当前位置:文档之家› MATLAB仿真瑞利衰落信道实验报告结果

MATLAB仿真瑞利衰落信道实验报告结果

MATLAB仿真瑞利衰落信道实验报告结果
MATLAB仿真瑞利衰落信道实验报告结果

封面:

题目:瑞利衰落信道仿真实验报告

题目:MATLAB仿真瑞利衰落信道实验报告

引言

由于多径效应和移动台运动等影响因素,使得移动信道对传输信号在时间、频率和角度上造成了色散,即时间色散、频率色散、角度色散等等,因此多径信道的特性对通信质量有着重要的影响,而多径信道的包络统计特性则是我们研究的焦点。根据不同无线环境,接收信号包络一般服从几种典型分布,如瑞利分布、莱斯分布等。在此专门针对服从瑞利分布的多径信道进行模拟仿真,进一步加深对多径信道特性的了解。

一、瑞利衰落信道简介:

瑞利衰落信道(Rayleigh fading channel)是一种无线电信号传播环境的统计模型。这种模型假设信号通过无线信道之后,其信号幅度是随机的,即“衰落”,并且其包络服从瑞利分布。

二、仿真原理

(1)瑞利分布分析

环境条件:

通常在离基站较远、反射物较多的地区,发射机和接收机之间没有直射波路径(如视距传播路径),且存在大量反射波,到达接收天线的方向角随机的((0~2π)均匀分布),各反射波的幅度和相位都统计独立。

幅度与相位的分布特性:

包络 r 服从瑞利分布,θ在0~2π内服从均匀分布。瑞利分

布的概率分布密度如图

2-1所示:

图2-1 瑞利分布的概率分布密度

(2)多径衰落信道基本模型

离散多径衰落信道模型为

()1()()()

N t k k k y t r t x t τ==-∑

其中,()k r t 复路径衰落,服从瑞利分布; k τ是多径时延。 多径衰落信道模型框图如图2-2所示:

图2-2 多径衰落信道模型框图

(3)产生服从瑞利分布的路径衰落r(t)

利用窄带高斯过程的特性,其振幅服从瑞利分布,即

22()()()c s r t n t n t =+

上式中()()c s n t n t 、,分别为窄带高斯过程的同相和正交支路的基带信号。

function [h]=rayleigh(fd,t) %产生瑞利衰落信道

fc=900*10^6; %选取载波频率

v1=30*1000/3600; %移动速度v1=30km/h

c=3*10^8; %定义光速

fd=v1*fc/c; %多普勒频移

ts=1/10000; %信道抽样时间间隔

t=0:ts:1; %生成时间序列

h1=rayleigh(fd,t); %产生信道数据

v2=120*1000/3600; %移动速度v2=120km/h

fd=v2*fc/c; %多普勒频移

h2=rayleigh(fd,t); %产生信道数据

subplot(2,1,1),plot(20*log10(abs(h1(1:10000))))

title('v=30km/h时的信道曲线')

xlabel('时间');ylabel('功率')

subplot(2,1,2),plot(20*log10(abs(h2(1:10000))))

title('v=120km/h时的信道曲线')

xlabel('时间');ylabel('功率')

function [h]=rayleigh(fd,t)

%该程序利用改进的jakes模型来产生单径的平坦型瑞利衰落信道

%输入变量说明:

% fd:信道的最大多普勒频移单位Hz

% t :信号的抽样时间序列,抽样间隔单位s

% h为输出的瑞利信道函数,是一个时间函数复序列

N=40; %假设的入射波数目

wm=2*pi*fd;

M=N/4; %每象限的入射波数目即振荡器数目

Tc=zeros(1,length(t)); %信道函数的实部

Ts=zeros(1,length(t)); %信道函数的虚部

P_nor=sqrt(1/M); %归一化功率系

theta=2*pi*rand(1,1)-pi; %区别个条路径的均匀分布随机相位

for n=1:M

%第i条入射波的入射角

alfa(n)=(2*pi*n-pi+theta)/N;

fi_tc=2*pi*rand(1,1)-pi; %对每个子载波而言在(-pi,pi)之间均匀分布的随机相位

fi_ts=2*pi*rand(1,1)-pi;

Tc=Tc+2*cos(wm*t*cos(alfa(n))+fi_tc);

Ts=Ts+2*cos(wm*t*sin(alfa(n))+fi_ts); %计算冲激响应函数end;

h= P_nor*(Tc+j*Ts); %乘归一化功率系数得到传输函数

图4-1结果图片

untitled.fig

图4-2输入程序

图4-3保存程序并命名

图4-4 运行效果展示:

五、实验结论:

速度越大对信道瑞利衰落影响越大如有侵权请联系告知删除,感谢你们的配合!

三相交流电路实验报告1

中国石油大学(华东)现代远程教育 实验报告 课程名称:电工电子学 实验名称:三相交流电路 实验形式:在线模拟 +现场实践 提交形式:在线提交实验报告 学生姓名:赵军学号: 年级专业层次:14 春石油开采技术高起专 学习中心:江苏油田学习中心 提交时间:2014 年 6 月8 日

一、实验目的 1 . 练习三相交流电路中负载的星形接法。 2 . 了解三相四线制中线的作用。 二、实验原理 1 . 对称三相电路中线、相电压和线、相电流的关系,三相电路中,负载的连接分为星形连接和三角形连接两种。一般认为电源提供的是对称三相电压。 ( 1 )星形连接的负载如图1 所示: 图1 星形连接的三相电路 A、B、C表示电源端,N为电源的中性点(简称中点),N'为负载的中性点。无论是三线制或四线制,流过每一相负载的相电流恒等于与之相连的端线中的线电流: (下标I 表示线的变量,下标p 表示相的变量) 在四线制情况下,中线电流等于三个线电流的相量之和,即 端线之间的电位差(即线电压)和每一相负载的相电压之间有下列关系:

当三相电路对称时,线、相电压和线、相电流都对称,中线电流等于零,而线、相电压满足: ( 2 )三角形连接的负载如图2 所示: 其特点是相电压等于线电压: 线电流和相电流之间的关系如下: 当三相电路对称时,线、相电压和线、相电流都对称,此时线、相电流满足: 2 . 不对称三相电路 在三相三线制星形连接的电路中,若负载不对称,电源中点和负载中点的电位不再相等,称为中点位移,此时负载端各相电压将不对称,电流和线电压也不对称。 在三相四线制星形连接的电路中,如果中线的阻抗足够小,那么负载端各相电压基本对称,线电压也基本对称,从而可看出中线在负载不对称时起到了很重要的作用。但由于负载不对称,因此电流是不对称的三相电流,这时的中线电流将不再为零。 在三角形连接的电路中,如果负载不对称,负载的线、相电压仍然对称,但线、相电流不再 对称。 如果三相电路其中一相或两相开路也属于不对称情况。

瑞利信道仿真 matlab

实验一 瑞利信道的仿真 一 引言:瑞利信道介绍 瑞利衰落信道(Rayleigh fading channel )是一种无线电信号传播环境的统计模型。这种模型假设信号通过无线信道之后,其信号幅度是随机的,即“衰落”,并且其包络服从瑞利分布。[1] 瑞利分布就是两个独立的高斯分布的平方和的开方一个信号都是分为正交的两部分,而每一部分都是多个路径信号的叠加,当路径数大于一定数量的时候,他们的和就满足高斯分布。而幅度就是两个正交变量和的开平方,就满足瑞利分布了。[2] 二 实验目的: 用MATLAB 软件仿真瑞利信道,产生瑞利信道的随机数,画出产生瑞利数据的CDF 和PDF ,并求瑞利数据的均植和方差。 三 实验内容: 1、实验原理: 一个随机二维向量的两个分量呈独立的、有着相同的方差的正态分布时,这个向量的模呈瑞利分布,两个正交高斯噪声信号之和的包络服从瑞利分布。信道符合瑞利分布,做出概率密度函数曲线。这里又到了瑞利分布的概率密度函数 2 22()exp() 0r 2r r p r σσ=-≤≤∞运用公式验证瑞利信道是符合瑞利分布的。 2、程序框图

3、源程序代码 % parameters setting clc; n=0:0.1:10; sigma=1; N=100000; x=randn(1,N); y=randn(1,N); M=x+j*y; r=sqrt(sigma*(x.^2+y.^2)); % q=1-exp((-(x.^2+y.^2))/(2*sigma*sigma)); % step=0.1; %range=0:step:3; h=hist(r,n); fr_approx=h/(0.1*sum(h)); pijun=sum(r)/N; junfanghe=(r-pijun).^2; junfang=sum(junfanghe)/N; u=0; % w=hist(q,n); % fr_approx1=-w/(0.1*sum(w)); % Calculate the CDF &Drawing cdf=raylcdf(n,sigma); subplot(3,1,1); plot(n,cdf); % hold on; % plot(n,fr_approx1,'ko'); % Calculate the PDF & Drawing title('Normal cumulative distribution'); pdf=raylpdf(n,sigma); subplot(3,1,2); plot(n,pdf); title('Normal probability density'); hold on; plot(n,fr_approx,'ko'); axis([0 8 0 1]) wucha=fr_approx-pdf; subplot(3,1,3); plot(n,wucha); title('wucha'); % Generate the randoms & Calculate the mean, covariance R=raylrnd(sigma,1,1000); % subplot(3,1,3);

哈工大移动通信设计题瑞利衰落信道代码

main clc; LengthOfSignal=10240; %设置信号长度(由于最好大于两倍fc奈奎斯特采样) fm=512; %最大多普勒频移 fc=5120; %载波频率 t=1:LengthOfSignal; % SignalInput=sin(t/100); SignalInput=sin(t/100)+cos(t/65); %时域信号输入 delay=[0 21 62 100 150 250]; %设置不同路径的时延 power=[0 -1 -5 -11 -16 -20]; %功率衰减系数dB y_in=[zeros(1,delay(6)) SignalInput]; %为时移补零 y_out=zeros(1,LengthOfSignal); %时域输出信号 fori=1:6 Ray; y_out=y_out+r.*y_in(delay(6)+1-delay(i):delay(6)+LengthOfSignal-delay(i))*10^(power(i)/20); end; %进行输出信号叠加 figure(1); subplot(2,1,1); plot(SignalInput(delay(6)+1:LengthOfSignal),'r'); %画出时域信号输入波形 title('时域信号输入'); subplot(2,1,2); plot(y_out(delay(6)+1:LengthOfSignal),'r'); %画出时域信号输出波形 title('时域信号输出'); figure(2); plot(Sf1,'r'); title('多普勒滤波器的频率响应特性'); %画出多普勒滤波器的频率响应特性 Ray f=1:2*fm-1; %设置通频带宽度 y=0.5./((1-((f-fm)/fm).^2).^(1/2))/pi; %多普勒功率谱函数(基带) Sf=zeros(1,LengthOfSignal); Sf1=y;%多普勒滤波器的频率响应特性 Sf(fc-fm+1:fc+fm-1)=y; %(把基带映射到载波频率) x1=randn(1,LengthOfSignal); x2=randn(1,LengthOfSignal); nc=ifft(fft(x1+1i*x2).*sqrt(Sf)); %同相分量nc函数表达式 x3=randn(1,LengthOfSignal); x4=randn(1,LengthOfSignal);

maab瑞利衰落信道仿真

引言 由于多径和移动台运动等影响因素,使得移动信道对传输信号在时间、频率和角度上造成了色散,如时间色散、频率色散、角度色散等等,因此多径信道的特性对通信质量有着至关重要的影响,而多径信道的包络统计特性成为我们研究的焦点。根据不同无线环境,接收信号包络一般服从几种典型分布,如瑞利分布、莱斯分布和Nakagami-m分布。在本文中,专门针对服从瑞利分布的多径信道进行模拟仿真,进一步加深对多径信道特性的了解。 仿真原理 1、瑞利分布简介 环境条件: 通常在离基站较远、反射物较多的地区,发射机和接收机之间没有直射波路径,存在大量反射波;到达接收天线的方向角随机且在(0~2π)均匀分布;各反射波的幅度和相位都统计独立。 幅度、相位的分布特性: 包络 r 服从瑞利分布,θ在0~2π内服从均匀分布。瑞利分布的概率分布密度如图1所示: 图1 瑞利分布的概率分布密度 2、多径衰落信道基本模型

根据ITU-RM.1125标准,离散多径衰落信道模型为 () 1()()()N t k k k y t r t x t τ==-∑%% (1) 其中,()k r t 复路径衰落,服从瑞利分布; k τ是多径时延。 多径衰落信道模型框图如图2所示: 图2 多径衰落信道模型框图 3、产生服从瑞利分布的路径衰落r(t) 利用窄带高斯过程的特性,其振幅服从瑞利分布,即 ()r t = (2) 上式中,()c n t 、()s n t 分别为窄带高斯过程的同相和正交支路的基带信号。 首先产生独立的复高斯噪声的样本,并经过FFT 后形成频域的样本,然后与S (f )开方后的值相乘,以获得满足多普勒频谱特性要求的信号,经IFFT 后变换成时域波形,再经过平方,将两路的信号相加并进行开方运算后,形成瑞利衰落的信号r(t)。如下图3所示: 图3 瑞利衰落的产生示意图 其中,

(完整word版)基于Matlab的无线信道仿真

基于Matlab的无线信道仿真 近几年,随着无线通信业务和新兴宽带移动互联网接入业务的快速增长,对无线通信系统的优化显得尤为重要。与有线信道静态和可预测的典型特点相反,在实际中,由于无线信道动态变化且不可预测,无线通信系统的性能在很大程度上取决于无线信道环境,所以对无线信道的准确理解和仿真对设计一个高性能和高频谱效率的无线传输技术显得尤其重要。 无线信道的一个典型特征是“衰落”,衰落现象大致可分为两种类型:大尺度衰落和小尺度衰落。其中,大尺度衰落主要在移动设备通过一段较长的距离时体现,它是由信号的损耗(长距离传播)和大的障碍物(如建筑物、中间地形和植物)形成的阴影所引起的,一般分为路径损耗和阴影衰落,另一方面,小尺度衰落是指当移动台在较短距离内移动时,由多条路径的相消或相长干涉所引起信号电平的快速波动,主要表现为多径衰落。它们之间的关系如图1所示。报告中分别对这几种衰落的常见模型进行了总结和仿真。 图1 各种衰落之间的关系 一、大尺度衰落 大尺度衰落是在一个较大的范围上考察功率的渐变过程,功率的局部中值随距离变化缓慢。大尺度信道模型主要研究电波传播在时间、空间、频率范围内平均特性。 1.1 路径损耗 路径损耗由发射功率的辐射扩散及信道的传播特性造成,反映在宏观长距离

上。理论上认为,对于相同收发距离,路径损耗相同。其定义为有效发射功率和平均接收功率之间的比值。几种常用的描述大尺度衰落的模型有自由空间模型、对数距离路径损耗模型、Hata-Okumura 模型。 1.1.1自由空间模型 所谓自由空间是指天线周围为无限大真空时的电波传播,它是理想传播条件。电波在自由空间传播时,其能量既不会被障碍物所吸收,也不会产生反射或散射,传播路径上没有障碍物阻挡,到达接收天线的地面反射信号场强也可以忽略不计。 自由空间模型中路径损耗计算公式: r t r t s G G c df πP P L 142 ??? ??== 其中,t P 为发射功率,r P 为接收功率,d 为发射端与接收端距离,f 为载波频率,c 为光速取8103?,t G 为发射端天线增益,r G 为接收端天线增益。转换成分贝表示: r t r t s G G f d P P L lg 10lg 20lg 2045.32lg 10dB -++==)( 发射端与接收端均是全向天线,1==r t G G ,得图2: 图2 路径损耗随距离、频率变化曲线 1.1.2 对数距离路径损耗模型 与前面提到的自由空间路径损耗一样,在其他所有实际环境中,平均接收信号功率随距d 呈对数方式减小。通过引入随着环境而改变的路径损耗指数n 可以修正自由空间模型,从而构造出一个更为普遍的路径损耗衰落模型。

电路仿真实验报告42016年度

电路仿真实验报告 实验一直流电路工作点分析和直流扫描分析 一、实验目的 (1)学习使用Pspice软件,熟悉它的工作流程,即绘制电路图、元件类别的选择及其参数的赋值、分析类型的建立及其参数的设置、Probe窗口的设置和分析的运行过程等。 (2)学习使用Pspice进行直流工作点的分析和直流扫描的操作步骤。 二、原理与说明 对于电阻电路,可以用直观法列些电路方程,求解电路中各个电压和电流。Pspice软件是采用节点电压法对电路进行分析的。 使用Pspice软件进行电路的计算机辅助分析时,首先编辑电路,用Pspice的元件符号库绘制电路图并进行编辑。存盘。然后调用分析模块、选择分析类型,就可以“自动”进行电路分析了。 三、实验示例 1、利用Pspice绘制电路图如下 2、仿真 (1)点击Psipce/New Simulation Profile,输入名称; (2)在弹出的窗口中Basic Point是默认选中,必须进行分析的。点击确定。 (3)点击Pspice/Run(快捷键F11)或工具栏相应按钮。 (4)如原理图无错误,则显示Pspice A/D窗口。

(5)在原理图窗口中点击V,I工具栏按钮,图形显示各节点电压和各元件电流值如下。 四、选做实验 1、直流工作点分析,即求各节点电压和各元件电压和电流。 2、直流扫描分析,即当电压源的电压在0-12V之间变化时,求负载电阻R l中电流虽电压源的变化

曲线。 曲线如图: 直流扫描分析的输出波形3、数据输出为: V_Vs1 I(V_PRINT1) 0.000E+00 1.400E+00 1.000E+00 1.500E+00 2.000E+00 1.600E+00 3.000E+00 1.700E+00 4.000E+00 1.800E+00 5.000E+00 1.900E+00 6.000E+00 2.000E+00 7.000E+00 2.100E+00 8.000E+00 2.200E+00 9.000E+00 2.300E+00 1.000E+01 2.400E+00 1.100E+01 2.500E+00 1.200E+01 2.600E+00

一种基于MATLAB的瑞利信道仿真方法研究

一种基于MATLAB 的瑞利信道仿真方法研究 王志杨1, 刘金龙2 (1.安徽电子信息职业技术学院信息工程系,安徽蚌埠 233030;2.淮海工学院电子工程学院,江苏连云港 222005) 摘 要:瑞利信道的仿真在无线通信系统的仿真中具有重要的意义.文章首先给出瑞利信道的概 念,并参照Jakes 模型,采用MATLAB 软件,仿真出了多径瑞利信道.为了得到每径独立的瑞利分 布,提出了衰落计数器的概念.通过调整不同路径波形衰落计数器的起始时间达到每径独立分布, 且计算复杂度较低.最后通过评估程序证明了仿真方法的正确性.该方法为研究不同通信系统在瑞 利信道下的相关性能奠定了基础. 关键词:瑞利信道;信道仿真;Jakes 模型;多径传输 中图分类号:TN914.3 文献标识码:A 文章编号:1001-2443(2012)03-0234-06 引 言 对于基站到移动台这样一个发送接收系统来说,理想的无线信号传播(自由空间传播模型)是由基站发送的电磁波经过一定衰减达到移动台,我们可以理解为信号沿着基站到移动台的直线传播.虽然,电磁波实际上是以球面波的形式向周围360度辐射,但是只有沿着直线传播的信号才能抵达移动台,这条路径称为直射路径[1].而对于实际的大气传播环境,大气中包含着许多的小颗粒(悬浮物),或者由于建筑物和树木阻挡,从基站出发,沿着非直射方向传播的电磁波可能经过一系列的反射、散射、衍射后而抵达接收端, 我们把 图1 信号的多径传播 Figure 1 The multipath transmis s i on of signal 这种路径称为散射路径(见图1).和直接波相比,后到达的波形称为延迟波.由于每一条散射路径经历的路程都不一样,这样,接收波相位各不相同.如果恰巧各个相位相同,多个信号进行叠加会导致总的信号增强,而如果相位互不相同,各个信号叠加则会互相抵消,导致总的信号强度降低.这样,我们把由于信号经过了多收稿日期:2011-12-01 基金项目:安徽电子信息职业技术学院院级研究课题ADZX1007).作者简介:王志杨(1982-),男,回族,安徽蚌埠人,硕士,讲师,主要研究方向:OFDM 、3G 移动通信、信道建模. 第35卷3期 2012年5月 安徽师范大学学报(自然科学版)Journal of Anhui Normal University (Natural Science)Vol.35No.3M ay.2012

电工电子综合实验1--裂相电路仿真实验报告格 2

电子电工综合实验论文 专题:裂相(分相)电路 院系:自动化学院 专业:电气工程及其自动化 姓名:小格子 学号: 指导老师:徐行健

裂相(分相)电路 摘要: 本实验通过仿真软件Mulitinism7,研究如何将一个单相的交流分裂成多相交流电源的问题。用如下理论依据:电容、电感元件两端的电压和电流相位差是90度,将这种元件和与之串联的电阻当作电源,这样就可以把单相交流源分裂成两相交流电源、三相电源。同时本实验还研究了裂相后的电源接不同的负载时电压、功率的变化。得到如下结论: 1.裂相后的电源接相等负载时两端的电压和负载值成正相关关系; 2.接适当的负载,裂相后的电路负载消耗的功率将远大于电源消耗的功率; 3.负载为感性时,两实验得到的曲线差别较小,反之,则较大。 关键词:分相两相三相负载功率阻性容性感性 引言 根据电路理论可知,电容元件和电感元件最容易改变交流电的相位,又因它们不消耗能量,可用作裂相电路的裂相元件。所谓裂相,就是将适当的电容、电感与三相对称负载相配接,使三相负载从单相电源获得三相对称电压。而生活和工作中一般没有三相动力电源,只有单相电源,如何利用单相电源为三相负载供电,就成了值得深入研究的问题了。 正文 1.实验材料与设置装备 本实验是理想状态下的实验,所有数据都通过在电路专用软件Multisim 7中模拟实验测得的;所有实验器材为(均为理想器材) 实验原理: (1). 将单相电源分裂成两相电源的电路结构设计 把电源U1分裂成U1和U2输出电压,如下图所示为RC桥式分相电压原理,可以把输入电压分成两个有效值相等,相位相差90度的两个电压源。 上图中输出电压U1和U2与US之比为

移动通信瑞利衰落信道建模及仿真

移动通信瑞利衰落信道建模及仿真 信息与通信工程学院 09211123班 09212609 蒋砺思 摘要:首先分析了移动信道的表述方法和衰落特性,针对瑞利衰落,给出了Clarke模型,并阐述了数学模型与物理模型之间的关系,详细分析了Jakes仿真方法,并用MATLAB进行了仿真,并在该信道上实现了OFDM仿真系统,仿真曲线表明结果正确,针对瑞利衰落的局限性,提出了采用Nakagami-m分布作为衰落信道物理模型,并给出了新颖的仿真方法。 关键词:信道模型;Rayleigh衰落;Clarke模型;Jakes仿真;Nakagami-m分布及仿真 一.引言 随着科学技术的不断进步和经济水平的逐渐提高,移动通信已成了我们日常生活中不可缺少的必备品。然而,移动通信中的通话常常受到各种干扰导致话音质量的不稳定。本文应用统计学及概率论相关知识对移动通信的信道进行建模仿真和详尽的分析。 先来谈谈移动通信的发展历史和发展趋势。所谓通信就是指信息的传输、发射和接收。人类通信史上革命性的变化是从电波作为信息载体(电信)开始的,近代电信的标志是电报的诞生。为了满足人们随时随地甚至移动中通信的需求,移动通信便应运而生。所谓移动通信是指通信的一方或双方处于移动中,其传播媒介是无线电波,现代移动通信以Maxwel1理论为基础,他奠定了电磁现象的基本规律;起源于Hertz的电磁辐射,他认识到电磁波和电磁能量是可以控制发射的,而Marconi无线电通信证实了电磁波携带信息的能力。第二次世界大战结束后,开始了建立公用移动通信系统阶段。这第一代移动通信系统最大缺点是采用模拟技术,频谱利用律低,容量小。90年代初,各国又相继推出了GSM等第二代数字移动通信系统,其最大缺点是频谱利用率和容量仍然很低,不能经济的提供高速数据和多媒体业务,不能有效地支持Internet业务。90年代中期以后,许多国家相继开始研究第三代移动通信系统,目前,我国及其他国家已开始了第四代移动通信的研究。相比之前的系统,3G或4G有以下一些特点:1.系统的国际通用性:全球覆盖和漫游。2.业务多样性,提供话音、数据和多媒体业务,支持高速移动。3.频谱效率高,容量大。4.提供可变速率业务,具有QoS保障。在3G或4G的发展中,一个核心问题就是系统的高速数据传输与信道衰落之间的矛盾。从后面的分析中,我们会看到多径衰落是影响移动通信质量的重要因素,而高速数据传输和移动终端高速移动会加剧多径衰落,因此,抗衰落是3G或4G的重要技术,对移动信道的研究是抗衰落的基础,建模及仿真是研究衰落信道的基本方法之一。 再来看看移动通信系统组成及移动信道特点。移动通信组成如图(1)所示,包括信源、信道、信宿,无线信道是移动通信系统的重要

电工电子学实验报告_实验三_三相交流电路.doc

一、实验目的 1.学习三相交流电路中三相负载的连接。 2.了解三相四线制中线的作用。 3.掌握三相电路功率的测量方法。 二、主要仪器设备 1.实验电路板 2.三相交流电源 3.交流电压表或万用表 4.交流电流表 5.功率表 6.单掷刀开关 7.电流插头、插座 三、实验内容 1.三相负载星形联结 按图 3-2 接线,图中每相负载采用三只白炽灯,电源线电压为220V。 图3-2 三相负载星形联结 (1) 测量三相四线制电源的线电压和相电压,记入表3-1( 注意线电压和相电压的关系) 。 U UV/V U VW/V U WU/V U UN/V U VN/V U WN/V 219218 220127 127127 表 3-1 (2)按表 3-2 内容完成各项测量,并观察实验中各白炽灯的亮度。表中对称负载时为每相开亮三 只灯;不对称负载时为 U相开亮一只灯, V 相开亮两只灯, W相开亮三只灯。 测量值相电压相电流中线电流中点电压负载情况U UN’ /V U VN’ /V U WN’ /VI U/AI V/AI W/A I N/A U N’N/V 对称有中线124 124 124 0 负载无中线125 125 123 1 不对称有中线126 125 124

负载 无中线 167 143 78 50 表 3-2 2. 三相负载三角形联结 按图 3-3 连线。测量功率时可用一只功率表借助电流插头和插座实现一表两用, 具体接法见图 3-4 所示。接好实验电路后,按表 3-3 内容完成各项测量,并观察实验中白炽灯的亮度。表中对称负载和不 对称负载的开灯要求与表 3-2 中相同。 图 3-3 三相负载三角形联结 图 3-4 两瓦特表法测功率 测量值 线电流 (A) 相电流 (A) 负载电压 (V) 功率 (W) 负载情况 I U I V I W I UV I VW I WU UV VW WU 1 2 U U U P P 对称负载 213 212 215 -111 -109 不对称负载 220 217 216 表 3-3

(精选)信道衰落模型汇总

简单模型2种:常量(Constant )模型和纯多普勒模型 1. 常量(Constant )模型: 常量模型既没有衰落,也没有多普勒频移,适用于可预测的固定业务无线信道。其幅度分布的概率密度函数(PDF )为: 0(r)A (r r ) p δ=- 式中r 为信道响应的幅度,A 为概率常数。 常量模型的多普勒谱为: ()db d f P B f δ= 式中fd 为最大多普勒频移,f 为基带频率,B 为常数。 2. 纯多普勒模型: 纯多普勒模型无衰落,但有多普勒频移,适用于可预测的移动业务无线信道。其幅度分布与常量模型相同,多普勒谱为: ()x db d d f f P C f f δ=-,C 为常数。 由于移动通信中移动台的移动性,无线信道中存在多普勒效应。在移动通信中,当移动台移向基站时,频率变高,远离基站时,频率变低。我们在移动通信中要充分考虑“多普勒效应”。虽然,由于日常生活中,我们移动速度的局限,不可能会带来十分大的频率偏移,但是这不可否认地会给移动通信带来影响,为了避免这种影响造成我们通信中的问题,我们不得不在技术上加以各种考虑。也加大了移动通信的复杂性。 3. 瑞利模型: 瑞利衰落信道(Rayleigh fading channel )是一种无线电信号传播环境的统计模型。这种模型假设信号通过无线信道之后,其信号幅度是随机的,即“衰落”,并且其包络服从瑞利分布。这一信道模型能够描述由电离层和对流层反射的短波信道,以及建筑物密集的城市环境。瑞利衰落只适用于从发射机到接收机不存在直射信号(LoS ,Line of Sight )的情况,否则应使用莱斯衰落信道作为信道模型。在无线通信信道环境中,电磁波经过反射折射散射等多条路径传播到达接收机后,总信号的强度服从瑞利分布。 同时由于接收机的移动及其他原因,信号强度和相位等特性又在起伏变化, 故称为瑞利衰落。

三相交流电路实验报告-百度文库(精)

三相交流电路实验报告-百度文库(精)

中国石油大学(华东)现代远程教育 实验报告 课程名称:电工电子学 实验名称:三相交流电路 实验形式:在线模拟+现场实践 提交形式:在线提交实验报告 学生姓名:毕义合学号:12952112061 年级专业层次:网络12春高起专 学习中心:建设工程分院函授站 提交时间: 2013 年 6 月 23 日

一、实验目的 1. 练习三相交流电路中负载的星形接法。 2. 了解三相四线制中线的作用。 二、实验原理 1. 对称三相电路中线、相电压和线、相电流的关系,三相电路中,负载的连接分为星形连接和三角形连接两种。一般认为电源提供的是对称三相电压。 (1)星形连接的负载如图1所示: 图1 星形连接的三相电路

A、B、C表示电源端,N为电源的中性点(简称中点),N' 为负载的中性点。无论是三线制或四线制,流过每一相负载的相电流恒等于与之相连的端线中的线电流: (下标I表示线的变量,下标p表示相的变量) 在四线制情况下,中线电流等于三个线电流 的相量之和,即 端线之间的电位差(即线电压)和每一相负载的相电压之间有下列关系: 当三相电路对称时,线、相电压和线、相电流都对称,中线电流等于零,而线、相电压满足: (2)三角形连接的负载如图2所示:

其特点是相电压等于线电压: 线电流和相电流之间的关系如下: 当三相电路对称时,线、相电压和线、相电 流都对称,此时线、相电流满足: 2.不对称三相电路 在三相三线制星形连接的电路中,若负载不对称,电源中点和负载中点的电位不再相等,称

为中点位移,此时负载端各相电压将不对称,电流和线电压也不对称。 在三相四线制星形连接的电路中,如果中线的阻抗足够小,那么负载端各相电压基本对称,线电压也基本对称,从而可看出中线在负载不对称时起到了很重要的作用。但由于负载不对称,因此电流是不对称的三相电流,这时的中线电流将不再为零。 在三角形连接的电路中,如果负载不对称,负载的线、相电压仍然对称,但线、相电流不再对称。 如果三相电路其中一相或两相开路也属于不对称情况。 3.三相负载接线原则 连接后加在每相负载上的电压应等于其额定

瑞利信道仿真

瑞利衰落信道的matlab仿真 瑞利衰落信道(Rayleigh fading channel)是一种无线电信号传播环境的统计模型。这种模型假设信号通过无线信道之后,其信号幅度是随机的,即“衰落”,并且其包络服从瑞利分布。 模型的适用 瑞利衰落模型适用于描述建筑物密集的城镇中心地带的无线信道。密集的建筑和其他物体使得无线设备的发射机和接收机之间没有直射路径,而且使得无线信号被衰减、反射、折射、衍射。在曼哈顿的实验证明,当地的无线信道环境确实接近于瑞利衰落。[3]通过电离层和对流层反射的无线电信道也可以用瑞利衰落来描述,因为大气中存在的各种粒子能够将无线信号大量散射。 瑞利衰落属于小尺度的衰落效应,它总是叠加于如阴影、衰减等大尺度衰落效应上。 信道衰落的快慢与发射端和接收端的相对运动速度的大小有关。相对运对导致接收信号的多普勒频移。图中所示即为一固定信号通过单径的瑞利衰落信道后,在1秒内的能量波动,这一瑞利衰落信道的多普勒频移最大分别为10Hz和100Hz,在GSM1800MHz的载波频率上,其相应的移动速度分别为约6千米每小时和60 千米每小时。特别需要注意的是信号的“深衰落”现象,此时信号能量的衰减达到数千倍,即30~40分贝。 性质 多普勒功率普密度

, 瑞利衰落信道的仿真 根据上文所述,瑞利衰落信道可以通过发生实部和虚部都服从独立的高斯分布变量来仿真生成。不过,在有些情况下,研究者只对幅度的波动感兴趣。针对这种情况,有两种方法可以仿真产生瑞利衰落信道。这两种方法的目的是产生一个信号,有着上文所示的多普勒功率谱或者等效的自相关函数。这个信号就是瑞利衰落信道的冲激响应。 Jakes模型和clark模型 本次只以下图所示的模型来仿真单路信号的产生。课本上也有相关的分析。

(完整word版)MATLAB仿真瑞利衰落信道实验报告结果

封面: 题目:瑞利衰落信道仿真实验报告

题目:MATLAB仿真瑞利衰落信道实验报告 引言 由于多径效应和移动台运动等影响因素,使得移动信道对传输信号在时间、频率和角度上造成了色散,即时间色散、频率色散、角度色散等等,因此多径信道的特性对通信质量有着重要的影响,而多径信道的包络统计特性则是我们研究的焦点。根据不同无线环境,接收信号包络一般服从几种典型分布,如瑞利分布、莱斯分布等。在此专门针对服从瑞利分布的多径信道进行模拟仿真,进一步加深对多径信道特性的了解。 一、瑞利衰落信道简介: 瑞利衰落信道(Rayleigh fading channel)是一种无线电信号传播环境的统计模型。这种模型假设信号通过无线信道之后,其信号幅度是随机的,即“衰落”,并且其包络服从瑞利分布。 二、仿真原理 (1)瑞利分布分析 环境条件: 通常在离基站较远、反射物较多的地区,发射机和接收机之间没有直射波路径(如视距传播路径),且存在大量反射波,到达接收天线的方向角随机的((0~2π)均匀分布),各反射波的幅度和相位都统计独立。 幅度与相位的分布特性: 包络 r 服从瑞利分布,θ在0~2π内服从均匀分布。瑞利分

布的概率分布密度如图2-1所示: 00.51 1.52 2.53 00.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 图2-1 瑞利分布的概率分布密度 (2)多径衰落信道基本模型 离散多径衰落信道模型为 ()1()()() N t k k k y t r t x t τ==-∑ 其中,()k r t 复路径衰落,服从瑞利分布; k τ是多径时延。 多径衰落信道模型框图如图2-2所示:

MATLAB仿真瑞利衰落信道实验报告结果

封面: 题目:瑞利衰落信道仿真实验报告 题目:MATLAB仿真瑞利衰落信道实验报告 引言 由于多径效应与移动台运动等影响因素,使得移动信道对传输信号在时间、频率与角度上造成了色散,即时间色散、频率色散、角度色散等等,因此多径信道得特性对通信质量有着重要得影响,而多径信道得包络统计特性则就是我们研究得焦点。根据不同无线环境,接收信号包络一般服从几种典型分布,如瑞利分布、莱斯分布等。在此专门针对服从瑞利分布得多径信道进行模拟仿真,进一步加深对多径信道特性得了解、 一、瑞利衰落信道简介: 瑞利衰落信道(Rayleigh fading channel)就是一种无线电信号传播环境得统计模型、这种模型假设信号通过无线信道之后,其信号幅度就是随机得,即“衰落”,并且其包络服从瑞利分布。 二、仿真原理 (1)瑞利分布分析 环境条件: 通常在离基站较远、反射物较多得地区,发射机与接收机之间没有直射波路径(如视距传播路径),且存在大量反射波,到达接收天线得方向角随机得((0~2π)均匀分布),各反射波得幅度与相位都统计独立。

幅度与相位得分布特性: 包络 r 服从瑞利分布,θ在0~2π内服从均匀分布。瑞利分布得概率分布密度如图2-1所示: 图2-1瑞利分布得概率分布密度 (2)多径衰落信道基本模型 离散多径衰落信道模型为 其中,复路径衰落,服从瑞利分布; 就是多径时延。多径衰落信道模型框图如图2—2所示:

图2-2 多径衰落信道模型框图 (3)产生服从瑞利分布得路径衰落r(t) 利用窄带高斯过程得特性,其振幅服从瑞利分布,即 上式中,分别为窄带高斯过程得同相与正交支路得基带信号。 三、仿真程序: function[h]=rayleigh(fd,t) %产生瑞利衰落信道 fc=900*10^6;%选取载波频率 v1=30*1000/3600;%移动速度v1=30km/h c=3*10^8; %定义光速 fd=v1*fc/c; %多普勒频移 ts=1/10000; %信道抽样时间间隔 t=0:ts:1; %生成时间序列 h1=rayleigh(fd,t); %产生信道数据 v2=120*1000/3600; %移动速度v2=120km/h fd=v2*fc/c; %多普勒频移 h2=rayleigh(fd,t); %产生信道数据 subplot(2,1,1),plot(20*log10(abs(h1(1:10000)))) title(’v=30km/h时得信道曲线’) xlabel(’时间’);ylabel(’功率’) subplot(2,1,2),plot(20*log10(abs(h2(1:10000)))) title('v=120km/h时得信道曲线') xlabel('时间');ylabel(’功率’)

MQAM在瑞利信道下的性能仿真

课程设计(II)通信系统仿真 MQAM在瑞利信道下的性能仿真

1、课程设计目的 (1)了解MQAM多进制幅度调制技术原理 (2)在MATLAB环境下编程实现调制、解调过程 (3)在MATLAB环境下仿真不同MQAM的误码率,并绘制曲线 (4)比较16QAM误比特率在理论和实际条件下的误差 2、课程设计内容 本课题在MATLAB环境下,进行多进制调制在瑞利信道下进行信号传输的仿真实验,传输信号在发送端进行MQAM调制,并分析在不同的多进制调制下,信号在瑞利信道下的性能,并比较。 3、设计与实现过程 3.1 设计思想和设计流程 首先进行系统的分析的设计,整个设计分为如下几个部分:随机序列的产生,序列的串并和并串转换,16QAM调制,星座图的绘制,16QAM解调,加入噪声,误码率的测量及绘图。 MQAM信号由2个独立的基带波形对2个相互正交的同频载波进行调制而构成,利用其在同一带宽内频谱正交的性质来实现两路并行的数字信息传输。 调制后的信号经信道传输,由于信道的非理想特性,MQAM信号会发生频率选择性衰减/码间干扰、相位旋转以及受各种噪声的影响,这部分影响都包含在信道模型中。 数字通信中数据采用二进制数表示,星座点的个数是2的幂。常见的MQAM 形式有16-QAM、64-QAM、256-QAM等。星座的点数越多,符号能够传输的数据量就越大。但是,如果在星座图的平均能量保持不变的情况下增加星座点,基于星座图聚类的方法成为了数字幅相调制信号识别的重要方法之一。会使星座点之间的距离变小,进而导致误码率上升。因此高阶星座图的可靠性比低阶要差。 3.1.1 调制器 串并转换单元、IQ分路单元及调制混频器组成了MQAM系统的调制器。将串行数据转换成并行数据是通过串并转换完成的;IQ分路主要的作用是检测调制的要求,调制混频器的作用是把I、Q两路信号混频及合成,最终形成调制信号输出。 MQAM的调制方式有两种:正交调幅法和复合相移法。本次仿真针对

matlab瑞利衰落信道仿真

m a t l a b瑞利衰落信道仿真 Prepared on 24 November 2020

引言 由于多径和移动台运动等影响因素,使得移动信道对传输信号在时间、频率和角度上造成了色散,如时间色散、频率色散、角度色散等等,因此多径信道的特性对通信质量有着至关重要的影响,而多径信道的包络统计特性成为我们研究的焦点。根据不同无线环境,接收信号包络一般服从几种典型分布,如瑞利分布、莱斯分布和Nakagami-m 分布。在本文中,专门针对服从瑞利分布的多径信道进行模拟仿真,进一步加深对多径信道特性的了解。 仿真原理 1、瑞利分布简介 环境条件: 通常在离基站较远、反射物较多的地区,发射机和接收机之间没有直射波路径,存在大量反射波;到达接收天线的方向角随机且在(0~2π)均匀分布;各反射波的幅度和相位都统计独立。 幅度、相位的分布特性: 包络 r 服从瑞利分布,θ在0~2π内服从均匀分布。瑞利分布的概率分布密度如图1所示: 图1 瑞利分布的概率分布密度 2、多径衰落信道基本模型 根据标准,离散多径衰落信道模型为 () 1 ()()() N t k k k y t r t x t τ==-∑ (1)

其中,()k r t 复路径衰落,服从瑞利分布; k τ是多径时延。 多径衰落信道模型框图如图2所示: 图2 多径衰落信道模型框图 3、产生服从瑞利分布的路径衰落r(t) 利用窄带高斯过程的特性,其振幅服从瑞利分布,即 ()r t = (2) 上式中,()c n t 、()s n t 分别为窄带高斯过程的同相和正交支路的基带信号。 首先产生独立的复高斯噪声的样本,并经过FFT 后形成频域的样本,然后与S (f )开方后的值相乘,以获得满足多普勒频谱特性要求的信号,经IFFT 后变换成时域波形,再经过平方,将两路的信号相加并进行开方运算后,形成瑞利衰落的信号r(t)。如下图3所示: 图3 瑞利衰落的产生示意图 其中, ()S f = (3) 4、 产生多径延时k τ 多径/延时参数如表1所示: 表1 多径延时参数

基于multisim的晶闸管交流电路仿真实验分析报告

基于multisim的晶闸管交流电路仿真实验报告

————————————————————————————————作者:————————————————————————————————日期:

自动化(院、系)自动化专业112 班组电力电子技术课 学号21 姓名易伟雄实验日期2013.11.24 教师评定 实验一、基于Multisim的晶闸管交流电路仿真实验 一、实验目的 (1)加深理解单相桥式半控整流电路的工作原理。 (2)了解晶闸管的导通条件和脉冲信号的参数设置。 二、实验内容 2.1理论分析 在单相桥式半控整流阻感负载电路中,假设负载中电感很大,且电路已工作于稳态。在u2正半周,触发角α处给晶闸管VT1加触发脉冲,u2经VT1和VD4向负载供电。u2过零变负时,因电感作用使电流连续,VT1继续导通。但因a点电位低于b点电位,使得电流从VD4转移至VD2,VD4关断,电流不再流经变压器二次绕组,而是由VT1和VD2续流。此阶段,忽略器件的通态压降,则ud=0,不会像全控桥电路那样出现ud为负的情况。 在u2负半周触发角α时刻触发VT3,VT3导通,则向VT1加反压使之关断,u2经VT3和VD2向负载供电。u2过零变正时,VD4导通,VD2关断。VT3和VD4续流,ud又为零。此后重复以上过程。 2.2仿真设计

(院、系)专业班组课学号姓名实验日期教师评定 触发脉冲的参数设计如下图

(院、系)专业班组课学号姓名实验日期教师评定 2.3仿真结果 当开关S1打开时,仿真结果如下图

(院、系)专业班组课学号姓名实验日期教师评定 三、实验小结与改进 此次实验在进行得过程中遇到了很多的问题,例如:触发脉冲参数的设置,元器件的选择等其中。还有一个问题一直困扰着我,那就是为什么仿真老是报错。后来,通过不断在实验中的调试发现,这是因为一些元器件的参数设置过小,导致调试出错。总的来说,这次实验发现了很多问题,但在反复的调试下,最后我还是完成了实验。同时,也让我认识到实践比理论更难掌握。通过不断的发现问题,然后逐一解决问题,最后得出自己的结论,我想实验的乐趣就在于此吧。 而对于当开关S1打开时的实验结果,这是因为出现了失控现象。我从书中发现:当一个晶闸管持续导通而二极管轮流导通的情况,这使ud成为正弦半波,即半周期ud 为正弦,另外半周期ud为零,其平均值保持恒定,相当于单相半波不可控整流电路时的波形 另外,在实验过程中,我们如果进行一些改进:电路在实际应用中可以加设续流二极管,以避免可能发生的失控现象。实际运行中,若无续流二极管,则当α突然增大至180度或触发脉冲丢失时,会发生一个晶闸管持续导通而二极管轮流导通的情况,这使ud成为正弦半,即半周期ud为正弦,另外半周期ud为零,其平均值保持恒定,相当于单相半波不可控整流电路时的波形。有二极管时,续流过程由二极管完成,在续流阶段晶闸管关断,这就避免了某一个晶闸管持续导通从而导致失控的想象。同时续流期间导电回路中只有一个管压降,少了一个管压降,有利于降低损耗。

课程设计分析方案——matlab瑞利衰落信道仿真

目录 摘要 (1) 1、设计原理 (2) 1.1设计目的 (2) 1.2仿真原理 (2) 1.2.1瑞利分布简介 (2) 1.2.2多径衰落信道基本模型 (2) 1.2.3产生服从瑞利分布的路径衰落 r(t> (3) 1.2.4产生多径延时 (4) 1.3仿真框架 (4) 2、设计任务 (4) 2.1设计任务要求 (4) 2.2 MATLAB 仿真程序要求 (4) 3、DSB调制解调分析的MATLAB实现 (5) 3.1 DSB调制解调的MATLAB实现 (5) 3.2瑞利衰落信道的MATLAB实现 (6) 4、模拟仿真及结果分析 (7) 4.1模拟仿真 (7) 4.1.1多普勒滤波器的频响 (7)

4.1.2多普勒滤波器的统计特性 (7) 4.1.3信道的时域输入/输出波形 (8) 4.2仿真结果分析 (8) 4.2.1时域输入/输出波形分 析 (8) 4.2.2频域波形分 析 (8) 4.2.3多普勒滤波器的统计特性分 析 (9) 5、小结与体会 (9) 6、参考文献 (9) MATLAB 通信仿真设计 摘要主要运用MATLAB进行编程,实现采用对输入信号进行抑制载波的双边带调幅;而后将调幅波输入信道,研究多径信道的特性对通信质量的影响;最后将信道内输出的条幅波进行同步解调,解调出与输入信号波形相类似的波形,

观测两者差别。同时输出多普勒滤波器的统计特性图及信号时域和频域的输入、输出波形。 关键字:双边带调幅瑞利衰落相干解调MATLAB 1、设计原理 1.1设计目的 由于多径和移动台运动等影响因素,使得移动信道对传输信号在时间、频率和角度上造成了色散,如时间色散、频率色散、角度色散等等,因此多径信道的特性对通信质量有着至关重要的影响,而多径信道的包络统计特性成为我们研究的焦点。根据不同无线环境,接收信号包络一般服从几种典型分布,如

相关主题
文本预览
相关文档 最新文档