当前位置:文档之家› 基于遗传算法的模糊聚类在考试成绩分析中的应用

基于遗传算法的模糊聚类在考试成绩分析中的应用

基于遗传算法的模糊聚类在考试成绩分析中的应用
基于遗传算法的模糊聚类在考试成绩分析中的应用

模糊聚类分析

目录 1引言: (3) 2 理论准备: (3) 2.1 模糊集合理论 (3) 2.2模糊C均值聚类(FCM) (4) 2.3 加权模糊C均值聚类(WFCM) (4) 3 聚类分析实例 (5) 3.1数据准备 (5) 3.1.1数据表示 (5) 3.1.2数据预处理 (5) 3.1.3 确定聚类个数 (6) 3.2 借助clementine软件进行K-means聚类 (7) 3.2.1 样本在各类中集中程度 (8) 3.2.2 原始数据的分类结果 (8) 3.2.3结果分析 (9) 3.3模糊C均值聚类 (10) 3.3.1 数据集的模糊C划分 (10) 3.3.2 模糊C均值聚类的目标函数求解方法 (10) 3.3.3 MATLAB软件辅助求解参数设置 (11) 3.3.4符号表示 (11)

3.3.5代码实现过程 (11) 3.3.6 FCM聚类分析 (11) 3.4 WFCM算法 (14) 3.4.1 WFCM聚类结果展示 (14) 3.4.2样本归类 (16) 3.4.3归类代码实现 (16) 4.结论 (17) 5 参考文献 (18) 6 附录 (18)

模糊聚类与非模糊聚类比较分析 摘要: 聚类分析是根据样本间的相似度实现对样本的划分,属于无监督分类。传统的聚类分析是研究“非此即彼”的分类问题,分类结果样本属于哪一类很明确,而很多实际的分类问题常伴有模糊性,即它不仅仅是属于一个特定的类,而是“既此又彼”。因此为了探究模糊聚类与非模糊聚类之间聚类结果的差别,本文首先采用系统聚类方法对上市公司132支股票数据进行聚类,确定比较合理的聚类数目为11类,然后分别采用K-means聚类与模糊聚类方法对股票数据进行聚类分析,最终得出模糊聚类在本案例中比K-means聚类更符合实际。 关键字:模糊集合,K-means聚类,FCM聚类,WFCM聚类 1引言: 聚类分析是多元统计分析的方法之一,属于无监督分类,是根据样本集的内在结构,按照样本之间相似度进行划分,使得同类样本之间相似性尽可能大,不同类样本之间差异性尽可能大。传统的聚类分析属于硬化分,研究对象的性质是非此即彼的,然而,现实生活中大多数事物具有亦此亦彼的性质。因此传统的聚类分析方法往往不能很好的解决具有模糊性的聚类问题。为此,模糊集合理论开始被应用到分类领域,并取得不错成果。 本文的研究目的是通过对比传统聚类和模糊聚类的聚类结果,找出二者之间的不同之处,并说明两种聚类分析方法在实例中应用的优缺点。 2理论准备: 2.1 模糊集合理论 模糊集合定义:设U为论域,则称由如下实值函数μA:U→ [ 0,1 ],u →μ ( u )所确定的集合A 为U上的模糊集合,而称μA为模糊集合A 的隶A 属函数,μ A ( u)称为元素u 对于A 的隶属度。若μA(u) =1,则认为u完全属于A;若μA(u) =0,则认为u完全不属于A,模糊集合是经典集合的推广。

模糊聚类分析方法

模糊聚类分析方法 对所研究的事物按一定标准进行分类的数学方法称为聚类分析,它是多元统计“物以类聚”的一种分类方法。载科学技术、经济管理中常常要按一定的标准(相似程度或亲疏关系)进行分类。例如,根据生物的某些性状可对生物分类,根据土壤的性质可对土壤分类等。由于科学技术、经济管理中的分类界限往往不分明,因此采用模糊聚类方法通常比较符合实际。 一、模糊聚类分析的一般步骤 1、第一步:数据标准化[9] (1) 数据矩阵 设论域12{,,,}n U x x x =为被分类对象, 每个对象又有m 个指标表示其性状,即 12{,, ,}i i i im x x x x = (1,2,,) i n =, 于是,得到原始数据矩阵为 1112 1 21222 12 m m n n nm x x x x x x x x x ?? ? ? ? ??? 。 其中nm x 表示第n 个分类对象的第m 个指标的原始数据。 (2) 数据标准化 在实际问题中,不同的数据一般有不同的量纲,为了使不同的量纲也能进行比较,通常需要对数据做适当的变换。但是,即使这样,得到的数据也不一定在区间[0,1]上。因此,这里说的数据标准化,就是要根据模糊矩阵的要求,将数据压缩到区间[0,1]上。通常有以下几种变换: ① 平移·标准差变换

i k k ik k x x x s -'= (1,2,,;1,2,i n k m == 其中 11n k i k i x x n ==∑, k s =。 经过变换后,每个变量的均值为0,标准差为1,且消除了量纲的影响。但 是,再用得到的ik x '还不一定在区间[0,1]上。 ② 平移·极差变换 111m i n { }m a x {}m i n {}i k i k i n ik ik ik i n i n x x x x x ≤≤≤≤≤≤''-''=''- ,(1,2, ,)k m = 显然有01ik x ''≤≤,而且也消除了量纲的影响。 ③ 对数变换 lg ik ik x x '= (1,2,,;1,2,i n k m == 取对数以缩小变量间的数量级。 2、第二步:标定(建立模糊相似矩阵) 设论域12{,, ,}n U x x x =,12{,,,}i i i im x x x x =,依照传统聚类方法确定相似 系数,建立模糊相似矩阵,i x 与j x 的相似程度(,)ij i j r R x x =。确定(,)ij i j r R x x =的方法主要借用传统聚类的相似系数法、距离法以及其他方法。具体用什么方法,可根据问题的性质,选取下列公式之一计算。 (1) 相似系数法 ① 夹角余弦法 2 2m ik jk ij m ik jk x x r x = ∑∑ ② 最大最小法 11() () m ik jk k ij m ik jk k x x r x x ==∧= ∨∑∑。 ③ 算术平均最小法

模糊聚类分析应用

本科生毕业论文(设计) ( 2011 届) 论文(设计)题目模糊聚类分析应用 作者舒海波 系、专业理学分院数学与应用数学 班级应数072 指导教师(职称)何颖俞(讲师) 字数 9403 字 成果完成时间2011年4月10日 杭州师范大学钱江学院教学部制

模糊聚类分析应用 数学与应用数学专业0702班指导教师何颖俞 摘要:模糊聚类简单而言就是把数据中的指标分类。本文利用的是最大树法对等价矩阵进行聚类,然后利用fcm法对相似矩阵的求法进行比较。 关键字:模糊聚类,等价矩阵,最大树,相似矩阵 The application of fuzzy clustering Shuhaibo Instructor: HeYingYu Abstract: Fuzzy clustering is a method to classify the given data based on some indexes. In this paper I use the method of the maximal tree to classify the equivalent matrix, and then use clustering analysis method of FCM to comparison the solutions of the similar matrices. Key word: fuzzy clustering, equivalence matrix, the maximal tree, similar matrix

目录 1 绪论 (1) 2模糊聚类分析方法 (1) 2.1距离和相似系数 (1) 2.2 F相似关系 (2) 2.2.1定义 (2) 2.2.2 定理 (2) 2.3 聚类分析 (3) 2.3.1最大树法 (4) 3算法分类 (4) 3.1聚类方法的分类 (5) 3.1.1划分方法(partitioning method) (5) 3.1.2层次方法(hierarchical method) (5) 3.1.3基于密度的方法(density-based method) (5) 3.1.4基于网格的方法(grid-based method) (5) 3.1.5基于模型的方法(model-based method) (5) 3.2.数据挖掘领域中常用的聚类算法 (5) 3.2.1 CLARANS算法(随机搜索聚类算法) (5) 3.2.2 CURE算法(利用代表点聚类) (6) 3.2.3 BIRCH算法(利用层次方法的平衡迭代归约和聚类) (6) 3.2.4 DBSCAN算法(基于高密度连接区域的密度聚类方法) (6) 3.2.5 STING算法(统计信息风格) (7) 3.2.6 COBWEB算法(流行的简单增量概念聚类算法) (7) 3.2.6 模糊聚类算法FCM (8) 3.3 聚类算法的性能比较 (8) 4实际应用 (9) 5总结 (13) 参考文献: (13)

Matlab学习系列23. 模糊聚类分析原理及实现

23. 模糊聚类分析原理及实现 聚类分析,就是用数学方法研究和处理所给定对象,按照事物间的相似性进行区分和分类的过程。 传统的聚类分析是一种硬划分,它把每个待识别的对象严格地划分到某个类中,具有非此即彼的性质,这种分类的类别界限是分明的。 随着模糊理论的建立,人们开始用模糊的方法来处理聚类问题,称为模糊聚类分析。由于模糊聚类得到了样本数与各个类别的不确定性程度,表达了样本类属的中介性,即建立起了样本对于类别的不确定性的描述,能更客观地反映现实世界。 本篇先介绍传统的两种(适合数据量较小情形,及理解模糊聚类原理):基于择近原则、模糊等价关系的模糊聚类方法。 (一)预备知识 一、模糊等价矩阵 定义1 设R=(r ij )n ×n 为模糊矩阵,I 为n 阶单位矩阵,若R 满足 i) 自反性:I ≤R (等价于r ii =1); ii) 对称性:R T =R; 则称R 为模糊相似矩阵,若再满足 iii) 传递性:R 2 ≤R (等价于1 ()n ik kj ij k r r r =∨∧≤) 则称R 为模糊等价矩阵。 定理1 设R 为n 阶模糊相似矩阵,则存在一个最小的自然数k

(k

模糊聚类分析方法汇总

模糊聚类分析方法 对所研究的事物按一定标准进行分类的数学方法称为聚类分析,它是多元统计“物以类聚”的一种分类方法。载科学技术、经济管理中常常要按一定的标准(相似程度或亲疏关系)进行分类。例如,根据生物的某些性状可对生物分类,根据土壤的性质可对土壤分类等。由于科学技术、经济管理中的分类界限往往不分明,因此采用模糊聚类方法通常比较符合实际。 一、模糊聚类分析的一般步骤 1、第一步:数据标准化[9] (1) 数据矩阵 设论域12{,,,}n U x x x =为被分类对象,每个对象又有m 个指标表示其性状, 即 12{,, ,}i i i im x x x x = (1,2, ,)i n =, 于是,得到原始数据矩阵为 11 121212221 2 m m n n nm x x x x x x x x x ?? ? ? ? ??? 。 其中nm x 表示第n 个分类对象的第m 个指标的原始数据。 (2) 数据标准化 在实际问题中,不同的数据一般有不同的量纲,为了使不同的量纲也能进行比较,通常需要对数据做适当的变换。但是,即使这样,得到的数据也不一定在区间[0,1]上。因此,这里说的数据标准化,就是要根据模糊矩阵的要求,将数据压缩到区间[0,1]上。通常有以下几种变换: ① 平移·标准差变换

ik k ik k x x x s -'= (1,2,,;1,2,,)i n k m == 其中 11n k ik i x x n ==∑, k s = 经过变换后,每个变量的均值为0,标准差为1,且消除了量纲的影响。但 是,再用得到的ik x '还不一定在区间[0,1]上。 ② 平移·极差变换 111min{}max{}min{}ik ik i n ik ik ik i n i n x x x x x ≤≤≤≤≤≤''-''=''-,(1,2,,)k m = 显然有01ik x ''≤≤,而且也消除了量纲的影响。 ③ 对数变换 lg ik ik x x '= (1,2,,;1,2,,)i n k m == 取对数以缩小变量间的数量级。 2、第二步:标定(建立模糊相似矩阵) 设论域12{,, ,}n U x x x =,12{,, ,}i i i im x x x x =,依照传统聚类方法确定相似 系数,建立模糊相似矩阵,i x 与j x 的相似程度(,)ij i j r R x x =。确定(,)ij i j r R x x =的方法主要借用传统聚类的相似系数法、距离法以及其他方法。具体用什么方法,可根据问题的性质,选取下列公式之一计算。 (1) 相似系数法 ① 夹角余弦法 21 m ik jk ij m ik jk k x x r x == ∑∑。 ② 最大最小法 11() () m ik jk k ij m ik jk k x x r x x ==∧= ∨∑∑。 ③ 算术平均最小法

比较专家系统、模糊方法、遗传算法、神经网络、蚁群算法的特点及其适合解决的实际问题

比较专家系统、模糊方法、遗传算法、神经网络、蚁群算法的特点及其适合解决的实际问题 一、专家系统(Expert System) 1,什么是专家系统? 在日常生活中大家所认知的“专家”一般都拥有某一特定领域的大量专业知识,以及丰富的实际经验。在解决问题时,专家们通常拥有一套独特的思维方式,能较圆满地解决一类困难问题,或向用户提出一些建设性的建议等。 专家系统一般定义为一个具有智能特点的计算机程序。 它的智能化主要表现为能够在特定的领域内模仿人类专家思维来求解复杂问题。因此,专家系统必须包含领域专家的大量知识,拥有类似人类专家思维的推理能力,并能用这些知识来解决实际问题。 专家系统的基本结构如图1所示,其中箭头方向为数据流动的方向。 图1 专家系统的基本组成 专家系统通常由知识库和推理机两个主要组成要素。 知识库存放着作为专家经验的判断性知识,例如表达建议、 推断、 命令、 策略的产生式规则等, 用于某种结论的推理、 问题的求解,以及对于推理、 求解知识的各种控制知识。 知识库中还包括另一类叙述性知识, 也称作数据,用于说明问题的状态,有关的事实和概念,当前的条件以及常识等。

专家系统的问题求解过程是通过知识库中的知识来模拟专家的思维方式的,因此,知识库是专家系统质量是否优越的关键所在,即知识库中知识的质量和数量决定着专家系统的质量水平。一般来说,专家系统中的知识库与专家系统程序是相互独立的,用户可以通过改变、完善知识库中的知识内容来提高专家系统的性能。 推理机实际上是一个运用知识库中提供的两类知识,基于木某种通用的问题求解模型,进行自动推理、 求解问题的计算机软件系统。 它包括一个解释程序, 用于决定如何使用判断性知识推导新的知识, 还包括一个调度程序, 用于决定判断性知识的使用次序。 推理机的具体构造取决于问题领域的特点,及专家系统中知识表示和组织的方法。 推理机针对当前问题的条件或已知信息,反复匹配知识库中的规则,获得新的结论,以得到问题求解结果。在这里,推理方式可以有正向和反向推理两种。正向推理是从前件匹配到结论,反向推理则先假设一个结论成立,看它的条件有没有得到满足。由此可见,推理机就如同专家解决问题的思维方式,知识库就是通过推理机来实现其价值的。 人机界面是系统与用户进行交流时的界面。通过该界面,用户输入基本信息、回答系统提出的相关问题,并输出推理结果及相关的解释等。 综合数据库专门用于存储推理过程中所需的原始数据、中间结果和最终结论,往往是作为暂时的存储区。解释器能够根据用户的提问,对结论、求解过程做出说明,因而使专家系统更具有人情味。 知识获取是专家系统知识库是否优越的关键,也是专家系统设计的“瓶颈”问题,通过知识获取,可以扩充和修改知识库中的内容,也可以实现自动学习功能。 2,专家系统的特点 在功能上, 专家系统是一种知识信息处理系统, 而不是数值信息计算系统。在结构上, 专家系统的两个主要组成部分 – 知识库和推理机是独立构造、分离组织, 但又相互作用的。在性能上, 专家系统具有启发性, 它能够运用专家的经验知识对不确定的或不精确的问题进行启发式推理, 运用排除多余步骤或减少不必要计算的思维捷径和策略;专家系统具有透明性, 它能够向用户显示为得出某一结论而形成的推理链, 运用有关推理的知识(元知识)检查导出结论的精度、一致性和合理性, 甚至提出一些证据来解释或证明它的推理;专家系统具有灵活性, 它能够通过知识库的扩充和更新提高求解专门问题的水平或适应环境对象的某些变化,通过与系统用户的交互使自身的性能得到评价和监护。 3,专家系统适合解决的实际问题 专家系统是人工智能的一个应用,但由于其重要性及相关应用系统之迅速发展,它已是信息系统的一种特定类型。专家系统一词系由以知识为基础的专家系统(knowledge-based expert system)而来,此种系统应用计算机中储存的人类知识,解决一般需要用到专家才能处理的问题,它能模仿人类专家解决特定问题时的推理过程,因而可供非专家们用来增进问题解决的能力,同时专家们也可把它视为具备专业知识的助理。由于在人类社会中,专家资源确实相当稀少,有了专家系统,则可使此珍贵的专家知识获得普遍的应用。 专家系统技术广泛应用在工程、科学、医药、军事、商业等方面,而且成果相当丰硕,甚至在某些应用领域,还超过人类专家的智能与判断。其功能应用领

模糊聚类法

模糊聚类分析法及其应用 (汽车学院钟锐 2011122071) 摘要模糊聚类分析方法是一种多元统计分析方法, 它通过多个指标将样本划分为若干类, 这种分类方法能很好地应用于交通规划、交通流分析、安全评价等多个方面。文章以交通调查的选择为例说明了模糊聚类分析在规划过程中的具体应用, 并分析了模糊聚类分析在交通规划其他方面的应用。在交通调查中, 可利用模糊聚类分析将交通分区按工业、居住、公建、道路绿化广场等各项用途来进行分类。可相应减少同类交通分区的相似调查工作量。 关键词模糊聚类分析; 交通规划; 交通调查 1 问题的提出 交通规划旨在确定公路和城市道路交通建设的发展目标, 设计达到这些目 标的策略、过程与方案。交通规划包括目标确定、组织工作、数据调查、相关基本模型分析、分析预测、方案设计、方案评价、方案实施过程中的信息反馈和修改等工作阶段。在交通规划的很多阶段, 需要进行分类。例如可将众多的交通小区划分成几大类, 将具有相似特性的交通小区归于一类, 可以减少调查的工作量; 对线路网络进行分析评价时, 也需要进行分类。单一的指标往往不能全面反映交通分区之间的关系, 需要用多个指标来进行。在分类方法中,聚类分析是一种应用很广泛的方法, 它在交通规划领域应用较多。 2 聚类分析方法 聚类分析取意于“人以群分, 物以类聚”的俗语, 即将一组事物根据其性质上亲疏远近的程度进行分类, 把性质相近的个体归为一类, 使得同一类中的个体具有高度的同质性, 不同类之间的个体具有高度的异质性。为使分类合理, 必须描述个体之间的亲疏程度。对此, 通常有距离法、相关系数法等方法。距离法是将每个样本看成m( m 为统计指标的个数) 维空间的一个点, 在m 维空间中定义点与点之间的某种距离; 相关系数法是用某种相似系数来描述样本之间的关系, 如相关系数。聚类的方法有很多, 如系统聚类法、模糊聚类法、分裂法、

基于聚类的遗传算法解决旅行商问题

基于聚类的遗传算法解决旅行商问题 摘要:遗传算法(GA)是解决旅行商问题(TSPs)的有效方法,然而,传统的遗传算法(CGA)对大规模旅行商问题的求解效果较差。为了克服这个问题,本文提出了两种基于聚类的改进的遗传算法,以寻找TSPs的最佳结果。它的主要过程是聚类、组内演进和组间连接操作。聚类包括两种方法来将大规模TSP划分为若干子问题,一种方法是k-均值(k-means)聚类算法,另一种是近邻传播(AP)聚类算法。每个子问题对应于一个组。然后我们使用GA找出每个子问题的最短路径长度。最后,我们设计一个有效的连接方法将所有这些组合成为一个,以得到问题的结果。我们尝试在基准实例上运行一组实验,用来测试基于k-means 聚类(KGA)和基于AP聚类(APGA)遗传算法的性能。实验结果表明了它们有效性和高效的性能。将结果与其他聚类遗传算法进行比较,表明KGA和APGA具有更强的竞争力和有效性。 关键词:大规模旅行商问题;遗传算法;聚类;k-means聚类;AP聚类

一、引言 旅行商问题(TSP )是在所有城市搜索最短哈密尔顿路线的问题。TSP 是众所周知的NP-hard 问题。它有许多现实世界的应用[1,2],如规划调度、物流配送、计算机网络和VLSI 路由。近年来研究人员已经研究了不同类型的TSP [3-6]。 TSP 问题可以用如下方式描述:有N 座城市,给出城市之间的距离矩阵为 () d ij N N D ?=。TSP 问题的要求是从所有路径中找到最短路径。如果()i π被定义 为在步骤 ( 1,,)i i N = 中访问的城市,则路线可以被看作城市从1到N 的循环排列。路线的表达式如下: 1 ()(1)()(1)1 minimize N i i N i f d d πππππ-+== +∑ (1) 如果对于1i j N ≤≤、,距离满足d d ij ji = ,则这种情况是对称TSP 。 TSP 可以模型化为加权图。每个顶点代表一个城市,每个边缘连接两个城市。 边的权重表示两个相连的城市之间的距离。现在一个TSP 问题实际上是一个哈密尔顿回路,最优的TSP 路径是最短的哈密顿回路。 用于求解TSP 的算法可以概括为两类,精确算法和启发式算法。精确的算法确保最终解决方案是最优的。分支切割算法是这一类中的典型示例[7,8]。这些算法的关键问题是它们相当复杂,并且在计算机性能方面非常苛刻[9]。自引入模拟退火[10]和禁忌搜索[11]以来,启发式算法有可能突破局限,从而找到路径的局部最优解。在过去的二十年中,提出了大量的自然启发或群体智能方法,例如蚁群算法[12,13],粒子群算法[14]和遗传算法[15,16]来解决TSP 问题 。 遗传算法(GA )是一种通过模拟自然演化过程来搜索最优解解决大规模搜索问题(例如TSP 问题)的有效方法,GA 的目的是通过几个遗传操作,如选择、交叉和突变获得大规模搜索问题的近似解。与其他精确搜索算法相比,其优点主要是通过使用群体的信息而不是仅仅一个个体来实现搜索[5]。除了上述内容之外,GA 通过适应度函数的数值来评估个体的质量,减少当使用启发式算法时被浸入在局部最优解中的风险。 虽然GA 是解决TSPs 的有效方法,但是,随着旅行城市的数量增长,经典遗传算法效果较差。为了使TSP 问题变得更容易并且可以有效地解决大规模TSP ,

17遗传算法改进的模糊C-均值聚类MATLAB源代码

遗传算法改进的模糊C-均值聚类MATLAB源代码 模糊C-均值算法容易收敛于局部极小点,为了克服该缺点,将遗传算法应用于模糊C-均值算法(FCM)的优化计算中,由遗传算法得到初始聚类中心,再使用标准的模糊C-均值聚类算法得到最终的分类结果。 function [BESTX,BESTY,ALLX,ALL Y]=GAFCM(K,N,Pm,LB,UB,D,c,m) %% 此函数实现遗传算法,用于模糊C-均值聚类 % GreenSim团队——专业级算法设计&代写程序 % 欢迎访问GreenSim团队主页→https://www.doczj.com/doc/5613617728.html,/greensim %% 输入参数列表 % K 迭代次数 % N 种群规模,要求是偶数 % Pm 变异概率 % LB 决策变量的下界,M×1的向量 % UB 决策变量的上界,M×1的向量 % D 原始样本数据,n×p的矩阵 % c 分类个数 % m 模糊C均值聚类数学模型中的指数 %% 输出参数列表 % BESTX K×1细胞结构,每一个元素是M×1向量,记录每一代的最优个体 % BESTY K×1矩阵,记录每一代的最优个体的评价函数值 % ALLX K×1细胞结构,每一个元素是M×N矩阵,记录全部个体 % ALL Y K×N矩阵,记录全部个体的评价函数值 %% 第一步: M=length(LB);%决策变量的个数 %种群初始化,每一列是一个样本 farm=zeros(M,N); for i=1:M x=unifrnd(LB(i),UB(i),1,N); farm(i,:)=x; end %输出变量初始化 ALLX=cell(K,1);%细胞结构,每一个元素是M×N矩阵,记录每一代的个体 ALL Y=zeros(K,N);%K×N矩阵,记录每一代评价函数值 BESTX=cell(K,1);%细胞结构,每一个元素是M×1向量,记录每一代的最优个体 BESTY=zeros(K,1);%K×1矩阵,记录每一代的最优个体的评价函数值 k=1;%迭代计数器初始化 %% 第二步:迭代过程 while k<=K %% 以下是交叉过程 newfarm=zeros(M,2*N); Ser=randperm(N);%两两随机配对的配对表

多目标遗传算法中文【精品毕业设计】(完整版)

一种在复杂网络中发现社区的多目标遗传算法 Clara Pizzuti 摘要——本文提出了一种揭示复杂网络社区结构的多目标遗传算法。该算法优化了两个目标函数,这些函数能够识别出组内节点密集连接,而组间连接稀疏。该方法能产生一系列不同等级的网络社区,其中解的等级越高,由更多的社区组成,被包含在社区较少的解中。社区的数量是通过目标函数更佳的折衷值自动确定的。对合成和真实网络的实验,结果表明算法成功地检测到了网络结构,并且能与最先进的方法相比较。 关键词:复杂网络,多目标聚类,多目标进化算法 1、简介 复杂网络构成了表示组成许多真实世界系统的对象之间关系的有效形式。协作网络、因特网、万维网、生物网络、通信传输网络,社交网络只是一些例子。将网络建模为图,节点代表个体,边代表这些个体之间的联系。 复杂网络研究中的一个重要问题是社区结构[25]的检测,也被称作为聚类[21],即将一个网络划分为节点组,称作社区或簇或模块,组内连接紧密,组间连接稀疏。这个问题,如[21]指出,只有在建模网络的图是稀疏的时候才有意义,即边的数量远低于可能的边数,否则就类似于数据簇[31]。图的聚类不同于数据聚类,因为图中的簇是基于边的密度,而在数据聚类中,它们是与距离或相似度量紧密相关的组点。然而,网络中社区的概念并未严格定义,因为它的定义受应用领域的影响。因此,直观的理解是同一社区内部边的数量应该远多于连接图中剩余节点的边的数量,这构成了社区定义的一般建议。这个直观定义追求两个不同的目标:最大化内部连接和最小化外部连接。 多目标优化是一种解决问题的技术,当多个相互冲突的目标被优化时,成功地找到一组解。通过利用帕累托最优理论[15]获得这些解,构成了尽可能满足所有目标的全局最优解。解决多目标优化问题的进化算法取得成功,是因为它们基于种群的特性,同时产生多个最优解和一个帕累托前沿[5]的优良近似。 因此,社区检测能够被表述为多目标优化问题,并且帕累托最优性的框架可以提供一组解对应于目标之间的最佳妥协以达到最优化。事实上,在上述两个目标之间有一个折衷,因为当整个网络社区结构的外部连接数量为空时,那它就是最小的,然而簇密度不够高。 在过去的几年里,已经提出了许多方法采用多目标技术进行数据聚类。这些方法大部分在度量空间[14], [17],[18], [28], [38], [39], [49], [51]聚集目标,虽然[8]中给出了分割图的一个方法,并且在[12]中描述了网络用户会议的一个图聚类算法。 本文中,一个多目标方法,名为用于网络的多目标遗传算法(MOGA-Net),通过利用提出的遗传算法发现网络中的社区。该方法优化了[32]和[44]中介绍的两个目标函数,它们已被证实在检测复杂网络中模块的有效性。第一个目标函数利用了community score的概念来衡量对一个网络进行社区划分的质量。community score值越高,聚类密度越高。第二个目标函数定义了模块中节点fitness的概念,并且反复迭代找到节点fitness总和最大的模块,以下将这个目标函数称为community fitness。当总和达到最大时,外部连接是最小。两个目标函数都有一个正实数参数控制社区的规模。参数值越大,找到的社区规模越小。MOGA-Net利用这两个函数的优点,通过有选择地探索搜寻空间获得网络中存在的社区,而不需要提前知道确切的社区数目。这个数目是通过两个目标之间的最佳折衷自动确定的。 多目标方法的一个有趣结果是它提供的不是一个单独的网络划分,而是一组解。这些解中的每一个都对应两个目标之间不同的折衷,并对应多种网络划分方式,即由许多不同簇组成。对合成网络和真实网络的实验表明,这一系列帕累托最优解揭示了网络的分层结构,其中簇的数目较多的解包含在社区数目较少的解中。多目标方法的这个特性提供了一个很好的机会分析不同层级

模糊聚类分析方法

第二节 模糊聚类分析方法 在科学技术、经济管理中常常要按一定的标准(相似程度或亲疏关系)进行分类。例如,根据生物的某些性状可对生物分类,根据土壤的性质可对土壤分类等。对所研究的事物按一定标准进行分类的数学方法称为聚类分析,它是多元统计“物以类聚”的一种分类方法。由于科学技术、经济管理中的分类界限往往不分明,因此采用模糊聚类方法通常比较符合实际。 一、模糊聚类分析的一般步骤 1、第一步:数据标准化[9] (1) 数据矩阵 设论域12{,,,}n U x x x = 为被分类对象,每个对象又有m 个指标表示其性状,即 12{,,,}i i i im x x x x = (1,2,,i n = , 于是,得到原始数据矩阵为 11 121 2122 2 1 2 m m n n nm x x x x x x x x x ?? ? ? ? ??? 。 其中nm x 表示第n 个分类对象的第m 个指标的原始数据。 (2) 数据标准化 在实际问题中,不同的数据一般有不同的量纲,为了使不同的量纲也能进行比较,通常需要对数据做适当的变换。但是,即使这样,得到的数据也不一定在区间[0,1]上。因此,这里说的数据标准化,就是要根据模糊矩阵的要求,将数据压缩到区间[0,1]上。通常有以下几种变换: ① 平移·标准差变换

i k k ik k x x x s -'= (1,2,,; 1,2,i n k m == 其中 1 1n k i k i x x n == ∑ , k s = 经过变换后,每个变量的均值为0,标准差为1,且消除了量纲的影响。但 是,再用得到的ik x '还不一定在区间[0,1]上。 ② 平移·极差变换 111m i n { } m a x {}m i n {} i k i k i n ik ik ik i n i n x x x x x ≤≤≤≤≤≤''-''=''-,(1,2,,)k m = 显然有01ik x ''≤≤,而且也消除了量纲的影响。 ③ 对数变换 lg ik ik x x '= (1,2,,; 1,2,i n k m == 取对数以缩小变量间的数量级。 2、第二步:标定(建立模糊相似矩阵) 设论域12{,,,}n U x x x = ,12{,,,}i i i im x x x x = ,依照传统聚类方法确定相似系数,建立模糊相似矩阵,i x 与j x 的相似程度(,)ij i j r R x x =。确定(,)ij i j r R x x =的方法主要借用传统聚类的相似系数法、距离法以及其他方法。具体用什么方法,可根据问题的性质,选取下列公式之一计算。 (1) 相似系数法 ① 夹角余弦法 m ik jk ij x x r = ∑ ② 最大最小法 11 () () m ik jk k ij m ik jk k x x r x x ==∧= ∨∑∑。 ③ 算术平均最小法

【CN110188785A】一种基于遗传算法的数据聚类分析方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910242200.0 (22)申请日 2019.03.28 (71)申请人 山东浪潮云信息技术有限公司 地址 250100 山东省济南市高新区浪潮路 1036号浪潮科技园S06号楼 (72)发明人 王利鑫  (74)专利代理机构 济南信达专利事务所有限公 司 37100 代理人 姜明 (51)Int.Cl. G06K 9/62(2006.01) G06N 3/12(2006.01) (54)发明名称 一种基于遗传算法的数据聚类分析方法 (57)摘要 本发明特别涉及一种基于遗传算法的数据 聚类分析方法。该基于遗传算法的数据聚类分析 方法,首先从要聚类的样本集选出初始种群;对 选出的初始种群执行遗传算法;对执行完遗传算 法后产生的新种群执行K -means操作;步骤(A)- 步骤(C)反复循环,直到寻找出聚类问题的最优 解。该基于遗传算法的数据聚类分析方法,将K - means算法的局部寻优与遗传算法的全局寻优相 结合,通过多次选择、交叉、变异的遗传操作,最 终得到最优的聚类数和初始质心集,克服了传统 K -means算法的局部性和对初始聚类中心的敏感 性, 实现了对数据的有效分类。权利要求书2页 说明书6页CN 110188785 A 2019.08.30 C N 110188785 A

1.一种基于遗传算法的数据聚类分析方法,其特征在于,包括以下步骤: (A)首先从要聚类的样本集选出初始种群; (B)对选出的初始种群执行遗传算法; (C)对执行完遗传算法后产生的新种群执行K -means操作; (D)步骤(A)-步骤(C)反复循环,直到寻找出聚类问题的最优解。 2.根据权利要求1所述的基于遗传算法的数据聚类分析方法,其特征在于:所述步骤 (A)中,初始群体随机生成,具体步骤如下: (1)首先从样本空间中随机选出k个个体,每个个体表示一个初始聚类中心; (2)然后根据所采用的编码方式将这组随机选出的初始聚类中心编码成一条染色体; (3)重复进行m次染色体初始化,直到生成初始种群,所述m为种群大小。 3.根据权利要求2所述的基于遗传算法的数据聚类分析方法,其特征在于:所述步骤 (2)中,染色体编码采用基于聚类中心的浮点数编码方法。 4.根据权利要求1所述的基于遗传算法的数据聚类分析方法,其特征在于:所述步骤 (B)中,对选出的初始种群执行遗传算法,包括以下步骤: (1)采用锦标赛选择法进行选择操作,随机地从种群中挑选一定数目的个体,然后从中选出适应度最大的个体作为父个体,重复迭代该步骤直到父个体的总数达到种群规模; (2)采用适合浮点数编码的算术交叉算子对两个相互配对的染色体进行交叉操作,形成两个新的个体; (3)采用均匀变异算子对交叉操作得到的新个体染色体编码串进行变异操作,从而形成一个新的个体。 5.根据权利要求4所述的基于遗传算法的数据聚类分析方法,其特征在于:所述步骤 (1)中,适应度是用来评价个体的适应度,区别群体中个体优劣的标准;个体的适应度越高,其存活的概率就越大;由于聚类准则函数J越小说明聚类划分的质量越好,聚类准则函数J 越大说明聚类划分的质量越差, 因此适应度函数表示为: 其中, 聚类准则函数J公式为: 其中,k为聚类类别数,S j 为第j个类别的样本集合,x为样本对象,z j 为S j 集合的聚类中心。 6.根据权利要求4所述的基于遗传算法的数据聚类分析方法,其特征在于:所述步骤 (2)中,交叉操作是指对两个相互配对的染色体按某种方式相互交换部分基因,从而形成两个新的个体;算术交叉是指由两个个体的线性组合而产生出两个新的个体; 当在两个个体x 1和x 2之间进行算术交叉时, 交叉操作后产生的新个体为: 其中,α是交叉参数,在均匀算术交叉中α是一个常数。 权 利 要 求 书1/2页2CN 110188785 A

模糊C均值聚类算法的C 实现代码讲解

模糊C均值聚类算法的实现 研究背景 模糊聚类分析算法大致可分为三类 1)分类数不定,根据不同要求对事物进行动态聚类,此类方法是基于模糊等价矩阵聚类的,称为模糊等价矩阵动态聚类分析法。 2)分类数给定,寻找出对事物的最佳分析方案,此类方法是基于目标函数聚类的,称为模糊C均值聚类。 3)在摄动有意义的情况下,根据模糊相似矩阵聚类,此类方法称为基于摄动的模糊聚类分析法 聚类分析是多元统计分析的一种,也是无监督模式识别的一个重要分支,在模式分类图像处理和模糊规则处理等众多领域中获得最广泛的应用。它把一个没有类别标记的样本按照某种准则划分为若干子集,使相似的样本尽可能归于一类,而把不相似的样本划分到不同的类中。硬聚类把每个待识别的对象严格的划分某类中,具有非此即彼的性质,而模糊聚类建立了样本对类别的不确定描述,更能客观的反应客观世界,从而成为聚类分析的主流。 模糊聚类算法是一种基于函数最优方法的聚类算法,使用微积分计算技术求最优代价函数,在基于概率算法的聚类方法中将使用概率密度函数,为此要假定合适的模型,模糊聚类算法的向量可以同时属于多个聚类,从而摆脱上述问题。 我所学习的是模糊C均值聚类算法,要学习模糊C均值聚类算法要先了解虑属度的含义,隶属度函数是表示一个对象x隶属于集合A的程度的函数,通常记做μ A (x),其自变量范围是所有可能属于集合A的对象(即集合A所在空间中的 所有点),取值范围是[0,1],即0<=μ A (x)<=1。μ A (x)=1表示x完全隶属于集合 A,相当于传统集合概念上的x∈A。一个定义在空间X={x}上的隶属度函数就定义了一个模糊集合A,或者叫定义在论域X={x}上的模糊子集 ~ A。对于有限个对 象x 1,x 2 ,……,x n 模糊集合 ~ A可以表示为: } |) ), ( {( ~ X x x x A i i i A ∈ =μ (6.1) 有了模糊集合的概念,一个元素隶属于模糊集合就不是硬性的了,在聚类的问题中,可以把聚类生成的簇看成模糊集合,因此,每个样本点隶属于簇的隶属度就是[0,1]区间里面的值。 FCM算法需要两个参数一个是聚类数目C,另一个是参数m。一般来讲C要远远小于聚类样本的总个数,同时要保证C>1。对于m,它是一个控制算法的柔性的参数,如果m过大,则聚类效果会很次,而如果m过小则算法会接近HCM 聚类算法。 算法的输出是C个聚类中心点向量和C*N的一个模糊划分矩阵,这个矩阵表示的是每个样本点属于每个类的隶属度。根据这个划分矩阵按照模糊集合中的最大隶属原则就能够确定每个样本点归为哪个类。聚类中心表示的是每个类的平均

模糊聚类分析

四 模糊聚类分析方法 模糊聚类分析,是从模糊集的观点来探讨事物的数量分类的一类方法。这里将主要介绍基于模糊等价关系与基于最大模糊支撑树的模糊聚类分析方法。 一、基于模糊等价关系的模糊聚类分析方法 基于模糊等价关系的模糊聚类分析方法的基本思想是:由于模糊等价关系~R 是论域集U 与自己的直积U U ?上的一个模糊子集,因此可以对~ R 进行分解,当用λ-水平对~R 作截集时,截得的U U ?的普通子集~ R λ就是U 上的一个普通等价关系,也就得到了关于U 中被分类对象元素的一种分类。当λ由1下降到0时,所得的分类由细变粗,逐渐归并,从而形成一个动态聚类谱系图。由此可见,分类对象集U 上的模糊等价关系~ R 的建立是这种聚类分析方法中的一个关键性的环节。(一)建立模糊等价关系 为了建立分类对象集合U 上的模糊等价关系R *,通常需要首先计算各个 分类对象之间的相似性统计量,建立分类对象集合U 上的模糊相似关系~R 。1.模糊相似关系的建立关于各分类对象之间相似性统计量r ij 的计算,除了 采用夹角余弦公式和相似系数计算公式以外,还可以采用如下几个计算公式。(1)数量积法: 在(1)式中,M 是一个适当选择之正数,一般而言,它应满足: (2)绝对值差数法: 在(2)式中,c 为适当选择之正数,使0≤r ij <1(i≠j)。 (3)最大最小值法: (4)算术平均最小法: (5)绝对值指数法:

(6)指数相似系数法: 在(6)式中,s k 是第k 个指标的方差,即 2 将模糊相似关系~R 改造为迷糊等价关系~R *。由于模糊相似关系~ R 满足自反性和对称性,但一般而言,它并不满足传递性,也就是说它并不是模糊等价关系。因此,为了聚类,我们必须采用传递闭合的性质将这种模糊相似关系~ R 改造为模糊等价关系~R *。改造的办法是将~ R 自乘,即这样下去,就必然会存在一个自然数K ,使得: 这时,~~ k R R *=便是一个模糊等价关系了。 (二)在不同的截集水平下进行聚类 用上述模糊等价关系~ R *,在不同的截集水平下聚类,可以得到不同的聚类结果: 二、基于最大模糊支撑树的模糊聚类分析方法 除了依据模糊等价关系进行聚类分析外,还可以应用最大模糊支撑树进行聚类分析。基于最大模糊支撑树的聚类分析过程,可按如下步骤进行。第一步:建立分类对象集上的模糊相似关系,构造模糊图。这一步骤的工作可按如下作法进行: 计算各个分类对象之间的相似性统计量r ij (i ,j=1,2,…,m),建 立分类对象集U 上的模糊相似关系~ ()ij m n R r ?=。将~ R 表示成一个由m 个结点所构成的模糊图G=(V,E),使G 中的任意两个结点V i 与V j 之间都有一条边相连结,且赋该边的权值为r ij 。假若,对于某五个地理区域所构成的分类对象集合V={v 1,v 2,v 3,v 4,v 5}, 经过选择聚类要素并对其原始数据进行标准化处理后,计算各分类对象之间的相似性统计量,得到如下的模糊相似关系

基于改进遗传算法的K―means聚类方法

基于改进遗传算法的K―means聚类方法 摘要:K-means算法是聚类分析划分方法中的一种常用方法,也是目前在数据分析方法中最有应用前景的方法之一。但K-mean算法对初始聚类中心十分敏感,这对处理学生成绩等数据而言,会导致聚类结果极为不稳定。为此,提出基于改进遗传算法的K-means聚类算法。该算法利用遗传算法解决初始聚类中心,提高聚类结果的稳定性,但存在前期过早收敛和后期收敛过慢的缺点。将改进遗传K-means聚类算法应用于高职高专的学生考试成绩分析中,可以很好地解决传统遗传聚类算法对聚类结果的不稳定性问题,并通过聚类结果对学生考试成绩进行分类评价,利用所获得的数据聚类结果指导教学,从而提高教学质量。 关键词:聚类;K-means 算法;遗传算法 0引言 K-means算法是一种应用非常广泛的聚类分析方法,具有简洁、高效、可伸缩性强等优点,一般用簇内数据对象的均值表示K-means算法每个簇的中心[1]。但传统K-means算法存在诸多不足之处。例如,传统K-means算法对初始聚类中心敏感、算法需要指定参数K的值、输入的不同K值随目标准则函数进行不同次数的迭代、聚类结果波动大、容易陷

入局部最优[2]。遗传算法具有很强的鲁棒性和适应性,在解决大空间、多峰值、非线性、全局寻优能力等问题上具有优势,但也存在着前期过早收敛和后期收敛过慢的缺点。 基于改进遗传算法的K-means算法能够有效解决算法对初始值K的依赖性,自动生成类K;同时严格选取初始中心点,加大各中心点之间的距离,避免初始聚类中心会选到一个类上,一定程度上克服了算法陷入局部最优状态[3-6]。 本文基于改进遗传算法进行学生成绩的K-means聚类分析,将学生的考试成绩按照不同科目分成不同的类簇,利用改进遗传算法解决初始聚类中心问题,从而在整体上归纳分析该门课程所具有的特点属性,以及每门课程之间的联系性和差异性,以提高算法效率和准确性。并且,通过选择运算、交叉运算和变异运算来加快算法的收敛性。 1.1传统K-means聚类算法 传统K-means算法随机选择聚类中心,其核心思想为:给出n个数据点,找出k个聚类中心,利用欧氏距离式计算每个数据点与最近聚类中心的距离平方和最小值,依据最近原则把各数据点分到各个簇,利用式(1)计算每簇中数据对象的均值,采用目标准则函数(2)进行迭代运算,直到簇心的移动距离小于某个给定的值。 传统K-means算法描述如下: 输入:n个数据集D,数据聚类个数k。

相关主题
文本预览
相关文档 最新文档