当前位置:文档之家› 由参数方程所确定的函数的导数与导数的简单应用

由参数方程所确定的函数的导数与导数的简单应用

精选-高考数学大二轮复习专题二函数与导数2-3二导数的综合应用练习

2.3(二)导数的综合应用 【课时作业】 A 级 1.(2018·昆明市高三摸底调研测试)若函数f (x )=2x -x 2 -1,对于任意的x ∈Z 且x ∈ (-∞,a ),都有f (x )≤0恒成立,则实数a 的取值范围为() A .(-∞,-1] B .(-∞,0] C .(-∞,4] D .(-∞,5] 解析: 对任意的x ∈Z 且x ∈(-∞,a ), 都有f (x )≤0恒成立,可转化为对任意的x ∈Z 且x ∈(-∞,a ),2x ≤x 2 +1恒成立. 令g (x )=2x ,h (x )=x 2 +1, 当x <0时,g (x )h (x ). 综上,实数a 的取值范围为(-∞,5],故选D. 答案: D 2.已知函数y =f (x )是R 上的可导函数,当x ≠0时,有f ′(x )+ x >0,则函数F (x ) =xf (x )+1 x 的零点个数是() A .0 B .1 C .2 D .3 解析: 由F (x )=xf (x )+1 x =0, 得xf (x )=-1 x , 设g (x )=xf (x ), 则g ′(x )=f (x )+xf ′(x ), 因为x ≠0时,有f ′(x )+x >0, 所以x ≠0时, +x >0, 即当x >0时,g ′(x )=f (x )+xf ′(x )>0,此时函数g (x )单调递增,

此时g (x )>g (0)=0, 当x <0时,g ′(x )=f (x )+xf ′(x )<0,此时函数g (x )单调递减,此时g (x )>g (0)=0, 作出函数g (x )和函数y =-1 x 的图象,(直线只代表单调性和取值范围),由图象可知函数 F (x )=xf (x )+1x 的零点个数为1个. 答案: B 3.定义1:若函数f (x )在区间D 上可导,即f ′(x )存在,且导函数f ′(x )在区间D 上也可导,则称函数f (x )在区间D 上存在二阶导数,记作f ″(x ),即f ″(x )=[f ′(x )]′. 定义2:若函数f (x )在区间D 上的二阶导数恒为正,即f ″(x )>0恒成立,则称函数f (x ) 在区间D 上为凹函数. 已知函数f (x )=x 3 -32 x 2+1在区间D 上为凹函数,则x 的取值范围是________. 解析: ∵f (x )=x 3-32 x 2+1,∴f ′(x )=3x 2 -3x ,∴f ″(x )=6x -3.令f ″(x )>0,即 6x -3>0,解得x >12.∴x 的取值范围是? ?? ??12,+∞. 答案: ? ?? ? ?12,+∞ 4.已知函数f (x )= ex x ,g (x )=-(x -1)2+a 2 ,若当x >0时,存在x 1,x 2∈R ,使得f (x 2)≤g (x 1)成立,则实数a 的取值范围是________. 解析: 由题意得存在x 1,x 2∈R ,使得f (x 2)≤g (x 1)成立,等价于f (x )min ≤g (x )max . 因为g (x )=-(x -1)2 +a 2 ,x >0, 所以当x =1时,g (x )max =a 2 . 因为f (x )=ex x ,x >0, 所以f ′(x )=ex·x-ex x2 = -x2 . 所以f (x )在(0,1)上单调递减,在(1,+∞)上单调递增, 所以f (x )min =f (1)=e.

第13讲 函数与导数之导数及其应用(学生版)

第13讲 函数与导数之导数及其应用 一. 基础知识回顾 1.函数的平均变化率:一般地,已知函数y =f (x ),x 0,x 1是其定义域内不同的两点,记Δx =x 1-x 0,Δy =y 1-y 0=f (x 1)-f (x 0)=f (x 0+Δx )-f (x 0),则当Δx ≠0时,商 =Δy Δx 称作函数y =f (x )在区间[x 0,x 0+Δx ](或[x 0+Δx ,x 0])的平均变化率. 2.函数y =f (x )在x =x 0处的导数:(1)定义:函数y =f (x)在点x 0处的瞬时变化率 通 常称为f (x )在x =x 0处的导数,并记作f ′(x 0),即 . (2)几何意义:函数f (x )在点x 0处的导数f ′(x 0)的几何意义是过曲线y =f (x )上点(x 0,f (x 0)) 的 .导函数y =f ′(x )的值域即为 . 3.函数f (x )的导函数:如果函数y =f (x )在开区间(a ,b )内每一点都是可导的,就说f (x )在开 区间(a ,b )内可导,其导数也是开区间(a ,b )内的函数,又称作f (x )的导函数,记作 . 4.基本初等函数的导数公式表(右表) 5.导数运算法则 (1)[f (x )±g (x )]′= ; (2)[f (x )g (x )]′= ; (3)????f (x )g (x )′= [g (x )≠0]. 5.导数和函数单调性的关系:(1)若f ′(x )>0在(a ,b )上恒成立,则f (x )在(a ,b )上是 函数,f ′(x )>0的解集与定义域的交集的对应区间为 区间;(2)若f ′(x )<0在(a ,b )上恒成立,则f (x )在(a , b )上是 函数,f ′(x )<0的解集与定义域的交集的对应区间为 区间(3)若在(a ,b )上, f ′(x )≥0,且f ′(x )在(a ,b )的任何子区间内都不恒等于零?f (x )在(a ,b )上为 函数,若在 (a ,b )上,f ′(x )≤0,且f ′(x )在(a ,b )的任何子区间内都不恒等于零?f (x )在(a ,b )上为 函 数. 6.函数的极值:(1)判断f (x 0)是极值的方法:一般地,当函数f (x )在点x 0处连续时,①如果 在x 0附近的左侧 ,右侧 ,那么f (x 0)是极大值;②如果在x 0附近的左侧 , 右侧 ,那么f (x 0)是极小值.(2)求可导函数极值的步骤①求f ′(x );②求方程 的根;③检查f ′(x )在方程 的根左右值的符号.如果左正右负,那么f (x )在这个根处 取得 ;如果左负右正,那么f (x )在这个根处取得 . 7.函数的最值:(1)函数f (x )在[a ,b ]上必有最值的条件如果函数y =f (x )的图象在区间[a ,b ] 上 ,那么它必有最大值和最小值.(2)求函数y =f (x )在[a ,b ]上的最大值与最小值的步 骤:①求函数y =f (x )在(a ,b )内的 ;②将函数y =f (x )的各极值与 比较,其中最大 的一个是最大值,最小的一个是最小值. 二.典例精析 探究点一:导数的运算 例1:求下列函数的导数: (1)y =(1-x )? ???1+1x ; (2)y =ln x x ;(3)y =x e x ; (4)y =tan x .

导数的综合应用

导数的综合应用 ★★★高考在考什么 【考题回放】 1.(06江西卷)对于R 上可导的任意函数f (x ),若满足(x -1) f ' (x ) ≥0,则必有( C ) A . f (0)+f (2)<2f (1) B. f (0)+f (2) ≤2f (1) C. f (0)+f (2) ≥2f (1) D. f (0)+f (2) >2f (1) 解:依题意,当x ≥1时,f ' (x )≥0,函数f (x )在(1,+∞)上是增函数;当x <1时,f ' (x )≤0,f (x )在(-∞, 1)上是减函数,故f (x )当x =1时取得最小值,即有f (0)≥f (1),f (2)≥f (1),故选C 2.(06全国II )过点(-1,0)作抛物线y=x 2+x +1的切线,则其中一条切线为 (A )2x+y +2=0 (B )3x-y +3=0 (C )x+y+1=0 (D )x-y+1=0 解:y '=2x +1,设切点坐标为(x 0,y 0),则切线的斜率为2x 0+1,且y 0=x 02+x 0+1 于是切线方程为y -(x 02+x 0+1)=(2x 0+1)(x-x 0),因为点(-1,0)在切线上,可解得 x 0=0或-4,代入可验正D 正确。选D 3.(06四川卷)曲线y =4x-x 3在点(-1,-3)处的切线方程是D (A )y=7x+4 (B )y=7x+2 (C )y=x-4 (D )y=x-2 解:曲线y =4x-x 3,导数y '=4-3x 2,在点(-1,-3)处的切线的斜率为k=1,所以切线方程是y=x-2,选D. 4.(06天津卷)函数f (x )的定义域为开区间(a,b ),导函数f ' (x )在(a,b )内的图象如图所示,则函数f (x )在开区间(a,b )内有极小值点( ) A .1个 B .2个 C .3个 D . 4个 解析:函数f (x )的定义域为开区间(a,b ),导函数f ' (x )在(a,b )内的图象如图所示,函数f (x )在开区间(a,b )内有极小值的点即函数由减函数变为增函数的点,其导数值为由负到正的点,只有1个,选A. 5.(浙江卷)f (x )=x 3-3x 2+2在区间[-1,1]上的最大值是 (A)-2 (B)0 (C)2 (D)4 解:f ' (x )=3x 2-6x =3x (x -2),令f ' (x )=0可得x =0或2(2舍去),当-1≤x <0时,f ' (x )>0,当0

2020年高考文科数学《导数的综合应用》题型归纳与训练

a - a (- ),( , +∞) 单调递增, 在 (- ( 2020 年高考文科数学《导数的综合应用》题型归纳与训练 【题型归纳】 题型一 含参数的分类讨论 例1 已知函数 f ( x ) = ax 3 - 12 x ,导函数为 f '( x) , (1)求函数 f ( x ) 的单调区间; (2)若 f '(1)= -6, 求函数f ( x ) 在[—1,3]上的最大值和最小值。 【答案】略 【解析】(I ) f '( x ) = 3ax 2 - 12 = 3(ax 2 - 4) ,(下面要解不等式 3(ax 2 - 4) > 0 ,到了分类讨论的时机,分 类标准是零) 当 a ≤ 0时, f '( x ) < 0, f ( x )在(-∞, +∞) 单调递减; 当 a > 0时,当x 变化时, f '( x ), f ( x ) 的变化如下表: x (-∞, - 2 ) 2 2 2 , ) a a 2 a ( 2 a , +∞) f '( x ) + 0 — + f ( x ) 极大值 极小值 此时, f ( x )在(-∞, - 2 2 6 a 2 2 , ) 单调递减; a a (II )由 f '(1) = 3a -12 = -6, 得a = 2. 由(I )知, f ( x )在(-1, 2) 单调递减 ,在( 2 ,3)单调递增。 【易错点】搞不清分类讨论的时机,分类讨论不彻底 【思维点拨】分类讨论的难度是两个, 1)分类讨论的时机,也就是何时分类讨论,先按自然的思路推理, 由于参数的存在,到了不能一概而论的时候,自然地进入分类讨论阶段;(2)分类讨论的标准,要做到不 重复一遗漏。还要注意一点的是,最后注意将结果进行合理的整合。 题型二 已知单调性求参数取值范围问题 例 1 已知函数 f ( x) = 1 3 x 3 + x 2 + ax - 5 , 若函数在[1,+∞) 上是单调增函数,求 a 的取值范围

高三数学专题复习 函数的零点与导数的应用关系

高三数学专题复习 函数的零点与导数的应用关系 21、(本题满分14分) 已知函数1()ln ,()f x a x a R x =-∈其中 (1)设()(),h x f x x =+讨论()h x 的单调性。 (2)若函数()f x 有唯一的零点,求a 取值范围。 21.解:(1)1()ln h x a x x x =-+,定义域为(0,)+∞………………1分 22211()1a ax x h x x x x ++'=++=………………2分 令22()1,4g x x ax a =++?=- 当0?≤,即22a -≤≤时()0g x ≥,()0h x '≥此时()h x 在(0,)+∞上单调递增。………………4分 当0?>即2a <-或2a >时,由()0g x =得1x =,2x = ………………5分 若2a >则10x <又1210x x =>所以20x < 故()0h x '>在(0,)+∞上恒成立 所以()h x 在(0,)+∞单调递增……………………6分 若2a <-则20x >又1210x x =>所以20x > 此时当1(0,)x x ∈时()0h x '>;当12(,)x x x ∈时()0h x '<当2(,)x x ∈+∞时()0h x '> 故()h x 在1(0,)x ,2(,)x +∞上单调递增,在12(,)x x 单调递减……………………7分 综上,当2a ≥-时()h x 在(0,)+∞上单调递增 当2a <-时()h x 在1(0,)x ,2(,)x +∞单调递增,在12(,)x x 单调递减……………8分 (2)方法1:问题等价于1ln a x x = 有唯一实根 显然0a ≠则关于x 的方程1ln x x a =有唯一实根……………10分 构造函数()ln x x x ?=,则()1ln x x ?'=+ 由0ln 1'=+=x ?,得e x 1=

运用导数解决含参问题

运用导数解决含参问题 运用导数解决含参函数问题的策略 以函数为载体,以导数为工具,考查函数性质及导数应用为目标,是最近几年函数与导数交汇试题的显著特点和命题趋向。运用导数确定含参数函数的参数取值范围是一类常见的探索性问题,主要是求存在性问题或恒成立问题中的参数的范围。 解决这类问题,主要是运用等价转化的数学思想,通过不断地转化,把不熟悉、不规范、 复杂的问题转化为熟悉、规范甚至模式化、简单的问题。 解决的主要途径:是将含参数不等式的存在性或恒成立问题根据其不等式的结构特 征,恰当地构造函数,等价转化为:含参函数的最值讨论。 一、含参函数中的存在性问题 利用题设条件能沟通所求参数之间的联系,建立方程或不等式(组)求解。这是求存在性范围问题最显然的一个方法。 例题讲解 例1:已知函数x x x f ln 2 1)(2+= ,若存在],1[0e x ∈使不等式 m x f ≤)(0,求实数m 的取值范围 二、含参函数中的恒成立问题 可先利用题设条件建立变量的关系式,将所求变量和另一已知变量分离,得到函数关系,从而使这种具有函数背景的范围问题迎 刃而解,再由已知变量的范围求出函数的值域,即为所求变量的范围。类型有:(1)双参数

中知道其中一个参数的范围;(2)双参数中的范围均未知。 一、选择题 1 .(2013年课标Ⅱ)已知函数32()f x x ax bx c =+++,下列结论中错误的是( ) A .0x ?∈R,0()0 f x = B.函数()y f x =的图像是中心对称图形 C .若0x 是()f x 的极小值点,则()f x 在区间0(,)x -∞上单调递减 D .若0x 是()f x 的极值点,则0'()0 f x = 2 .(2013年大纲)已知曲线()4 2 1-128=y x ax a a =+++在点,处切线的斜率为,() A .9 B .6 C .-9 D .-6 3 .(2013年湖北)已知函数()(ln )f x x x ax =-有两个极值点,则实数a 的取值范围是( ) A .(,0)-∞ B .1 (0,)2 C .(0,1) D .(0,)+∞ 4.若函数3 2 ()1f x x x mx =+++是R 上的单调函数,则实数m 的取值范围是: ( )

导数的综合应用题型及解法(可编辑修改word版)

导数的综合应用题型及解法 题型一:利用导数研究函数的极值、最值。 x 2 处有极大值,则常数c= 6 ; 1.已知函数y f (x ) x(x c)2 个 题型二:利用导数几何意义求切线方程 2.求下列直线的方程: (1)曲线y x 3 x 2 1在P(-1,1)处的切线;(2)曲线y x2 过点P(3,5)的切线; 题型三:利用导数研究函数的单调性,极值、最值 f (x) =x3+ax 2+bx +c, 过曲线y = f (x)上的点P(1, f (1)) 的切线方程为 3.已知函数 y=3x+1 f (x)在x =-2 处有极值,求f (x) 的表达式; (Ⅰ)若函数 y =f (x) 在[-3,1]上的最大值; (Ⅱ)在(Ⅰ)的条件下,求函数 y =f (x) 在区间[-2,1]上单调递增,求实数 b 的取值范围(Ⅲ)若函数 4.已知三次函数f (x) =x3+ax2+bx +c 在x =1 和x =-1 时取极值,且f (-2) =-4 . (1)求函数y =f (x) 的表达式; (2)求函数y =f (x) 的单调区间和极值; 5.设函数f (x) =x(x -a)(x -b) . f(x)的图象与直线5x -y - 8 = 0 相切,切点横坐标为2,且f(x)在x = 1 处取极值,(1)若 a, b 的值; 求实数 f (x) 总有两个不同的极值 (2)当b=1 时,试证明:不论 a 取何实数,函数 点.题型四:利用导数研究函数的图象 f / ( x) 的图象如右图所示,则 f(x)的图象只可能是( 6.如右图:是 f(x)的导函数, D )

3 (A ) (B ) (C ) (D ) y 1 x 3 4x 1个个个个 7. 函数 3 ( A ) 6 4 2 -4 -2 y o 2 4 -2 -4 6 4 2 x -4 -2 y o 2 4 -2 -4 x -4 6 y 6 y 4 4 2 2 y 2 4 x o x -2 -2 -2 2 4 -4 -4 8.方程 2x 3 6x 2 7 0个 (0,2)个个个个个个 ( B ) A 、0 B 、1 C 、2 D 、3 题型五:利用单调性、极值、最值情况,求参数取值范围 f (x ) = - 1 x 3 + 2ax 2 - 3a 2 x + b ,0 < a < 1. 9. 设函数 3 (1)求函数 f (x ) 的单调区间、极值. (2)若当 x ∈[a + 1, a + 2] 时,恒有| f ' (x ) |≤ a ,试确定 a 的取值范围. 2 10. 已知函数 f (x )=x3+ax2+bx +c 在 x =- 3 与 x =1 时都取得极值(1)求 a 、b 的值与函数 f (x )的单调区间 (2)若对 x ∈〔-1,2〕,不等式 f (x ) 0,函数f (x ) = x 3 - ax 在[1,+∞) 上是单调函数. (1)求实数 a 的取值范围; (2)设 x 0 ≥1, f (x ) ≥1,且 f ( f (x 0 )) = x 0 ,求证: f (x 0 ) = x 0 .

函数导数及其应用

函数、导数及其应用 第一节 函数及其表示 考纲要求:1.了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念.2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.3.了解简单的分段函数,并能简单应用. [基础真题体验] 考查角度[求函数的定义域] 1.(2014·山东高考)函数f (x )=1 log 2x -1的定义域为( ) A .(0,2) B .(0,2] C .(2,+∞) D .[2,+∞) 【解析】 要使函数有意义,则?? ? x >0, log 2x -1>0, 解得x >2. 【答案】 C 2.(2012·广东高考)函数y =x +1 x 的定义域为______. 【解析】 要使函数有意义,需????? x +1≥0,x ≠0.解得????? x ≥-1, x ≠0. ∴原函数的定义域为{x |x ≥-1且x ≠0}. 【答案】 {x |x ≥-1且x ≠0} 考查角度[函数的表示方法] 3.(2013·安徽高考)定义在R 上的函数f (x )满足f (x +1)=2f (x ).若当0≤x ≤1时,f (x )=x (1-x ),则当-1≤x ≤0时,f (x )=________. 【解析】 设-1≤x ≤0,则0≤x +1≤1,所以f (x +1)=(x +1)[1-(x +1)]=-x (x +1).又因为f (x

+1)=2f (x ),所以f (x )=f (x +1)2=-x (x +1) 2. 【答案】 -x (x +1) 2 考查角度[分段函数] 4.(2013·福建高考)已知函数f (x )=??? 2x 3,x <0,-tan x ,0≤x <π2 ,则f ? ???? f ? ????π4=________. 【解析】 ∵π4∈??????0,π2,∴f ? ?? ??π4=-tan π 4=-1, ∴f ? ?? ?? f ? ????π4=f (-1)=2×(-1)3=-2. 【答案】 -2 [命题规律预测]

2019高考数学二轮复习第二编专题二函数与导数第2讲导数及其应用配套作业文

第2讲导数及其应用 配套作业 一、选择题 1.(2018·成都模拟)已知函数f (x )=x 3 -3ax +14 ,若x 轴为曲线y =f (x )的切线,则a 的值为() A.12B .-12 C .-34D. 14 答案 D 解析 f ′(x )=3x 2 -3a ,设切点坐标为(x 0,0),则 ??? ?? x30-3ax0+14=0,3x2 0-3a =0,解得????? x0=1 2,a =1 4, 故选D. 2.(2018·赣州一模)函数f (x )=12 x 2 -ln x 的递减区间为() A .(-∞,1) B .(0,1) C .(1,+∞) D.(0,+∞) 答案 B 解析 f (x )的定义域是(0,+∞), f ′(x )=x -1 x = x2-1 x , 令f ′(x )<0,解得0<x <1, 故函数f (x )在(0,1)上递减.故选B. 3.(2018·安徽示范高中二模)已知f (x )=ln x x ,则() A .f (2)>f (e)>f (3) B .f (3)>f (e)>f (2) C .f (3)>f (2)>f (e) D .f (e )>f (3)>f (2) 答案 D 解析 f (x )的定义域是(0,+∞), 因为f ′(x )=1-ln x x2 ,所以x ∈(0,e),f ′(x )>0; x ∈(e ,+∞),f ′(x )<0, 故x =e 时,f (x )max =f (e), 而f (2)=ln 22=ln 86,f (3)=ln 33=ln 9 6 , f (e)>f (3)>f (2).故选D. 4.(2018·安徽芜湖模拟)设函数f (x )在R 上可导,其导函数为f ′(x ),且函数y =(1

导数及其应用教材分析

第三章导数教材分析 一、内容安排 本章大体上分为导数的初步知识、导数的应用、微积分建立的时代背景和历史意义部分. 导数的初步知识.关键是导数概念的建立.这部分首先以光滑曲线的斜率与非匀速直线运动的瞬时速度为背景,引出导数的概念,给出按定义求导数的方法,说明导数的几何意义.然后讲述初等函数的求导方法,先根据导数的定义求出几种常见函数的导数、导数的四则运算法则,再进一步给出指数函数和对数函数的导数. 这部分的末尾安排了两篇阅读材料,一篇是结合导数概念的“变化率举例”,另一篇是介绍导数应用的“近似计算”. 导数的应用,这部分首先在高一学过的函数单调性的基础上,给出判定可导函数增减性的方法.然后讨论函数的极值,由极值的意义,结合图象,得到利用导数判别可导函数极值的方法*最后在可以确定函数极值的前提下,给出求可导函数的最大值与最小值的方法. 微积分是数学的重要分支,导数是微积分的一个重要的组成部分.一方面,不但数学的许多分支以及物理、化学、计算机、机械、建筑等领域将微积分视为基本数学工具,而且,在社会、经济等领域中也得到越来越广泛的应用.另一方面,微积分所反映的数学思想也是日常生活与工作中认识问题、研究问题所难以或缺的. 本章共9小节,教学课时约需18节(仅供参考) 3. 1导数的概念 ............. 约3课时 3. 2几种常见函数的导数........... 约1课时 3. 3函数的和、差、积、商的导数...... 约2课时 3. 4复合函数的导数............. 约2课时 3. 5对数函数与指数函数的导数....... 约2课时 3. 6函数的单调性............. 约1课时 3. 7函数的极值 ............. 约2课时 3. 8函数的最大值与最小值......... 约2课时 3. 9微积分建立的时代背景和历史意义....约1课时 小结与复习.............. 约2课时 二、教学目标 1?了解导数概念的某些实际背景(例如瞬时速度,加速度,光滑曲线的切线的斜率等);掌握函数在一点处的导数的定义和导数的几何意义;理解导函数的概念. 2.熟记基本导数公式:

专题5导数的应用含参函数的单调性讨论(答案)

〖专题5〗 导数的应用—含参函数的单调性讨论 “含参数函数的单调性讨论问题”是近年来高考考查的一个常考内容,也是我们高考复习的重点.从这几年来的高考试题来看,含参数函数的单调性讨论常常出现在研究函数的单调性、极值以及最值中,因此在高考复习中更应引起我们的重视. 一、思想方法: 上为常函数 在区间时上为减函数在区间时上为增函数在区间时和增区间为和增区间为D x f x f D x D x f x f D x D x f x f D x D C x f D C x x f B A x f B A x x f )(0)(')(0)(')(0)('...,)(...0)('...,)(...0)('?=∈?<∈?>∈?∈? 讨论函数的单调区间可化归为求解导函数正或负的相应不等式问题的讨论. 二、典例讲解 [典例1] 讨论x a x x f + =)(的单调性,求其单调区间. 解:x a x x f + =)(的定义域为),0()0,(+∞-∞ )0(1)('2 22≠-=-=x x a x x a x f (它与a x x g -=2 )(同号) I )当0≤a 时,)0(0)('≠>x x f 恒成立, 此时)(x f 在)0,(-∞和),0(+∞都是单调增函数, 即)(x f 的增区间是)0,(-∞和),0(+∞; II) 当0>a 时 a x a x x x f > -或)0(0)(' a x x a x x f < <<<-?≠<00)0(0)('或 此时)(x f 在),(a --∞和),(+∞a 都是单调增函数, )(x f 在)0,(a -和),0(a 都是单调减函数, 即)(x f 的增区间为),(a --∞和),(+∞a ; )(x f 的减区间为)0,(a -和),0(a . 步骤小结:1、先求函数的定义域, 2、求导函数(化为乘除分解式,便于讨论正负), 3、先讨论只有一种单调区间的(导函数同号的)情况, 4、再讨论有增有减的情况(导函数有正有负,以其零点分界), 5、注意函数的断点,不连续的同类单调区间不要合并. [变式练习1] 讨论x a x x f ln )(+=的单调性,求其单调区间.

(完整版)导数知识点总结及应用

《导数及其应用》知识点总结 一、导数的概念和几何意义 1. 函数的平均变化率:函数()f x 在区间12[,]x x 上的平均变化率为: 2121 ()() f x f x x x --。 2. 导数的定义:设函数()y f x =在区间(,)a b 上有定义,0(,)x a b ∈,若x ?无限趋近于0时,比值00()()f x x f x y x x +?-?=??无限趋近于一个常数A ,则称函数()f x 在0x x =处可导,并称该常数A 为函数()f x 在0x x =处的导数,记作0()f x '。函数()f x 在0x x =处的导数的实质是在该点的瞬时变化率。 3. 求函数导数的基本步骤:(1)求函数的增量00()()y f x x f x ?=+?-;(2)求平均变化率:00()()f x x f x x +?-?;(3)取极限,当x ?无限趋近与0时,00()() f x x f x x +?-?无限趋近与一个常数A ,则 0()f x A '=. 4. 导数的几何意义: 函数()f x 在0x x =处的导数就是曲线()y f x =在点00(,())x f x 处的切线的斜率。由此,可以利用导数求曲线的切线方程,具体求法分两步: (1)求出()y f x =在x 0处的导数,即为曲线()y f x =在点00(,())x f x 处的切线的斜率; (2)在已知切点坐标和切线斜率的条件下,求得切线方程为000()()y y f x x x '-=-。 当点00(,)P x y 不在()y f x =上时,求经过点P 的()y f x =的切线方程,可设切点坐标,由切点坐标得到切线方程,再将P 点的坐标代入确定切点。特别地,如果曲线()y f x =在点00(,())x f x 处的切线平行与y 轴,这时导数不存在,根据切线定义,可得切线方程为0x x =。 5. 导数的物理意义: 质点做直线运动的位移S 是时间t 的函数()S t ,则()V S t '=表示瞬时速度,()a v t '=表示瞬时加速度。 二、导数的运算 1. 常见函数的导数: (1)()kx b k '+=(k , b 为常数); (2)0C '=(C 为常数); (3)()1x '=; (4)2()2x x '=; (5)32()3x x '=; (6)211()x x '=-; (7 )'; (8)1()ααx αx -'=(α为常数);

导数中的参数问题

导数中的参数问题 【方法综述】 导数中的参数问题主要指的是形如“已知不等式成立/存在性/方程的根/零点等条件,求解参数的取值或取值范围”.这类型题目在近几年的高考全国卷还是地方卷中,每一年或多或少都有在压轴选填题或解答题中出现,属于压轴常见题型.学生要想解决这类型的题目,关键的突破口在于如何处理参数,本专题主要介绍分类讨论法和分离参数法. 【解答策略】 一.分离参数法 分离参数法是处理参数问题中最常见的一种手段,是把参数和自变量进行分离,分离到等式或不等式的两边(当然部分题目半分离也是可以的,如下面的第2种情形),从而消除参数的影响,把含参问题转化为不含参数的最值、单调性、零点等问题,当然使用这种方法的前提是可以进行自变量和参数的分离. 1.形如()()af x g x =或()()af x g x <(其中()f x 符号确定) 该类题型,我们可以把参数和自变量进行完全分离,从而把含参数问题转化为不含参数的最值、单调性或图像问题. 例1.直线 与曲线 有两个公共点,则实数的取值范围是_____. 【举一反三】若存在,使得成立,则实数的取值范围是( ) A . B . C . D . 2.形如()(),f x a g x =或()()af x g x <(其中(),f x a 是关于x 一次函数) 该类题型中,参数与自变量可以半分离,等式或不等式一边是含有参数的一次函数,参数对一次函数图像的影响是比较容易分析的,故而再利用数形结合思想就很容易解决该类题目了. 例2.定义在 上的函数 满足 ,且 ,不等式 有解,则正实数的取值范围是( )

A.B.C.D. 【举一反三】已知当时,关于的方程有唯一实数解,则所在的区间是( ) A.(3,4) B.(4,5) C.(5,6) D.(6.7) 二.分类讨论法 分类讨论法是指通过分析参数对函数相应性质的影响,然后划分情况进行相应分析,解决问题的方法,该类方法的关键是找到讨论的依据或分类的情况,该方法一般在分离参数法无法解决问题的情况下,才考虑采用,常见的有二次型和指对数型讨论. 1.二次型根的分布或不等式解集讨论 该类题型在进行求解过程,关键步骤出现求解含参数二次不等式或二次方程,可以依次考虑依次根据对应定性(若二次项系数含参),开口,判别式,两根的大小(或跟固定区间的端点比较)为讨论的依据,进行分类讨论,然后做出简图即可解决. 例3.已知函数有两个不同的极值点,,若不等式恒成立,则实数的取值范围是_______. 【指点迷津】 1.本题考查导数在研究函数中的应用,体现了导数的工具性,解题的关键是得到 的表达式.解答恒成立问题的常用方法是转化为求函数的最值的问题解决,当函数的最值不存在时可利用函数值域的端点值来代替. 2. 由是函数的两个不同的极值点可得,进而得到 ,然后构造函数,求出函数的值域后可得所求范围. 【举一反三】若函数有个零点,则实数取值的集合是________.

导数的综合应用练习题及答案

导数应用练习题答案 1.下列函数在给定区间上是否满足罗尔定理的所有条件?如满足,请求出定理中的数值ξ。 2(1)()23[1,1.5]f x x x =---; 2 1(2)()[2,2]1f x x = -+; (3)()[0,3]f x =; 2 (4)()1 [1,1]x f x e =-- 解:2 (1)()23 [1,1.5]f x x x =--- 该函数在给定闭区间上连续,其导数为()41f x x '=-,在开区间上可导,而且(1)0f -=,(1.5)0f =,满足罗尔定理,至少有一点(1,1.5)ξ∈-, 使()410f ξξ'=-=,解出14 ξ=。 解:2 1(2)()[2,2]1f x x = -+ 该函数在给定闭区间上连续,其导数为222()(1)x f x x -'=+,在开区间上可导,而且1(2)5f -=,1 (2)5 f = ,满足罗尔定理,至少有一点(2,2)ξ∈-, 使22 2()0(1)f ξ ξξ-'= =+,解出0ξ=。 解:(3)()[0,3]f x = 该函数在给定闭区间上连续,其导数为() f x '=,在开区间上可导,而且(0)0f =, (3)0f =,满足罗尔定理,至少有一点(0,3)ξ∈, 使()0 f ξ'==,解出2ξ=。 解:2 (4)()e 1 [1,1]x f x =-- 该函数在给定闭区间上连续,其导数为2 ()2e x f x x '=,在开区间上可导,而且(1)e 1f -=-,(1)e 1f =-,满足罗尔定理,至少有一点ξ,使2 ()2e 0f ξξξ'==,解出0ξ=。 2.下列函数在给定区域上是否满足拉格朗日定理的所有条件?如满足,请求出定理中的数值ξ。 3 (1)()[0,](0)f x x a a =>; (2)()ln [1,2] f x x =; 32(3)()52 [1,0] f x x x x =-+-- 解:3 (1)()[0,](0)f x x a a =>

高中数学导数及其应用

高中数学导数及其应用一、知识网络 二、高考考点 1、导数定义的认知与应用; 2、求导公式与运算法则的运用; 3、导数的几何意义; 4、导数在研究函数单调性上的应用; 5、导数在寻求函数的极值或最值的应用; 6、导数在解决实际问题中的应用。 三、知识要点 (一)导数 1、导数的概念 (1)导数的定义

(Ⅰ)设函数在点及其附近有定义,当自变量x在处有增量△x(△x可 正可负),则函数y相应地有增量,这两个增量的比 ,叫做函数在点到这间的平均变化率。如果 时,有极限,则说函数在点处可导,并把这个极限叫做在点 处的导数(或变化率),记作,即 。 (Ⅱ)如果函数在开区间()内每一点都可导,则说在开区间() 内可导,此时,对于开区间()内每一个确定的值,都对应着一个确定的导数, 这样在开区间()内构成一个新的函数,我们把这个新函数叫做在开区间() 内的导函数(简称导数),记作或,即 。 认知: (Ⅰ)函数的导数是以x为自变量的函数,而函数在点处的导数 是一个数值;在点处的导数是的导函数当时的函数值。 (Ⅱ)求函数在点处的导数的三部曲: ①求函数的增量; ②求平均变化率;

③求极限 上述三部曲可简记为一差、二比、三极限。 (2)导数的几何意义: 函数在点处的导数,是曲线在点处的切线的斜率。 (3)函数的可导与连续的关系 函数的可导与连续既有联系又有区别: (Ⅰ)若函数在点处可导,则在点处连续; 若函数在开区间()内可导,则在开区间()内连续(可导一定连续)。 事实上,若函数在点处可导,则有此时, 记 ,则有即在点处连续。 (Ⅱ)若函数在点处连续,但在点处不一定可导(连续不一定可导)。 反例:在点处连续,但在点处无导数。 事实上,在点处的增量

考点06 函数与导数的综合运用(1)(解析版)

考点06 函数与导数的综合应用(1) 【知识框图】 【自主热身,归纳提炼】 1、(2016南京学情调研)已知函数f (x )=1 3x 3+x 2-2ax +1,若函数f (x )在(1,2)上有极值,则实数a 的取值 范围为________. 【答案】???? 32,4 【解析】因为函数f (x )在(1,2)上有极值,则需函数f (x ) 在(1,2)上有极值点. 解法 1 令f ′(x )=x 2+2x -2a =0,得x 1=-1-1+2a ,x 2=-1+1+2a ,因为x 1?(1,2),因此则需10,解得3 2

导数及应用知识点

壹 导数及其应用知识点 【知识概要】 一、导数的概念和几何意义 ●1. 函数的平均变化率:函数()f x 在区间12[,]x x 上的平均变化率为: 2121 ()() f x f x x x --。 ●2. 导数的定义:设函数()y f x =在区间(,)a b 上有定义,0(,)x a b ∈,若x ?无限趋近于0时,比值 00()() f x x f x y x x +?-?= ??无限趋近于一个常数A ,则称函数()f x 在0x x =处可导,并称该常数A 为函数()f x 在0x x =处的导数,记作0()f x '。函数()f x 在0x x =处的导数的实质是在该点的瞬时变化率。 ●3. 求函数导数的基本步骤:(1)求函数的增量00()()y f x x f x ?=+?-;(2)求平均变化率: 00()() f x x f x x +?-?;(3)取极限,当x ?无限趋近与0时, 00()() f x x f x x +?-?无限趋近与一个常数A ,则0()f x A '=。 ●4. 导数的几何意义: 函数()f x 在0x x =处的导数就是曲线()y f x =在点00(,())x f x 处的切线的斜率。由此,可以利用导数求曲线的切线方程,具体求法分两步: (1)求出()y f x =在x 0处的导数,即为曲线()y f x =在点00(,())x f x 处的切线的斜率; (2)在已知切点坐标和切线斜率的条件下,求得切线方程为 000()()y y f x x x '-=-。 当点00(,)P x y 不在()y f x =上时,求经过点P 的()y f x =的切线方程,可设切点坐标,由切点坐标得到切线方程,再将P 点的坐标代入确定切点。特别地,如果曲线()y f x =在点00(,())x f x 处的切线平行与y 轴,这时导数不存在,根据切线定义,可得切线方程为0x x =。 ●5. 导数的物理意义: 质点做直线运动的位移S 是时间t 的函数()S t ,则()V S t '=表示瞬时速度, ()a v t '=表示瞬时加速度。

导数中参数的取值范围问题

导数中参数的取值范围问题

————————————————————————————————作者:————————————————————————————————日期:

题型一:最常见的关于函数的单调区间;极值;最值;不等式恒成立; 经验1:此类问题提倡按以下三个步骤进行解决: 第一步:令0 ) ('= x f得到几个根;第二步:列表如下;第三步:由表可知; 经验2:不等式恒成立问题的实质是函数的最值问题,常见处理方法有四种: 第一种:变更主元(即关于某字母的一次函数);题型特征(已知谁的范围就把谁作为主元); 第二种:分离变量求最值;第三种:关于二次函数的不等式恒成立; 第四种:构造函数求最值;题型特征() ( ) (x g x f>恒成立 ) ( ) ( ) (> - = ?x g x f x h恒成立); 单参数放到不等式上 设函数 1 () (1)ln(1) f x x x = ++ (1 x≠,且0 x≠) (1)求函数的单调区间;(2)求() f x的取值范围; (3)已知 1 1(1) 2m x x +>+对任意(1,0) x∈-恒成立,求实数m的取值范围。

2.已知函数ln ()1a x b f x x x = ++在点(1,(1))f 处的切线方程为230x y +-= (1)求,a b 的值; (2)如果当0x >,且1x ≠时,ln ()1x k f x x x =+-,求k 的取值范围. 3.已知函数4 4 ()ln (0)f x a x b c x x x =+->在 0x >出取得极值3c -- ,其中 ,,a b c 为常数. (1)试确定,a b 的值; (2)讨论函数()f x 的单调区间; (3)若对任意0x >,不等式2 ()2f x c ≥-恒成立,求c 的取值范围。

相关主题
文本预览
相关文档 最新文档