当前位置:文档之家› 偏最小二乘回归方法(PLS)

偏最小二乘回归方法(PLS)

偏最小二乘法

偏最小二乘法 ( PLS)是光谱多元定量校正最常用的一种方法 , 已被广泛应用 于近红外 、 红外 、拉曼 、核磁和质谱等波谱定量模型的建立 , 几乎成为光谱分析中建立线性定量校正模型的通用方法 〔1, 2〕 。近年来 , 随着 PLS 方法在光谱分析尤其是分子光谱如近红外 、 红外和拉曼中应用 的深入开展 , PLS 方法还被用来解决模式识别 、定量校正模型适用性判断以及异常样本检测等定性分析问题 。 由于 PLS 方法同时从光谱阵和浓度阵中提取载荷和得分 , 克服主成分分析 ( PCA)方法没有利用浓度阵的缺点 , 可有效降维 , 并消除光谱间可能存在的复共线关系 , 因此取得令人非常满意的定性分析结果 〔3 ~ 5〕 。 本文主要介绍PLS 方法在光谱定性分析方面的原理及应用 实例 。 偏最小二乘方法(PLS-Partial Least Squares))是近年来发展起来的一种新的多元统计分析法, 现已成功地应用于分析化学, 如紫外光谱、气相色谱和电分析化学等等。该种方法,在化合物结构-活性/性质相关性研究中是一种非常有用的手段。如美国Tripos 公司用于化合物三维构效关系研究的CoMFA (Comparative Molecular Field Analysis)方法, 其中,数据统计处理部分主要是PLS 。在PLS 方法中用的是替潜变量,其数学基础是主成分分析。替潜变量的个数一般少于原自变量的个数,所以PLS 特别适用于自变量的个数多于试样个数的情况。在此种情况下,亦可运用主成分回归方法,但不能够运用一般的多元回归分析,因为一般多元回归分析要求试样的个数必须多于自变量的个数。 §§ 6.3.1 基本原理 6.3 偏最小二乘(PLS ) 为了叙述上的方便,我们首先引进“因子”的概念。一个因子为原来变量的线性组合,所以矩阵的某一主成分即为一因子,而某矩阵的诸主成分是彼此相互正交的,但因子不一定,因为一因子可由某一成分经坐标旋转而得。 在主成分回归中,第一步,在矩阵X 的本征矢量或因子数测试中,所处理的仅为X 矩阵,而对于矩阵Y 中信息并未考虑。事实上,Y 中亦可能包含非有用的信息。所以很自然的一种想法是,在矩阵X 因子的测试中应同时考虑矩阵Y 的作用。偏最小二乘正是基于这种思想的一种回归方法。 偏最小二乘和主成分分析很相似,其差别在于用于描述变量Y 中因子的同时也用于描述变量X 。为了实现这一点,在数学上是以矩阵Y 的列去计算矩阵X 的因子,与此同时,矩阵Y 的因子则由矩阵X 的列去预测。其数学模型为: E P T X +'=F Q U Y +'=

偏最小二乘法算法

偏最小二乘法 1.1 基本原理 偏最小二乘法(PLS )是基于因子分析的多变量校正方法,其数学基础为主成分分析。但它相对于主成分回归(PCR )更进了一步,两者的区别在于PLS 法将浓度矩阵Y 和相应的量测响应矩阵X 同时进行主成分分解: X=TP+E Y=UQ+F 式中T 和U 分别为X 和Y 的得分矩阵,而P 和Q 分别为X 和Y 的载荷矩阵,E 和F 分别为运用偏最小二乘法去拟合矩阵X 和Y 时所引进的误差。 偏最小二乘法和主成分回归很相似,其差别在于用于描述变量Y 中因子的同时也用于描述变量X 。为了实现这一点,数学中是以矩阵Y 的列去计算矩阵X 的因子。同时,矩阵Y 的因子则由矩阵X 的列去预测。分解得到的T 和U 矩阵分别是除去了大部分测量误差的响应和浓度的信息。偏最小二乘法就是利用各列向量相互正交的特征响应矩阵T 和特征浓度矩阵U 进行回归: U=TB 得到回归系数矩阵,又称关联矩阵B : B=(T T T -1)T T U 因此,偏最小二乘法的校正步骤包括对矩阵Y 和矩阵X 的主成分分解以及对关联矩阵B 的计算。 1.2主成分分析 主成分分析的中心目的是将数据降维,以排除众多化学信息共存中相互重叠的信息。他是将原变量进行转换,即把原变量的线性组合成几个新变量。同时这些新变量要尽可能多的表征原变量的数据结构特征而不丢失信息。新变量是一组正交的,即互不相关的变量。这种新变量又称为主成分。 如何寻找主成分,在数学上讲,求数据矩阵的主成分就是求解该矩阵的特征值和特征矢量问题。下面以多组分混合物的量测光谱来加以说明。假设有n 个样本包含p 个组分,在m 个波长下测定其光谱数据,根据比尔定律和加和定理有: A n×m =C n×p B p×m 如果混合物只有一种组分,则该光谱矢量与纯光谱矢量应该是方向一致,而大小不同。换句话说,光谱A 表示在由p 个波长构成的p 维变量空间的一组点(n 个),而这一组点一定在一条通过坐标原点的直线上。这条直线其实就是纯光谱b 。因此由m 个波长描述的原始数据可以用一条直线,即一个新坐标或新变量来表示。如果一个混合物由2个组分组成,各组分的纯光谱用b1,b2表示,则有: 1122 T T T i i i a c b c b =+ 有上式看出,不管混合物如何变化,其光谱总可以用两个新坐标轴b1,b2来表示。因此可以 推出,如果混合物由p 个组分组成,那么混合物的光谱就可由p 个主成分轴的线性组合表示。

偏最小二乘法(PLS)简介

偏最小二乘法(PLS)简介 偏最小二乘法(PLS )简介 偏最小二乘法(PLS )简介 简介 偏最小二乘法是一种新型的多元统计数据分析方法,它于1983年由伍德(S.Wold)和阿巴诺(C.Albano)等人首次提出。近几十年来,它在理论、方法和应用方面都得到了迅速的发展。 偏最小二乘法 长期以来,模型式的方法和认识性的方法之间的界限分得十分清楚。而偏最小二乘法则把它们有机的结合起来了,在一个算法下,可以同时实现回归建模(多元线性回归)、数据结构简化(主成分分析)以及两组变量之间的相关性分析(典型相关分析)。这是多元统计数据分析中 的一个飞跃。 偏最小二乘法在统计应用中的重要性体现在以下几个方面: 偏最小二乘法是一种多因变量对多自变量的回归建模方法。偏最小二乘法可以较好的解决许多以往用 普通多元回归无法解决的问题。 偏最小二乘法之所以被称为第二代回归方法,还由于它可以实现多种数据分析方法的综合应用。 主成分回归的主要目的是要提取隐藏在矩阵X 中的相关信息,然后用于预测变量Y 的值。 这种做法可以保证让我们只使用那些独立变量,噪音将被消除,从而达到改善预测模型质量的目的。但是,主成分回归仍然有一定的缺陷,当一些有用变量的相关性很小时,我们在选取主成分时就很容易把它们漏掉,使得最终的预测模型可靠性下降,如果我们对每一个成分 进行挑选,那样又太困难了。 偏最小二乘回归可以解决这个问题。它采用对变量X 和Y 都进行分解的方法,从变量X 和Y 中同时提取成分(通常称为因子),再将因子按照它们之间的相关性从大到小排列。现在,我们要建立一个模型,我们只要决定选择几个因子参与建模就可以了 基本概念 偏最小二乘回归是对多元线性回归模型的一种扩展,在其最简单的形式中,只用一个线性模 型来描述独立变量Y 与预测变量组X 之间的关系: 偏最小二乘法(PLS) 简介

偏最小二乘法基本知识

偏最小二乘法(PLS)简介-数理统计 偏最小二乘法partial least square method是一种新型的多元统计数据分析方法,它于1983年由伍德(S.Wold)和阿巴诺(C.Albano)等人首次提出。近几十年来,它在理论、方法和应用方面都得到了迅速的发展。 偏最小二乘法 长期以来,模型式的方法和认识性的方法之间的界限分得十分清楚。而偏最小二乘法则把它们有机的结合起来了,在一个算法下,可以同时实现回归建模(多元线性回归)、数据结构简化(主成分分析)以及两组变量之间的相关性分析(典型相关分析)。这是多元统计数据分析中的一个飞跃。 偏最小二乘法在统计应用中的重要性体现在以下几个方面: 偏最小二乘法是一种多因变量对多自变量的回归建模方法。偏最小二乘法可以较好的解决许多以往用普通多元回归无法解决的问题。 偏最小二乘法之所以被称为第二代回归方法,还由于它可以实现多种数据分析方法的综合应用。 主成分回归的主要目的是要提取隐藏在矩阵X中的相关信息,然后用于预测变量Y的值。这种做法可以保证让我们只使用那些独立变量,噪音将被消除,从而达到改善预测模型质量的目的。但是,主成分回归仍然有一定的缺陷,当一些有用变量的相关性很小时,我们在选取主成分时就很容易把它们漏掉,使得最终的预测模型可靠性下降,如果我们对每一个成分进行挑选,那样又太困难了。 偏最小二乘回归可以解决这个问题。它采用对变量X和Y都进行分解的方法,从变量X和Y 中同时提取成分(通常称为因子),再将因子按照它们之间的相关性从大到小排列。现在,我们要建立一个模型,我们只要决定选择几个因子参与建模就可以了

基本概念 偏最小二乘回归是对多元线性回归模型的一种扩展,在其最简单的形式中,只用一个线性模型来描述独立变量Y与预测变量组X之间的关系: Y= b0 + b1X1 + b2X2 + ... + bpXp 在方程中,b0是截距,bi的值是数据点1到p的回归系数。 例如,我们可以认为人的体重是他的身高、性别的函数,并且从各自的样本点中估计出回归系数,之后,我们从测得的身高及性别中可以预测出某人的大致体重。对许多的数据分析方法来说,最大的问题莫过于准确的描述观测数据并且对新的观测数据作出合理的预测。 多元线性回归模型为了处理更复杂的数据分析问题,扩展了一些其他算法,象判别式分析,主成分回归,相关性分析等等,都是以多元线性回归模型为基础的多元统计方法。这些多元统计方法有两点重要特点,即对数据的约束性: 1.变量X和变量Y的因子都必须分别从X'X和Y'Y矩阵中提取,这些因子就无法同时表示变量X和Y的相关性。 2.预测方程的数量永远不能多于变量Y跟变量X的数量。 偏最小二乘回归从多元线性回归扩展而来时却不需要这些对数据的约束。在偏最小二乘回归中,预测方程将由从矩阵Y'XX'Y中提取出来的因子来描述;为了更具有代表性,提取出来的预测方程的数量可能大于变量X与Y的最大数。 简而言之,偏最小二乘回归可能是所有多元校正方法里对变量约束最少的方法,这种灵活性让它适用于传统的多元校正方法所不适用的许多场合,例如一些观测数据少于预测变量数时。并且,偏最小二乘回归可以作为一种探索性的分析工具,在使用传统的线性回归模型之前,先对所需的合适的变量数进行预测并去除噪音干扰。

偏最小二乘法

偏最小二乘法( PLS)是光谱多元定量校正最常用的一种方法, 已被广泛应用于近红外、红外、拉曼、核磁和质谱等波谱定量模型的建立, 几乎成为光谱分析中建立线性定量校正模型的通用方法〔1, 2〕。近年来, 随着PLS方法在光谱分析尤其是分子光谱如近红外、红外和拉曼中应用的深入开展, PLS 方法还被用来解决模式识别、定量校正模型适用性判断以及异常样本检测等定性分析问题。由于PLS方法同时从光谱阵和浓度阵中提取载荷和得分, 克服主成分分析( PCA)方法没有利用浓度阵的缺点, 可有效降维, 并消除光谱间可能存在的复共线关系, 因此取得令人非常满意的定性分析结果〔3 ~5〕。本文主要介绍PLS方法在光 谱定性分析方面的原理及应用实例。 偏最小二乘方法(PLS-Partial Least Squares))是近年来发展起来的一种新的多元统计分析法, 现已成功地应用于分析化学, 如紫外光谱、气相色谱和电分析化学等等。该种方法,在化合物结构-活性/性质相关性研究中是一种非常有用的手段。如美国Tripos公司用于化合物三维构效关系研究的CoMFA (Comparative Molecular Field Analysis)方法, 其中,数据统计处理部分主要是PLS。在PLS方法中用的是替潜变量,其数学基础是主成分分析。替潜变量的个数一般少于原自变量的个数,所以PLS特别适用于自变量的个数多于试样个数的情况。在此种情况下, 亦可运用主成分回归方法,但不能够运用一般的多元回归分析,因为一般多元回归分析要求试样的个数必须多于自变量的个数。 §§ 6.3.1 基本原理 6.3 偏最小二乘(PLS) 为了叙述上的方便,我们首先引进“因子”的概念。一个因子为原来变量的线性组合,所以矩阵的某一主成分即为一因子,而某矩阵的诸主成分是彼此相互正交的,但因子不一定,因为一因子可由某一成分经坐标旋转而得。 在主成分回归中,第一步,在矩阵X的本征矢量或因子数测试中,所处理的仅为X矩阵,而对于矩阵Y 中信息并未考虑。事实上,Y中亦可能包含非有用的信息。所以很自然的一种想法

PLS偏最小二乘法

偏最小二乘法(Partial Least Square)通过最小化误差平方来寻找数据与函数间的最佳匹配,是一种参数估计方法,一般估计步骤包括: 首先将解释变量和被解释变量标准化,并提取解释变量和被解释变量的主成分,例如提取解释变量的主成分,要求与被解释变量高度相关,这个过程体现了典型相关和主成分分析的思想。 其次做解释变量和被解释变量在主成分上的回归,可以分别得到残差,这个还是OLS的思想。 最后,按以上的步骤循环下去,直到新的主成分系数不再显着。 其实PLS仍然是OLS的一种扩展,目前在解决多重共线性问题领域的研究很成熟。一般认为比岭回归、主成分分析等方法在解决多重共线性问题上更为有效。 此外,PLS与结构方程(SEM)在应用上相得益彰,我们知道SEM是大样本理论的产物,因此其应用受到诸多限制,尤其在小样本下,该模型几乎无法应用,而PLS恰好可以弥补这方面的缺陷。研究结论认为PLS在非正态分布、小样本、共线性的情况下,仍然很稳定。 偏最小二乘法是一种新型的多元统计数据分析方法,它于1983年由伍德和阿巴诺等人首提示来的,偏最小二乘法有机的结合起来了,在一个算法下,可以同时实现回归建模(多元线性回归)、数据结构简化(主成分分析)以及两组变量之间的相关性分析(典型相关分析)。这是多元统计数据分析中的一个飞跃。 与传统多元线性回归模型相比,偏最小二乘回归的特点是: (1) 能够在自变量存在严重多重相关性的条件下进行回归建模; (2) 允许在样本点个数少于变量个数的条件下进行回归建模; (3) 偏最小二乘回归在最终模型中将包含原有的所有自变量; (4) 偏最小二乘回归模型更易于辨识系统信息与噪声(甚至一些非随机性的噪声); (5) 在偏最小二乘回归模型中,每一个自变量的回归系数将更容易解释。 偏最小二乘法是一种多因变量对多自变量的回归建模方法。 主成分回归的主要目的是要提取隐藏在矩阵X中的相关信息,然后用于预测变量Y的值。这种做法可以保证让我们只使用那些独立变量,噪音将被消除,从而达到改善预测模型质量的目的。但是,主成分回归仍然有一定的缺陷,当一些有用变量的相关性很小时,我们在选取主成分时就很容易把它们漏掉,使得最终的预测模型可靠性下降,如果我们对每一个成分进行挑选,那样又太困难了。偏最小二乘回归可以解决这个问题。它采用对变量X和Y都进行分解的方法,从变量X和Y中同时提取成分(通常称为因子),再将因子按照它们之间的相关性从大到小排列。现在,我们要建立一个模型,我们只要决定选择几个因子参与建模就可以了 基本概念? 偏最小二乘回归是对多元线性回归模型的一种扩展,在其最简单的形式中,只用一个线性模型来描述独立变量Y与预测变量组X之间的关系: Y = b0 + b1X1 + b2X2 + ... + bpXp? 在方程中,b0是截距,bi的值是数据点1到p的回归系数。? 多元线性回归模型为了处理更复杂的数据分析问题,扩展了一些其他算法,象判别式分析,主成分回归,相关性分析等等,都是以多元线性回归模型为基础的多元统计方法。这些多元统计方法有两点重要特点,即对数据的约束性: 变量X和变量Y的因子都必须分别从X'X和Y'Y矩阵中提取,这些因子就无法同时表示变量X和Y的相关性。? 预测方程的数量永远不能多于变量Y跟变量X的数量。? 偏最小二乘回归从多元线性回归扩展而来时却不需要这些对数据的约束。在偏最小二乘回归中,预测方程将由从矩阵Y'XX'Y中提取出来的因子来描述;为了更具有代表性,提取出来的预测方程的数量可能大于变量X与Y的最大数。 简而言之,偏最小二乘回归可能是所有多元校正方法里对变量约束最少的方法,这种灵活性让它适用于传统的多元校正方法所不适用的许多场合,例如一些观测数据少于预测变量数时。并且,偏最小二乘回

偏最小二乘回归方法(PLS)(优选.)

最新文件---------------- 仅供参考--------------------已改成-----------word文本 --------------------- 方便更改 赠人玫瑰,手留余香。 偏最小二乘回归方法 1 偏最小二乘回归方法(PLS)背景介绍 在经济管理、教育学、农业、社会科学、工程技术、医学和生物学中,多元线性回归分析是一种普遍应用的统计分析与预测技术。多元线性回归中,一般采用最小二乘方法(Ordinary Least Squares :OLS)估计回归系数,以使残差平方和达到最小,但当自变量之间存在多重相关性时,最小二乘估计方法往往失效。而这种变量之间多重相关性问题在多元线性回归分析中危害非常严重,但又普遍存在。为消除这种影响,常采用主成分分析(principal Components Analysis :PCA)的方法,但采用主成分分析提取的主成分,虽然能较好地概括自变量系统中的信息,却带进了许多无用的噪声,从而对因变量缺乏解释能力。 最小偏二乘回归方法(Partial Least Squares Regression:PLS)就是应这种实际需要而产生和发展的一种有广泛适用性的多元统计分析方法。它于1983年由S.Wold和C.Albano等人首次提出并成功地应用在化学领域。近十年来,偏最小二乘回归方法在理论、方法和应用方面都得到了迅速的发展,己经广泛地应用在许多领域,如生物信息学、机器学习和文本分类等领域。 偏最小二乘回归方法主要的研究焦点是多因变量对多自变量的回归建模,它与普通多元回归方法在思路上的主要区别是它在回归建模过程中采用了信息综合与筛选技术。它不再是直接考虑因变量集合与自变量集合的回归建模,而是在变量系统中提取若干对系统具有最佳解释能力的新综合变量(又称成分),然后对它们进行回归建模。偏最小二乘回归可以将建模类型的预测分析方法与非模型式的数据内涵分析方法有机地结合起来,可以同时实现回归建模、数据结构简化(主成分分析)以及两组变量间的相关性分析(典型性关分析),

偏最小二乘法

An Introduction to Partial Least Squares Regression Randall D.Tobias,SAS Institute Inc.,Cary,NC Abstract Partial least squares is a popular method for soft modelling in industrial applications.This paper intro-duces the basic concepts and illustrates them with a chemometric example.An appendix describes the experimental PLS procedure of SAS/STAT?software. Introduction Research in science and engineering often involves using controllable and/or easy-to-measure variables (factors)to explain,regulate,or predict the behavior of other variables(responses).When the factors are few in number,are not significantly redundant(collinear), and have a well-understood relationship to the re-sponses,then multiple linear regression(MLR)can be a good way to turn data into information.However, if any of these three conditions breaks down,MLR can be inefficient or inappropriate.In such so-called soft science applications,the researcher is faced with many variables and ill-understood relationships,and the object is merely to construct a good predictive model.For example,spectrographs are often used Figure2:Spectrograph for a mixture to estimate the amount of different compounds in a chemical sample.(See Figure2.)In this case,the factors are the measurements that comprise the spec-trum;they can number in the hundreds but are likely to be highly collinear.The responses are component amounts that the researcher wants to predict in future samples.Partial least squares(PLS)is a method for construct-ing predictive models when the factors are many and highly collinear.Note that the emphasis is on pre-dicting the responses and not necessarily on trying to understand the underlying relationship between the variables.For example,PLS is not usually appropriate for screening out factors that have a negligible effect on the response.However,when prediction is the goal and there is no practical need to limit the number of measured factors,PLS can be a useful tool. PLS was developed in the1960’s by Herman Wold as an econometric technique,but some of its most avid proponents(including Wold’s son Svante)are chemical engineers and chemometricians.In addi-tion to spectrometric calibration as discussed above, PLS has been applied to monitoring and controlling industrial processes;a large process can easily have hundreds of controllable variables and dozens of out-puts. The next section gives a brief overview of how PLS works,relating it to other multivariate techniques such as principal components regression and maximum re-dundancy analysis.An extended chemometric exam-ple is presented that demonstrates how PLS models are evaluated and how their components are inter-preted.A final section discusses alternatives and extensions of PLS.The appendices introduce the ex-perimental PLS procedure for performing partial least squares and related modeling techniques. How Does PLS Work? In principle,MLR can be used with very many factors. However,if the number of factors gets too large(for example,greater than the number of observations), you are likely to get a model that fits the sampled data perfectly but that will fail to predict new data well. This phenomenon is called over-fitting.In such cases, although there are many manifest factors,there may be only a few underlying or latent factors that account for most of the variation in the response.The general idea of PLS is to try to extract these latent factors, accounting for as much of the manifest factor variation

偏最小二乘法PLS回归NIPALS算法的Matlab程序及例子

偏最小二乘法PLS回归NIPALS算法的Matlab程序及例子②function [T,P,W,Wstar,U,b,C,B_pls,... Bpls_star,Xori_rec,Yori_rec,... R2_X,R2_Y]=PLS_nipals(X,Y,nfactor) % USAGE: [T,P,W,Wstar,U,b,C,Bpls,Bpls_star,Xhat,Yhat,R2X,R2Y]=PLS_nipals(X,Y,nfact) % PLS regression NIPALS algorithm PLS回归NIPALS算法 % Compute the PLS regression coefficients PLS回归系数的计算 % X=T*P' Y=T*B*C'=X*Bpls X and Y being Z-scores % B=diag(b) % Y=X*Bpls_star with X being augmented with a col of ones % and Y and X having their original units % T'*T=I (NB normalization <> SAS) % W'*W=I % % Test for PLS regression % Herve Abdi November 2002/rev November 2004 % % % Version with T, W, and C being unit normalized % U, P are not % nfact=number of latent variables to keep 保持潜在变量的数量 % default = rank(X) X_ori=X; Y_ori=Y; if exist('nfactor')~=1;nfactor=rank(X);end M_X=mean(X); M_Y=mean(Y); S_X=std(X); S_Y=std(Y); X=zscore(X); Y=zscore(Y); [nn,np]=size(X) ; [n,nq]=size(Y) ; if nn~= n; error(['Incompatible # of rows for X and Y']); end % Precision for convergence epsilon=eps; % # of components kepts % Initialistion % The Y set U=zeros(n,nfactor);

偏最小二乘回归是一种新型的多元统计数据分析方法它与

偏最小二乘回归是一种新型的多元统计数据分析方法,它与1983年由伍德和阿巴诺等人首次提出。近十年来,它在理论、方法和应用方面都得到了迅速的发展。密西根大学的弗耐尔教授称偏最小二乘回归为第二代回归分析方法。 偏最小二乘回归方法在统计应用中的重要性主要的有以下几个方面: (1)偏最小二乘回归是一种多因变量对多自变量的回归建模方法。 (2)偏最小二乘回归可以较好地解决许多以往用普通多元回归无法解决的问题。在普通多元线形回归的应用中,我们常受到许多限制。最典型的问题就是自变量之间的多重相关性。如果采用普通的最小二乘方法,这种变量多重相关性就会严重危害参数估计,扩大模型误差,并破坏模型的稳定性。变量多重相关问题十分复杂,长期以来在理论和方法上都未给出满意的答案,这一直困扰着从事实际系统分析的工作人员。在偏最小二乘回归中开辟了一种有效的技术途径,它利用对系统中的数据信息进行分解和筛选的方式,提取对因变量的解释性最强的综合变量,辨识系统中的信息与噪声,从而更好地克服变量多重相关性在系统建模中的不良作用。(3)偏最小二乘回归之所以被称为第二代回归方法,还由于它可以实现多种数据分析方法的综合应用。 由于偏最小二乘回归在建模的同时实现了数据结构的简化,因此,可以在二维平面图上对多维数据的特性进行观察,这使得偏最小二乘回归分析的图形功能十分强大。在一次偏最小二乘回归分析计算后,不但可以得到多因变量对多自变量的回归模型,而且可以在平面图上直接观察两组变量之间的相关关系,以及观察样本点间的相似性结构。这种高维数据多个层面的可视见性,可以使数据系统的分析内容更加丰富,同时又可以对所建立的回归模型给予许多更详细深入的实际解释。 一、 偏最小二乘回归的建模策略\原理\方法 1.1建模原理 设有 q 个因变量{q y y ,...,1}和p 自变量{p x x ,...,1}。为了研究因变量和自变量的统计关系,我们观测了n 个样本点,由此构成了自变量与因变量的数据表X={p x x , (1)

偏最小二乘法PLS简介

偏最小二乘法(PLS)简介 偏最小二乘法(PLS)简介 简介 偏最小二乘法是一种新型的多元统计数据分析方法,它于1983年由伍德(S.Wold)和阿巴诺(C.Albano)等人首次提出。近几十年来,它在理论、方法和应用方面都得到了迅速的发展。 偏最小二乘法 长期以来,模型式的方法和认识性的方法之间的界限分得十分清楚。而偏最小二乘法则把它们有机的结合起来了,在一个算法下,可以同时实现回归建模(多元线性回归)、数据结构简化(主成分分析)以及两组变量之间的相关性分析(典型相关分析)。这是多元统计数据分析中的一个飞跃。 偏最小二乘法在统计应用中的重要性体现在以下几个方面: 偏最小二乘法是一种多因变量对多自变量的回归建模方法。偏最小二乘法可以较好的解决许多以往用普通多元回归无法解决的问题。 偏最小二乘法之所以被称为第二代回归方法,还由于它可以实现多种数据分析方法的综合应用。 主成分回归的主要目的是要提取隐藏在矩阵X中的相关信息,然后用于预测变量Y的值。这种做法可以保证让我们只使用那些独立变量,噪音将被消除,从而达到改善预测模型质量的目的。但是,主成分回归仍然有一定的缺陷,当一些有用变量的相关性很小时,我们在选取主成分时就很容易把它们漏掉,使得最终的预测模型可靠性下降,如果我们对每一个成分进行挑选,那样又太困难了。

偏最小二乘回归可以解决这个问题。它采用对变量X和Y都进行分解的方法,从变量X和Y中同时提取成分(通常称为因子),再将因子按照它们之间的相关性从大到小排列。现在,我们要建立一个模型,我们只要决定选择几个因子参与建模就可以了 基本概念 偏最小二乘回归是对多元线性回归模型的一种扩展,在其最简单的形式中,只用一个线性模型来描述独立变量Y与预测变量组X之间的关系: Y = b0 + b1X1 + b2X2 + ... + bpXp 在方程中,b0是截距,bi的值是数据点1到p的回归系数。 例如,我们可以认为人的体重是他的身高、性别的函数,并且从各自的样本点中估计出回归系数,之后,我们从测得的身高及性别中可以预测出某人的大致体重。对许多的数据分析方法来说,最大的问题莫过于准确的描述观测数据并且对新的观测数据作出合理的预测。 多元线性回归模型为了处理更复杂的数据分析问题,扩展了一些其他算法,象判别式分析,主成分回归,相关性分析等等,都是以多元线性回归模型为基础的多元统计方法。这些多元统计方法有两点重要特点,即对数据的约束性: 变量X和变量Y的因子都必须分别从X'X和Y'Y矩阵中提取,这些因子就无法同时表示变量X和Y的相关性。 预测方程的数量永远不能多于变量Y跟变量X的数量。 偏最小二乘回归从多元线性回归扩展而来时却不需要这些对数据的约束。在偏最小二乘回归中,预测方程将由从矩阵Y'XX'Y中提取出来的因子来描述;为了更具有代表性,提取出来的预测方程的数量可能大于变量X与Y的最大数。

相关主题
文本预览
相关文档 最新文档