当前位置:文档之家› 高考专题复习动能 动能定理专题复习

高考专题复习动能 动能定理专题复习

高考专题复习动能 动能定理专题复习
高考专题复习动能 动能定理专题复习

动能 动能定理

一、高考要求

动能 做功跟功能改变的关系 (动能定理) II

二、自主学习

1.一个物体具有的动能与物体的 和 两个因素有关, 和 越大,动能就越大。动能是 (标、矢)量。

2.动能定理的表达式为 ,其中W 应该为 。

3.利用动能定理解题的基本步骤是什么?应用动能定理有哪些优越性?

三、典型例题

例1、如图所示,物体在离斜面底端4m 处由静止滑下,若动摩擦因数均为0.5,斜面倾角370,斜面与平面间由一段圆弧连接,求物体能在水平面上滑行多远?

例2、 长为L 的细线一段固定在O 点,另一端系一质量为m 的小球,开始时,细线被拉直,并处于水平位置,球处在O 点等高的A 位置,如图所示,现将球由静止释放,它由A 运动到最低点B 的过程中,重力

的瞬时功率变化情况是( )。

A 、一直在增大

B 、一直在减少

C 、先增大后减少

D 、先减少后增大

例3、一个质量为m 的小球拴在细绳的一端,另一端用大小为F 1的拉力作用,在水平面上做半径为R 1的匀速圆周运动,如图所示。今将力的大小改为F 2,使小球仍在水平面上做匀速圆周运动,但半径为R 2。小球运动的半径由R 1变成R 2

的过程中拉

力对小球做的功多大?

例4、质量为5t 的汽车,在平直公路上一以60kw 恒定功率从静止开始运动,速度达到24m/s 的最大速度后,立即关闭发动机,汽车从启动到最后停下通过的总位移为1200m 。运动过程中汽车所受的阻力不变。求汽车运动的时间。

例5、在光滑的平面上有一静止物体,现以水平恒力推这一物体。作用一段时间后,换成相反方向的水平恒力推这一物体,当恒力乙作用时间与恒力甲作用时间相同时,物体恰好回到原处,此时物体的动能为32J ,则在整个过程中,甲、乙两力做功分别是多少?

四、课后训练

1、一物体在水平恒力F 作用下,在水平面上由静止开始运动,位移s 时撤去F ,物体继续沿原方向前进3s 后停止运动。如果路面情况相同,则摩擦力和物体的最大动能是( )

A 、3F F f =

;s F E k ?=4 B 、3F

F f =;s F E k ?= C 、4F F f =;s F E k ?=31 D 、4F F f =;s F E k ?=4

3

2、物体从高为0.8m 的斜面顶端以7m/s 的初速度下滑,滑到底端时速度恰好为零,欲使此物体由底端上滑恰好到达顶端,物体开始上滑的初速度为 m/s 。

3、下列关于运动物体所受合外力和动能变化的关系正确的是 A 、如果物体所受合外力为零,则合外力对物体做的功一定为零 B 、如果合外力对物体所做的功为零,则合外力一定为零 C 、物体在合外力作用下做变速运动,动能一定发生变化 D 、物体的动能不变,所受合外力一定为零

4、质量不等、动能相等的两物体,在摩擦因数相同的水平地面上滑行至停止,则( ) A 、质量大的物体滑行距离长 B 、质量小的物体滑行距离长 C 、质量大的物体滑行时间短 D 、质量小的物体滑行时间短

5、一质量为1kg 的物体被人用手由静止向上提升1m 时,物体的速度是2m/s ,下列说法中错误的是(g 是10m/s 2)( )

①提升过程中手对物体做功12J ②提升过程中合外力对物体做功12J ③提升过程中手对物体做功2J ④提升过程中物体克服重力做功10J A .①④ B .②③ C .③④ D .②④

6、如图所示,板长为L ,板的B 端静置有质量为m 的小物体P ,物体与板间的动摩擦因数为μ,开始时板水平,若缓慢转过一个小角度α的过程中,物体始终保持与板相对静止,则这个过程中( )

A 、摩擦力对P 做功为)cos 1(cos ααμ-??L mg

B 、摩擦力对P 做功为)cos 1(sin αα-??L mg

C 、弹力对P 做功为ααsin cos ???L mg

D 、板对P 做功为αsin ?mgL

7、质量为m 的子弹,以水平速度v 射入静止在光滑水平面上质量为M 的木块,并留在其中,下列说法正确的是( )

①子弹克服阻力做的功与木块获得的动能相等 ②阻力对子弹做的功与子弹动能的减少相等 ③子弹克服阻力做的功与子弹对木块做的功相等 ④子弹克服阻力做的功大于子弹对木块做的功

A .①①

B .②③

C .③④

D .②④

8、某地强风风速约为v =20m/s ,设该地的空气密度ρ=1.3kg/m 3,如果把截面S =20m 2的风的动能全部转化为电能,则利用上述已知量写出计算电功率的公式?电功率的大小约为多少瓦?(取一位有数字)

9、如图所示,皮带的速度是3m/s ,两轴心距离s=4.5m m =1kg 的小物体轻放在左轮正上方的皮带上,物体与皮带间的动摩擦因数为μ=0.15。电动机带动皮带将物体从左轮运送到右轮正上方时,电动机消耗的电能是多少?

参考答案

二、知识扫描 1、运动

2

2

1mv 焦耳 J 标 2、增量 2

1222

121mv mv E k -=?

三、好题精析

例1、【解析】物体在斜面上受重力mg 、支持力N 1、摩擦力F 1的作用,沿斜面加速下滑(因μ=0.5<tg 370=0.75),到水平面后,在摩擦力F 2作用下做减速运动,直至停止。 解法一: 对物体在斜面上和水平面上时进行受力分析, 如图5—3—2所示,知下滑阶段: F N 1=mgcos 370 故 F 1=μF N 1=μmgcos 370 由动能定理

mgsin 370·s 1—μmgcos 370·s 1=02

12

1-mv ① 在水平运动过程中

F 2=μF N 2=μmg

图5—3—2

由动能定理 —μmg ·s 2=2

12

10mv - ② 由①、②式可得

m m s s 6.145

.08

.05.06.037cos 37sin 10

02=??-=

-=

μ

μ

解法二:物体受力分析上。

物体运动的全过程中,初、末状态速度均为零,对全过程应用动能定理 037cos 37sin 2010=?-?s mg s mg μ 得 m m s s 6.145

.08

.05.06.037cos 37sin 10

02=??-=

-=

μ

μ

【点评】应用动能定理分析求解匀变速运动,注意过程分析及每一过程受力分析,对于多过程问题要找到联系两过程的相关物理量。

例2、【解析】小球在A 点时速度为零,重力的瞬时功率为零,到达B 点时,速度达到最大,方向水平向左,与重力夹角为90°,P B =0,由于两个极端位置瞬时功率均为0,故可判断C 正确。

【点评】对于求选择题的一种重要方法就是极值法,求解本题有两条思路,一是极值法,二是把瞬时功率的表达式表示出来,观察表达式中物理量随位置的变化情况,通常这类表达式都可以使用三角函数表示,只需要将表达式三角函数随角度的变化找出即可。 例3、【解析】设半径为R 1、R 2时小球做圆周运动的速度大小分别为v 1、v 2,

由向心力公式得 2

2

2

21

2

1

1R mv F R mv F ==

由动能定理 21222121mv mv W -=

解得: )(2

1

1122R F R F W -=

【解析】当求变力做功时无法由的定义式直接求出,而只能由动能定理间接求出。本题由于绳的拉力是物体在两个轨道圆周运动的向心力,是变力。在轨道变化过程中该力做功属于变力做功,但不能直接求其功,而是先由向心力公式求出初、末状态动能,再由动能定理求出该力的功。

例4、【解析】汽车以恒定功率启动后做加速度逐渐减小的变加速运动,不能根据匀变速运动的规律求汽车加速运动的时间t 1;由于牵引力是变力,也不能由动量定理求时间t 1。在汽车运动的全过程中有两个力对它做功,牵引力做功为Pt 1,阻力做功为—F s 由动能定理得: Pt 1—F s=0 ① 汽车达到最大速度时,牵引力和阻力大小相等,则

t

m m v F Fv P '== 即m

v P

F =' ②

由①、②可求得汽车加速运动的时间为

s v s

P

s

F t m

5024

1200'

1====。

关闭油门后,汽车在阻力作用下做匀减速直线运动,

由动量定理得(取运动方向为正方向):m mv t F -=-02' ③ 由②、③可求得汽车匀减速运动的时间为 s s P

mv F

mv t m

m

481060

24

10532

32

'

2=???==

=

则汽车运动的时间为: s s s t t t 98485021=+=+=

【点评】对于较复杂的物理过程,首先分析物体在个阶段的运动特点,明确各物理量间的关系,再利用合适的物理规律求解。

例5、【解析】由于在前后两段相同的时间t 内,位移相同,则

t v v t v )(2

1

21121-= 即 122v v = 得 12

122242

1421k k E mv mv E =?==

已知 J E k 322= 故 J E k 81=

按动能定理,恒力F 甲、F 乙做的功分别为W 甲=E K 2—E K 1=32J —8J =24J

本题也可以用v —t 图,使物理过程更加直观。如图5—3—5,物体回到原点,意味着图线上下与t 轴间的面积相等,则

)(02211t t a v t a v -==

故 2

0201)(2

1)(21t t a t t t a -=+

又 021t a t a =

解得

30=t t

,即31

2=a a , 故两力做功之比

31

2

====a a F F s F s F W W 甲乙甲乙甲乙 由动能定理 J W W 36=+乙甲 从而 W 甲=8J ,W 乙=24J

1

a 2 a 2 v 1

v 2

图5—3—6

【点评】本题的表述的物理过程并不复杂,关键是考生能否按题意画出表达物理过程的示意图,找到解题思路,如图5—3—6所示,设恒力F 甲作用时间为t ,使物体通过位移s 后的速度为v 1;以后,恒力F 乙使物体减速运动,达到向右最大位移C 处后返回A 点时的速度为v 2,F 乙的作用时间也是t 。显然, 前后两段相同的时间t 内的位移大小相 等。由此根据牛顿定律、运动学公式和 动能定理不难求解。 四、变式迁移 1、D 2、9 五、能力突破

1、A

2、BC

3、B

4、D

5、D

6、ABC

7、解:322221222v s t v svt t Vv t mv t E P ρρρ=?==== 代入数据 w P 53101203.1202

1

?≈???=

8、解:0→l 过程 l g

L lm l f W f ?+-

=?-=2

01μ l →s 过程 )(2l s g L

lm

W f -?-=μ 由动能定理 2

2

1021mv W W f f -=+

得gl

l s Lv )2(2

-=μ

9、(1)上升过程中

1ma f mg =+ ①

h a v 1202= ②

下降过程中

2ma f mg =- ③

h a v 2202)4

3

(= ④ 由①②③④联立代入数据得

mg f 25

7

=

(2) '2)2(120h a v = ⑤

由①⑤联立代入数据得

g

v h 2

1625'=

(3)对物体由能量守恒得

mgs v m fs 25

7)2(2120==

g

v s 2

750=

10、解:对小物体由牛顿第二定律得

ma mg f ==μ

25.1s m g a ==μ

若小物体刚好做匀加速运动达到与皮带具有共同速度

'22as v = m s 3'=<4.5m

所以小物体先做匀加速运动,达到与皮带具有共同速度后做匀速运动。则在做匀加速运动时与皮带间的相对运动位移m s l 0.3'2

1

==

所以电动机消耗电能用于克服小物体与皮带间的滑动摩擦力做功产生的热和小物体获得的动能

222

1

21mv mgl mv fl E +=+

=μ 代入数据得 J E 9=

动能定理练习题附答案

A 国光中学物理基础练习系列(五) 动能定理 1、一质量为1kg 的物体被人用手由静止向上提高1m ,这时物体的速度是2m/s ,求: (1)物体克服重力做功. (2)合外力对物体做功. (3)手对物体做功. 解:(1) m 由A 到B : G 10J W mgh =-=- 克服重力做功1G G 10J W W ==克 (2) m 由A 到B ,根据动能定理2: 21 02J 2 W mv ∑=-= (3) m 由A 到B :G F W W W ∑=+ F 12J W ∴= 2、一个人站在距地面高h = 15m 处,将一个质量为m = 100g 的石块以v 0 = 10m/s 的速度斜向上抛出. (1)若不计空气阻力,求石块落地时的速度v . (2)若石块落地时速度的大小为v t = 19m/s ,求石块克服空气阻力做的功W . 解:(1) m 由A 到B :根据动能定理:22 01122 mgh mv mv =-20m/s v ∴= (2) m 由A 到B ,根据动能定理3: 22 t 0 1122 mgh W mv mv -=- 1.95J W ∴= 3a 、运动员踢球的平均作用力为200N ,把一个静止的质量为1kg 的球以10m/s 的速度踢出,在水平面上运动60m 后停下. 求运动员对球做的功? 3b 、如果运动员踢球时球以10m/s 迎面飞来,踢出速度仍为10m/s ,则运动员对球做功为多少? 解: (3a)球由O 到A ,根据动能定理4: 2 01050J 2 W mv =-= (3b)球在运动员踢球的过程中,根据动能定理5: 2211 022 W mv mv =-= 1 不能写成:G 10J W mgh ==. 在没有特别说明的情况下,G W 默认解释为重力所做的功,而在这个过程中重 力所做的功为负. 2 也可以简写成:“m :A B →: k W E ∑=?”,其中k W E ∑=?表示动能定理. 3 此处写W -的原因是题目已明确说明W 是克服空气阻力所做的功. 4 踢球过程很短,位移也很小,运动员踢球的力又远大于各种阻力,因此忽略阻力功. 5 结果为0,并不是说小球整个过程中动能保持不变,而是动能先转化为了其他形式的能(主要是弹性势能,然后其他形式的能又转化为动能,而前后动能相等. v m v 'O A → A B →

最新高考物理动能定理的综合应用常见题型及答题技巧及练习题(含答案)

最新高考物理动能定理的综合应用常见题型及答题技巧及练习题(含答案) 一、高中物理精讲专题测试动能定理的综合应用 1.如图所示,半径为R =1 m ,内径很小的粗糙半圆管竖直放置,一直径略小于半圆管内径、质量为m =1 kg 的小球,在水平恒力F =250 17 N 的作用下由静止沿光滑水平面从A 点运动到B 点,A 、B 间的距离x = 17 5 m ,当小球运动到B 点时撤去外力F ,小球经半圆管道运动到最高点C ,此时球对外轨的压力F N =2.6mg ,然后垂直打在倾角为θ=45°的斜面上(g =10 m/s 2).求: (1)小球在B 点时的速度的大小; (2)小球在C 点时的速度的大小; (3)小球由B 到C 的过程中克服摩擦力做的功; (4)D 点距地面的高度. 【答案】(1)10 m/s (2)6 m/s (3)12 J (4)0.2 m 【解析】 【分析】 对AB 段,运用动能定理求小球在B 点的速度的大小;小球在C 点时,由重力和轨道对球的压力的合力提供向心力,由牛顿第二定律求小球在C 点的速度的大小;小球由B 到C 的过程,运用动能定理求克服摩擦力做的功;小球离开C 点后做平抛运动,由平抛运动的规律和几何知识结合求D 点距地面的高度. 【详解】 (1)小球从A 到B 过程,由动能定理得:212 B Fx mv = 解得:v B =10 m/s (2)在C 点,由牛顿第二定律得mg +F N =2 c v m R 又据题有:F N =2.6mg 解得:v C =6 m/s. (3)由B 到C 的过程,由动能定理得:-mg ·2R -W f =22 1122 c B mv mv - 解得克服摩擦力做的功:W f =12 J (4)设小球从C 点到打在斜面上经历的时间为t ,D 点距地面的高度为h , 则在竖直方向上有:2R -h = 12 gt 2

探究动能定理实验专题(整理)

探究动能定理实验 1、实验目的:探究外力做功与物体动能变化的定量关系 2、实验原理:(1)实验装置如图所示,在砝码和砝码盘的质量远小于小车质量时,可认为细绳的拉力就是砝码及砝码盘的重力(F 绳=G砝码及砝码盘)。 (2)平衡长木板的摩擦力。 (3)在砝码盘中加放砝码并释放砝码盘,木块将在砝码盘对它的拉力作用下做匀加速运动.在纸带记录的物体运动的匀加速阶段,适当间隔地取两个点A、B.只要取计算一小段位移的平均速度即可确定A、B两点各自的速度v A、v B,在这段过程中物体运动的距离s可通过运动纸带测出,我们可即算出合外力做的功W合=F绳S AB(F绳=G砝码及砝码盘)。 另一方面,此过程中物体动能的变化量为,通过比较W和ΔEk 的值,就可以找出两者之间的关系。 3、实验器材 长木板(一端带滑轮)、刻度尺、打点计时器、纸带、导线、电源、小车、细线、砝码盘、砝码、天平. 4、实验装置 5、实验步骤及数据处理 (1)用天平测出木块的质量M,及砝码、砝码盘的总质量m。把器材按图装置好.纸带一段固定在小车上,另一端穿过打点计时器的限位孔; (2)把木块靠近打点计时器,用手按住.先接通打点计时器电源,再释放木块,让它做加速运动.当小车到达定滑轮处(或静止)时,断开电源; (3)取下纸带,重复实验,得到多条纸带; (4)选取其中点迹清晰的纸带进行数据处理,先在纸带标明计数点,然后取间隔适当的两点 A、B。利用刻度尺测量得出A,B两点间的距离S AB ;再利用平均速度公式求A、B两点的速度v A、v B; (4)通过实验数据,分别求出W合与ΔE kAB,通过比较W和ΔEk的值,就可以找出两者之间的关系。 6、误差分析 1.没有完全平衡摩擦力或平衡摩擦力时倾角过大也会造成误差。 2.利用打点的纸带测量位移,和计算木块的速度时,不准确也会带来误差。 【跟踪训练】

高中物理动能定理典型练习题含答案.doc

动能定理典型练习题 典型例题讲解 1.下列说法正确的是( ) A 做直线运动的物体动能不变,做曲线运动的物体动能变化 B 物体的速度变化越大,物体的动能变化也越大 C 物体的速度变化越快,物体的动能变化也越快 D 物体的速率变化越大,物体的动能变化也越大 【解析】 对于给定的物体来说,只有在速度的大小(速率)发生变化时它的动能才改变,速度的变化是矢量,它完全可以只是由于速度方向的变化而引起.例如匀速圆周运动.速度变化的快慢是指加速度,加速度大小与速度大小之间无必然的联系. 【答案】D 2.物体由高出地面H 高处由静止自由落下,不考虑空气阻力,落至沙坑表面进入沙坑h 停止(如图5-3-4所示).求物体在沙坑中受到的平均阻力是其重力 的多少倍? 【解析】 选物体为研究对象, 先研究自由落体过程,只有重力做功,设物体质量为m ,落到沙坑表面时速 度为v ,根据动能定理有 02 12 -= mv mgH ① 再研究物体在沙坑中的运动过程,重力做正功,阻做负功,根据动能定理有 22 1 0mv Fh mgh -=- ② 由①②两式解得 h h H mg F += 另解:研究物体运动的全过程,根据动能定理有 000)(=-=-+Fh h H mg 解得h h H mg F += 3.如图5-3-5所示,物体沿一曲面从A 点无初速度滑下,滑至曲面的最低点B 时,下滑高度为5m ,若物体的质量为lkg ,到B 点时的速度为6m/s ,则在下滑过程中,物体克服阻力所做的功为多少?(g 取10m/s 2) 【解析】设物体克服摩擦力 图5-3-5 H h 图5-3-4

图5-3-6 图5-3-7 所做的功为W ,对物体由A 运动到B 用动能定理得 22 1mv W mgh = - J mv mgh W 32612 1 51012122=??-??=-= 即物体克服阻力所做的功为32J. 课后创新演练 1.一质量为1.0kg 的滑块,以4m/s 的初速度在光滑水平面上向左滑行,从某一时刻起一向右水平力作用于滑块,经过一段时间,滑块的速度方向变为向右,大小为4m/s ,则在这段时间内水平力所做的功为( A ) A .0 B .8J C .16J D .32J 2.两物体质量之比为1:3,它们距离地面高度之比也为1:3,让它们自由下落,它们落地时的动能之比为( C ) A .1:3 B .3:1 C .1:9 D .9:1 3.一个物体由静止沿长为L 的光滑斜面下滑当物体的速度达到末速度一半时,物体沿斜面下滑了( A ) A .4L B .L )12(- C .2L D .2 L 4.如图5-3-6所示,质量为M 的木块放在光滑的水平面上,质量为m 的子弹以速度v 0沿水平射中木块,并最终留在木块中与木块一起以速度v 运动.已知当子弹相对木块静止时,木块前进距离L ,子弹进入木块的深度为s .若木块对子弹的阻力f 视为恒定,则下列关系式中正确的是( ACD ) A .fL =21Mv 2 B .f s =2 1mv 2 C .f s =21mv 02-21(M +m )v 2 D .f (L +s )=21mv 02-2 1mv 2 5.如图5-3-7所示,质量为m 的物体静放在水平光滑平台上,系在物体上的绳子跨过光滑的定滑轮由地面以速度v 0向右匀速走动的人拉着,设人从地面上且从平台的 边缘开始向右行 至绳和水平方向 成30°角处,在此 过程中人所做的功 为( D ) A .mv 02/2 B .mv 02

动能定理典型例题附答案

1、如图所示,质量m=0.5kg的小球从距地面高H=5m处自由下落,到达地面恰能沿凹陷于地面的半圆形槽壁运动,半圆槽半径R=0.4m.小球到达槽最低点时的速率为10m/s,并继续滑槽壁运动直至槽左端边缘飞出,竖直上升,落下后恰好又沿槽壁运动直至从槽右端边缘飞出,竖直上升、落下,如此反复几次.设摩擦力大小恒定不变:(1)求小球第一次离槽上升的高度h.(2)小球最多能飞出槽外几次 (g取10m/s2) 2、如图所示,斜面倾角为θ,滑块质量为m,滑块与斜 面的动摩擦因数为μ,从距挡板为s0的位置以v0的速度 沿斜面向上滑行.设重力沿斜面的分力大于滑动摩擦 力,且每次与P碰撞前后的速度大小保持不变,斜面足 够长.求滑块从开始运动到最后停止滑行的总路程s. 3、有一个竖直放置的圆形轨道,半径为R,由左右两部分组成。如图所示,右半部分AEB是光滑的,左半部分BFA 是粗糙的.现在最低点A给一个质量为m的小球一个水平向右的初速度,使小球沿轨道恰好运动到最高点B,小球在B 点又能沿BFA轨道回到点A,到达A点时对轨道的压力为4mg 1、求小球在A点的速度v0 2、求小球由BFA回到A点克服阻力做的功 * 4、如图所示,质量为m的小球用长为L的轻质细线悬于O点,与O 点处于同一水平线上的P点处有一根光滑的细钉,已知OP = L/2,在A点给小球一个水平向左的初速度v ,发现小球恰能到达跟P点在同一竖直线上的最高点B.则:(1)小球到达B点时的速率(2)若不计空气阻力,则初速度v0为多少 (3)若初速度v0=3gL,则在小球从A到B的过程中克服空气阻力做了多少功v0 E F… R

5、如图所示,倾角θ=37°的斜面底端B 平滑连接着半径r =0.40m 的竖直光滑圆轨道。质量m =0.50kg 的小物块,从距地面h =2.7m 处沿斜面由静止开始下滑,小物块与斜面间的动摩擦因数μ=,求:(sin37°=,cos37°=,g =10m/s 2 ) (1)物块滑到斜面底端B 时的速度大小。 (2)物块运动到圆轨道的最高点A 时,对圆轨道的压力大小。 { 6、质量为m 的小球被系在轻绳一端,在竖直平面内做半径为R 的圆周运动,运动过程中小球受到空气阻力的作用.设某一时刻小球通过轨道的最低点,此时绳子的张力为7mg,此后小球继续做圆周运动,经过半个圆周恰能通过最高点,则在此过程中小球克服空气阻力所做的功为( ) , 7\如图所示,AB 与CD 为两个对称斜面,其上部都足够长,下部 分分别与一个光滑的圆弧面的两端相切,圆弧圆心角为1200 ,半径R=2.0m,一个物体在离弧底E 高度为h=3.0m 处,以初速度V 0=4m/s 沿斜面运动,若物体与两斜面的动摩擦因数均为μ=,则物体在两斜面上(不包括圆弧部分)一共能走多少路程 (g=10m/s 2 ). / 8、如图所示,在光滑四分之一圆弧轨道的顶端a 点,质量为m 的物块(可视为质点)由静止开始下滑,经圆弧最低点b 滑上粗糙水平面,圆弧轨道在b 点与水平轨道平滑相接,物块最终滑至c 点停止.若圆弧轨道半径为R ,物块与水平面间的动摩擦因数为μ, 则:1、物块滑到b 点时的速度为 2、物块滑到b 点时对b 点的压力是 3、c 点与b 点的距离为 θ A B O h A B C D O > E h

实验探究动能定理

实验探究动能定理 TPMK standardization office【 TPMK5AB- TPMK08- TPMK2C- TPMK18】

实验:探究动能定理实验目的 1.通过实验探究外力对物体做功与物体速度的关系. 2.通过实验数据分析,总结出做功与物体速度平方的正比关系. 实验原理 1.不是直接测量对小车做功,而是通过改变橡皮筋条数确定对小车做功W、2W、3W、…. 2.由于橡皮筋做功而使小车获得的速度可以由纸带和打点计时器测出,也可以用其他方法测出.这样,进行若干次测量,就得到若干组功和速度的数据. 3.以橡皮筋对小车做的功为纵坐标,小车获得的速度为横坐标,作出W-v曲线,分析这条曲线,可以得知橡皮筋对小车做的功与小车获得的速度的定量关系. 实验器材 小车(前面带小钩)、100 g~200 g砝码、长木板,两侧适当的对称位置钉两个铁钉、打点计时器及纸带、学生电源及导线(使用电火花计时器不用学生电源)、5~6条等长的橡皮筋、刻度尺. 一、实验步骤 1.按图所示将实验仪器安装好.同时平衡摩擦力

2.先用一条橡皮筋做实验,用打点计时器和纸带测出小车获得的速度v1,设此时橡皮筋对小车做功为W1,将这一组数据记入表格. 3.用2条橡皮筋做实验,实验中橡皮筋拉伸的长度与第一次相同,这样橡皮筋对小车做的功为W2,测出小车获得的速度v2,将数据记入表格. 4.用3条、4条…橡皮筋做实验,用同样的方法测出功和速度,记入表格. 二、实验分析 1.数据采集 (1)求小车的速度:利用纸带上点迹均匀的一段测出两点间的距离x,则v=x T (其中T为打 点周期). 如图所示中测出AB两点间距离. (2)数据记录:把计算出的速度填入上表中并算出v2值. (3)数据处理:在坐标纸上画出W-v和W-v2图线 三、误差分析 1.误差的主要来源是橡皮筋的长度、粗细不一,使橡皮筋的拉力做功W与橡皮筋的条数不成正比. 2.没有完全平衡摩擦力或平衡摩擦力时倾角过大也会造成误差. 3.利用打上点的纸带计算小车的速度时,测量不准带来误差.

(物理)物理动能与动能定理练习题20篇

(物理)物理动能与动能定理练习题20篇 一、高中物理精讲专题测试动能与动能定理 1.如图所示,质量m =3kg 的小物块以初速度秽v 0=4m/s 水平向右抛出,恰好从A 点沿着圆弧的切线方向进入圆弧轨道。圆弧轨道的半径为R = 3.75m ,B 点是圆弧轨道的最低点,圆弧轨道与水平轨道BD 平滑连接,A 与圆心D 的连线与竖直方向成37?角,MN 是一段粗糙的水平轨道,小物块与MN 间的动摩擦因数μ=0.1,轨道其他部分光滑。最右侧是一个半径为r =0.4m 的半圆弧轨道,C 点是圆弧轨道的最高点,半圆弧轨道与水平轨道BD 在D 点平滑连接。已知重力加速度g =10m/s 2,sin37°=0.6,cos37°=0.8。 (1)求小物块经过B 点时对轨道的压力大小; (2)若MN 的长度为L 0=6m ,求小物块通过C 点时对轨道的压力大小; (3)若小物块恰好能通过C 点,求MN 的长度L 。 【答案】(1)62N (2)60N (3)10m 【解析】 【详解】 (1)物块做平抛运动到A 点时,根据平抛运动的规律有:0cos37A v v ==? 解得:04 m /5m /cos370.8 A v v s s = ==? 小物块经过A 点运动到B 点,根据机械能守恒定律有: ()2211cos3722 A B mv mg R R mv +-?= 小物块经过B 点时,有:2 B NB v F mg m R -= 解得:()232cos3762N B NB v F mg m R =-?+= 根据牛顿第三定律,小物块对轨道的压力大小是62N (2)小物块由B 点运动到C 点,根据动能定理有: 22011222 C B mgL mg r mv mv μ--?= - 在C 点,由牛顿第二定律得:2 C NC v F mg m r += 代入数据解得:60N NC F = 根据牛顿第三定律,小物块通过C 点时对轨道的压力大小是60N

动能定理典型基础例题

动能定理典型基础例题 应用动能定理解题的基本思路如下: ①确定研究对象及要研究的过程 ②分析物体的受力情况,明确各个力是做正功还是做负功,进而明确合外力的功 ③明确物体在始末状态的动能 ④根据动能定理列方程求解。 例1.质量M=×103 kg 的客机,从静止开始沿平直的跑道滑行,当滑行距离S=×lO 2 m 时,达到起飞速度ν=60m/s 。求: (1)起飞时飞机的动能多大 (2)若不计滑行过程中所受的阻力,则飞机受到的牵引力为多大 (3)若滑行过程中受到的平均阻力大小为F=×103 N ,牵引力与第(2)问中求得的值相等,则要达到上述起飞速度,飞机的滑行距离应多大 ~ 例2.一人坐在雪橇上,从静止开始沿着高度为 15m 的斜坡滑下,到达底部时速度为10m/s 。人和雪橇的总质量为60kg ,下滑过程中克服阻力做的功。 例3.在离地面高为h 处竖直上抛一质量为m 的物块,抛出时的速度为v 0,当它落到地面时速度为v ,用g 表示重力加速度,则在此过程中物块克服空气阻力所做的功等于:( ) 例4.质量为m 的小球被系在轻绳一端,在竖直平面内做半径为R 的圆周运动,运动过程中小球受到空气阻力的作用。设某一时刻小球通过轨道的最低点,此时绳子的张力为7mg ,此后小球继续做圆周运动,经过半个圆周恰能通过最高点,则在此过程中小球克服空气阻力所做的功为:( ) A . 4mgR B .3mgR C .2 mgR D .mgR 例5.如图所示,质量为m 的木块从高为h 、倾角为α的斜面顶端由静止滑下。到达斜面底端时与固定不动的、与斜面垂直的挡板相撞,撞后木块以与撞前相同大小的速度反向弹回,木块运动到 高 2 h 处速度变为零。求: (1)木块与斜面间的动摩擦因数 (2)木块第二次与挡板相撞时的速度 (3)木块从开始运动到最后静止,在斜面上运动的总路程 , 例6.质量m=的物块(可视为质点)在水平恒力F 作用下,从水平面上A 点由静止开始运动,运动一段距离撤去该力,物块继续滑行t=停在B 点,已知A 、B 两点间的距离s=,物块与水平面间的动摩擦因数μ=,求恒力F 多大。(g=10m/s 2 ) 1、在光滑水平地面上有一质量为20kg 的小车处于静止状态。用30牛水平方向的力推小车,经过多大距离小车才能达到3m/s 的速度。 2、汽车以15m/s 的速度在水平公路上行驶,刹车后经过20m 速度减小到5m/s ,已知汽车质量是,求刹车动力。(设汽车受到的其他阻力不计) 3、一个质量是的小球在离地5m 高处从静止开始下落,如果小球下落过程中所受的空气阻力是,求它落地时的速度。 4、一辆汽车沿着平直的道路行驶,遇有紧急情况而刹车,刹车后轮子只滑动不滚动,从刹车开始 到汽车停下来,汽车前进12m 。已知轮胎与路面之间的滑动摩擦系数为,求刹车前汽车的行驶速度。 5、一辆5吨的载重汽车开上一段坡路,坡路上S=100m ,坡顶和坡底的高度差h=10m ,汽车山坡前的速度是10m/s ,上到坡顶时速度减为s 。汽车受到的摩擦阻力时车重的倍。求汽车的牵引力。 6、质量为2kg 的物体,静止在倾角为30o 的斜面的底端,物体与斜面间的摩擦系数为,斜面长1m ,用30N 平行于斜面的力把物体推上斜面的顶端,求物体到达斜面顶端时的动能。 7、质量为的铅球从离沙坑面高处自由落下,落入沙坑后在沙中运动了后停止,求沙坑对铅球的平均阻力。 ^ h m

学生实验6----动能定理实验

学生实验6----动能定理实验 实验6:探究动能定理 方案1: 实验器材: 打点计时器,电源,导线,一端附有定滑轮的光滑长木板,小车,纸带,细绳,弹簧测力计,砝码盘和砝码,刻度尺 实验原理: 用打点计时器和纸带记录下小车做匀加速运动的情况如图所示。通过测量和计算可以得到小车从O点到2、3、4、5点的距离,及在2、3、4、5点的瞬时速度。 从打下0点到打下2、3、4、5点的过程中,合外力F(等于绳的拉力)对小车做的功W及小车增加的动能ΔE,可由下式计算: k 12(F直接由弹簧秤读出),其中n=2,3,4,5…… W,FxE,mv,0,nnknn2 实验步骤:

1(把一端附有定滑轮的光滑长木板平放在实验桌上,并使滑轮伸出桌面,把打点计时器固定在长木板上没有定滑轮的一端,连接好电路(如图)。 (在实验小车上先固定一个弹簧测力计,测力计的挂钩连接细轻绳,轻绳跨过定滑轮,2 挂一个小盘,盘内放砝码。放手后,小车能在长木板上平稳地加速滑行一段距离,把纸带穿过打点计时器,并把它的一端固定在小车后面。 3(把小车停靠在打点计时器处,先接通电源,再放开小车,让小车运动,打点计时器在纸带上打出一系列点迹。在小车运动过程中读出测力计读数F,即小车受到的拉力大小。取下纸带,换上新纸带,重复实验几次。 4(选择点迹清晰的纸带,记下第一个点的位置0,并在纸带上从任意点开始依次选取几个点,记作1,2,3,4,5,6,测量各点到0的距离x,x,x,x,x,x。 1234565(计算出打下2,3,4,5时小车的速度v,v,v,v。 2345 6(计算从打下0点到打下2,3,4,5的过程中合外力F(大小等于测力计读数 F)对小车做的功W及小车增加的动能ΔE,并填入下表。 k 1 7(在坐标纸上画出ΔE——W图像。 k 数据记录及处理: 0,2 0,3 0,4 0,5 瞬时速度v/(m/s) ΔE/J k 距离x/m W/J 以ΔE为横轴,W为纵轴,做出ΔE——W图像。 kk 注意事项: 1(长木板应尽量光滑,如果摩擦力较大应先平衡摩擦力。可以在长木板下端垫木块。 2(使用打点计时器时应先接通电源再释放小车。 : 练习

动能和动能定理复习_专题训练

动能定理专题 题型1:弄清求变力做功的几种方法 等值法 1.如图所示,定滑轮至滑块的高度为h,已知细绳的拉力为F(恒定),滑块沿水平面由A点前进S至B点,滑块在初、末位置时细绳与水平方向夹角分别为α和β。求滑块由A点运动到B点过程中,绳的拉力对滑块所做的功。

微元法(不推荐,但希望同学们知道这种方法) 2.如图所示,某力F=10N作用于半径R=1m的转盘的边缘上,力F的大小保持不变,但方向始终保持与作用点的切线方向一致,则转动一周这个力F做的总功应为 ( ) A、 0J B、20πJ C 、10J D、20J. 平均力法 3.一辆汽车质量为105kg,从静止开始运动,其阻力为车重的0.05倍。其牵引力的大小与车前进的距离变化关系为F=103x+f0,f0是车所受的阻力。当车前进100m时,牵引力做的功是多少? 动能定理求变力做功法 4.如图所示,AB为1/4圆弧轨道,半径为0.8m,BC是水平轨道,长 L=3m,BC处的摩擦系数为1/15,今有质量m=1kg的物体,自A点从静止起下滑到C点刚好停止。求物体在轨道AB段所受的阻力对物体做的功。

机械能守恒定律求变力做功法 5.如图所示,质量m=2kg的物体,从光滑斜面的顶端A点以V0=5m/s的初速度滑下,在D点与弹簧接触并将弹簧压缩到B点时的速度为零,已知从A到B的竖直高度h=5m,求弹簧的弹力对物体所做的功。 题型2:弄清滑轮系统拉力做功的计算方法 图8 F1 F2 6.如图所示,在倾角为30°的斜面上,一条轻绳的一端固定在斜面上,绳子跨过连在滑块上的定滑轮,绳子另一端受到一个方向总是竖直向上,大小恒为F=100N的拉力,使物块沿斜面向上滑行1m(滑轮右边的绳子始终与斜面平行)的过程中,拉力F做的功是( ) A.100J B.150J C.200J D.条件不足,无法确定 V0 S0 α P 图11 题型3:应用动能定理简解多过程题型。 7.如图11所示,斜面足够长,其倾角为α,质量为m的滑块,距挡板P 为S0,以初速度V0沿斜面上滑,滑块与斜面间的动摩擦因数为μ,滑块

高考物理动能与动能定理解题技巧及练习题(含答案)

高考物理动能与动能定理解题技巧及练习题(含答案) 一、高中物理精讲专题测试动能与动能定理 1.如图所示,在水平轨道右侧固定半径为R的竖直圆槽形光滑轨道,水平轨道的PQ段长度为,上面铺设特殊材料,小物块与其动摩擦因数为,轨道其它部分摩擦不计。水平轨道左侧有一轻质弹簧左端固定,弹簧处于原长状态。可视为质点的质量的小物块从轨道右侧A点以初速度冲上轨道,通过圆形轨道,水平轨道后压缩弹簧,并被弹簧以原速率弹回,取,求: (1)弹簧获得的最大弹性势能; (2)小物块被弹簧第一次弹回经过圆轨道最低点时的动能; (3)当R满足什么条件时,小物块被弹簧第一次弹回圆轨道时能沿轨道运动而不会脱离轨道。 【答案】(1)10.5J(2)3J(3)0.3m≤R≤0.42m或0≤R≤0.12m 【解析】 【详解】 (1)当弹簧被压缩到最短时,其弹性势能最大。从A到压缩弹簧至最短的过程中,由动 能定理得:?μmgl+W弹=0?m v02 由功能关系:W弹=-△E p=-E p 解得 E p=10.5J; (2)小物块从开始运动到第一次被弹回圆形轨道最低点的过程中,由动能定理得 ?2μmgl=E k?m v02 解得 E k=3J; (3)小物块第一次返回后进入圆形轨道的运动,有以下两种情况: ①小球能够绕圆轨道做完整的圆周运动,此时设小球最高点速度为v2,由动能定理得 ?2mgR=m v22?E k 小物块能够经过最高点的条件m≥mg,解得R≤0.12m ②小物块不能够绕圆轨道做圆周运动,为了不让其脱离轨道,小物块至多只能到达与圆心 等高的位置,即m v12≤mgR,解得R≥0.3m; 设第一次自A点经过圆形轨道最高点时,速度为v1,由动能定理得:

动能定理典型例题

动能定理典型例题

————————————————————————————————作者: ————————————————————————————————日期: ?

动能定理典型例题 【例题】 1、一架喷气式飞机,质量m=5.0×103kg,起飞过程中从静止开始滑跑的路程为s=5.3×102m,达到起飞速度v=60m/s,在此过程中飞机受到的平均阻力是飞机重量的0.02倍(k=0.02)。求飞机受到的牵引力。 2、在动摩擦因数为μ的粗糙水平面上,有一个物体的质量为m,初速度为V1,在与 运动方向相同的恒力F的作用下发生一段位移S,如图所示,试求物体的末速度V2。 拓展:若施加的力F变成斜向右下方且与水平方向成θ角,求物体的末速度V2 V滑上动摩擦因数为μ的粗糙水平面上,最后3、一个质量为m的物体以初速度 静止在水平面上,求物体在水平面上滑动的位移。

4、一质量为m的物体从距地面高h的光滑斜面上滑下,试求物体滑到斜面底端 的速度。 拓展1:若斜面变为光滑曲面,其它条件不变,则物体滑到斜面底端的速度是多少? 拓展2:若曲面是粗糙的,物体到达底端时的速度恰好为零,求这一过程中摩擦力做的功。 类型题 题型一:应用动能定理求解变力做功 1、一质量为m的小球,用长为L的轻绳悬挂于O点,小球在水平力F作用下,从平衡位置缓慢地移Q点如图所示,则此过程中力F所做的功为() A.mgLcos0 B.FLsinθ C.FLθ?D.(1cos). - mgLθ

2、如图所示,质量为m的物体静放在光滑的平台上,系在物体上的绳子跨过光 V向右匀速运动的人拉着,设人从地面上由平台的滑的定滑轮由地面上以速度 边缘向右行至绳与水平方向成30角处,在此过程中人所做的功为多少? 3、一个质量为m的小球拴在钢绳的一端,另一端用大小为F1的拉力作用,在水平面上做半径为R1的匀速圆周运动(如图所示),今将力的大小改为F2,使小球仍在水平面上做匀速圆周运动,但半径变为R2,小球运动的半径由R1变为R2过程中拉力对小球做的功多大? 4、如图所示,AB为1/4圆弧轨道,半径为R=0.8m,BC是水平轨道,长S =3m,BC处的摩擦系数为μ=1/15,今有质量m=1kg的物体,自A点从静止起下滑到C点刚好停止。求物体在轨道AB段所受的阻力对物体做的功。

江苏专版2019版高考物理一轮复习第五章机械能微专题44实验:探究动能定理备考精炼

44 实验:探究动能定理 [方法点拨] 通过分析实验题设要明确研究对象的运动过程是哪一段,以及研究对象受到的合外力是“谁”,合外力的功如何测量. 1.(2018·铜山中学模拟)如图1所示,是探究功与物体速度变化关系的装置.第一次由一根橡皮筋提供牵引力使小木块在某处由静止弹出,然后分别改用2根、3根……相同的橡皮筋,使小木块从同样的位置弹出. 图1 (1)小木块在运动过程中会受到阻力,应将长木板______(填“左”或“右”)端适当垫高作为补偿. (2)只用1根橡皮筋作用时,打点计时器打出的纸带如图2所示.打点计时器使用50 Hz的交流电源,则小木块被弹出时的速度为________ m/s(结果保留两位有效数字). 图2 (3)下表是实验过程中测量的几组数据,请选取合适的物理量和单位,在图3中作出图象以便找到做功与小木块动能的关系. 图3 (4)如果本实验中没有进行第(1)步的操作,则上述所画的图线( )

A.仍为原图线B.向上平移 C.向下平移 D.倾斜程度会发生变化 2.为验证动能定理,某同学设计了如下实验.将一长直木板一端垫起,另一端侧面装一速度传感器,让小滑块由静止从木板h高处(从速度传感器所在平面算起)自由下滑至速度传感器时,读出滑块经此处时的速度v,如图4所示.多次改变滑块的下滑高度h(斜面的倾角不变),对应的速度值记录在表中: 图4 要最简单直观地说明此过程动能定理是否成立,该同学建立了以h为纵轴的坐标系,你认为坐标系的横轴应该是________,本实验是否需要平衡摩擦力________(填“是”或“否”).3.(2017·南通市第三次调研)某学习小组利用如图5所示的实验装置探究合外力与速度的关系.一端带有定滑轮的长木板固定在水平桌面上,用轻绳绕过定滑轮及动滑轮将滑块与弹簧测力计相连.实验中改变动滑轮下悬挂的钩码个数,进行多次测量,记录弹簧测力计的示数F,并利用速度传感器测出从同一位置P由静止开始释放的滑块经过速度传感器时的速度大小v,用天平测出滑块的质量m,用刻度尺测出P与速度传感器间的距离s,当地的重力加速度大小为g,滑轮的质量都很小. 图5 (1)实验中钩码的质量________(填“需要”或“不需要”)远小于滑块的质量. (2)根据实验数据作出v2-F图象,下列图象中最符合实际情况的是________.

最新高考物理动能与动能定理常见题型及答题技巧及练习题(含答案)

最新高考物理动能与动能定理常见题型及答题技巧及练习题(含答案) 一、高中物理精讲专题测试动能与动能定理 1.如图所示,在水平轨道右侧固定半径为R的竖直圆槽形光滑轨道,水平轨道的PQ段长度为,上面铺设特殊材料,小物块与其动摩擦因数为,轨道其它部分摩擦不计。水平轨道左侧有一轻质弹簧左端固定,弹簧处于原长状态。可视为质点的质量的小物块从轨道右侧A点以初速度冲上轨道,通过圆形轨道,水平轨道后压缩弹簧,并被弹簧以原速率弹回,取,求: (1)弹簧获得的最大弹性势能; (2)小物块被弹簧第一次弹回经过圆轨道最低点时的动能; (3)当R满足什么条件时,小物块被弹簧第一次弹回圆轨道时能沿轨道运动而不会脱离轨道。 【答案】(1)10.5J(2)3J(3)0.3m≤R≤0.42m或0≤R≤0.12m 【解析】 【详解】 (1)当弹簧被压缩到最短时,其弹性势能最大。从A到压缩弹簧至最短的过程中,由动 能定理得:?μmgl+W弹=0?m v02 由功能关系:W弹=-△E p=-E p 解得 E p=10.5J; (2)小物块从开始运动到第一次被弹回圆形轨道最低点的过程中,由动能定理得 ?2μmgl=E k?m v02 解得 E k=3J; (3)小物块第一次返回后进入圆形轨道的运动,有以下两种情况: ①小球能够绕圆轨道做完整的圆周运动,此时设小球最高点速度为v2,由动能定理得 ?2mgR=m v22?E k 小物块能够经过最高点的条件m≥mg,解得R≤0.12m ②小物块不能够绕圆轨道做圆周运动,为了不让其脱离轨道,小物块至多只能到达与圆心 等高的位置,即m v12≤mgR,解得R≥0.3m; 设第一次自A点经过圆形轨道最高点时,速度为v1,由动能定理得:

【物理】物理动能定理的综合应用题20套(带答案)

【物理】物理动能定理的综合应用题20套(带答案) 一、高中物理精讲专题测试动能定理的综合应用 1.北京老山自行车赛场采用的是250m 椭圆赛道,赛道宽度为7.6m 。赛道形如马鞍形,由直线段、过渡曲线段以及圆弧段组成,圆弧段倾角为45°(可以认为赛道直线段是水平的,圆弧段中线与直线段处于同一高度)。比赛用车采用最新材料制成,质量为9kg 。已知直线段赛道每条长80m ,圆弧段内侧半径为14.4m ,运动员质量为61kg 。求: (1)运动员在圆弧段内侧以12m/s 的速度骑行时,运动员和自行车整体的向心力为多大; (2)运动员在圆弧段内侧骑行时,若自行车所受的侧向摩擦力恰为零,则自行车对赛道的压力多大; (3)若运动员从直线段的中点出发,以恒定的动力92N 向前骑行,并恰好以12m/s 的速度进入圆弧段内侧赛道,求此过程中运动员和自行车克服阻力做的功。(只在赛道直线段给自行车施加动力)。 【答案】(1)700N;(2)2;(3)521J 【解析】 【分析】 【详解】 (1)运动员和自行车整体的向心力 F n =2(m)M v R + 解得 F n =700N (2)自行车所受支持力为 ()cos45N M m g F += ? 解得 F N 2N 根据牛顿第三定律可知 F 压=F N 2N (3)从出发点到进入内侧赛道运用动能定理可得

W F -W f 克+mgh = 212 mv W F =2 FL h = 1 cos 452 d o =1.9m W f 克=521J 2.在某电视台举办的冲关游戏中,AB 是处于竖直平面内的光滑圆弧轨道,半径 R=1.6m ,BC 是长度为L 1=3m 的水平传送带,CD 是长度为L 2=3.6m 水平粗糙轨道,AB 、CD 轨道与传送带平滑连接,参赛者抱紧滑板从A 处由静止下滑,参赛者和滑板可视为质点,参赛者质量m=60kg ,滑板质量可忽略.已知滑板与传送带、水平轨道的动摩擦因数分别为μ1=0.4、μ2=0.5,g 取10m/s 2.求: (1)参赛者运动到圆弧轨道B 处对轨道的压力; (2)若参赛者恰好能运动至D 点,求传送带运转速率及方向; (3)在第(2)问中,传送带由于传送参赛者多消耗的电能. 【答案】(1)1200N ,方向竖直向下(2)顺时针运转,v=6m/s (3)720J 【解析】 (1) 对参赛者:A 到B 过程,由动能定理 mgR(1-cos 60°)=12 m 2B v 解得v B =4m /s 在B 处,由牛顿第二定律 N B -mg =m 2B v R 解得N B =2mg =1 200N 根据牛顿第三定律:参赛者对轨道的压力 N′B =N B =1 200N ,方向竖直向下. (2) C 到D 过程,由动能定理 -μ2mgL 2=0- 12 m 2C v 解得v C =6m /s B 到 C 过程,由牛顿第二定律μ1mg =ma

高考物理专题复习 动能 动能定理练习题

2008高考物理专题复习 动能 动能定理练习题 考点:动能.做功与动能改变的关系(能力级别:Ⅰ) 1.动能 (1)定义:物体由于运动而具有的能量叫做动能. (2)计算公式:221mv E k = .国际单位:焦耳(J). (3)说明: ①动能只有大小,没有方向,是个标量.计算公式中v 是物体具有的速率.动能恒为正值. ②动能是状态量,动能的变化(增量)是过程量. ③动能具有相对性,其值与参考系的选取有关.一般取地面为参考系. 【例题】位于我国新疆境内的塔克拉玛干沙漠,气候干燥,风力强劲,是利用风力发电的绝世佳境.设该地强风的风速v =20m/s,空气密度ρ=1.3kg/m 3,如果把通过横截面积为s=20m 2的风的动能全部转化为电能,则电功率的大小为多少?(取一位有效数字). 〖解析〗时间t 内吹到风力发电机上的风的质量为 vts m ρ= 这些风的动能为 22 1mv E k = 由于风的动能全部转化为电能,所以发电机的发电功率为 W s v t E P k 531012 1?≈== ρ 2.做功与动能改变的关系 动能定理 (1)内容:外力对物体做的总功等于物体动能的变化.即:合外力做的功等于物体动能的变化. (2)表达式: 12k k E E W -=合 或k E W ?=合 (3)对动能定理的理解: ①合W 是所有外力对物体做的总功,等于所有外力对物体做功的代数和,即:W 合=W 1+ W 2+ W 3+…….特别是在全过程的各个阶段受力有变化的情况下,只要把各个力在各个阶段所做的功都按照代数和加起来,就可以得到总功. ②因动能定理中功和能均与参考系的选取有关,所以动能定理也与参考系的选取有关,一般以地球为参考系. ③不论做什么运动形式,受力如何,动能定理总是适用的. ④做功的过程是能量转化的过程,动能定理中的等号“=”的意义是一种因果联系的数值上相等的符号, 它并不意谓着“功就是动能的增量”,也不意谓着“功转变成动能”,而意谓着“合外力的功是物体动能变化的原因,合外力对物体做多少功物体的动能就变化多少”. ⑤合W >0时,E k2>E k1,物体的动能增加; 合W <0时,E k2

高中物理动能定理的综合应用常见题型及答题技巧及练习题(含答案)

高中物理动能定理的综合应用常见题型及答题技巧及练习题(含答案) 一、高中物理精讲专题测试动能定理的综合应用 1.为了研究过山车的原理,某物理小组提出了下列设想:取一个与水平方向夹角为θ=60°、长为L 1=23m 的倾斜轨道AB ,通过微小圆弧与长为L 2= 3 2 m 的水平轨道BC 相连,然后在C 处设计一个竖直完整的光滑圆轨道,出口为水平轨道上D 处,如图所示.现将一个小球从距A 点高为h =0.9m 的水平台面上以一定的初速度v 0水平弹出,到A 点时小球的速度方向恰沿AB 方向,并沿倾斜轨道滑下.已知小球与AB 和BC 间的动摩擦因数均为μ= 3 ,g 取10m/s 2. (1)求小球初速度v 0的大小; (2)求小球滑过C 点时的速率v C ; (3)要使小球不离开轨道,则竖直圆弧轨道的半径R 应该满足什么条件? 【答案】(16m/s (2)6m/s (3)0

探究动能定理实验专题

探究动能定理实验专题 实验方法一:利用重物做自由落体运动探究动能定理(略) 具体方法:参考三维设计 实验方法二:利用探究牛顿第二定律的实验装置 1、实验目的:探究外力做功与物体动能变化的定量关系 2、实验原理:(1)实验装置如图所示,在砝码和砝码盘的质量远小于小车质量时,可认为 细绳的拉力就是砝码及砝码盘的重力(F绳=G砝码及砝码盘)。 (2)平衡长木板的摩擦力。 (3)在砝码盘中加放砝码并释放砝码盘,木块将在砝码盘对它的拉力作用下做匀加速运动.在纸带记录的物体运动的匀加速阶段,适当间隔地取两个点A、B.只要取计算一小段位移的平均速度即可确定A、B两点各自的速度v A、v B,在这段过程中物体运动的距离s可通过运动纸带测出,我们可即算出合外力做的功W合=F绳S AB(F绳=G砝码及砝码盘)。 另一方面,此过程中物体动能的变化量为,通过比较W和ΔEk 的值,就可以找出两者之间的关系。 3、实验器材 长木板(一端带滑轮)、刻度尺、打点计时器、纸带、导线、电源、小车、细线、砝码盘、砝码、天平. 4、实验装置 5、实验步骤及数据处理 (1)用天平测出木块的质量M,及砝码、砝码盘的总质量m。把器材按图装置好.纸带一段固定在小车上,另一端穿过打点计时器的限位孔; (2)把木块靠近打点计时器,用手按住.先接通打点计时器电源,再释放木块,让它做加速运动.当小车到达定滑轮处(或静止)时,断开电源; (3)取下纸带,重复实验,得到多条纸带; (4)选取其中点迹清晰的纸带进行数据处理,先在纸带标明计数点,然后取间隔适当的两点 A、B。利用刻度尺测量得出A,B两点间的距离S AB ;再利用平均速度公式求A、B两点的速度v A、v B; (4)通过实验数据,分别求出W合与ΔE kAB,通过比较W和ΔEk的值,就可以找出两者之间的关系。 6、误差分析 1.没有完全平衡摩擦力或平衡摩擦力时倾角过大也会造成误差。 2.利用打点的纸带测量位移,和计算木块的速度时,不准确也会带来误差。

高一物理动能、动能定理练习题

动能、动能定理练习 1、下列关于动能的说法中,正确的是( )A、动能的大小由物体的质量和速率决定,与物体的运动方向无关 B、物体以相同的速率分别做匀速直线运动和匀速圆周运动时,其动能不同.因为它在这两种情况下所受的合力不同、运动性质也不同 C、物体做平抛运动时,其动能在水平方向的分量不变,在竖直方向的分量增大 D、物体所受的合外力越大,其动能就越大 2、一质量为2kg的滑块,以4m/s的速度在光滑水平面上向左滑行,从某一时刻起,在滑块上作用一向右的水平力.经过一段时间,滑块的速度方向变为向右,大小为4m/s.在这段时间里水平力做的功为( ) A、0 B、8J C、16J D、32J 3、质量不等但有相同动能的两物体,在动摩擦因数相同的水平地面上滑行直到停止,则( ) A、质量大的物体滑行距离小 B、它们滑行的距离一样大 C、质量大的物体滑行时间短 D、它们克服摩擦力所做的功一样多 4、一辆汽车从静止开始做加速直线运动,运动过程中汽车牵引力的功率保持恒定,所受的阻力不变,行驶2min速度达到10m/s.那么该列车在这段时间内行的距离( ) A、一定大于600m B、一定小于600m C、一定等于600m D、可能等于1200m 5、质量为1.0kg的物体,以某初速度在水平面上滑行,由于摩擦阻力的作用,其动能随位移变化的情况如下图所示,则下列判断正确的是(g=10m/s2)( ) A、物体与水平面间的动摩擦因数为0.30 B、物体与水平面间的动摩擦因数为0.25 C、物体滑行的总时间是2.0s D、物体滑行的总时间是4.0s 6、一个小物块从斜面底端冲上足够长的斜面后,返回到斜面底端,已知小物块的初动能为E,它返回斜面底端的速度大小为υ,克服摩擦阻力做功为E/2.若小物块冲上斜面的初动能变为2E,则有( ) A、返回斜面底端的动能为E B、返回斜面底端时的动能为3E/2 C、返回斜面底端的速度大小为2υ D、返回斜面底端的速度大小为2υ 7、以初速度v0急速竖直上抛一个质量为m的小球,小球运动过程中所受阻力f大小不变,上升最大高度为h,则抛出过程中,人手对小球做的功() A. 1 20 2 mv B. mgh C. 1 20 2 mv mgh + D. mgh fh + 8、如图所示,AB为1/4圆弧轨道,BC为水平直轨道,圆弧的半径为R,BC的长度也是R,一质量为m的物 体,与两个轨道间的动摩擦因数都为μ,当它由轨道顶端A从静止开始下落,恰好运动到C处停止,那么物体在AB段克服摩擦力所做的功为 A. 1 2 μmgR B. 1 2 mgR C. mgR D. () 1-μmgR 9、质量为m的物体静止在粗糙的水平地面上,若物体受水平力F的作用从静止起通过位移s时的动能为 E1,当物体受水平力2F作用,从静止开始通过相同位移s,它的动能为E2,则: A、E2=E1 B、E2=2E1 C、E2>2E1 D、E1<E2<2E1 10.质量为m,速度为V的子弹射入木块,能进入S米。若要射进3S深,子弹的初速度应为原来的(设子弹在木块中的阻力不变)( ) h/2 h 图5-17

相关主题
文本预览
相关文档 最新文档