当前位置:文档之家› PTFE复合材料力学性能及摩擦磨损机理的研究

PTFE复合材料力学性能及摩擦磨损机理的研究

PTFE复合材料力学性能及摩擦磨损机理的研究
PTFE复合材料力学性能及摩擦磨损机理的研究

磨损及磨损机理

磨损及磨损机理 第三章磨损及磨损机理 概述 物体摩擦表面上的物质,由于表面相对运动而不断损失的现象称磨损。 在一般正常工作状态下,磨损可分三个阶 段: a.跑合(磨合)阶段:轻微的磨损,跑合是为正常运行创造条件。 b.稳定磨损阶段:磨损更轻微,磨损率低而稳定。 C.剧烈磨损阶段:磨损速度急剧增长,零件精度丧失,发生噪音和振动,摩擦温度迅速升高,说明

零件即将失效。(如图3.1) 摩擦行程(时间) 图3.1 磨损三个 机件磨损是无法避免的。但,如何缩短跑合期、延长稳定磨损阶段和推迟剧烈磨损的到来,是研究者致力的方向。 影响磨损的因素很多,例如相互作用表面的相对运动方式(滑动,滚动,往复运动,冲击),载荷与速度的大小,表面材料的种类,组织,机械性能和物理-化学性能等,各种表面处理工艺,表面几何性质(粗糙度,加工纹理和加工方法),环境条件(温度、湿度、真空度、辐射强度、和介质性质等)和工况条件(连续或间歇工作)等。这些因素的相互影响对于磨损将产生或正或负的效果,从而使磨损过程更为复杂化。 磨损过程涉及到许多不同的学科领域,由于具有跨学科的性质,至今还很难将它的规律解释清楚。已经有很多学者对磨损进行了大量的研究。

如20 世纪20 年代,汤林森提出了分子磨损 的概念,他认为两个粗糙表面在接触摩擦过程中 相互接近,而一个表面上的原子被另一个表面俘 获的现象就是磨损。 霍尔姆在上述基础上作了进一步的发展,他指出摩擦材料的压缩屈服极限Ob(即硬度)对耐磨性的影响很大。 50年代初,奥贝尔(Oberle)从表层材料的机械破坏着眼,联系“切削”过程来解释磨损,他认为影响磨损的主要因素除硬度H 外,还有材料的弹性模量E。处在弹性极限内的,变形越大,机械破坏越少,并提出用模数(m = E/H x 105)来反映材料的耐磨性,m 值高则耐磨性好。 冯(Feng)提出了机械性质相近的两表面上机械嵌锁作用导致界面上既粘连又犁削的观点。 布洛克但lok)认为软钢表面变得粗糙和发生塑性变形,是由于应力过高而引起的。 拉宾诺维奇认为表面能与材料硬度之比,对于磨损是一个重要因素,它可能影响磨屑的大小。 赫鲁晓夫提出了硬质微凸体在软表面上犁沟的模式图。 有不少学者通过实验和观测发现,磨损是比原

编织复合材料的细观结构与力学性能

3D编织复合材料的细观结构与力学性能 摘要归纳、梳理三维编织复合材料细观结构表征方面较有代表性的单胞模型,分析、比较各结构模型的优缺点,从理论分析与试验测试两方面总结三维编织复合材料刚度和强度性能的研究成果与进展,探讨细观结构表征与力学性能预报中存在的主要问题,并展望今后的研究重点与发展方向。 关键词三维编织复合材料;细观结构;力学性能 Microstructure and Mechanical Properties of 3D Braided Composites ABSTRACT Typical unit cell models on microstructure of 3D braided composites were summarized. Advantages and disadvantages of various models were compared. Developments of research on mechanical properties of 3D braided composites were introduced from theoretical analysis and experimental test perspectives. Finally, problems in the present study were discussed and further development trend is prospected KEYWORDS 3D braided composites; Microstructure; Mechanical properties 1 引言 三维编织复合材料是20世纪80年代为满足航空航天部门对高性能材料的需求而研发出的先进结构材料,具有高度整体化的空间互锁网状结构,可有效避免传统层合复合材料的分层破坏,冲击韧性、损伤容限与抗疲劳特性优异,结构可设计性强,能够实现异形件的净尺寸整体成型,因此在结构材料领域倍受关注。 力学性能是三维编织复合材料结构设计的核心,直接关系应用安全性与可靠性,细观结构是影响力学性能的关键,正确描述细观结构是准确预测宏观力学性能的必要前提。细观结构表征与力学性能预报一直是三维编织复合材料的研究重点,具有重要的理论价值与实践意义。 2 三维编织复合材料的细观结构单胞模型 Ko[1]首次提出“纤维构造”术语,定义出图1所示的立方体单胞模型,单胞由四根不计细度的直纱线组成,纱线沿体对角线方向取向并相交于立方体中心,模型大致描述出了编织体内部的纱线分布情况。

摩擦衬片(衬块)的磨损特性计算

摩擦衬片(衬块)的磨损特性计算 摩擦衬片(衬块)的磨损与摩擦副的材质、表面加工情况、温度、压力以及相对滑磨速度等多种因素有关,因此在理论上要精确计算磨损性能是困难的。但试验表明,摩擦表面的温度、压力、摩擦系数和表面状态等是影响磨损的重要因素。 汽车的制动过程,是将其机械能(动能、势能)的一部分转变为热量而耗散的过程。在制动强度很大的紧急制动过程中,制动器几乎承担了耗散汽车全部动力的任务。此时由于在短时间内制动摩擦产生的热量来不及逸散到大气中,致使制动器温度升高。此即所谓制动器的能量负荷。能量负荷愈大,则摩擦衬片(衬块)的磨损亦愈严重。 制动器的能量负荷常以其比能量耗散率作为评价指标。比能量耗散率又称为单位功负荷或能量负荷,它表示单位摩擦面积在单位时间内耗散的能量,其单位为W/mm2 双轴汽车的单个前轮制动器和单个后轮制动器的比能量耗散率分别为 式中:δ——汽车回转质量换算系数; ma——汽车总质量 v1 v2——汽车制动初速度与终速度,m/s;计算时轿车取v1= 100km/h(27.8m/s);总质量 3.5吨以下的货车取vl=80km/h

(22.2m/s);总质量3.5 t以上的货车取v1=65 km/h(18m/s); t一制动时间,s;按下式计算 j一制动减速度,m/ s2计算时取j=0.6g; A1,A2一前、后制动器材特(衬块)的摩擦面积; β一制动力分配系数,见式(3-12) 在紧急制动到v2=0时,并可近似地认为δ=1,则有 鼓式制动器的比能量耗散率以不大于1.8 W/mm2为宜,但当制动初速度油vl低于式(4-25)下面所规定的v1时,则允许略大于 1.8 W/mm2。轿车盘式制动器的比能量D 耗散率应不大于6.0 W/mm2发比能量耗散率过高,不仅会加快制动摩擦衬片(衬块)的磨损,而且可能引起制动鼓或盘的龟裂。 磨损特性指标也可用衬片(衬块)的比摩擦力即单位摩擦面积的摩擦力来衡量。单个车轮制动器的比摩擦力为 式(4-27)Tf中:Tf一单个制动器的制动力矩; R一制动鼓半径(或制动盘有效半径)

摩擦磨损性能测试试验

典型黑色金属磨损性能测试实验 史秋月 一、实验目的 1.了解M-2000型摩擦磨损试验机的结构,及材料进行耐磨性测试的意义; 2.掌握滑动摩擦、滚动摩擦及其在不同条件下(干式、湿式、磨粒等)的 实验方法; 3.掌握摩擦磨损性能指标的评估方法; 4.了解典型黑色金属灰铁和球铁在滑动摩擦条件下(干式)的耐磨情况。 二、实验设备 M-2000型摩擦磨损试验机,如图2-1 图2-1 三、实验材料 1.灰铁滑动摩擦试样一对,试样尺寸如附图(a) 2.球铁滑动摩擦试样一对,试样尺寸如附图(a) 四.实验原理与方法 将试样分别装在上下试样轴上,接通电源,双速电动机○1通过三角皮带○3齿12使下试样轴以200转/分(或400转/分)的速度转动;通过轮○4带动下试样轴○ 48的传递。使上试样轴○14以180转/分(或360转/ 47和齿轮○ 蜗杆轴○ 44,滑动齿轮○ 47分)的速度转动。当做滑动摩擦试验时,为使上试样轴不转动,应将滑动齿轮○ 46上。试验时,两试样间的压移至中间位置,齿轮○48必须用销子○22固定在摇摆头○ 19的作用下获得(弹簧中间是一重力传感器),负荷的增大或减少力负荷在弹簧○ 21上即可读出。也可将复合传感器接入25进行调整;负荷的数值从标尺○ 可用螺帽○ 电脑,从显示屏上读出,本实验载荷直接从显示屏上读出。试验的终止条件可由时间或总转速控制。试验结束之后根据不同的方法评估材料的耐磨情况。

五、实验内容 将加工好的滑动摩擦试样装在实验机上,在给定的条件下(干式、滑动摩擦、压力:200N、时间60min)进行试验,试验结束后将试样取下,评估耐磨性能。 根据所选取磨损试验方法的不同以及材料本质的差异,可以选择不同的耐磨性能评定方法,以期获得精确的试验数据,现简单例举下述几种方法以供参考。 1、称重法:采用试样在试验前后重量之差,本表示耐磨性能的方法,由于两试 样之间的摩擦所引起的磨损量,可以采用精度达万分之一的分析天平称量出试样试验前后重量之差非凡获得。试样在磨损前后必须严格进行去油污,烘干后再进行称量否则因残余的没污会影响试验数据的准确性。 计算可按下式进行: W=W0-W1 式中:W—试样的磨损量。 W0—试样在试验前的重量。 W1—试样在试验后的重量。 2、测量直径法:采用试样在试验前后直径的变化大小来表示耐磨性能的方法。 (1)用测微计(或其它测量仪器)测量试样试验前后的直径变化而获得。 (2)本试验机所带小滚轮○6可用来精确测量试样直径试验前后的变化。 测量方法:使用时首先将装有小滚轮○6的支架拆下来装在下试样轴轴承座的小轴(附图)上,在试验前后把试验机各开一分钟或下试样试验前后运转同样转数可得小滚轮转数N1和N2,由此通过下列计算可得到磨损量“S” 如果:D1—试样试验前的直径。 D2—试样试验后的直径。 D0小滚轮○6的直径。 N1—磨损前一分钟内小滚轮○6的转数。

磨损及磨损机理

第三章磨损及磨损机理 概述 物体摩擦表面上的物质,由于表面相对运动而不断损失的现象称磨损。 在一般正常工作状态下,磨损可分三个阶段: a.跑合(磨合)阶段:轻微的磨损,跑合是为正常运行创造条件。 b.稳定磨损阶段:磨损更轻微,磨损率低而稳定。 c.剧烈磨损阶段:磨损速度急剧增长,零件精度丧失,发生噪音和振动,摩擦温度迅速升高,说明零件即将失效。(如图3.1) 法避免的。但,如机件磨损是无量跑合损长稳定磨损阶段和何缩短跑合期、延磨稳定磨损阶段来,是研究者致力推迟剧烈磨损的到的方向。剧烈,例如相互素很多影响磨损的因 滚滑动,式(方作用表面的相对运动摩擦行程(时间)载荷与速度的,击)动,往复运动,冲磨损三个阶段的示意图3.1图种类,组织,机械大小,表面材料的性能等,各种表面化学性能和物理-温度、湿度、真空度、环境条件(处理工艺,表面几何性质(粗糙度,加工纹理和加工方法),这些因素的相互影响对于磨损将等。和介质性质等)和工况条件(连续或间歇工作)辐射强度、产生或正或负的效果,从而使磨损过程更为复杂化。至今还很难将它的规律由于具有跨学科的性质,磨损过程涉及到许多不同的学科领域,解释清楚。已经有很多学者对磨损进行了大量的研究。两个粗糙表面在接触摩擦过年代,汤林森提出了分子磨损的概念,他认为如20世纪20 程中相互接近,而一个表面上的原子被另一个表面俘获的现象就是磨损。)即硬度摩擦材料的压缩屈服极限σ(霍尔姆在上述基础上作了进一步的发展,他指出b。对耐磨性的影响很大过程来解释磨损,联系“切削”从表层材料的机械破坏着眼,50年代初,奥贝尔(Oberle)。处在弹性极限内的,变外,还有材料的弹性模量E他认为影响磨损的主要因素除硬度H5值高则耐磨=E/H×10)来反映材料的耐磨性,m形越大,机械破坏越少,并提出用模数(m 性好。提出了机械性质相近的两表面上机械嵌锁作用导致界面上既粘连又犁削的观冯(Feng) 点。认为软钢表面变得粗糙和发生塑性变形,是由于应力过高而引起的。布洛克(Blok)它可能影响磨屑的对于磨损是一个重要因素,拉宾诺维奇认为表面能与材料硬度之比,大小。赫鲁晓夫提出了硬质微凸体在软表面上犁沟的模式图。大规模地发生着。磨损是比原子量级大得多的数量级,有不少学者通过实验和观测发现,磨损颗粒大约具有如实际接触斑点直径那样的数量拉宾诺维奇和阿查德(Archard)分别指出,级。拉宾诺维奇提出磨屑呈半球形,阿查德也认为磨屑具有一定的厚度。有人把它看作是一表面微凸体反复承载而发生疲劳脱落的现象,在滑动或滚动过程中,等人的(种磨损,克拉盖尔斯基Кр

纱线磨损性能的研究

第28卷第8期2007年8月 纺织学报 Jo哪alofTbxmeResearch V01.28No.8 Aug.2007 文章编号:0253—9721(2007)08.0042一04 纱线磨损性能的研究 张毅,刘长伴 (天津工业大学纺织学院,天津300160) 摘要采用美国劳森公司的cTT(con咖nttensiontmnsport)纱线综合质量评价系统,模拟纱线在织造过程中的运行状态来评价纱线的磨损性能。通过数学处理的方法得出纱线磨损随导纱速度的增加以幂函数和对数函数的形式减小,随初加张力增加以指数函数的形式增加。提出增加导纱速度,减小初加张力是减少纱线与纱线、纱线与机件之间磨损的有效措施。其研究结论对织造加工,尤其是针织品织造加工具有一定的指导意义。 关键词纱线;磨损;导纱速度;张力;织造 中图分类号:髑101.922文献标识码:A Researchonab瑚sionpropertyof”r璐 ZHANGYi,LIUChangban (&bDz妒z‰£如,‰彬nP0咖c危n记跏妇瑙毋,‰研n3001印,现im) Abstract弧is耐iclesimul砒esthereally11lnningprocessofyamsduringweavingbyad叩tingCTT(constanttensiont砌spon)systemtoevaluateabrasionofy锄s.Throughmathematiealmethod,itconcludesthatincreasingguidespeedanddecreasingpre—tensionaretlleef玷ctiVemeasurestoreducet}leyanl—yaHlandyam—machine伍ctions.Itisfoundthatmeyamsabrasiondecreasesby power andlogarithmastheguidespeedincreases,whileincreasesbyindexasthepre—tensioninereases.Thisconclusionhascenainsigni6canceas guidancefor weaving,especially for knitting. Keywordsy踟;abrasion;guidespeed;tension;weaving织造过程中纱线的磨损主要是纱线之间的磨损 和纱线与机件的磨损,这是织造过程中产生飞花,造成疵布,导致机件损坏的主要原因,尤其是在加工多种色纱时情况更加严重¨J。据统计,织物中的疵点有25%与飞花有直接关系,而因飞花直接或间接影响造成的织物疵点占各种疵点总数的60%~80%。2。。随着人们对织物性能要求的不断提高,生产过程中的飞花问题越来越多地受到了人们的关注,因此,对纱线磨损性能的研究也就显得尤为重要。 本文采用cTT(constanttensiontmnspoIt)纱线综合质量评价系统模拟纱线在生产过程中的实际运行状态,对影响纱线磨损性能的因素进行定量研究,为在实际生产中制定减少纱线磨损的相关措施提供理论依据。1实验部分 在一级标准大气条件下,采用美国Lawson.Hemphill公司生产的cTT纱线综合质量评价系统对国内30个厂家生产的14.5tex纯棉纱进行测定。 c1Tr系统通过模拟纱线在织造过程中的运行状态测试纱线磨损性能,测试原理如图l所示。图l(a)为纱线与纱线的摩擦情况,纱线通过3个导纱罗拉相互扭结后在一定的初加张力和速度下运行,通过特定装置收集纱线摩擦时脱落的绒毛,然后称其质量,用绒毛脱落量来间接描述纱线的摩擦特性;图l(b)为纱线与铜丝的摩擦情况,模拟织造时纱线与机件的摩擦,铜丝由2个钳口固定,纱线跨过铜丝在一定的初加张力和速度下运行,直到铜丝断 收稿日期:2006—10一06修回日期:2007一03—23 作者简介:张教(1959一),男,副教授。主要从事纺织材料结构与性能的研究。E.mail:tianjir曲aIlgyi@126.com。 万方数据

耐磨及减摩材料的摩擦磨损特性的探究..

耐磨耐蚀材料 题目:耐磨及减摩材料的摩擦磨损特性探究 学院:材料科学与工程学院 专业:材料加工工程 指导老师:路阳杨效田 学生姓名:王鹏春 学号: 132080503043 2104年5月1日

耐磨及减摩材料的摩擦磨损特性探究 摘要:综述了耐磨及减摩材料的基本性能要求,简单阐述了常见的耐磨及减摩材料的成分、组织与性能等和目前耐磨及减摩材料的新进展及方向。最后,论述了耐磨及减摩材料在表面工程技术中的应用形式,及耐磨涂层的发展方向。 关键词: 耐磨材料;减摩材料;耐磨涂层 0前言 众所周知,摩擦磨损特性的探究对国民经济来说,有着非凡的意义。据统计,全世界大约有2/1-3/1的能源以各种形式消耗在摩擦上。而摩擦导致的磨损是机械设备零件失效的三大原因之一,大约有80%的损坏零件是由于各种磨损形式引起的[1]。为了节约能源和材料,解决因磨损带来的损失显得至关重要,随着技术水平的发展,而其解决措施也变得各种各样,而本文主要从最基础的材料的选择上入手,来综述耐磨及减摩材料的摩擦磨损特性的探究现状及发展方向。 1 耐磨材料 材料的耐磨性通常是指在一定的工作环境下,摩擦副材料在,摩擦过程中抵抗磨损的能力。材料的耐磨性不是材料固有的本性,而是材料性质在一定的摩擦规范、表面状态、环境介质、工件结构、材料配对等某种条件下的体现。因此材料的耐磨性是相对的、有条件的。耐磨材料的一般性要求有以下几点[2]: 1.机械性能方面要有高的抗拉、抗压、抗拉、抗剪切强度;有高的硬度和韧性;有较高的相对延伸率;在摩擦的高温、高压下,机械性能应该稳定。 2.物理、化学性能方面要有良好的导热性,低的热膨胀系数,且各相的线膨胀系数差别要小;合金元素在其内的溶解度要高,分布要均匀;各相间微观电势要小,抗腐蚀性好;各相成分要在较宽的温度、压力范围内保持稳定。 3.金相结构方面金属晶体的滑移系要少;固溶体与强化相要恰当配合;强化相要有高的弥散性,分布要均匀;各相的位向要互相接近。 4.工艺性能方面要有良好的淬透性和机加工性,以及其他必要工艺性能,如铸件的铸造性。

铸铁磨损性能研究

铸铁系耐磨材料 题目:高铬白口铸铁耐磨概述 院系:材料与化工学院 专业:金属材料工程 班级: 学号: 姓名:

摘要 高铬铸铁是白口铸铁中一类很重要的高合金白口铁,它以比合金钢高得多的耐磨性和比一般白口铸铁高得多的韧性、强度,同时它还兼有良好的抗高温和抗腐蚀性能,加之生产便捷、成本适中,而被誉为当代最优良的抗磨料磨损材料之一,在矿山、冶金、建材和化工等行业仍得到广泛的应用。其显微组织中存在着高硬度(1200HV~ 1800HV)的(Cr,Fe)7C3型共晶碳化物,且彼此孤立分布而不连成网状,因而具有较高的韧性。采用高温淬火(即去稳处理)后回火和通过亚临界处理两种方法可以显著改善高铬白口铸铁的组织和使用性能,从而获得最佳的综合性能。研究表明,含有大量残留奥氏体的铸态高铬白口铸铁通过亚临界处理可以使其中的残留奥氏体发生马氏体转变而使其硬化 [2~10] 。与高温淬火相比,采用亚临界处理可以避免铸件畸变和开裂以及降低生产成本,因此对于大型铸件常采用亚临界处理。 关键词;高铬白口铸铁、制备工艺、热处理工艺、性能以及应用 1高铬白口铸铁 1.1高铬白口铸铁指含铬量在12%~28%之间的白口铸铁。其共晶组织由M7C3型碳化物和奥氏体或其他转变产物所组成。M7C3型碳化物呈六角形杆状以及板条状分布在基体当中,连续程度大为降低,碳化物对基体的破坏大大减小。因而高铬白口铸铁的韧性优于低铬白口铸铁和大部分合金钢。同时若把基体退火成珠光体后,还可以进行机械加工。这种碳化物不但硬度很高,还赋予铸铁很高的强度,若以3mm直径的高铬白口铸铁试样作定向凝固,以使M7C3型碳化物规则排列,其抗拉强度可高达3100MPa。 1.2 高铬白口铸铁中各基体的显微硬度;铁素体70~200HV、珠光体300~460HV、奥氏体300~600HV、马氏体500~1000HV。由其硬度可观马氏体的硬度最高,其磨料磨损抗性也最好所以一般希望得到马氏体。例如;一种15Cr3Mo 高铬铸铁基体不同时磨损情况也不同。如下表;

第三章 磨损及磨损机理

第三章磨损及磨损机理 物体摩擦表面上的物质,由于表面相对运动而不断损失的现象称磨损。 在一般正常工作状态下,磨损可分三个阶段: a?跑合(磨合)阶段:轻微的磨损,跑合是为正常运行创造条件。 b. 稳定磨损阶段:磨损更轻微,磨损率低而稳定。 c?剧烈磨损阶段:磨损速度急剧增长,零件精度丧失,发生噪音和振动,摩擦温度迅速升高,说明零件即将失效。(如图3.1) 跑合 摩擦行程(时间) 图3.1磨损三个阶段的示意图 机件磨损是无法避免的。但,如何缩短跑合期、延长稳定磨损阶段和推迟剧烈磨损的到来,是研究者致力的方向。 影响磨损的因素很多,例如相互作用表面的相对运动方式(滑动,滚动,往复运动,冲击),载荷与速度的大小,表面材料的种类,组织,机械性能和物理-化学性能等,各种表面 处理工艺,表面几何性质(粗糙度,加工纹理和加工方法),环境条件(温度、湿度、真空度、辐射强度、和介质性质等)和工况条件(连续或间歇工作)等。这些因素的相互影响对于磨损将产生或正或负的效果,从而使磨损过程更为复杂化。 磨损过程涉及到许多不同的学科领域,由于具有跨学科的性质,至今还很难将它的规律 解释清楚。已经有很多学者对磨损进行了大量的研究。 如20世纪20年代,汤林森提出了分子磨损的概念,他认为两个粗糙表面在接触摩擦过程中相互接近,而一个表面上的原子被另一个表面俘获的现象就是磨损。 霍尔姆在上述基础上作了进一步的发展,他指出摩擦材料的压缩屈服极限%(即硬度)对耐磨性的影响很大。 50年代初,奥贝尔(Oberle)从表层材料的机械破坏着眼,联系“切削”过程来解释磨损, 他认为影响磨损的主要因素除硬度H夕卜,还有材料的弹性模量E。处在弹性极限内的,变 形越大,机械破坏越少,并提出用模数(m= E/H x 105)来反映材料的耐磨性,m值高则耐磨 性好。 冯(Fe ng)提出了机械性质相近的两表面上机械嵌锁作用导致界面上既粘连又犁削的观点。 布洛克(Blok)认为软钢表面变得粗糙和发生塑性变形,是由于应力过高而引起的。

磨损的特性 2

磨损特性 机械零件的磨损过程通常经历不同的磨损阶段,直至失效。如图给出典型的磨损特性曲线(浴盆曲线): 图磨损特性曲线 图中的纵坐标表示单位时间的磨损量,称磨损率。通常在磨合期内,磨损率比较大,并是递降的。然后进入一个较长时间的稳定期,磨损率较小并保持不变。直至某一点,斜率陡升,这预兆着磨损急剧增大,失效即将发生。对于一些磨损过程,例如滚动轴承或齿轮中发生的表面疲劳磨损,开始时磨损率可能为零,当工作时间达到一定数值后,点蚀开始出现并迅速扩展,磨损率迅速上升,很快发展为大面积剥落和完全失效。 磨损阶段的描述: 1.磨合阶段(I阶段) 又称跑合阶段。新的摩擦副表面具有一定的表面粗糙度。在载荷作用下,由于实际接触面积较小,故接触应力很大。因此,在运行初期,表面的塑性变形与磨损的速度较快。随着磨合的进行,摩擦表面粗糙峰逐渐磨平,实际接触面积逐渐增大,表面应力减小,磨损减缓。 一个崭新的,即加工后未经摩擦的固体表面总具有一定的表面粗糙度和比较尖锐的微凸体尖峰,实际上两个表面之间通过微凸体进入真实接触的面积是很小的。在这些接触着的微凸体之间会产生很大单位面积接触压力,乃至超过材料的

屈服强度,并造成微凸体材料的迁移,以及接触面之间的变形在局部微区产生很高的温度,致使接触面发生熔焊,随即又由于表面之间的相对运动而被撕裂。同时微凸体在相对运动过程中也很容易发生碰撞、折断、划伤。因此在磨合阶段,摩擦副表面的磨损量迅速增加,并达到较高的磨损率。 另一方面由于加工和装配等工况原因,使接触表面之间的间隙不均匀,从而难以形成稳定的油膜,这时的润滑状态处于一种从边界润滑到混合润滑的过度;随着磨合阶段的结束,微凸体不断被磨平,促使它们之间的接触面积不断增大,而单位面积的接触压力随之减小,同时通过一定的磨损之后,摩擦副的间隙趋于均匀,油膜得以建立,即进一步向完全流体动力润滑过度;于是磨损率也随之减小,并向稳定磨损阶段过度。 磨合阶段的轻微磨损为正常运行、稳定运转创造条件。通过选择合理的磨合规程、采用适当的摩擦副材料及合理的加工工艺、正确地装配与调整,使用含有活性添加剂的润滑油等措施能够缩短磨合期。上述磨合阶段最好受到监控,以免造成过度的磨损或磨合不够的情况产生。 2.稳定磨损阶段(II阶段) 经过磨合,摩擦表面发生加工硬化,微观几何形状改变,建立了弹塑性接触条件。这一阶段磨损趋于稳定、缓慢,工作时间可以延续很长。它的特点是磨损量与时间成正比增加,间隙缓慢增大。 稳定磨损阶段此时磨损量趋于平缓地增加,而磨损率则由高过度到低,并维持在一个比较稳定的水平上,表明零件摩擦副表面之间已形成较为稳定的油膜,在润滑油充裕的工况下处于一种流体动力润滑状态。流体动力油膜的存在不仅在很大程度上避免了微凸体尖峰受力为大部分表面处于一种比较均匀的受力状态。这对于减小磨损是极为有利的。特别是当油膜厚度大大超过两个接触表面的粗糙度时,摩擦副处于完全流体动力润滑状态;这时微凸体之间几乎不接触,摩擦表面依靠油膜传递压力,故磨损量保持在一个非常低的水平上。稳定磨损阶段是机器设备的正常工作阶段,稳定磨损阶段的长短与机器的工况有关,也与磨合阶段的磨合质量有关。这是因为机器在启动或停止的过程中,也就是摩擦副流体动力油膜建立或消除的过程,其润滑状态也就从边界—混合—完全流体的

25Cr3Mo3NiNbZr钢的力学与磨损性能研究

25Cr3Mo3NiNbZr钢的力学与磨损性能研究随着压力容器用钢对减重、延寿需求的不断提高,以PCrNi3MoV钢为代表的传统压力容器用钢无法满足复杂的服役工况条件以及延寿的要求,于是研发出了强韧性匹配良好的25Cr3Mo3NiNbZr钢,25Cr3Mo3NiNbZr钢具有优异的高温强度以及良好的低温韧性,是潜在的长寿命压力容器用钢,能够满足其日益严苛的服役条件对材料性能的需求。25Cr3Mo3NiNbZr钢的组织、力学性能、耐磨损性能决定了其使用寿命以及服役稳定性,其高强韧性、磨损性能与碳化物的析出行为密不可分,为了更好的发挥25Cr3Mo3NiNbZr钢的性能特点,需要对其组织、碳化物析出行为、磨损性能开展系统研究,揭示其内在机制,并优化相应热处理参数。 因此本论文研究了热处理工艺对25Cr3Mo3NiNbZr钢组织及力学性能的影响,并对碳化物的析出行为进行了定性定量研究。针对影响使用寿命的磨损性能与PCrNi3MoV钢开展了对比研究,通过模拟不同磨损方式的加速试验,结合组织、力学性能、碳化物析出行为等几种因素讨论并揭示了25Cr3Mo3NiNbZr钢的耐磨损机理。 具体研究内容如下:(1)通过改变热处理工艺参数,研究了淬火温度和回火温度对25Cr3Mo3NiNbZr钢组织及力学性能的影响,同时与传统压力容器用钢PCrNi3MoV钢进行对比研究。结果表明:通过改变25Cr3Mo3NiNbZr钢的淬火温度与回火温度,并充分利用碳化物形成元素的二次硬化效果,从而获得了具有最佳强韧性匹配的热处理工艺,其室温强度和高温强度较PCrNi3MoV钢提高了约 200MPa。 PCrNi3MoV钢调质处理后组织为回火索氏体,只有M3C碳化物,未出现明显二次硬化现象;25Cr3Mo3NiNbZr钢在淬火过程中析出的含Nb元素MC

摩擦磨损

博士入学考试 名词解释 粗糙度:评定加工过的材料表面由峰、谷和间距等构成的微观几何形状误差的物理量。 固体润滑:利用固体所具有的减摩作用的润滑方法。 固体润滑材料:为了防止相对运动中的表面损伤,并降低摩擦与磨损而使用的薄膜或粉状固体。 滑动磨损:两个相对滑动物体公共接触面积上产生的切向阻力和材料流失的现象。 自由磨料磨损和固定磨料磨损:两者皆为磨料磨损,自由磨料磨损磨料保持自由状态,而固定磨料磨损磨料保持固定状态。 耐磨性和相对耐磨性:材料的耐磨性是指一定条件下材料耐磨性的特性;相对耐磨性是指两种材料在相同的外部条件下磨损量的比值。 微切削和微犁沟:微切削是磨料(磨粒或硬突起)从被磨损表面切削下微切屑的磨料磨损过程;在相对滑动中,硬颗粒或两表面中硬微突体使较软表面塑性变形而形成犁痕式的破坏。 问答题 1.简述摩擦的概念和分类。 摩擦:两个相互接触的物体在外力作用下发生相对运动或具有相对运动的趋势时,就会发生摩擦。 摩擦学:摩擦学是研究相对运动互作用表面的科学与技术,它包括材料的摩擦、磨损和润滑三个部分。 分类: (1)按摩擦副表面的润滑情况分: 干摩擦:物件间或试样间不加任何润滑剂时的摩擦。 边界摩擦:两接触表面间存在一层极薄的润滑膜,其摩擦和磨损不是取决于润滑剂的粘度,而是取决于两表面的特性和润滑特性。 流体摩擦:由流体的黏滞阻力或流变阻力引起的内摩擦。 半干摩擦:部分干摩擦,部分边界摩擦。半流体摩擦:部分边界摩擦,部分流体摩擦。 (2)按摩擦副的运动形式分: 滑动摩擦:当接触表面相对滑动或具有相对滑动趋势时的摩擦。 滚动摩擦:当物体在力矩的作用下沿接触表面滚动时的摩擦。

气缸套异常磨损的机理及特征.docx

四号黑体 船舶柴油机气缸套的磨损及管理对策 (标题:三号黑体,可以分为 1 或 2 行居中打印,题目下空一行打印摘要) [摘要 ] 气缸套是船舶柴油机的重要零件之一,因其内壁工作条件十分恶劣,很容易发 三号黑体 生磨损,其磨损情况将直接影响气缸套与活塞环之间的密封性能,对柴油机的启动、功 率损耗、燃油和润滑油的消耗、使用寿命以及排气的颜色等都有着重大的影响。因此, 正确地认识气缸套磨损的类型及其产生的机理,并采取积极的预防措施和修复工艺,对 于提高船舶柴油机的整机寿命和机械设备的使用效益有十分重要的意义。本文探讨了船舶柴油机气缸套磨损的特征及形成规律,全面而系统地分析了船舶柴油机气缸套磨损的类四型及号其黑产体生的机理,并在此基础上,提出了在使用和保修中减少船舶柴油机气缸套磨损的预防措施及修复工艺。 { 摘要二字后空一格打印内容(用小四号宋体)。}{摘要与关键词之间空一行} [关键词 ] 船舶柴油机;气缸套;磨损;管理对策 { 关键词后空一格打印内容(用小四号宋体)。} 两个关键词之间用“;”分开

Marine Diesel Engine Cylinder Liner Wearing and Management Measures 名词、动名词首字母大写[英文标题三号 Ari al 字体(加粗),居中 ,下空一行打印英文摘要 ] [Abstract]The cylinder liner is an important part of Marine diesel engine, as the poor working conditions of inner wall, it is easily to wear and its wear conditions will directly impact the seal performance between the cylinder liner and piston ring,and will have a significant impact on the start , power loss, the consumption of fuel and lubricants, life and exhaust gas colors of diesel engine. Therefore, the correct understanding the types and the producing mechanism of cylinder liner wear, and it has very great significance to take active preventive measures and rehabilitation process for raising the all marine diesel engine life and the use efficiency of mechanical equipment. In this paper, studying the marine diesel engine cylinder liner wear characteristics and the formation of laws, comprehensivly and systematicly analysising the types and the mechanism of the cylinder liner wear of marine diesel engine producing, and on this basis, putting forward the preventive measures and rehabilitation process of reducing the marine diesel engine cylinder wear in the using and repairing. {英文摘要两字采用四号Ari a l 字体(加粗) }{[Abstract]后空一格,摘要内容均用小四号Arial 字体。 } [Key words]Marine diesel engine;Cylinder;Wear;Management Measures 关键词首字母大写

磨损特性曲线2

磨损特性曲线2 机械零件的磨损过程通常经历不同的磨损阶段,直至失效。如图给出典型的磨损特性曲线(浴盆曲线): 图磨损特性曲线 图中的纵坐标表示单位时间的磨损量,称磨损率。通常在磨合期内,磨损率比较大,并是递降的。然后进入一个较长时间的稳定期,磨损率较小并保持不变。直至某一点,斜率陡升,这预兆着磨损急剧增大,失效即将发生。对于一些磨损过程,例如滚动轴承或齿轮中发生的表面疲劳磨损,开始时磨损率可能为零,当工作时间达到一定数值后,点蚀开始出现并迅速扩展,磨损率迅速上升,很快发展为大面积剥落和完全失效。 磨损阶段的描述: 1.磨合阶段(I阶段) 又称跑合阶段。新的摩擦副表面具有一定的表面粗糙度。在载荷作用下,由于实际接触面积较小,故接触应力很大。因此,在运行初期,表面的塑性变形与磨损的速度较快。随着磨合的进行,摩擦表面粗糙峰逐渐磨平,实际接触面积逐渐增大,表面应力减小,磨损减缓。 一个崭新的,即加工后未经摩擦的固体表面总具有一定的表面粗糙度和比较尖锐的微凸体尖峰,实际上两个表面之间通过微凸体进入真实接触的面积是很小的。在这些接触着的微凸体之间会产生很大单位面积接触压力,乃至超过材料的屈服强度,并造成微凸体材料的迁移,以及接触面之间的变形在局部微区产生很

高的温度,致使接触面发生熔焊,随即又由于表面之间的相对运动而被撕裂。同时微凸体在相对运动过程中也很容易发生碰撞、折断、划伤。因此在磨合阶段,摩擦副表面的磨损量迅速增加,并达到较高的磨损率。 另一方面由于加工和装配等工况原因,使接触表面之间的间隙不均匀,从而难以形成稳定的油膜,这时的润滑状态处于一种从边界润滑到混合润滑的过度;随着磨合阶段的结束,微凸体不断被磨平,促使它们之间的接触面积不断增大,而单位面积的接触压力随之减小,同时通过一定的磨损之后,摩擦副的间隙趋于均匀,油膜得以建立,即进一步向完全流体动力润滑过度;于是磨损率也随之减小,并向稳定磨损阶段过度。 磨合阶段的轻微磨损为正常运行、稳定运转创造条件。通过选择合理的磨合规程、采用适当的摩擦副材料及合理的加工工艺、正确地装配与调整,使用含有活性添加剂的润滑油等措施能够缩短磨合期。上述磨合阶段最好受到监控,以免造成过度的磨损或磨合不够的情况产生。 2.稳定磨损阶段(II阶段) 经过磨合,摩擦表面发生加工硬化,微观几何形状改变,建立了弹塑性接触条件。这一阶段磨损趋于稳定、缓慢,工作时间可以延续很长。它的特点是磨损量与时间成正比增加,间隙缓慢增大。 稳定磨损阶段此时磨损量趋于平缓地增加,而磨损率则由高过度到低,并维持在一个比较稳定的水平上,表明零件摩擦副表面之间已形成较为稳定的油膜,在润滑油充裕的工况下处于一种流体动力润滑状态。流体动力油膜的存在不仅在很大程度上避免了微凸体尖峰受力为大部分表面处于一种比较均匀的受力状态。这对于减小磨损是极为有利的。特别是当油膜厚度大大超过两个接触表面的粗糙度时,摩擦副处于完全流体动力润滑状态;这时微凸体之间几乎不接触,摩擦表面依靠油膜传递压力,故磨损量保持在一个非常低的水平上。稳定磨损阶段是机器设备的正常工作阶段,稳定磨损阶段的长短与机器的工况有关,也与磨合阶段的磨合质量有关。这是因为机器在启动或停止的过程中,也就是摩擦副流体动力油膜建立或消除的过程,其润滑状态也就从边界—混合—完全流体的

树脂基复合材料的力学性能

树脂基复合材料的力学性能 力学性能是材料最重要的性能。树脂基复合材料具有比强度高、比模量大、抗疲劳性能好等优点,用于承力结构的树脂基复合材料利用的是它的这种优良的力学性能,而利用各种物理、化学和生物功能的功能复合材料,在制造和使用过程中,也必须考虑其力学性能,以保证产品的质量和使用寿命。 1、树脂基复合材料的刚度 树脂基复合材料的刚度特性由组分材料的性质、增强材料的取向和所占的体积分数决定。树脂基复合材料的力学研究表明,对于宏观均匀的树脂基复合材料,弹性特性复合是一种混合效应,表现为各种形式的混合律,它是组分材料刚性在某种意义上的平均,界面缺陷对它作用不是明显。 由于制造工艺、随机因素的影响,在实际复合材料中不可避免地存在各种不均匀性和不连续性,残余应力、空隙、裂纹、界面结合不完善等都会影响到材料的弹性性能。此外,纤维(粒子)的外形、规整性、分布均匀性也会影响材料的弹性性能。但总体而言,树脂基复合材料的刚度是相材料稳定的宏观反映。 对于树脂基复合材料的层合结构,基于单层的不同材质和性能及铺层的方向可出现耦合变形,使得刚度分析变得复杂。另一方面,也可以通过对单层的弹性常数(包括弹性模量和泊松比)进行设计,进而选择铺层方向、层数及顺序对层合结构的刚度进行设计,以适应不同场合的应用要求。 2、树脂基复合材料的强度 材料的强度首先和破坏联系在一起。树脂基复合材料的破坏是一个动态的过程,且破坏模式复杂。各组分性能对破坏的作用机理、各种缺陷对强度的影响,均有街于具体深入研究。 树脂基复合材强度的复合是一种协同效应,从组分材料的性能和树脂基复合材料本身的细观结构导出其强度性质。对于最简单的情形,即单向树脂基复合材料的强度和破坏的细观力学研究,还不够成熟。 单向树脂基复合材料的轴向拉、压强度不等,轴向压缩问题比拉伸问题复杂。其破坏机理也与拉伸不同,它伴随有纤维在基体中的局部屈曲。实验得知:单向树脂基复合材料在轴向压缩下,碳纤维是剪切破坏的;凯芙拉(Kevlar)纤维的破坏模式是扭结;玻璃纤维一般是弯曲破坏。 单向树脂基复合材料的横向拉伸强度和压缩强度也不同。实验表

MM1000系列型摩擦磨损性能试验设备

MM1000系列型摩擦磨损性能试验设备 由西安顺通机电应用技术研究所研制成功的我国最新型全自动化控制的惯性系列摩擦磨损性能试验机,己在国内的摩擦材料领域得到了普及应用和配置。 全自动控制的系列摩擦磨损性能试验机应用现代工业控制技术和计算机应用技术从主机的结构、动力源、采集值、测试技术、应用瞬间值的采集技术即提取同一瞬间的压力值和扭矩值计算出该瞬间的摩擦系数等相关的测试值,提高了测试数据的精度等级及准确性,实现了测试数据的可靠性和重复性。它集机、电、气技术和传感器技术、变频调速技术、现代工业控制技术、计算机应用技术为一体,成功的实现了摩擦材料性能测试自动化,涉入全部摩擦材料领域。在实现全自动控制的工艺过程时全部按照国标、行标、(企标)的工艺路线和模拟实际工况试验条件设置进行,制作出符合企业生产、科研院所、大专院校进行摩擦材料生产、研究、配方工艺、质量控制和新材料研制、开发的专业检测设备。应用现代先进的科学技术,提供科学的试验方法和准确的测试数据使该试验机具备了小样试验机和整片1:1台架试验功能。它保持了与产品工况的一致性,又保持了与台架试验的一致性。保持与路试、航试有稳定的对应关系,应用小样试验的跟踪工艺性强,满足了快速变化的试验步骤,为企业赢得了时间,节约了资金。 全自动控制的系列摩擦磨损性能试验机应用了小样缩比模拟制动惯性试验原理,建立了模拟制动的试验方法,应用了全自动控制技术,实现了实验室条件下小样缩比模拟制动试验的功能。应用了多元相似原理模拟实际工况完成了(惯性制动)热冲击刹车试验的功能. 该检测设备不但具备了髙速、髙压、低速、低压、变速、变压、变温等技术条件下的测试功能,完成了摸拟飞机、坦克、火车、汽车、轨道列车等重载大惯量等制动工况进行的摩擦材料的摩擦、磨损、热负荷、及可靠性的试验研究要求,以材料可承载的最大负荷完成各种试验项目和极限试验功能;对于全部试验参数的采集频率高、采集精度高、采集速度快、采集数量大都较之所有试验机、试验台无以比拟的,实现采控一体采集信号,能与计算机通讯完成数据的转存和试验机的监测系统。全系统在全自动控制实验过程中有安全警示、有过载保护能力,以专用控制程序完成全系统控制指令,试验参数任意设置,测试数据随机采集,测试软件参数完全放开可设置,试验曲线坐标随试验条件变化,在整亇制动曲线中反映出实验全过程绘制的七条曲线并记录其任一瞬间的压力、转速、扭矩、温度值,即可计算出这一状态下的.动、静摩擦力矩;动、静摩擦系数、;摩擦功、;

摩擦磨损测试及考核评价方式

摩擦磨损测试及考核评价方式 一、磨损 1.1磨损定义 磨损是指摩擦副相对运动时,表面物质不断损失或产生残余变形的现象。表面物质运动主要包括机械运动、化学作用和热作用:(1)机械作用使摩擦表面发生物质损失及摩擦表面的物理变形;(2)化学作用使摩擦表面发生性状改变;热作用是摩擦表面发生形状改变。典型的磨损曲线通常由三部分组成,如图1.1所示。 磨 损 量 图1.1 磨损曲线示意图 磨合阶段:磨损量随时间的增加而增加。发生在初始运动阶段,由于表面存在粗糙度,微凸体接触面积小,接触应力大,磨损速度较快。 稳定磨损阶段:摩擦表面磨合后达到稳定状态磨损率保持不变。稳定磨损阶段标志磨损条件保持相对稳定,是零件整个寿命范围内的工作过程。 剧烈磨损阶段:工作条件恶化,磨损量急剧增大。该阶段内零件精度降低、间隙增大,温度升高,产生冲击、振动和噪声,最终导致零部件完全失效。 1.2磨损种类 按磨损的破坏机理,通常把磨损分为粘着磨损、磨料磨损、疲劳磨损、腐蚀磨损和微动磨损五种。 (1)粘着磨损 当摩擦副相对滑动时, 由于粘着效应所形成结点发生剪切断裂,被剪切的材料或脱落成磨屑,或由一个表面迁移到另一个表面,此类磨损称为粘着磨损。粘着磨损再细分还有轻微磨损、涂抹、擦伤、划伤和咬死五种。

图1.1 粘着磨损机理 (2)磨料磨损 外来的硬料介质进入摩擦副,或摩擦副一个表面比另一个表面硬,在较硬表面上存在的微凸体,在摩擦过程中对较软表面犁沟或拉槽,引起表面材料的脱落,这种现象叫做磨料磨损。磨料磨损是一种最常见的磨损,按照磨损机理还可细分为微观切削、挤压剥落和疲劳破坏三小类。

图1.2 二体/三体磨粒磨损机理 (3)化学磨损 化学磨损是在摩擦促进作用下,摩擦副的一方或双方与中间物质或环境介质中的某些成分发生化学或电化学作用,造成表面材料损失的过程。分为氧化磨损与特殊介质腐蚀磨损两类。 图1.3 化学磨损机理 (4)疲劳磨损 摩擦接触表面在交变接触压应力作用下,材料表面因疲劳损伤而引起表面脱落的现象。疲劳磨损有两种基本类型,宏观疲劳磨损和微观疲劳磨损。宏观疲劳磨损主要是指两个相互滚动或滚动兼滑动的摩擦表面,在循环变化的接触应力作用下,材料疲劳而发生脱落的现象;微观疲劳磨损是滑动接触表面由于微凸体相互接触使材料发生疲劳而引起的机械磨损现象。此外,疲劳磨损的破坏机理又分为麻点剥落、浅层剥落、深层剥落。

相关主题
文本预览
相关文档 最新文档