当前位置:文档之家› 过冷奥氏体等温转变过程及产物-贝氏体转变

过冷奥氏体等温转变过程及产物-贝氏体转变

第三章钢的热处理

第2节奥氏体转变图

第3讲过冷奥氏体等温转变过程及产物

贝氏体转变

560~230℃

贝氏体型转变B

上贝氏体下贝氏体

共析钢的奥氏体等温转变图

贝氏体定义: 钢中的贝氏体是过冷奥氏体的中温转变产物,它以贝氏体铁素体(bainitic ferrite, BF) 为基体,同时存在碳化物相的组织

贝氏体=贝氏体铁素体+碳化物

贝氏体铁素体:含碳量过饱和的铁素体

碳化物:包括θ-渗碳体或ε-碳化物

过冷奥氏体不同等温转变温度下, 贝氏体的形态不同

560 ~350 ℃形成

上贝氏体B上

350℃ ~Ms(230 ℃)形成

下贝氏体B下

上贝氏体560 ~350 ℃形成

组织特征:B上呈羽毛状

上贝氏体形成示意图

贝氏体组织的形成

形核+ 核长大

在奥氏体

晶界形成在平行的铁素体片层之间析出渗碳体

新相铁素体

上贝氏体的性能

硬度高:40~45HRC

塑、韧性差:铁素体片粗且平行分布,同时晶间有脆性的渗碳体

(a)光学显微镜照片

下贝氏体组织呈针叶状

下贝氏体的显微组织

Fe 3C 白色弥散分布于铁素体晶内

(b)扫描电子显微镜照片

组织特征:B 下呈针叶状

微观结构:由针叶状过饱和F 和弥散分布在其中的极细小的渗碳体

组成下贝氏体形成示意图

下贝氏体在350℃~Ms(230℃)阶段形成

性能:

硬度高~50HRC,强度高,耐磨性好,塑性、韧性高

具有良好的综合力学性能

生产中“等温淬火”的目的就是为了得到B下组织

钎焊复习知识点总结

钎焊的概念:借助于液态钎料填满固态母材之间的间隙并相互扩散形成结合的一类连接材料方法。根据钎料熔点温度不同,熔点低于450为软钎焊,大于450为硬钎焊,大于900为高温钎焊。软钎焊和硬钎焊的区别:软钎焊的所用钎料的熔点低于450,接头强度低于70兆帕,硬钎焊所用钎料的熔点高于450,接头强度可达500兆帕。 影响钎料润湿性的因素:(1)钎料与母材的成份,钎料与母材在液态和固态均不相互作用,则他们之间的润湿性很差,若钎料能与母材相互溶解并形成化合物,则液态钎料能较好的润湿母材。(2)温度,温度升高,钎料表面张力降低,有助于提高钎料的润湿性。温度过高钎料的润湿性太强,往往容易造成钎料的流失,温度过高坏会引起母材晶粒长大,溶蚀等现象。 (3)金属表面氧化物(4)钎剂可清除氧化膜改善润湿性(5)母材表面的状态粗糙度(6)表面活性物质的影响。 1.钎料应具有合适的熔点; 2.钎料应具有良好的润湿性,能充分填满钎锋的间隙; 3.钎料与母材的扩散作用,应保证他们之间形成牢固的结合; 4.钎料应具有稳定和均匀的成分,应尽量减少钎焊过程中的偏析现象和易挥发元素的消耗等;5所得到的接头应能满足产品的技术要求。 软钎料代号s硬钎料代号b 自钎剂钎料:指机能填充钎缝间隙,又能起钎剂作用的钎料。 作用:填缝,去氧化膜。 要求:1.强还原剂2.还原产物熔点低于钎焊温度3.还原产物粘度低4.还原剂能溶于钎料内5.还原剂最好能降低液态钎料的表面张力,改善钎料的润湿性。 3.1. 钎焊时去膜的必要性母材表面氧化膜的存在,液态钎料不能润湿它们,同样液态钎料被氧化膜包裹时,也不能在母材上铺展( cu ni fe等的氧化膜易去除 al mg ti cr 等的氧化膜难去除) 3.2钎剂的作用及性能要求清除母材和钎料表面氧化膜利于铺展填缝隔绝空气起保护作用起界面活化作用改善钎料对母材的润湿性能要求(1)钎剂应具有溶解或破坏母材和钎料表面氧化膜的足够能力(2)钎剂的熔点和最低活性

第三章 奥氏体在冷却时的转变

第六节钢在冷却时的转变 一、共析钢的过冷奥氏体转变 由铁碳相图可知,共析钢从奥氏体状态冷却到临界点A1点以下时将要发生珠光体转变。实际上,迅速冷却到A1点以下温度时,转变并不是立即开始的,在A1点以下未转变的奥氏体称为过冷奥氏体。 1.过冷奥氏体转变曲线 (1)过冷奥氏体等温转变曲线图10—38是通过实验测定的共析钢过冷奥氏体等温转变 动力学曲线,又称过冷奥氏体等温转变 等温图(又称TTT图或C曲线)。图中 左边的曲线是转变开始线,右边的曲线 是转变完了线。它的上部向A1线无限 趋近,它的下部与Ms线相交。Ms点是 奥氏体开始向马氏体转变的温度。由图 可以看出,过冷奥氏体开始转变需要经 过一段孕育期,在550~500℃等温时孕 育期最短,转变最快,称为C曲线的 “鼻子”。在鼻温以上的高温阶段,随过冷 度的增加,转变的孕育期缩短,转变加 快;在鼻温以下的中温阶段,随过冷度的 增加,转变的孕育期变长,转变变慢。这 是因为共析转变是扩散型相变,转变速 率是由相变驱动力和扩散系数D两个 因素综合决定的(参看第三节)。 过冷奥氏体在不同的温度区间会发 生三种不同的转变。在A1~500~C区间 发生珠光体转变,转变的产物是珠光体(P),其硬度值较低,在11~40HRC之间;550~C~

Ms点区间发生贝氏体转变,产物是贝氏体(B),硬度值较高在40~55HRC之间;在Ms点 以下将发生马氏体转变,得到马氏体(M),马氏体的硬度很高,可达到60HRC以上。碳素 钢的贝氏体转变温度区间与珠光体、马氏体转变的温度区间没有严格的界限,相互之间有重叠。 一般认为过冷奥氏体有了1%的转变即为转变的开始,转变已完成99%即为转变完了。在转变开始线和转变完了线之间,还可以划出转变量为10%、50%、90%等等几条大体平行的曲线(图中以虚线表示)。转变开始线、终止线与A。线、Ms线之间将等温转变图划分成几个区域,各个区域表示组织状态及转变量与温度和时间之间的关系。从等温转变图右侧的纵坐标,还可以看出各温度下转变产物的硬度值。例如,过冷奥氏体在600~C进行等温转变,若等温时间只有1s,钢仍然处在过冷奥氏体状态;如果等温了3s,这时已有50%的奥氏体转变成珠光体,组织状态是奥氏体加珠光体各占50%;若在600~C等温7s以上,过冷奥氏体早已全部转变成珠光体,珠光体的硬度值是38HRC。如果在600~C等温3s后立即淬火,将得到50%马氏体加珠光体的组织。 (2)过冷奥氏体连续冷却转变曲线在绝大多数情况下奥氏体转变是在连续冷却的条件下进行的。如铸造、锻轧、焊接之后,一般都是采用在空气中冷却,或在坑中堆放冷却等连续冷却方式。从奥氏体状态经炉内冷却退火。或空气中冷却正火,或水中急冷淬火等热处理工艺也都是连续冷却过程。因此,研究过冷奥氏体连续冷却转变图(CCT图),有更大的实际意义。实验测定的不同冷却条件下共析碳钢的CCT图如图10—39所示。由图可以看出,不同冷却速度下,过冷奥氏体开始转变的时间和温度不同,冷却速度越快,开始转变所需的时间越短,转变温度越低。图中还划出该钢的c曲线。与c曲线相比较,CCT图中同样性质的曲线(转变开始线,转变终了线)均位于C曲线的下方。在连续冷却条件下,共析碳钢不发生贝氏体转变。若冷却速度小于33.4~C.s叫(图中的曲线3)时,奥氏体将全部转变成珠光 一、

瞬间液相扩散连接过程数值模拟的研究进展

第17卷第6期2003年12月 华 东 船 舶 工 业 学 院 学 报(自然科学版) Journal of East China Shipbuilding Institute(Natural Science Edition)   Vo1117No16 Dec.2003 文章编号:1006-1088(2003)06-0042-06 瞬间液相扩散连接过程数值模拟的研究进展 初雅杰,翟建广,邹家生,陈 铮 (华东船舶工业学院材料与环境工程系,江苏镇江212003) 摘 要:综述了近年来国内外关于瞬间液相扩散连接数值模拟的研究现状,内容涉及了异种材料接头 元素的扩散与反应层形成的模拟,接头变形与应力行为的模拟,并提出了要解决的问题,为今后的研究 提供了一定的借鉴。 关键词:瞬间液相连接;数值模拟;元素扩散;残余应力 中图分类号:TG453 文献标识码:A Progress of the R esearch in the Area of Numerical Simulation of T ransient Liquid Phase Diff usion Bonding CHU Y a2jie,ZHA I Jian2guang,ZO U Jia2sheng,CH EN Zheng (Dept.of Material and Environment Eng.,East China Shipbuilding Institute,Zhenjiang Jiangsu212003,China) Abstract:Reviews the present progress in numerical simulation of transient liquid phase diffusion bonding in recent years.The simulation of element diffusion and formation of reaction layers are discussed in detail. At the same time the simulation of residual stress of the bonding is involved.The problems to be solved are pointed out.It could be useful for the future research. K ey w ords:transient liquid phase bonding;numerical simulation;element diffusion;residual stress 0 引 言 近年来,随着高温合金、陶瓷、复合材料等新材料的迅速发展,这些新材料的连接技术也越来越引起人们的关注。虽然活性钎焊和固相扩散连接以各自的优点成为近年来新材料连接领域的研究热点,但这两种连接方法均有一定的局限性。Peaslee和Boam于1952年首次提出了瞬间液相扩散连接(Tran2 sient Liquid Phase Diffusion Bonding,简称TL P扩散连接)方法[1]。1974年,Duvall成功地进行了Ni基耐热合金的TL P扩散连接,随后TL P扩散连接方法在航空航天等领域得到了广泛的应用。但是由于TL P扩散连接涉及材料、扩散、相变、界面反应、接头应力应变等方面,工艺参数多,虽然已进行了大量的实验研究,但对各种材料的连接机理认识尚不深入[2~4]。一般认为,瞬间液相扩散连接过程的完成受中间层成分、厚度以及保温温度等因素的控制,元素的扩散起主要的作用,由于元素扩散是一个极缓慢的过程,实际构件中接合面间隙又并非一致,因此,为焊接一定的材料,从中间层合金元素的选择、成分的设计到最佳焊接工艺的确定,是一项工作量极大的工作,人们常使用计算机模拟瞬间液相扩散连接收稿日期:2003-04-11 基金项目:江苏省自然科学基金项目(B K2002602) 作者简介:初雅杰(1979-),男,山东烟台人,华东船舶工业学院硕士研究生。

过冷奥氏体转变因素对其影响规律

过冷奥氏体转变因素对其影响规律 过冷奥氏体等温转变的速度反映过冷奥氏体的稳定性,而过冷奥氏体的稳定性可在C曲线上反映出来。过冷奥氏体越稳定,孕育期越长,则转变速度越慢,C曲线越往右移。过冷奥氏体的等温转变因素有多个:(一)奥氏体成分的影响1、含碳量的影响2、合金元素的影响(二)奥氏体状态的影响(三)应力和塑性变形的影响。 一、奥氏体成分的影响 过冷奥氏体等温转变的速度在很大程度上取决于奥氏体的成分,改变奥氏体的化学成分,影响C曲线的形状和位置,从而可以控制过冷奥氏体的等温转变速度。 1、含碳量影响 与共析钢C曲线不同,亚、过共析钢上部各多一条先共析相析出线,说明过冷奥氏体在发生珠光体转变之前,在亚共析钢中先要析出铁素体,在过共析钢中要先析出渗碳体。 亚共析钢随奥氏体含碳量增加,C曲线逐渐右移,说明过冷奥氏体稳定性增高,孕育期变长,转变速度减慢。这是由于在相同的转变条件下,随着亚共析钢中含碳量的增高,铁素体形核的几率减少,铁素体长大需要扩散离去的碳量增大,故减慢铁素体的析出速度。一般认为,先共析铁素体的析出可以促进珠光体的形成。因此,由于亚共析钢先共析铁素体孕育期增长且析出速度减慢,珠光体转变速度也随之减慢。 2、合金元素对的影响 合金元素溶解到奥氏体中后,都增大过冷奥氏体的稳定性,使C曲线右移。V、Ti、Nb、Zr等强碳化物形成元素,当其含量较多时,能在钢中形成稳定的碳化物,在一般加热温度下不能融入奥氏体中而以碳化物形式存在,则反而降低过冷奥氏体的稳定性。 二、奥氏体状态的影响 奥氏体晶粒越细小,单位体积内晶界面积越大,从而使奥氏体分解时形核率增多,降低稳定性。 铸态原始组织不均匀,存在成分偏析,而经轧制后,组织和成分变得均匀。因此在同样加热条件下,铸锭形成的奥氏体很不均匀,而轧材形成的奥氏体比较均匀,不均匀的奥氏体可以促进奥氏体分解,使C曲线左移。 奥氏体化温度越低,保温时间越短,奥氏体晶粒越细,未溶第二相越多,同时奥氏体的碳浓度和合金元素浓度越不均匀,从而促进奥氏体在冷却过程中分解,使曲线左移。 三、应力和塑性变形的影响 在奥氏体状态下承受拉应力将加速奥氏体的等温转变,而加等向压应力则会阻碍这种转变,这是因为奥氏体比体积最小,发生转变时总是伴随比体积的增大,尤其是马氏体转变更为剧烈。所以加拉应力促进奥氏体转变。而在等向压应力下,原子迁阻力增大,减慢奥氏体的转变。 对奥氏体进行塑性变形亦有加速奥氏体转变的作用。这是由于塑性变形使点阵畸变加剧并使位错密度增高。

奥氏体转变

逆转变奥氏体 科技名词定义 中文名称:逆转变奥氏体 英文名称:reverse transformed austenite 定义:在铁素体或马氏体稳定存在的温度范围内,局部区域的铁素体或马氏体向奥氏体转变所形成的奥氏体。 应用学科:材料科学技术(一级学科);金属材料(二级学科);钢铁材料(三级学科);钢铁材料基础及组织和性能(四级学科) 以上内容由全国科学技术名词审定委员会审定公布 在碳钢中,淬火获得马氏体后,再次加热到奥氏体化温度应该可以获得奥氏体,这种奥氏体不能叫逆转变奥氏体。 一般材料很少提到逆变奥氏体,马氏体不锈钢或沉淀硬化不锈钢时见的可能多点。 1. 逆变奥氏体的形成(形核和长大)必须具备的条件:原生马氏体板条直到加热至稍高于Ac1点是稳定的。在略低于Ac1(As)点回火时,马氏体中过饱和的C部分以碳化物的形式在板条间界面弥散析出,使马氏体转变为回火马氏体。当回火温度升至稍高于As点时,逆变奥氏体相的核心就通过切变方式在此高Ni区直接生成,并沿板条界面纵向长大成极细的针条状逆变奥氏体。在-196℃,逆变奥氏体也是稳定的,可能因为其富集奥氏体化元素,很低的温度下也不发生转变。 2. 回火后样品中逆变奥氏体含量受两个因素控制:即高温时奥氏体转变量及其在回火冷却过程中的稳定性。As-Af之间回火时,室温得到的逆变奥氏体量随着回火温度的升高出现先增后减的趋势,中间存在最优化回火温度,能使室温逆变奥氏体量达到最大。

奥氏体在冷却时发生的组织转变,既可在恒温下进行,也可在连续冷却过程中进行,随着冷却条件的不同,奥氏体可在A1以下不同的温度发生转变,获得不同的组织。所以,冷却是热处理的关键工序,它决定着钢在热处理后的组织和性能。 在临界转变温度A1以上存在的奥氏体是稳定的,不会发生转变。但一旦冷却到A1以下,则变得不稳定,冷却时要发生组织转变。这种在临界温度以下存在且不稳定的、将要发生转变的奥氏体称为过冷奥氏体。 研究过冷奥氏体的冷却转变行为,通常采用两种方法,一种是利用奥氏体等温转变曲线研究奥氏体在不同过冷度下的等温转变过程,另一种是利用奥氏体连续冷却转变曲线研究奥氏体在不同冷速下的连续冷却中的转变过程。 亚温区的奥氏体转变 Г.Н.Теплухин魏卓夫 【摘要】:正亚共析钢在亚温区冷却时α-相的析出过程通常看作如同平衡状态一样。这时形成的α-相数量,可根据Fe-Fe_3C平衡图用杠杆定律来估算。计算的正确性只有钢足够缓慢地冷却时才不致引起疑问。亚共析钢在实际热处理条件下(如在完全退火或均匀化退火、正火以及借助轧制加热或特殊加热的热强化时),在亚温区其冷却是被加快的。无论何时所形成的α-相数量 【关键词】:奥氏体转变亚共析钢相数量杠杆定律均匀化退火温区析出过程热处理条件完全退火平衡状态 【正文快照】: 亚共析钢在亚温区冷却时“一相的析出过程通常看作如同平衡状态一样.这时形成的。一相数量,可根据Fe一Fe:C乎衡图用杠杆定律来估算。计算的正确性只有钢足够缓慢地冷却时才不致引起疑问。亚共析钢在实际热处理条件下(如在完全退火或均匀化退火、正火以及借助轧制加热或特殊

第六章钢的热处理钢在冷却时的组织转变

第六章钢的热处理 第二节钢在冷却时的组织转变 等温冷却是奥氏体至高温快速冷至临界点________以下某一温度,保温后再冷至室温。 A.A3 B.A m C.A1 D.A cm 临界温度以上的奥氏体是稳定相,临界温度以下的则为不稳定相,所以把暂存于临界点以下的奥氏体称为________。 A.奥氏体 B.实际奥氏体 C.残余奥氏体 D.过冷奥氏体 共析钢加热到奥氏体化后,以不同的冷却方式冷却,可以获得________。A.三种组织 B.四种组织 C.五种组织 D.六种组织 过冷奥氏体的等温冷却转变过程中,转变起始线与转变终了线之间的产物均含有________。 A.过冷奥氏体 B.P C.S D.M 在过冷奥氏体向马氏体的转变过程中,下列说法正确的是________。 A.铁、碳原子均不发生扩散 B.是典型的扩散型相变 C.铁原子发生一定短距离的扩散,而碳原子则完全不能扩散 D.碳原子发生一定短距离的扩散,而铁原子则完全不能扩散 在过冷奥氏体向贝氏体的转变过程中,下列说法正确的是________。 A.铁、碳原子均不发生扩散 B.是典型的扩散型相变 C.铁原子发生一定短距离的扩散,而碳原子则不能扩散 D.碳原子发生一定短距离的扩散,而铁原子则不能扩散 在过冷奥氏体向珠光体的转变过程中,下列说法正确的是________。 A.铁、碳原子均不发生扩散 B.是典型的扩散型相变

C.铁原子发生一定短距离的扩散,而碳原子则完全不能扩散 D.碳原子发生一定短距离的扩散,而铁原子则完全不能扩散 在共析钢的珠光体等温转变区,________,则形成的________。 A.等温转变温度越低/珠光体组织片层越粗 B.等温转变温度越低/珠光体组织片层越细 C.等温转变温度越高/珠光体组织片层越薄 D.等温转变温度越高/珠光体组织片层越细 共析钢等温转变曲线上,当过冷度较小时,奥氏体将转变成________。A.珠光体组织 B.索氏体组织 C.屈氏体组织 D.贝氏体组织 在等温冷却转变曲线上,过冷奥氏体在高温区的转变产物是________。A.F B.A C.P D.M 索氏体是铁素体与渗碳体的________状的机械混合物。 A.粗片 B.细片 C.极细片 D.蠕虫 珠光体类型组织有________。 Ⅰ.P;Ⅱ.S;Ⅲ.T;Ⅳ.B;Ⅴ.M。 A.Ⅰ+Ⅱ+Ⅴ B.Ⅰ+Ⅲ+Ⅳ C.Ⅱ+Ⅲ+Ⅴ D.Ⅰ+Ⅱ+Ⅲ 屈氏体是铁素体与渗碳体的________状的机械混合物。 A.粗片 B.细片 C.极细片 D.蠕虫 珠光体是铁素体与渗碳体的________状的机械混合物。 A.粗片 B.细片 C.极细片

镍基高温合金瞬时液相扩散焊微观结构的研究

GTD-111 镍基高温合金瞬时液相扩散焊微观结构的研究 作者M. Pouranvari?, A. Ekrami, A.H. Kokabi 译文山东大学材料科学与工程学院马群双 材料科学与工程学院, 谢里夫科技大学, P.O. Box 11365-9466, 德黑兰, 伊朗. 2007.5.31初稿. 2007.7.19修订稿. 2007.7.21接收. 2007.8.6在线刊登 摘要 瞬时液相扩散焊(TLP)使用非晶态的Ni–Si–B夹层金属MBF30,连接镍基高温合金GTD-111。扩散焊是在真空环境下保温1100℃,保持不同时间进行的。接头区域的显微结构通过光学显微镜和扫描电子显微镜进行研究。微观结构的研究表明,等温凝固完成之前,接头区由四种不同的区域构成:无热凝固产生的中心线共晶相,等温凝固产生的固溶体相,扩散诱发的硼化物沉淀相和母材金属。在1100℃下保持75min时等温凝固完成,同时抑制中心线共晶相的形成。在1150℃下保持240min等温凝固接头完成均匀化,导致扩散影响区的二次沉淀物减少和接头区大量γ’相沉淀物的形成。 ? 2007 Elsevier B.V. All rights reserved. 关键词:GTD-111高温合金; TLP扩散焊;等温凝固; 微观结构 1.前言 GP强化的镍基高温合金如GTD-111,广泛应用于航空发动机和涡轮发电机的高温部位。它们在高温下能够提供优异的抗拉强度,抗应力破坏和蠕变能力,疲劳强度,抗氧化和腐蚀能力以及微观结构的稳定性。 涡轮发动机的效率不断提高,发动机部分的复杂度也不断增加。此外,地基涡轮机尺寸的增加导致易于产生斑点缺陷的大截面组件的使用。因此,成功和高效的制造燃气涡轮发动机需要在各种条件下使用熔焊或钎焊的方法连接高温合金。另一方面,一个涡轮叶片通常表现出各种类型缺陷的结合,例如:热疲劳裂纹,腐蚀,外来物破坏,热腐蚀,氧化和硫化等等。高温合金组件成本的增加导致人们对修复受损组件更加重视[1,2]。 熔焊,扩散焊和钎焊工业中广泛应用的三种主要连接和修复制造技术[3]。硼化物和硅化物等易碎相会在钎焊过程中形成,对接头的机械完整性产生不利影响[1,4,5]。镍基高温合金的焊接性主要取决与Al和Ti元素的含量。沉淀强化的镍基高温合金含有更多集中的Al 和Ti元素,在焊接和焊后热处理过程中,显微裂纹敏感度较高。而且,显微偏析和焊接融合区非平衡凝固产生的非稳相的转变对焊件的性能有重大影响[7]。 瞬时液相扩散焊也叫扩散钎焊,是修复和连接镍基高温合金的首选方法。它是一种结合了液相连接和固相连接优点的混合过程。瞬时液相扩散焊与普通扩散焊的区别在于液相中间阶层的形成使扩散焊过程不需要很高的压力[17]。一般认为,TLP过程中有三个明显的过程,即:母材溶解,等温凝固和固相均匀化。等温凝固和后续的固相均质化热处理生产接头,可以使焊接接头与母材化学成分一致并且在结合线附近没有显微可见的材料断裂[18]。 本文主要研究,使用Ni–Si–B中间夹层,用TLP扩散焊连接GTD-111高温合金时,扩散时间和均质化热处理对接头微观结构的影响。 2.实验材料和实验过程 在本次试验中,GTD-111高温合金在标准热处理条件下用作母材。并且,使用商业的Ni–Si–B合金(MBF30)以厚度25.4μm的非晶态薄片的形式用作中间夹层。镍基高温合金

钢的奥氏体等温转变图测定

实验三钢的奥氏体等温转变图测定 一、概述 奥氏体等温转变:钢加热奥氏体化后,冷却到临界点以下进行等温转变时所发生的组织转变为奥氏体等温转变。 奥氏体等温转变图:描述过冷奥氏体在等温转变过程中的转变温度与转变开始和转变终了时间的关系图为奥氏体等温转变图。 奥氏体等温转变图根据转变产物的形态和性质不同分三个区域,低温转变区、中温转变区和高温转变区。 高温转变区转变产物为珠光体。 中温转变区转变产物为贝氏体。 低温转变区转变产物为马氏体和残余奥氏体。 二、实验目的 1、用金相法研究并建立GCr15钢奥氏体的等温转变图。 2、了解不同加热温度对GCr15钢奥氏体等温转变图的影响。 三、实验内容 1、影响奥氏体等温转变的因素 (1)化学成分的影响。 (2)奥氏体晶粒大小对过冷奥氏体转变的影响。 (3)塑性变形的影响。 2、测定奥氏体等温转变图的方法 (1)金相法 (2)硬度法 (3)磁性法 (4)膨胀法 金相法: 金相法能直接而精确地观察到奥氏体分解产物的数量和组织特征。可以确定奥氏体分解的开始点和结束点,还可以精确确定在等温过程中不同等温时间内的奥氏体的分解量。

测量面积法、画线法、定点法和称重法。 硬度法: 随等温停留时间的延长,奥氏体分解量增加,随后淬火得到的马氏体量减少,硬度值随之下降。点1处硬度开始下降,为转变开始时间。到点2处硬度值不再下降,为转变的终了时间。 3、实验步骤 将GCr15钢加热至840℃保温5分钟将试样分别迅速投入到保持在不同温度的盐浴中进行不同时间的等温,然后取出,淬入水中冷却。进行金相组织观察,用画线法测出转变开始时间和结束时间。最后画出GCr15钢奥氏体的等温转变图。

奥氏体在冷却时的转变

第三节奥氏体在冷却时的转变 奥氏体在冷却时发生的组织转变,既可在恒温下进行,也可在连续冷却过程中进行,随着冷却条件的不同,奥氏体可在A1 以下不同的温度发生转变,获得不同的组织。所以,冷却是热处理的关键工序,它决定着钢在热处理后的组织和性能。 在临界转变温度A1 以上存在的奥氏体是稳定的,不会发生转变。但一旦冷却到A1 以下,则变得不稳定,冷却时要发生组织转变。这种在临界温度以下存在且不稳定的、将要发生转变的奥氏体称为过冷奥氏体。 研究过冷奥氏体的冷却转变行为,通常采用两种方法,一种是利用奥氏体等温转变曲线研究奥氏体在不同过冷度下的等温转变过程,另一种是利用奥氏体连续冷却转变曲线研究奥氏体在不同冷速下的连续冷却中的转变过程。 一、共析钢过冷奥氏体等温转变曲线 这里以金相-硬度法为例,来说明共析钢的过冷奥氏体等温转变曲线的测定过程。 将共析钢制成圆形薄片试样(①10X 1.5 mm。试样被加热到临界点Ac1 以上某一温度并保温一段时间,得到均匀的奥氏体组织,然后将试样分别迅速投入到不同温度的盐浴炉中,从放入盐浴中开始计时,每隔一段时间从盐浴中取出一块试样迅速放入水中。对各试样做金相组织观察和硬度测定

就可以得出各等温温度下不同等温时间内奥氏体的转变量, 就可以得到一系列的奥氏体等温转变开始点和转变终了点。 若以等温转变温度为纵坐标,转变时间(以对数表示)为横 坐标,将所有的转变开始点连接成一条曲线(称为 等温转变 开始线);同样,将所有的转变终了点也连成一条曲线(称 为等温转变终了线),就可以得到如所示的共析钢过 图3-1共析钢的过冷奥氏体等温转变曲线图 冷奥氏体等温转变曲线。由于该曲线具有英文字母“ C' 的形状,故称 C 曲线,也称TTT ( Time Temperature Transformation )曲线。 C 曲线上部的水平线A 是奥氏体和珠光体的平衡温度 下部的两条水平线分别表示奥氏体向马氏体转变的开始温 度 M s 和终了温度 M f 。 10 J ^7 2D Q Mf _俩匚匚二iz ___________________ 一 0.5 10 1Q 1 101 10* 何 、 时阖 lf l 用 SOW15 A-M

等温过程准确含义的

广东化工 2012年第15期· 168 · https://www.doczj.com/doc/5617316286.html, 第39卷总第239期 等温过程准确含义的探讨 梁灿健,徐悦华* (华南农业大学理学院,广州广东 510642) [摘要]在物理化学教材中,对于等温过程的定义存在较大的争议,因此有必要对等温过程的准确定义进行辨析。分析物理化学教材中不同情况的等温过程后得出,等温过程是指环境温度恒定不变,系统的始态和终态温度相同并等于环境温度的过程,而且变化过程中系统温度可以有波动,温度波动的大小对于系统过程要视具体问题而言。 [关键词]等温过程;等温变化;恒温过程 [中图分类号]G642 [文献标识码]B [文章编号]1007-1865(2012)15-0168-02 Dialectical Analysis on Accurate Definition of Isothermal Process Liang Canjian, Xu Yuehua* (College of Science, South China Agricultural University, Guangzhou 510642, China) Abstract: It is necessary to analyze dialectically the accurate definition of isothermal process, because the definitions of isothermal process in Physical Chemistry teaching materials are different. Various isothermal processes in Physical Chemistry teaching materials are analyzed, and the definition of isothermal process is concluded. The isothermal process is the process that the initial temperature, final temperature, and the environmental temperature are equal, and the environmental temperature is constant. Furthermore, the system temperature may fluctuate during the process, and the magnitude of temperature fluctuation is different for various processes. Keywords: isothermal process;isothermal change;dialectical analysis 在一定环境条件下,系统发生由始态到终态的变化,称之为 热力学过程,简称为过程。在不同的物理化学教材中,对于等温 过程的定义存在较大的争议,因此提出了对等温过程的准确定义 进行辨析的需要。 1 恒温过程和等温过程的理解 等温过程的定义在物理化学教材中大概有两种不同的表述: (1)等温过程是指系统的温度维持不变且等于环境的温度的过程 [1-2]。(2)等温过程是指环境温度恒定不变,系统的始终态温度相等 并等于环境温度的过程。系统温度在过程中途可能发生变化,也 可能不变[3-4]。如果在等温过程中系统的温度也恒定,则称为恒温 过程。 恒温过程,顾名思义,就是无论是开始、终了还是在系统的 变化过程中,系统温度都保持不变。那么等温过程呢?如果按照 第一种定义,等温过程和恒温过程没有区别,但仔细分析,这两 个过程是不同的,但在一定的条件下是等同的。 如图1所示,把气缸置于恒温热源中,当活塞上的压力缓慢减 小(或增加)时,缸内气体将缓慢膨胀(或压缩)而做功,同时气体与 热源不断交换热量而保持温度不变,这就实现了气体的等温过程。 由理想气体的状态方程式pV=nRT,可知p1V1=p2V2=pV=nRT=恒量。 在数学的角度来看,p=nRT/V这一函数式是波动曲线的拟合,也就 是即使过程中温度有波动,即低于曲线,或者高于曲线,但正偏差 和负偏差之和等于零,也可以近似看作等于曲线下的面积(图2)。 图1 等温过程 Fig.1 Sketch map of isothermal process p 12 图2 等温膨胀 Fig.2 Isothermal expansion diagram 图2为等温膨胀图,其物理意义为当内外的压力只差无限小, 系统内的气体缓慢做功,且无摩擦等消耗,即系统和环境能完全 恢复原状,这说明变化过程每一瞬间,系统内部都能通过外部的 恒温热源进行热交换,来维持系统的温度时刻与环境的温度相等, 这就是所谓的可逆过程。但是,这种可逆过程只是一种理想的过 程,实际上是办不到的。因为一个过程必定引起状态的变化,而 状态的改变一定破坏平衡,也就是不能使系统的温度时刻与环境 的温度相等,即存在温度的波动性。即使等温过程不是恒温过程, 但当一个过程进行得非常非常慢,速度趋向于零,这样就有足够 的时间使气体的压力由微小的不均匀变为均匀,同时使系统能瞬 间与外部恒温热源进行热交换而保持温度不变时,此时,等温过 程与恒温过程相同,或者说恒温过程就是等温可逆过程。 在没有明确区分恒温过程还是等温过程的时候,必须根据上 下文进行判断。如果问题中涉及缓慢等字样,或很明显过程可视 为可逆过程,那么二者是一回事,系统温度维持不变并与环境温 度相同。反之明显是一个快速变化的过程,就只能理解为外部热 源温度恒定,而系统温度不恒定。 2 对于等温变化过程中的热量Q的讨论 在教科书上,对热量Q有如下的定义[1]:由于温度不同,而 在系统与环境间交换或传递的能量就是热。这说明只有系统与环 境存在一定的温差下,才能进行热的交换,才能有热量的传递。 如果在理想气体的等温可逆膨胀变化过程中,系统的温度与环境 的温度都保持不变的话,系统与环境不存在温差,即热传递的推教学教改 [收稿日期] 2012-09-17 [基金项目] 华南农业大学教育教学改革与研究资助项目(JG10111) [作者简介] 梁灿健(1991-),男,广东南海人,本科,主要研究方向为功能材料。*为通讯作者:徐悦华(1964-),女,广东五华人,教授。

过冷奥氏体等温转变曲线参考模板

过冷奥氏体等温转变曲线 一、整体实验目的 1.熟悉用金相硬度法测定过冷奥氏体恒温分解动力学曲线的方法; 2.掌握过冷奥氏体在不同温度范围中恒温转变产物的特征,提高对组织的识别能力。 二、整体实验设备与材料 1.金相显微镜,热处理炉,洛氏硬度计,砂轮,抛光机 2.实验样品:T8钢 三、实验内容 1.硬度结果分析(上节课) 2.结合具体实验温度和保温时间,硬度和金相照片,叙述在本温度下随着保温时间延长奥氏体分解为珠光体的趋势和特点 (一)恒温时间为400摄氏度时,恒温组织转变为奥氏体转变为贝氏体。当恒温时间为1~10s时,常温下观察到的组织为马氏体,当恒温时间为10~100s,常温下观察到的组织为贝氏体。 如图为400℃恒温,恒温转变 原本保温时间为3s,然而根据 硬度,硬度为38.1,属于屈氏 体范围(一般的硬度为: HRC; 35-45左右,如淬火不足) 在此处的,原本应该转变为贝 氏体+马氏体(硬度值约为 62HRC左右)。然而可能因为在 保温过程当中,由于此时间过 短不易操作,所以导致回火。 所以硬度很小 图(1)实验 T8 金相组织图恒温400 恒温时间3s

图(2)百度钢T12 回火屈氏体组织图 500 X 图(3)实验 T8 金相组织图恒温400 恒温时间3s 手机拍摄 实验分析:正常情况下,随恒温时间增长,开始产生贝氏体。硬度会逐渐降低,但是尤其此样品硬度值为突降,故并不是贝氏体,且硬度值范围在屈氏体范围内。通过对比回火曲氏马氏体组织图,可以发现近乎相同。故,可以判断此样品在常温时转变成为了回火屈氏体。 (二)恒温时间为600摄氏度。当未发生转变时,组织全部为马氏体,硬度值很高而且平稳,变化不大。当等温转变有转变产物形成时,由于高温和中温转变组织(如珠光体及贝氏体等)的硬度都低于马氏体,因此硬度下降。 如图(4),此时为恒温温度 600摄氏度,恒温时间为60s 的金相组织。根据硬度,以 及硬度随保温时间变化的曲 线可以分析得到,在60s的 时候,几乎奥氏体都已经分 解,并且转换,由于保温时 间较长,此时均为索氏体。 (硬度为27HRC,属于索氏 体硬度范围即30HRC左右)

钢在冷却时的转变

1/1 钢在冷却时的组织转变常识钢进行热处理冷却的目的是获得所需要的组织和性能,这需要通过采用不同冷却方式来实现。冷却方式不同转变的组织也不同,性能差异较大。奥氏体冷却至A1以下温度时将发生组织转变(A1温度以下还存在的不稳定奥氏体通常称过冷奥氏体)。钢的冷却方式分为等温冷却和连续冷却。 等温冷却的组织转变形式 1.奥氏体的等温转变对过冷奥氏体(即:奥氏体在A1线以上是稳定相,当冷却到A1线以下还未转变 的奥氏体)经过一段时间的等温保持后转变为稳定的新相。这种转变过程就称为奥氏体的等温转变。 2.等温冷却转变钢经奥氏体化后迅速冷却至临界点Ar1或Ar3)线以下,等温保持时过冷奥氏体发生的转 变。 等温冷却的组织转变产物与性能 1.A1~550℃也称高温转变,获片状珠光体型(F+P)组织,按转变温度由高到低的顺序,转变产物分别 为珠光体、索氏体、托氏体;片层间距由粗到细,趋势是:片层间距越小,塑性变形阻力越大,强度和硬度越高 1)A1~650℃获粗片状珠光体金相组织 2)650~600℃获细片状索氏体金相组织 3)600~550℃获极其细片状的托氏体金相组织 2.550℃~M S 也称中温转变,获贝氏体型组织(过饱和的铁素体和碳化物组成,有上贝氏体和下贝氏体之 分。) 1)550~350℃获羽毛状上贝氏体金相组织 2)550℃~M S获黑色针状下贝氏体金相组织(这种组织强度和韧性都较高) 3.M S线温度以下连续冷却时,过冷奥氏体发生转变获得马氏体组织,马氏体内的含碳量决定着马氏体的强 度和硬度,总的趋势是随着马氏体含碳量的提高,强度与硬度也随之提高;高碳马氏体硬度高、脆性大,而低碳马氏体具有良好的强度和韧性。 连续冷却的组织转变过冷奥氏体在一个温度范围内,随温度连续下降发生组织转变。连续冷却有炉冷、空冷、油冷、水冷四种最为常用的连续冷却方式 1)炉冷冷速约10℃/min,产生新相为珠光体,如退火的冷却 2)空冷冷速约10℃/s,产生新相为索氏体,如正火的冷却 3)油冷冷速约150℃/s,产生新相为托氏体+马氏体,如油淬 4)水冷冷速约600℃/s,产生新相为残余奥氏体+马氏体,如水淬(残余奥氏体的存在降低了淬火 钢的硬度和耐磨性,也会因零件在使用过程中残余奥氏体会继续转变为马氏体,从而使工件变形; 一些重要精密的零件通常会通过把淬火后的工件冷却到室温以下并继续冷却到-80~-50℃来减少残余奥氏体含量的存在)。

第五章钢在冷却时的转变 2

编号:QMSD/JWC-13-10 江苏省技工学校教案首页 课题§5-2钢在冷却时的转变 教学目的、要求: 了解钢在冷却时的组织转变 教学重点、难点: 过冷奥氏体的等温转变。 授课方法:讲解、练习 教学参考及教具(含电教设备):挂图、配套教参、电子教案 授课执行情况及分析:2教时 本节内容学生不易理解,还需讲解得更浅显、形象 板书设计或授课提纲

【导入】 复习1、热处理概念2、钢的热处理方法 3、热处理工艺 【新授】§5-2 钢在冷却时的转变 钢经加热获得奥氏体组织后,在不同的冷却条件下冷却,可使钢获得不同的力学性能。 在热处理工艺中,常采用等温转变和连续冷 却转变两种冷却方式。其工艺曲线如图6-5所示。 等温转变是将奥氏体化的钢迅速冷却到A l以下某一 温度保温,使奥氏体在此温度发生组织转变,如图 6-5曲线2。连续冷却转变是将奥氏体化的钢从高温 冷却到室温,让奥氏体在连续冷却条件下发生组织 转变,如图6-5曲线1。 一、过冷奥氏体的等温转变 在共析温度以下存在的奥氏体称为过冷奥氏体。 表示过冷奥氏体的转变温度、转变时间与转 变产物之间的关系曲线图称为等温转变图。 等温转变图的建立 奥氏体等温转变图是用实验方法建立的。 下面以共析钢为例来说明等温转变图的建立。 测出过冷奥氏体等温转变开始和终了的时间,把它们记在时间-温度的坐标图上,然后分别连接各开始转变点(a点)和转变终了点(b点),得到如图6-6所示的曲线图,这一曲线图称为奥氏体等温转变图。亦称为C曲线。 在等温转变图的下方有两条水平线,Ms线为过冷奥氏体向马氏体转变的开始线,约230℃;M f线为过冷奥氏体向马氏体转变终了线,约-5O℃。在C曲线拐弯处(约550℃,俗称“鼻尖”)孕育期最短,此时奥氏体最不稳定,最容易分解。 过冷奥氏体等温转变产物的组织和性能 在Ms点以上,可发生以下两种类型的转变: 珠光体型转变

相关主题
文本预览
相关文档 最新文档