcd)减轻压力后,打开筒仓出料切断阀(02L0115a-abcd,b-abcd,c-abcd)进入电机自动给料机(02L0116,a-abcd,b-abcd,c-abcd)落入5#电石带式输送机(02L0117ab)输送至6#电石带式输送机(02L0118),经双轨组合行走架(02L0127b)安装的永磁除铁器(02L0109b)进一步除铁后,送至7#带

式输送机(02L0119)再经电子皮带秆(02L0129b)检斤后经7#电石带式输送机卸料小车卸料到电石加料斗(02L0121abcdef)中. 三、乙炔发生系统 电石加料斗内电石,经斗内减压锥(02 L012abcdef)及电石加料斗出料切断阀(02L0123abcdef)经电机振动加料机(02L0124abcdef)及电机称量胶带给料机(02L0125abcdef)过称,落入乙炔加料斗(02V0201abcdef)内,打开经过N2置换后的二贮斗活门(02X0201abcdef)的把料加入上贮斗(02V0202abcdef),再经N2置换后,关闭上贮斗排空阀(0204abcdef)及上料斗充N2阀(0201 abcdef)打开下贮斗活门(02X02018hsmlj )把料拉至下贮斗(02V0203abcdef )开动电磁振动加料机(02L0201abcdef)连续把电石加入乙炔发生器(02R0201 abcdef )内,电石在发生器内与水发生反应,生成乙炔气(ACE)经洗泥器(02V0204abcdef)进入正水封(02V0206abcdef)由正水封出来的气体进入冷却塔(02T0201)降温,预清净,进一步脱渣泥后,少部分经(02V0209)阻火器,分离器(02V0210)进入气柜(02V0211)贮存,以备发生系统出现意外,通过逆水封(02V0207abcdef)来维持发生器压力。 四、乙炔清净系统 大部分乙炔气经升压机(02C0301abc)升压后,进入气水分离器(02V0301abc),分离出来的水经过水冷却器(02E0301abc)用循环水 (CWS)冷却后回到乙炔升压机循环使用。从汽水分离器出来的气

乙炔发生工艺流程及原理

乙炔发生工艺流程及注意事项 1.1 工艺流程简述 经过工厂初步破碎后的合格电石(粒径≤50mm),由工厂送入原料电石贮槽,经电动振动给料机将电石均匀地送入电石高效细碎机进行电石的再破碎,破碎后的电石自流进入斗式提升机,提升至电石振动筛进行筛分处理,合格粒径的电石进入成品电石贮槽后经螺旋输送机入成品电石提升机,通过斗式提升机送至电石一、二等级加料斗备用。电石振动筛筛分处理的粒径不合格的电石通过输送管进入电石高效细碎机进行再破碎。 来自电石破碎系统经破碎、筛分处理的合格电石进入电石加料斗,通过双螺旋电石给料机将合格电石均匀地送入干式乙炔发生器,双螺旋电石给料机送来的电石从发生器侧面分别进入发生器的一、二层。在发生器搅拌和相应的水喷射作用下,乙炔气体逸出,从发生器下部乙炔气出口排出,进入除尘冷却塔进行除尘和冷却处理。电石进入发生器一、二层后经搅拌从发生器中心孔下落至第三层,再经过搅拌从发生器三层层板的外周下落至发生器第四层层板,在第四层搅拌的作用下,四层层板上的电石从第四层层板中心孔落下至第五层,如此循环运动,最后电石灰渣从第十层中心孔排出,通过渣排出机的作用,电石渣被送入电石渣输送机,通过斗式提升机送入电石渣贮槽。根据工厂电石渣用途,作输送或外运处理。 来自乙炔发生器的乙炔气通过自压进入除尘冷却塔进行除尘和冷却,除尘冷却塔除尘洗涤水是通过喷淋水泵经喷淋水冷却系统冷却后循环进入喷淋冷却塔进行洗涤冷却的,喷淋冷却塔顶部喷淋水可以是来自清净工序的次氯酸钠废水。 出除尘冷却塔的洗涤水,通过自流进入沉降池,清液通过冷却系统冷却后经喷淋水泵进入除尘冷却塔进行除尘和冷却喷淋。沉降池沉积的电石渣送入压滤系统处理,压滤系统所产清液送入清液池。 发生水来自上水,通过发生水贮槽、发生水泵送入发生器。 出除尘冷却塔的乙炔气经冷却后直接进入正水封送往下工序。出装置区的正、逆水封,由工厂根据乙炔气柜条件进行设置,以保证安全、正常的生产。 1.2 控制原理表述 1.2.1 电石破碎及输送 加入到原料电石贮槽的电石输送是通过原料电石贮槽料位系统或称重系统给出的上、下限的信号进行自动控制的。原料电石贮槽电石到达上限时自动停止电石的输送,原料电石贮槽电石到达下限时自动开启电石输送。

最新干法乙炔生产工艺介绍

最新干法乙炔生产工艺介绍 作者:李耀文 前言 随着我国PVC的飞速发展,产能不断扩大,石油价格的上涨,我国电石法PVC已经成为发展的主流。而环保要求的不断加强,湿法发生乙炔产生的环境污染日益受到国家和生产厂家的重视。干法乙炔发生装置的研发势必摆上了日程。经过两年多的努力,该生产装置已在新龙电化集团试车,投产成功。并于2006年12月29日通过了中国氯碱协会和山东省科技厅组织的科技成果鉴定。下面介绍该工艺: 1 干法乙炔工艺简介 1.1 反应原理 工业电石中还含有不少杂质,其水解反应如下: 当水量不足时,除上述反应外还发生如下反应: 1.2 电石水解反应速度 下图为发气量为300立方米/吨,粒径4毫米,下花园电石厂生产的电石水解速度图表。 1.3 等压系统中电石水解反应温度与加水量的关系 1.4 干法乙炔流程 干法乙炔发生是用略多于理论量的水以雾态喷在电石粉上使之水解,产生的电石渣为含水量4%~10%干粉末,粗乙炔含水量为75%,反应温度气相为90~100℃,固相温度为100~110℃,水与电石的比例约为1~1.8,反应热由水汽化带走,经由非接触式换热器传给循环水(没有溶解损失),电石的粒径小于5毫米,水解率大于99.5%,乙炔收率大于98.5%。 2.干法乙炔装置的运行指标 2.1 发生器产量 单台发生器产量为2500标准立方米乙炔/小时。

2.2 电石水解率 排渣机出口处电石渣水解率为99.5%~99.85%。 检测方法:用50毫升电石渣和100毫升水加入200毫升试管中密闭摇匀检 测气相中的乙炔含量,并假定水中的乙炔为饱和状态计算所得。 2.3 排渣机出口气相中的乙炔含量 排渣机口的乙炔浓度为0.02%。 2.4 粗乙炔的纯度 粗乙炔的纯度为98.8%~99.5%,硫含量为零,磷含量为0.03~0.05%,与湿 法完全相同。 2 .5 清净次氯酸钠消耗量 次钠浓度为0.12%,耗量为7立方米/1000立方米乙炔。 2 .6 粗乙炔的温度 经冷却的粗乙炔温度为45~60℃。换热器选型的依据是粗乙炔温度与湿法 相当以便后续处理。 2 .7 发生器压力 发生器压力受与之相连的湿法发生器影响,压力为7~11kPa,若独立使用 干法发生器,压力会更为稳定。 2 .8 发生器温度 发生器气相温度为88~90℃,固相温度为95~100℃。 3.干法乙炔安全性 3.1 加料过程的安全性 电石通过带有密封装置的计量螺旋输送器连续密闭地加入发生器,密封可靠,无需置换,无泄露,安全可靠。 3.2 反应过程安全性 湿法乙炔工艺反应温度为85℃,产物中乙炔/水蒸汽体积比为1:1。干法乙炔工艺反应温度为100-110℃,产物中乙炔/水蒸汽体积比为1:3。两者反应压力基本相同,均为

乙炔的安全生产技术(最新版)

Safety is the goal, prevention is the means, and achieving or realizing the goal of safety is the basic connotation of safety prevention. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 乙炔的安全生产技术(最新版)

乙炔的安全生产技术(最新版)导语:做好准备和保护,以应付攻击或者避免受害,从而使被保护对象处于没有危险、不受侵害、不出现事故的安全状态。显而易见,安全是目的,防范是手段,通过防范的手段达到或实现安全的目的,就是安全防范的基本内涵。 乙炔,俗名电石气。它是不饱和的碳氢化合物。五色气体。工业乙炔因含有杂质(磷化氢)而具有特殊的刺激性气味。气体相对密度 0.91(空气=1)。液体相对密度0.6181(-82℃)。稍溶于水,溶于乙醇,易溶于丙酮。乙炔的化学性质活泼,能起加成反应,容易聚合。乙炔在氧中燃烧可产生高温(3500℃)和强光。 乙炔是易燃气体,可与空气形成爆炸性混合物,爆炸极限为 2.55%~80.00%(体积)。当压力超过0.15MFa时很易发生爆炸。乙炔的点火能很小,其最小点火能为0.02mJ。 最常见的乙炔一氧焰,用于金属的切割、焊接及金属表面喷镀。乙炔还作为石油化工的原料,用来制造聚氯乙烯、氯丁橡胶、醋酸、醋酸乙烯酯等。 工业上制取乙炔的方法很多。如电石法、甲烷裂解法、烃类裂解法等。我国目前主要采用电石法生产乙炔。电石法生产乙炔按电石和水接触的方式分类,可分为电石入水式(又称湿式)、水人电石式(又称

溶解乙炔生产工艺存在的问题剖析

溶解乙炔生产工艺存在的问题 1、中压乙炔发生器存在的主要问题 (1)安全性能差 中压乙炔发生器大多是采用直接打开发气室的大门进行加料的方式。这种结构在加料过程中发气室与大气相通,形成乙炔与空气混合气体。如在加料过程中电石框与发气室桶体摩擦产生火星或温度过高,很容易造成混合气体起火或爆炸。特别是电石质量差。硫、磷含量高的时候,极易自燃引起着火或爆 炸事故。 (2)乙炔提取率低 中压乙炔发生器另一个主要问题就是乙炔提取率很低。这是因为在发生过程中电石没有足够的水进行洗涤分解。部分电石未被完全汽化就随电石渣排出,尤其是质量差,规格大的电石。中压乙炔发生器的乙炔提取率低只有70%~77%,是发生器中乙炔提取率最低的设备之一,属于被淘汰的设备。如管道输送的乙炔用户,生产工艺需要使用中压乙炔发生器时,则应在发生器结构上进行彻底的改进。使得中压乙炔发生器在安全性能、乙炔提取率和劳动强度方面得以改善。2、低压乙炔发生器 低压乙炔发生器具有比中压乙炔发生器乙炔提取率高、气体纯度高等优点,被许多乙炔厂所选用。低压乙炔发生器的种类较多。我省乙炔厂使用的低压乙炔发生器可分为两种。一种是敞开式低压乙炔发生器,另一种是全密封低压乙炔发生器。

这两种发生器在结构、性能方面各有不同特点。 (1)敞开式低压乙炔发生器 敞开式低压乙炔发生器是用人工从加料口把电石投入发生器内,电石通过水封进入发气室。如图4 4 敞开式乙炔发生器 这种发生器结构简单,使用大块电石,可省去电石破碎这道工序。但敞开式低压乙炔发生器安全性能是比较差的,加料口容易着火。这是由于电石从加料口投入后,其电石表面首先与水接触反应生成乙炔气,这些乙炔气大部分积聚在加料口底部与引风管下端。随着加料的不断进行,乙炔气的浓度也不断增高,形成爆炸性混合气体。在加料时一旦电石碰撞加料筒壁产生火花或其他能量,就会引发加料口着火或爆炸事故。使用过这种发生器的单位几乎都发生过加料口着火或爆炸事故。此外、这类发生器在结构上无超压、超液位等安全装置,一旦出现超压或自动排渣管堵塞现象,电石渣常常会从中心加料口处喷出,还会伴随着大量的乙炔气排出,散发在室内形成空气、乙炔爆炸性混合气体,同时这种结构也不可能承受《溶解乙炔设备》标准要求所规定的耐压试验压力。所以说这类发生器在设计上不合理。对于一台结构合理的乙炔发生器来说,除了要有压力指示、温度指示、自动加水、自动排渣等功能外,至少还应有超压、超液位保护装置。敞开式低压乙炔发生器的乙炔提在使用一段时间后需要进行一次清渣 处理。清渣时需要用氮气、乙炔气进行置换放空,故有较大的乙炔气损耗。据统计敞开式低压乙炔发生器的乙炔提取率仅为80%~85%。

浅析天然气制备乙炔的工艺方法

浅析天然气制备乙炔的工艺方法 发表时间:2018-08-13T17:23:50.267Z 来源:《电力设备》2018年第12期作者:赵小杉[导读] 摘要:在当前高速增长的经济环境下,科学技术不断推陈出新,越来越多的化工技术涌现,并被广泛应用在化工生产中。 (新疆维美化工责任有限公司新疆库尔勒 841000) 摘要:在当前高速增长的经济环境下,科学技术不断推陈出新,越来越多的化工技术涌现,并被广泛应用在化工生产中。为了迎合可持续发展需求,减少能源消耗和环境污染,天然气逐渐成为居民日常生活首选,代替以往的煤气。天然气中含有大量的烷烃,尤其是甲烷占比较大,加之有少量乙烷和丙烷。天然气主要存在于页岩层、油田和气田中,安全性较高,可以避免燃烧后废水或废渣出现。本文就天然气制备乙炔工艺方法进行分析,探究未来发展趋势。 关键词:天然气;乙炔;工艺方法 化工生产中,乙炔作为一种重要的成分,在很多化学产品生产中占据重要作用,如聚乙烯生产中,乙炔是一种重要的中间体。在化工生产中乙炔生产中,主要包括三种方法,包括电石生产法、离子生产法和氧化生产法几种。其中当属电石生产方法应用较为广泛,但是会产生严重的污染,能源消耗量较大,与可持续发展目标相背离,违背了节能环保要求。近些年来,电石生产乙炔方法逐渐被天然气氧化法代替,可以有效提升生产效率和质量,创造更大的经济效益。由此,加强天然气制备乙炔方法研究,可以为后续相关工作提供支持,其重要性不言而喻。 1 天然气部分氧化生产乙炔方法发展现状 天然气部分氧化生产乙炔方法在实际应用中,可以为化学产品生产提供坚实保障,并且可以降低生产成本投入力度。天然气部分氧化生产乙炔方法在实际应用中,经过长期完善逐渐形成一定规模,成为当前乙炔生产的主要方法。但是,纵观当前我国乙炔生产现状来看,生产工艺的匮乏,未能得到足够的重视和关注,相较于西方发达国家而言存在明显的差异[1]。在上个世纪六七十年代,我国引进的化工设备主要可以生产维纶、醋酸乙烯和聚乙烯醇等产品,加强工艺创新和完善,我国在天然气部分氧化生产乙炔工艺水平方面取得了较为可观的成效,可以带来更大的经济效益,对于我国化工产业健康持续发展意义深远。 2 天然气部分氧化生产乙炔装置和工艺 2.1天然气部分氧化生产乙炔装置 我国化工行业在发展中,遵循适当开发原则,天然气化工行业呈现良好的发展前景,可以带来更大的经济效益和社会效益。我国天然气生产乙炔中,通常是采用巴斯夫5万t/a天然气部分氧化生产乙炔设备,其中包括甲烷部分氧化裂解;循环装置冷却水系统;乙炔提浓和溶剂回收等几个部分组成。天然气部分氧化生产乙炔为核心,可以有效提升乙炔生产率。 2.2天然气部分氧化生产乙炔工艺 在天然气部分氧化生产乙炔中,采用50000t/a乙炔装置,需要六套生产能力超过7500t/a的独立氧化裂解功能装置。 2.2.1裂解其压缩构成 裂解其压缩单元中包括两台螺旋式气压缩机和洗涤塔。在这个过程中,通过螺旋气压缩机将内部气压升高到1.1MPa,进入洗涤塔中与冷却水交汇在一起,以逆流方式接触;经过冷却处理后的气体,将其输送到乙炔提纯单元中[2]。 2.2.2乙炔提纯单元 乙炔提浓单元前,裂解气体的乙炔浓度大概在8%,通过气压缩机入口处理,乙炔浓度升高到10%左右,是由于压缩机裂解气体和循环气体对天然气带来作用。纵观当前天然气提纯单元中,根据含碳量的细微差异,熔接机中炔烃溶解度差异显著,由于温度条件不同,物质的熔接机中溶解度发生变化,借助N-甲基吡咯烷酮作为溶解剂,可以实现裂解气体的解析和回收,以及循环气体中的乙炔,可以达成乙炔提纯目的。所以,板式塔无法提纯操作,影响到提纯效率和质量,可以使用丁二炔吸收塔发挥填料塔原有作用,通过丁二炔吸收塔来获得吸收塔中的填料塔。除去丁二炔乙炔回合高级冷却混合器和填料塔,塔顶留下NMP溶剂,逆流方式与之接触。NMP进入填料塔中尽管液氮冷却作用,相较于丁二炔吸收塔溶剂温度要低得多。乙炔和NMP溶解度高于乙炔气体,并且会被全部吸收,通过填料塔塔顶将不溶于NMP溶剂的气体排出。其中排出的气体包括三种,排出的气体进入到乙炔解析塔中,经过处理后流入到甲醇生产装置和合成氨装置中,作为生产原料;进入合成气火炬;重新回到螺杆压缩机进入口。在乙炔生产中,洗涤塔主要是采用泡罩塔,部分解析塔的引出乙炔和冷凝液采用逆流方式接触,可以实现挥发的NMP溶剂充分吸收,分解成三个部分提纯[3]。在分解的三个部分提出中,乙炔气体溶解度相对较高,会被解析塔第一个解析出来,以此类推分别解析。 2.2.3乙炔溶剂再生部分阐述 在具体生产中,熔接机会出现大量的高级炔类聚合物沉淀,生产中可以在设备生产体系中将聚合物充分脱离出去。与此同时,在生产中加入丁二炔解析塔底部排出溶剂,进入到乙炔气体回收单元,解析溶剂短期内可以通过蒸汽升温方法,实现对蒸汽中的蒸汽加热、挥发,切实提升循环溶剂的聚合物质量浓度,促使乙炔溶剂再生作业活动顺利进行。在这个过程中,乙炔生产需要进行全方位监管,在满足乙炔生产需要的同时,应该尽可能降低资源和能源消耗,提升生产效率和生产质量的同时,确保生态系统平衡,以此带来更大的经济效益。 结论: 综上所述,在化工生产中,传统的生产工艺局限性较大,不仅会浪费大量的资源和能源,产生的废气、废渣会对生态环境带来严重的污染,与可持续发展目标相背离。所以,应该进一步优化天然气制备乙炔工艺,引进先进装置设备,提升生产效率和生产质量,要求创造更大的经济效益。 参考文献: [1]王广选,雷生珍.乙炔尾气制甲醇在工业生产中的应用及研究[J].化工管理,2017,31(36):207. [2]唐利忠,张福海.浅析天然气部分氧化法制乙炔的反应平衡[J].化工设计通讯,2017,43(11):222. [3]贾永校.天然气制乙炔技术研究现状与思考[J].化工管理,2017,23(29):155.

干法乙炔生产工艺简介

乙炔是一种重要的化工基础原料,主要用于生产PVC、PVA、焊接金属等。乙炔可以以电石或者天然气为原料生产。就目前而言,在国内的乙炔的生产过程中,电石法生成乙炔工艺占据着主导地位。随着国家节能减排新措施与新政策的出台,传统的湿法乙炔生产工艺在生产过程中消耗大量的水,还会产生大量的电石渣、废水和电石渣中挥发的废气,污染环境,已经不再适应当前绿色、环保的产业政策的要求,对乙炔生产技术进行改革,实现乙炔生产过程中的节能、清洁与可持续发展已经刻不容缓。 干法乙炔生产工艺是一种新型的工艺,相对于湿法乙炔生产,这种工艺的耗水量少,产生的电石渣含水量低,其综合利用的成本也比较低。在氯碱行业响应国家节能减排号召的大背景下,干法乙炔工艺逐渐受到了人们的重视,国家环保部也把干法乙炔工艺列入到了清洁生产的一级标准中,发展干法乙炔生产,加速其工业化进程具有重要的意义。 一、干法乙炔生产的技术原理与工艺 电石法乙炔是以电石和水反应生成乙炔,反应式如下: CaC2+2H20===Ca(OH)2+C2H2+130 KJ/mol 根据电石和水加入的方法不同,可分为干法与湿法2种。湿法乙炔工艺是将粒径为50 mm左右的电石加入到过量的水中,与水进行水解反应,反应放出的热由水带走。其耗水量大,多于理论量17倍,电石渣浆含水量大,综合利用的成本较大,乙炔收率低。 干法乙炔工艺是将水加入到电石中,生成的氢氧化钙废渣以粉状从反应器中排出。其基本原理是用稍过量的水来与电石反应,利用水能够快速汽化,蒸发潜热大的特点来转移反应热。 在干法乙炔反应中,由于电石与水混合不均匀。除了上述反应外还会发生如下反应: CaC2+Ca(OH)2===CaO+C2H2 干法乙炔生产工艺的基本流程是将50 mm左右的块状电石经过超细破碎机的破碎和筛分装置的分离,将电石破碎为3 mm以下的细颗粒电石,经过斗式提升机提升到缓冲料仓。通过电石计量装置加入到干法乙炔发生器,将水(水与电石的质量比为1.2:1.0~1.3:1.0)以雾态形式喷在粉状电石上使之水解,保证气相温度为95℃左右,固相温度为100~120℃,反应放出的热由水汽化的水蒸气与乙炔气一起带走,未反应完全的粉状电石自发生器上部逐渐向下部移动,边移动边水解,产生的电石渣含水量为6%左右,自干法发生器底部通过锁气阀排出发生器,再通过FU刮板机输送到下一个工段。从发生器出来的气体经过洗涤装置将气体携带的电石渣粉尘捕集,干净的乙炔气送到下一工段进行冷却。 二、干法乙炔生产的优点 1.安全性 加料过程的安全性:电石通过带有密封装置的计量螺旋输送器连续密闭地加入发生器,密封可靠,无需置换,无泄漏。 反应过程的安全性:湿法乙炔工艺反应温度为85℃.产物中乙炔/水蒸气体积比为1:1;干法乙炔工艺反应温度为93℃,产物中乙炔、水蒸气体积比为1:3。两者反应压力基本相同,均为5~10 kPa(表压)。绝对温度相差不大,由此可知,湿法中乙炔分压是干法的2倍。反应物的浓度决定碰撞机会,分子的运动速度决定碰撞的有效性。数理统计数据表明了干法工艺的安全性。 排渣过程的安全性:干法乙炔生产的排渣过程是连续密闭的。密封压力可调并可靠,排渣机使用等压料封。 故障状态的安全性:系统突然停电时,反应几乎立即停止,无需作任何处理;任何重要设备出现故障,均由程序采取相应的措施进行处理。遇到最严重的问题就停止加料,反应几乎立即停止。 2.环保性 无废水排放:干法乙炔生产装置所需的水为上清液,循环利用水资源,实现整个车间无废水排放。 无粉尘排放:用电石渣生产水泥,将其密闭输送至水泥公司。 气体污染物排放少:只有在排渣机出口处的水蒸气中能检测出少量的乙炔气体。 固体污染物:所排出的电石渣为制作水泥的优良材料,亦可作其他建筑材料 3.经济性 干法乙炔工艺相对于湿法乙炔工艺无需沉降及压滤处理,无需渣浆处理。降低了人工费用和设备运行费用。干法乙炔加料是连续的,无需置换,加料时没有乙炔气体排出,排出的电石渣是干的,没有溶解损失。干法工艺产生的电石渣比湿法工艺经压滤后的滤饼含水量低24%。湿法工艺产生的电石渣含水量高,若用电石渣生产水泥需要耗费大量煤炭除水。而干法工艺产生的电石渣用于生产水泥无需干燥。相对湿法乙炔工艺,干法乙炔可以从各方面降低生产成本,具有良好的经济性。 三、结束语 由于干法乙炔生产技术的开发与运行时间不长,实际生产与操作过程中缺乏经验,配套设备也没有全面到位,因而干法乙炔装置只是在国内少数几个生产企业运行,而且都不太稳定,尚处在摸索与改进阶段。作为从业人员,我们要在实践中总结经验,不断的努力和改进,使得干法乙炔工艺更加合理、可靠,为我国氯碱行业的安全、环保、和可持续发展贡献出自己的一份力。 参考文献 [1]李朝阳,张磊干法乙炔新工艺运行状况、问题及对策[J].中国氯碱,2010,(2):23-25. [2]李耀文,杨秀岭干法乙炔生产工艺介绍[J].聚氯乙烯,2007,(8):38-41. [3]崔小明,聂颖干法乙炔生产技术的研究开发现状[J].化工科技市场,2009,32(10):1-5. [4]李天鹏国内干法乙炔生产技术现状分析[J].聚氯乙烯,2013,41(1):16-19. 干法乙炔生产工艺简介 杨永杰?王金柱? (陕煤陕西北元化工集团有限公司 719319) 摘 要:乙炔是一种重要的化工基础原料,传统的湿法乙炔生产工艺,耗水量大而且会产生大量的电石渣、废水、废气,污染环境,已经不适应当前节能减排新政策的要求。干法乙炔生产工艺绿色环保,逐渐受到了重视。本文介绍了干法乙炔生产的技术原理与工艺,分析了其在安全、环保、经济方面的优越性,具有一定的参考意义。 关键词:干法乙炔?生产工艺?简介 用“单面焊双面成型”工艺,强化油内浮顶储罐施工过程中的质量控制,提高储罐制安的工作效率,降低储罐施工成本,值得在同行业中推广应用。 参考文献 [1] 马志才;唐元生;;金属粉芯型气体保护焊丝在管道焊接中的应用[J];安装,2011,06(34):45-46. [2] 范宇洪;阎君;;T2紫铜与1Cr17Ni2不锈钢火焰钎焊焊接工艺技术研究[J];材料开发与应用,2012,24(32):54-57. [3] 刘昕,胡刚,毛智勇;不锈钢方管电子束钎焊工艺及组织分析[J];长春工程学院学报(自然科学版),2010,16(24):34-35. (上接第105页)

PVA生产工艺流程

生产工艺流程 (一)、乙炔发生工序: 电石与水在发生器中发生反应,反应温度为80±5℃,压力为10kPa,反应后生成的乙炔气体,由上部出来后到洗涤塔洗涤。电石与水生成的氢氧化钙由溢流管溢流到渣浆池。电石渣浆经沉淀后作为水泥的生产原料。反应后生成的矽铁定期排放到渣池中,由人工定期清理。发生器中生成的乙炔气,从乙炔发生器上部出来经过洗涤塔进入冷却器将乙炔气冷却至35~45℃,冷却后的乙炔气体从冷却塔低部出来,部分送至有机厂乙炔清净工序,部分经进入气柜以平衡流量。 (二)、合成工序 2.1、触媒配制系统: 把定量的活性炭加入触媒加料槽,用罗次鼓风机将其风送至沸腾式触媒干燥塔内,活性炭加完后,打开空气予热器,触媒干燥塔夹套和内加热蛇管的蒸汽。再用鼓风机把经过空气予热器的热空气送入干燥塔内。活性炭沸腾预热至一定温度后,将溶解槽已配制好的醋酸锌水溶液由醋酸锌加料泵通过喷头向触媒干燥塔内均匀喷洒,喷洒停止后,继续干燥一段时间,待水分降至0.5%以下时,卸料装桶。 2.2、乙炔清净系统: 乙炔站送来的具有适当压力的粗乙炔进入次氯酸钠洗涤塔下部,与塔上部喷淋下来的次氯酸钠溶液逆流接触,除去硫化氢、磷化氢等杂质。塔顶馏出的乙炔进入综合洗涤塔,在第一段与循环喷淋的碱液逆流接

触,除去酸雾、二氧化碳及少量的游离氯。在第二段,乙炔与循环喷淋的低温水逆流接触,除去氢氧化钠、碳酸钠等雾滴和饱和的水蒸汽。塔顶乙炔进入乙炔干操塔除去乙炔中微量水分及有机杂质后进入合成系统。 2.3、醋酸乙烯合成系统: 清净后的精乙炔与来自气体分离塔顶的循环乙炔混合用乙炔鼓风机加压后,定量地送入醋酸蒸发器内,乙炔和醋酸混合气从醋酸蒸发器出来,然后进入反应器底部。反应气体从反应器顶部出来,气体进入气体分离塔。大部分循环液经板式换热器(RJ107)用盐水冷却后进入三段循环使用。部分作反应液采出,进入反应液收集槽后,用泵送往罐场贮槽。 2.4、乙炔回收系统: 来自分TQ-103顶部的乙炔,进入气体吸收塔底部,与塔顶喷淋下来的低温吸收液逆流接触,乙炔被溶解吸收。不被吸收的氮气等由塔顶放空。吸收塔釜吸收液由泵送入解吸塔。解吸后的釜液用泵少部分回至解吸塔顶,大部分返回至吸收塔塔顶。解吸出来的乙炔进入水洗塔。洗涤水从塔釜引出,用泵送出部分至精馏萃取塔。作洗涤塔二段循环液,落入塔釜。乙炔与两段吸收液逆流接触除去乙醛后送往清净工序综合洗涤塔。 (三)、精馏工序 : 3.1、粗分系统: 合成反应液给第一精馏塔加料,塔顶馏出,冷凝液入第一馏出

乙炔气生产安全

乙炔生产安全 乙炔,俗名电石气。它是不饱和的碳氢化合物。五色气体。工业乙炔因含有杂质(磷化氢)而具有特殊的刺激性气味。气体相对密度0.91(空气=1)。液体相对密度0.6181(-82℃)。稍溶于水,溶于乙醇,易溶于丙酮。乙炔的化学性质活泼,能起加成反应,容易聚合。乙炔在氧中燃烧可产生高温(3 500℃)和强光。 乙炔是易燃气体,可与空气形成爆炸性混合物,爆炸极限为2.55%~80.00%(体积)。当压力超过0.15MFa时很易发生爆炸。乙炔的点火能很小,其最小点火能为0.02mJ。 最常见的乙炔一氧焰,用于金属的切割、焊接及金属表面喷镀。乙炔还作为石油化工的原料,用来制造聚氯乙烯、氯丁橡胶、醋酸、醋酸乙烯酯等。 工业上制取乙炔的方法很多。如电石法、甲烷裂解法、烃类裂解法等。我国目前主要采用电石法生产乙炔。电石法生产乙炔按电石和水接触的方式分类,可分为电石入水式(又称湿式)、水人电石式(又称干式)和排水式三种,国内目前以电石入水式居多。从节约能源,提高电石利用率、减少污染并有利于安全管理的角度看,溶解乙炔气瓶与移动式乙炔发生器相比有较大的优越性,我国正推广使用溶解乙炔气瓶。电石法生产乙炔工艺如图所示。加入到发生器中的电石和水反应生成乙炔气,生产的粗制乙炔气经气液分离后进入气柜储存,气柜内的乙炔除去硫化氢、磷化氢等杂质后成为精制乙炔,再除去水分后进入压缩机,加压至2.5MPa的乙炔气再经除油和除水后送至用气装置或乙炔充装台。

电石法生产乙炔工艺流程图 (一)职业危害 乙炔的爆炸极限范围很宽,最小点火能的数值很小,因此极易引起燃烧、爆炸。乙炔与空气或氧形成爆炸性混合物。与氯和氟也发生爆炸性反应。乙炔含磷化氢越过0.15%时,遇空气容易自燃。乙炔聚合时放出热量,温度越高,聚合速度越快,如不加以控制,会因温度过高而发生乙炔分解爆炸反应。一般物质分解时是吸热的,而乙炔分解时却是放热的。常压乙炔一般不会分解,加压乙炔则极易分解。压力越高,越容易发生分解、爆炸,且分解温度随压力的升高而迅速下降。乙炔与多种金属接触能生成危险的金属炔化物。在—定条件下生成的乙炔银、乙炔铜或乙炔汞等,受到撞击摩擦或在干燥状态下升温都可导致强烈的分解、爆炸。 乙炔具有弱麻醉作用。高浓度吸人可引起单纯窒息。暴露于20%浓度(乙炔)时,出现明显缺氧症状;吸人高浓度时,初期兴奋、多语、哭笑不安,后出现眩晕、头痛、恶心、呕吐、嗜睡;严重者昏迷、紫绀、瞳孔对光反应消失、脉弱而不齐。当混有磷化氢时,毒性增大。(二)预防措施

相关主题
文本预览
相关文档 最新文档