当前位置:文档之家› 轿车车身主断面设计方法

轿车车身主断面设计方法

轿车车身主断面设计方法
轿车车身主断面设计方法

轿车车身主断面设计方法

卢金火

北京精卫全能科技有限公司

摘要本文介绍了车身主断面的设计流程,重点讨论了车身主断面的设计方法与主断面所表达的内容。

主题词:车身结构设计主断面工程可行性分析

Abstract: This paper introduces the design flow of master section of body, mainly discussed the design methods and the contents of master section for body.

Keyword: Body S tructure design Master section Manufacturability

1 前言

车身主断面设计是汽车车身设计中的重要环节,它贯穿于整个汽车车身设计开发过程中,从车身油泥模型制作开始到车身结构设计完成的整个过程中,它是车身工程可行性分析的重要手段和指导车身结构设计的重要依据⑴;车身主断面定义了零件之间的结构断面形式以及装配、焊接、密封、涂胶等关系。

2 车身主断面的设计流程

图1所示为汽车车身主断面设计流程图。在进行车身主断面和车身结构设计时,首先要选择一款合理的标杆样车,这样会给设计工作带来许多好处。选择标杆样车的原则是:①车身结构形式借鉴意义较大;②造型风格类同;③车型、档次类同。为了使车身主断面和结构设计工作更加顺利、可靠地进行,一般先对标杆样车进行逆向建模,建模内容包括三维数模与二维主断面;在定义车身主断面位置时,标杆样车和新车型主断面的位置一定要协调一致。以建立的三维数模与二维主断面为依据,对标杆样车进行各种性能评价,如标杆样车的整体扭转、弯曲刚度分析,车身接头部位的刚度分析、车身门洞部位的刚度分析,车身骨架关键部位封闭断面的封闭面积、转动惯量系数的计算,这些部位主要包括:A、B、C、D柱断面、门槛断面、顶盖侧围断面、前后风挡断面等,这些部位断面的封闭面积、转动惯量系数的大小将极大地影响着整个白车身的刚度好坏。根据计算出白车身各个部位的封闭面积、材料面积、转动惯量系数的大小,就能判断出标杆样车的刚度分布状况,找出白车身刚度过剩和不足的部位,在新车型设计时,对原车刚度不足的部位进行加强设计,对原车刚度过剩的部位进行削弱设计,使新设计的车身具有一个良好的刚度分布状态。除对标杆样车进行刚度分析外,还应对标杆样车进行正碰、侧碰、追尾碰撞、低速正碰、翻滚压顶的CAE分析,根据国家碰撞法规,判断车身结构的耐碰撞性,并根据标杆样车的碰撞CAE结果,来指导新车型的车身主断面和结构设计⑵⑶。

图 1 车身主断面流程图

在整个车身开发流程中,主断面设计始于车身的油泥模型的制作过程中,在油泥模型的制作过程中,要进行油泥模型的工程可行性分析,主断面是工程可行性分析的有力工具之一。在油泥模型制作初始阶段,应在模型关键位置和危险断面,提取一些断面数据,然后输入CAD软件之中,进行相关内容的分析,如结构可行性分析、运动干涉分析、装配可行性分析、焊接可行性分析、冲压可行性分析等内容;为了更加准确地进行上述分析,可以采集车身油泥模型的表面数据,建立汽车车身CLASS-B表面模型,进行车身表面三维数据的工程可行性分析,进行初始的工程可行性分析后,就形成了第一版的新开发车型的主断面数据,并作为今后车身三维结构设计的依据;在以此车身主断面为依据进行车身三维结构设计的过程中,会发现一些结构设计不合理、实现困难甚至无法实现的问题,这样反过来就要修改有关的断面数据,使之符合三维结构设计要求,通过反复修改主断面设计和三维结构设计的相互关系,就能使主断面设计与三维结构设计匹配、协调地进行,形成用户满意的最终主断面,完成车身主断面的设计工作。

3 主断面的位置与主断面的清单

在进行车身主断面详细设计前,必须先定义好车身主断面的数量、相应的位置与方位,而且要充分定义好主断面所要表达的内容和主断面的排列顺序,然后形成车身主断面清单;这些内容必须与用户进行反复协商与讨论,取得共同一致的意见并形成相关的技术文件,作为今后工作的依据。图2所示是车身主断面的分布图。

图2 车身主断面分布图

4车身主断面表达的内容

下面将针对汽车车身的设计特点,详细介绍一下车身主断面的设计方法与所要表达的内容:

4.1 车身主断面的设计基本要素

4.1.1断面基准定义

因车身CLASS-A表面是呈现汽车车身外表面形状与尺寸的表面,因此,对汽车外覆盖件、外装饰件而言,外表面就是这些零件的基准面;而对内覆盖件而言,内覆盖件的设计基准面是加工该零件拉延模的凸模表面。在主断面图绘制时,要求基准面不仅有倒圆信息,而且带有理论交点信息;而非基准面不带理论交点,只带倒圆信息。

4.1.2零件焊接面之间的圆角半径定义

图3所示是两零件焊接面之间的圆角半径定义关系图,为了使两焊接零件在圆角处不产生干涉,使焊接面能正常贴合,内外板金件的圆角一定要合理定义。当R1≤15mm时,R2=R1+2mm;当15<R1≤30mm时,R2=R1+3mm;当R1>30mm时,R2=R1+5mm。

图3 圆角定义

4.1.3 门洞法兰面相关参数的定义

如图4所示是B柱断面结构图,图中L1为板金件内外板边缘线的落差值,该值应定义为1mm。理由是以侧围外板密封条安装面的边缘线为安装密封条的基准线,考虑到板金件冲压修边线制造误差和焊接装配误差,保证侧围外板、B柱内板、B柱加强板焊接后,侧围外板密封条安装面的边缘线始终是这些零件的最外缘边,避免这些板金件焊接后的边缘线参差不齐,影响门洞密封条的安装精度;L2为侧围外板门洞法兰面的宽度,该宽度一般定义为15-18mm,该尺寸主要考虑焊接要求,密封条安装要求等因素;圆角R1一般定义为3-6mm,该尺寸主要考虑冲压、焊接工艺要求与安装密封条的要求;α为B柱侧面的斜角,一般定义为大于4°,主要考虑冲压工艺要求和保证适当的断面封闭面积。

图4 B柱断面结构参数

4.1.4包边结构相关参数的定义

图5所示为车门包边结构参数图。

图5 车门包边结构参数

4.2 关键车身主断面详解

4.2.1前门、侧围上部、顶盖关系主断面

如图6所示是前门、侧围上部、顶盖关系主断面,该主断面所表达的内容如下:

图6 前门、侧围上部、顶盖关系主断面

①该断面表示侧围外板、顶盖、顶盖侧梁、顶盖侧梁加强板、顶棚、前门门框上部结构、门洞密封条、门框密封条、玻璃导槽、流水槽装饰条之间的装配关系。

②流水槽处的结构设计,该处的设计基准是侧围在流水槽处的分缝线,在侧围流水槽处的分缝线位置,做侧围断面线的切线和法线,这两条线就是设计流水槽的基准线。侧围的侧边线是根据侧围在分缝线处的法线来确定的,侧边线一般与法线往里成0-20°的角度,角度值要根据侧围断面的形状来做出判断,主要考虑的内容是该断面的封闭面积和转动惯量系数大小;同时要满足冲压工艺和焊接工艺的要求。顶盖侧的侧边线是根据顶盖在分缝线处的垂直线(Z轴方向)来确定的,侧边线一般与垂直线往外成5-10°的角度,主要考虑的内容是断面的结构尺寸、冲压工艺、焊接工艺等。流水槽底边线一般考虑与侧围切线或顶盖切线相平行,这主要决定侧围和顶盖之间的位置、形状关系。流水槽底边的宽度一般要保证在22mm以上,主要决定于焊接的工艺水平(手工焊接、机器人焊接)、焊枪的直径大小(Φ13mm、Φ16mm)。流水槽深度一般定义为6-16mm,主要考虑安装流水槽装饰条的结构可行性,应与生产装饰条的供应商密切配合来完成此项

工作。从人的视觉和流水槽功能看,流水槽在侧围侧的分缝线应高于在顶盖侧的分缝线0-5mm,尺寸的测量方向是沿车身整车坐标系的Z轴方向。

③侧围与前门门框上部的结构设计。侧围与前门门框上部的分缝线间隙一般定义为3-6mm,具体要根据车的档次、制造工艺水平、车型的造型风格、形状变化等综合来确定。该部位的设计基准是前门玻璃的中心面,侧围部分的分缝线。在侧围分缝线处做一条与玻璃中心线的垂直线,玻璃中心线和该垂直线作为该断面的设计基准线。该断面的关键尺寸如下:门洞密封条安装面与玻璃面平行,门框密封面与门洞密封条安装面平行,并保证相应的距离,一般定义为12-16mm,主要参考密封条的断面尺寸和密封条的压缩特性,如果采用一道密封且在门洞上密封,密封条压缩量一般定义为6mm;如果采用多道密封且门洞密封条作为辅助密封,则密封条的压缩量一般定义为3mm。门框表面与玻璃中心面之间的距离与玻璃、玻璃泥槽和滚压件的形状与尺寸密切相关。如密封条装在车门门框上,则要在侧围上合理的定义密封面,密封面的形状和密封条的压缩量,将极大地影响整车的密封性能,其压缩量一般定义为6mm。该部位的尺寸应与基准线平行方向进行标注。

④门洞密封条的安装,门洞密封条的安装槽侧壁应与侧围法兰安装面的边缘线应保持1-1.5mm间隙,侧围、顶盖边梁、顶盖边梁加强板在车门门洞上部的焊接处,法兰边宽度一般定义为15-18mm,侧围法兰边凸出顶盖边梁,顶盖边梁加强板法兰边1mm,其作用是侧围法兰边缘线作为安装门洞密封条的基准线,避免顶盖边梁、顶盖边梁加强板法兰边凸出侧围法兰边,影响外观质量与密封条的安装精度。

⑤如门结构采用滚压件窗框结构,应充分考虑造型面与滚压件的匹配与协调性,如门结构采用整体式冲压门,要充分考虑玻璃导轨、门外板、门内板所围成封闭断面的封闭面积与转动惯量系数,以确保门的整体强度与刚度。

⑥应进行95﹪、99﹪百分位男性人体模型头部包络面的分析,以确保乘客有足够的乘坐空间和相应的舒适性要求。

4.2.2前门、后门、中支柱、后门铰链关系主断面

如图7所示是前门、后门、中支柱、后门铰链关系主断面,该主断面所表达的内容如下:

图7 前门、后门、中支柱、后门铰链关系主断面

①该断面表示前门结构、后门结构、中支柱结构、前门锁、后门铰链、密封条之间的装配关系,该断面垂直于后门铰链轴线进行剖切。

②该断面是在完成后门运动校核的前提下进行的,运动校核包括如下内容:前门、后门之间的间隙、后门前包边处与后门铰链体之间的间隙、后门前包边处与B柱之间的间隙。后门开度一般定义在60°-70°之间;在后门开启过程中,这些间隙应大于3mm以上。

③该断面的设计基准是前、后门的CLASS-A面、门分缝线、前后门的门洞密封面;前后门洞密封面在Y轴方向应尽量保持一致,否则会影响前门护板、中支柱下护板、后门护板的造型协调性。

④前门门框与B柱、后门门框与B柱之间的所有间隙应大于8mm,主要考虑车门关闭过程中的过行程,车门使用过程中的下沉量,车门、门洞、B柱的变形等因素。门洞密封条与门护板之间的距离应大于6mm,主要考虑车门总成的制造装配误差、变形,门洞密封条的制造装配误差、变形以及车身骨架的制造装配误差、变形等因素,防止车门关闭时,密封条变形后碰到车门护板的凸尖部位,影响密封条的使用寿命。

⑤密封问题,如采用门洞单道密封,密封条装在侧围门洞法兰面上,法兰面宽度一般定义为15-18mm。法兰面宽度要考虑焊接工艺要求和密封条装配稳定性要求。侧围门洞法兰面与车门密封面之间的距离一般定义为12-16mm,其值应根据密封条的断面形状、压缩量特性等方面考虑,其密封条的压缩量为6mm;如果采用双道密封,则门洞密封为次密封,其密封条的压缩量为3mm,而门框密封为主密封,其密封条的压缩量为6mm,门框密封条的装配应满足密封条的最佳装配位置,保证密封条安装面、密封条唇与钣金件有良好的配合关系。

⑥为了确保前门内板、后门内板、B柱的冲压工艺性,车门内板的铰链安装面和锁体安装面与YZ平面(冲压方向)成3°以上角度;该断面的最大难点是

协调前门锁安装面、后门铰链在B柱上的安装面、前门框密封面之间的相互关系,

避免在B柱结构上产生窄深结构(深宽比大于1.5),影响B柱的冲压工艺性。该断面需要重点检查的内容是:前门关闭时,锁的切入角,锁安装在门内板上的方便性,前门里板的冲压工艺性,后门里板的冲压工艺性,B柱相应部位的冲压工艺性,锁扣的装配工艺性,后门在开启过程中,后门前包边外与B柱、后门铰链座之间的间隙(最小间隙大于3mm)值,前后门的门洞、门框密封面的位置等。

⑦由B柱内外板、B柱加强板所围成的封闭区域,应有足够的面积和转动惯量系数,以确保车身的整车刚度和防侧碰能力。

4.2.3前门、门槛关系主断面

如图8所示是前门、门槛关系主断面,该主断面所表达的内容如下:

图8 前门、门槛关系主断面

①该断面表示前门外板、前门内板、前门护板、侧围下门槛、门槛内板、门槛加强板、前地板、门槛外侧装饰件(塑料件)、门槛法兰焊接边处的装饰件、地毯、线束、密封条之间的装配关系。该断面采用与YZ坐标面平行的方向进行剖切。

②前门下边缘线与侧围门槛线之间的间隙,一般定义为5-8mm,该间隙值的确定主要取决于车的类型与档次、主机厂的制造工艺水平、门在使用过程中的下沉量等因素。前门门框与侧围门洞之间的周边间隙应大于8mm。防止门在用力关闭时或门下沉时,车门与周围零件产生干扰,而影响整车的使用寿命。

③密封问题。如采用门洞单道密封,密封条装在侧围门洞法兰面上,法线面宽度一般定义为15-18mm。侧围门洞法兰面与车门密封面之间的距离一般为12-16mm,其值应根据密封条的断面形状、压缩特性等方面考虑,其密封条的压缩量为6mm;如果采用双道密封,则门洞密封为次密封,其密封条的压缩量为3mm,门框密封为主密封,其密封条的压缩量为6mm。门框密封条的装配应满足密封条的最佳装配位置的要求,保证密封条安装面、密封条唇与钣金件有良好的配合关系。

④该断面的基准是车身CLASS-A面、分缝线、底板高度面,根据这些基准面和基准线,首先确定侧围门洞的法兰面的Y坐标值和Z坐标值,侧围门洞的法兰面的Y坐标值由门的CLASS-A面、门的厚度和密封间隙来确定;侧围门洞的法兰

面的Z坐标面由门下缘分缝线、底板高度来综合考虑。

⑤车门门框面、侧围门洞面的定义应充分考虑这些零件的冲压工艺要求,其原则是应与该零件的冲压方向至少有4°以上的拔模角,以确保零件冲压的可行性,车门护板的周围应有5°以上的拔模角,以确保门护板的注塑工艺性。

⑥车门内板、侧围门槛部的结构应充分考虑排水、排多余漆的结构要求,这些面应与水平方向至少有5°以上的斜面,便于排水、排尘、排多余漆的要求。

⑦由侧围门槛、门槛内板、门槛加强板所围成的封闭区域,应有足够的面积和转动惯量系数,以确保车身的整车刚度和防侧碰能力。

参考文献

1 乐玉汉主编.轿车车身设计.北京:高等教育出版社,2000.

2 钟志华,张维刚,曹立波,何文著.汽车碰撞安全技术.北京:北京机械工业出版社,2003.

3雷政保编著.汽车覆盖件冲压成形CAE技术.长沙:国防科技大学出版社,2003.

5-车身典型断面设计

第六章车身结构设计 在整车设计开发流程中,当A面数据冻结后,即开始进行车身结构设计,鉴此下面就车身各模块的设计要点做一个阐述。 第一节车身典型断面的定义、定位和作用 1.车身典型截面的定义和作用: 车身典型截面主要是规定白车身的主要部位的结构形式、搭接关系、间隙设定、主要控制尺寸、生产工艺、人机工程、法规等各方面的信息,通过典型截面的分析,可以确定车身的主体结构,同时典型截面也是后期工程分析的重要基础。典型截面制作分为几个阶段:前期定义阶段、可行性分析阶段和主数学模型建立阶段。 车身典型截面的数量及位置根据整车造型、配置,采用的结构形式和做典型截面的阶段的不同也略有不同,可根据具体车型可适当调整,原则上要定义出所有主要的部件的安装配合关系,定义各部分的典型结构,最终达到能够确定除局部过渡部分外的三维数学模型的效果。 2.奇瑞典型截面编号命名规则: 在整车投影方向上“side view、 front view 、rear view、top view ”分别以S、F、R、T开头,后面加两位数字序号。奇瑞三厢轿车典型截面定义如图71、72所示,各截面代号及位置如表53所示。 side view front view rear view 图71 奇瑞三厢轿车车身典型截面定义

top view 图72 奇瑞三厢轿车车身典型截面定义

奇瑞两厢轿车“rear view ”典型截面定义如图73所示,各截面代号及位置如表54所示(其它与三厢轿车同)。 rear view 图73 奇瑞两厢轿车典型截面定义 如将典型截面做成二维文件时(打印出图等),视图方向应按照表55规定的来摆放截面。 表55 典型截面视图方向规定 3.微车典型截面定义: 由于微车车身与轿车车身存在车型的差异,并有其特殊性,因此在奇瑞典型截面命名的总体原则下,微车典型截面定义如图74所示。 微车24个典型截面定义如表55所示。 典型截面示例如图75所示(Q22L “07A ”截面)。 表54 两箱车rear view 截面代号及位置 (其它视图同三箱车)

车门钣金设计规范

车门钣金设计规范

车门钣金设计规范 1.范围 本标准规定了车门钣金的术语、一般汽车车门钣金的设计规则以及设计方法。 本标准适用于各种轿车,其它车型可参考执行。 2.车门基本简介 2.1车门钣金概述 1.作为外覆盖件,起装饰作用,保证装配后外观效果,需保证翼子板、侧围、前后门之间的间隙平度满足要求; 2.有效保证车门密封性,避免出现漏水、风噪,导致顾客抱怨; 3.为开启件,需满足开启及关闭的易操作性; 4.车辆在行驶过程中保证车门始终处于关闭状态; 5.保证车门很容易的装配到车身骨架上; 6.为车身附件安装(外开把手、后视镜、外水切、昵嘈、内水切、门护板、门锁、扬声器、防水膜、升降器等安装)提供必要安装点及型面; 7.保证升降系统的正常运行; 8.保证行车门在行驶过程中不出现振动;不产生噪音; 9.车门售后可更换及可维修性; 10.具有承受一定作用力的刚度及强度 2.2车门结构类型 车门是车身的重要组成部分。根据车型不同,车门结构形式一般有旋开式车门如图2.1所示、滑动门以及外摆式车门等,还有一些轿车上使用了上下车极方便的鸥翼式车门。目前轿车车门使用最多的是旋开式车门,应用较多的轿车车门结构全尺寸内外板结构(整体式)、滚压窗框结构(分体式)以及半开放式车门结构(混合式),其结构具有各自不同的特点。 图2.1 旋开式车门

2.2.1整体式----即车门面板与门框部分一体成形。由全尺寸的冲压外板、全尺寸的冲压内板和嵌在内外板间的窗框导轨组成,导轨为U 字形滚压成型件,焊接在内板上,最后外板与内板总成通过包边方式闭合起来,这种车门板金结构在许多早期的车型被普遍采用。 优点:具有较好的完整性,整个车门的刚度较好,一体冲压出来的门板尺寸精度较高,并且加工工序较少、工艺简单。 缺点:窗框外边框通常较宽大,窗框的可装饰性不强,对造型有限制,不太符合现在造型的要求,而且全尺寸的门板需要较大的冲压模具,对冲压模的要求也比较高,整套模具的成本很高,由于窗框是一体冲压而成,废料面积较大,材料利用率较低。 图2.2 整体式车门 2.2.2分体式----车门本体由车门外板、车门内板和车门窗框构成。一般采用辊压成型的工艺生产车门窗框,然后与内板焊接,最后与外板压合或焊接成车门焊接总成。目前主要被日韩系车广泛采用,美系车也有少量采用,而欧洲车很少采用。 优点:这种结构窗框的宽度不受冲压和焊接的限制,可以设计的较窄,有利于车身造型,也有利于乘员视野,且滚压窗框的截面形状受工艺影响较小,可根据密封条或造型需要设计成多种形式。缺点:采用的滚压的车门框的断面一般都较复杂,成本较高,装配工艺复杂,尺寸公差尤其是外部面差保证的难度加大

车身“逆向开发”流程

汽车逆向设计全程解析与案例讲解 众所周知,车身的开发它需要大量资金的积累、技术的积累、人才的积累。我国汽车业尚没有形成很强的研发能力,很多专家认为:过去多年我们走的开发思路,一是完全自主开发,一切从零开始,这种开发思路实践证明不成功,因为我们没有那么大规模支持,更没有那么多的技术、管理积累;二是图省事,简单"拿来主义",购买技术,这样技术永远掌在别人的手里,不可能形成自主开发能力。 逆向工程技术就是迅速解决提升我们汽车车身研发水平重要手段之一。我们提升汽车自主开发能力,赶上世界水平唯一的办法,必须采取站在巨人的肩膀上,要消化、吸收、改进、创新。韩国、曰本都曾经走这条路,他们不是简单的把别人的车拿来装配,而是真正地消化、吸收,通过消化、吸收学习,缩短与世界水平的差距,逐步培养起自己的自主开发能力,因此成为今天的汽车开发世界强国。 逆向工程技术正是消化、吸收先进技术重要方法之一,尤其在车身开发方面,逆向工程技术是送我们走上巨人肩膀的强大武器。我们福田公司车身开发人员正是利用这先进技术开展了欧曼重卡车身的研发,并取得了成功。 一、逆向设计的概念 逆向工程(ReverseEngineering-RE)是对产品设计过程的一种描述。 在工程技术人员的一般概念中,产品设计过程是一个从无到有的过程,即设计人员首先在大脑中构思产品的外形、性能和大致的技术参数等,然后通过绘制图纸建立产品的三维数字化模型,最终将这个模型转入到制造流程中,完成产品的整个设计制造周期。这样的产品设计过程我们称为“正向设计”过程。逆向工程产品设计可以认为是一个“从有到无”的过程。简单地说,逆向工程产品设计就是根据已经存在的产品模型,反向推出产品设计数据(包括设计图纸或数字模型)的过程。从这个意义上说,逆向工程在工业设计中的应用已经很久了。早期的船舶工业中常用的船体放样设计就是逆向工程的很好实例。随着计算机技术在制造领域的广泛应用,特别是数字化测量技术的迅猛发展,基于测量数据的产品造型技术成为逆向工程技术关注的主要对象。通过数字化测量设备(如坐标测量机、激光测量设备等)获取的物体表面的空间数据,需要利用逆向工程技术建立产品的三维模型,进而利用CAM系统完成产品的制造。因此,逆向工程技术可以认为是将产品样件转化为三维模型的相关数字化技术和几何建模技术的总称。逆向工程的实施过程是多领域、多学科的协同过程。 作为一种新产品开发以及消化、吸收先进技术的重要手段,逆向工程和快速原型技术可以胜任消化外来技术成果的要求。它们的出现改变了传统产品设计开发模式,大大缩短了产品开发的时间周期,提高产品研发的成功率。 当今,各个行业越来越注重产品的外观设计,以此来吸引顾客,最终在商业上取得成功。这点在消费产品的设计中体现的尤为突出。特别是手机、数码相机、汽车等行业。

汽车车身主断面设计的规定

车身主断面设计的规定 前言 本标准对车身主断面设计的具体内容和要求作了较详细的规定,今后新设计的车型可参照本规定的断面位置和断面代号,来剖切断面和标注断面。使本公司的车身主断面设计日趋规范化。 1 范围 本标准规定了选择主断面位置的原则、车身主断面设计的主要要点和要求、车身主断面图的标注及检验规则。 本标准适用于本公司所有车型的车身主断面设计。 2 规范性引用文件 无 3 概述 3.1车身主断面是指车身上主要的关键断面。 3.2主断面设计是白车身设计中品质控制的关键内容,它能体现出部件的焊装关系、关键尺寸要素、公差设计、工艺合理性等诸多设计要素,是国外设计公司控制车身设计品质的重要方法。 3.3主断面设计,在车身设计中分三个阶段控制车身设计品质 3.3.1第一阶段在参考样车拆解过程中结合测量的点云、公司数据库、车身部件资料、专家经验,经过多次讨论后完成《主断面初步设计报告》。根据不同车型一般在车身不同部位设计55~~80个主断面实现全车的设计控制。 3.3.2第二阶段在车身设计过程中,《主断面初步设计报告》作为指令性技术文件贯穿每一个零部件的设计过程。设计过程中,如遇到协调原因,与初步设计有偏差时,必须办理更改审查手续。

3.3.3第三阶段时工艺数模、NC数模分两次按《主断面初步设计报告》在车身数模的相应位置作切剖断面进行检查控制。 4 要求 4.1 选择主断面位置的原则 4.1.1应将位于剖切区域内的所有零件按装配状态(除密封条压缩按自由状态)剖切,安装密封件的剖切断面的方向为法向,其它剖切部位的断面应平行于坐标轴方向。4.1.2 应尽可能多地反映该处的特征信息。 4.1.3 应反映密封件的安装方式。 4.1.4 汽车纵向对称中心平面(Y0)为车身的必剖断面。 4.1.5主断面数量55~80个。 4.2 车身主断面设计的主要要点 a) 车身结构方案; b) 焊接件或安装件(包括白车身、开闭件、车身附件、内饰件、外饰件、灯具等)之间的安装和配合关系,如螺纹连接,铆接,粘接和卡扣等安装方式; c) 开闭件的铰链结构、安装结构和配合间隙; d) 焊接边的接合宽度; e) 外观件造型分缝的缝隙等。 4.3 车身主断面设计的要求 4.3.1 密封件的装配状态为非压缩变形状态,密封条应安装到位。 4.3.2 对于开闭件应绘制闭合和开启两种极限状态。 4.3.3 对于左右对称件只需绘制左侧主断面图。 4.3.4 在车身结构方案冻结前应完成车身主断面的设计。 4.3.5 主断面中的标准件按机械制图要求绘制。 4.4 车身主断面图的标注 4.4.1 车身主断面位置和主断面代号在整车三视图的相应位置上的标注见图A.1-1和图 A.1-2,主断面位置和主断面代号的对应表见表A.1。 4.4.2 每个主断面都应绘制图片文件。钣金件应按正确的方向生成料厚线。 4.4.3 标注内容

汽车设计-车身主断面设计的要求及原则规范模板

汽车设计- 车身主断面设计的要求及原则规范模板

车身主断面设计要求原则规范 1 范围 本规范规定了选择主断面位置的原则、车身主断面设计的要点和要求、车身主断面的标注及检验规则。 本规范适用于所有车型的车身主断面设计,包括两厢车和三厢车。 2 术语和定义 下列术语和定义适用于本规范。 2.1 车身主断面 是指车身上重要的断面,它是白车身设计中品质控制的关键内容,它能体现出部 件的断面形状、装配关系、焊装关系、关键尺寸要素、公差设计、工艺合理性等诸多 设计要素,是设计公司控制车身设计品质的重要方法。 2.2 造型冻结 车辆外观设计的确定,是车身设计的重要里程碑。在冻结之前,必须对造型做多 方面的分析,特别是结构可行性分析,如果结构上不能满足造型要求,就必须重新调 整造型。冻结以后,车身造型就不会有大的修改。 2.3 可行性分析 在造型设计阶段,针对造型部门设计的外形,工程设计、工艺设计、成本和法规 等部门要从各自负责的专业范围作出分析,提出修改意见,以保证产品符合各方面的 要求。 3 车身主断面的设计要求 3.1 主断面设计在初步设计阶段就必须确定,作为车身设计的指导性文件。办法是结合参考样车测量的点云、公司数据库、车身部件资料、专家经验,经过讨论后确定《主断面初步设计报告》。一般在车身不同部位设计50~80个主断面,以控制全车的设计。 3.2 在车身设计过程中,《主断面初步设计报告》作为指令性技术文件贯穿每一个零部件的设计。设计过程中,如需修改时,必须办理更改审查手续。

3.3 审查工艺数模、NC数模时,应按《主断面初步设计报告》在车身数模的相应位置作切剖断面进行检查控制。 3.4 选择主断面位置的原则 3.4.1 应尽可能多地反映该处的特征信息。位于剖切区域内的所有零件按装配状态剖切,密封条按自由状态,但应反映密封件的安装方式。 3.4.2 断面原则上应平行于坐标轴方向剖切。安装密封件的剖切断面的剖切方向为法向。 3.4.3 汽车纵向对称中心平面(Y0)为必剖的剖面。 3.4.4 主断面数量 主断面数量一般为50~80个,可以根据要求适当增加。 3.4.5 主断面代号 主断面代号以数字表示,如“断面1-1”、“断面15-15”。在新车型设计时,对于不同车型的 主断面代号与主断面位置可作适当的调整,原则上不能遗漏涉及到装配的关键断面。 3.5 车身主断面设计要体现以下主要信息 3.5.1 车身结构方案。 3.5.2 安装和配合关系,开闭件、车身附件、内饰件、外饰件、灯具等的安装,螺纹,铆接,粘接和卡扣等安装连接方式。 3.5.3 开闭件的铰链结构、安装结构和配合间隙段差。 3.5.4 白车身板金的焊接,焊接边的接合宽度。 3.5.5 外观件造型分缝的缝隙段差等。 3.6 车身主断面设计的要求 3.6.1 密封件的装配状态为非压缩变形状态,密封条应安装到位。 3.6.2 对于开闭件应绘制闭合和开启两种极限状态。 3.6.3 对于左右对称件只需绘制左侧主断面的设计。 3.6.4 在车身造型冻结前应完成车身主断面的设计。 3.6.5 主断面中的标准件按机械制图要求绘制。 3.7 车身主断面图的标注规定 3.7.1 车身主断面位置和主断面代号的相应位置上和标注见附录A,主断面位置和主断面代号的对应表见表A.1。

汽车正向设计

汽车正向设计 新车型的研发是一个非常复杂的系统工程,以至于它需要几百号人花费上3、4年左右的时间才能完成。不同的汽车企业其汽车的研发流 程有所不同,我们下面讲述的是正向开发的量产汽车一般的研发流程。以满足车友对汽车研发流程的好奇感研发流程包括管理、设计、组织等方方面面的辅助流程,本文主要向大家介绍汽车研发中的核心流程,也就是专业的汽车设计开发流程,这一流程的起点为项目立项,终点为量产启动,主要包括5个阶段: 一、方案策划阶段 一个全新车型的开发需要几亿甚至十几亿的大量资金投入,投资风险非常大,如果不经过周密调查研究与论证,就草率上马新项目,轻则会造成产品先天不足,投产后问题成堆;重则造成产品不符合消费者 需求,没有市场竞争力。因此市场调研和项目可行性分析就成为了新项目至关重要的部分。通过市场调研对相关的市场信息进行系统的收集、整理、纪录和分析,可以了解和掌握消费者的汽车消费趋势、消费偏好和消费要求的变化,确定顾客对新的汽车产品是否有需求,或者是否有潜在的需求等待开发,然后根据调研数据进行分析研究,总结出科学可靠的市场调研报告,为企业决策者的新车型研发项目计划,提供科学合理的参考与建议。 汽车市场调研包括市场细分、目标市场选择、产品定位等几个方面。项目可行性分析是在市场调研的基础上进行的,根据市场调研报告生成项目建议书,进一步明确汽车形式(也就是车型确定是微型车还是

中高级车)以及市场目标。可行性分析包括外部的政策法规分析、以及内部的自身资源和研发能力的分析,包括设计、工艺、生产以及成本等方面的内容。在完成可行性分析后,就可以对新车型的设计目标进行初步的设定,设定的内容包括车辆形式、动力参数、底盘各个总成要求、车身形式及强度要求等。 将初步设定的要求发放给相应的设计部门,各部门确认各个总成部件要求的可行性以后,确认项目设计目标,编制最初版本的产品技术描述说明书,将新车型的一些重要参数和使用性能确定下来。在方案策划阶段还有确定新车型是否开发相应的变形车,确定变形车的形式以及种类。项目策划阶段的最终成果是一份符合市场要求,开发可行性能够保证得到研发各个部门确认的新车型设计目标大纲。该大纲明确了新车型的形式、功能以及技术特点,描述了产品车型的最终定位,是后续研发各个过程的依据和要求,是一份指导性文件。 二、概念设计阶段 概念设计阶段开始后就要制定详细的研发计划,确定各个设计阶段的时间节点;评估研发工作量,合理分配工作任务;进行成本预算,及时控制开发成本;制作零部件清单表格,以便进行后续开发工作。概念车设计阶段的任务主要包括总体布置草图设计和造型设计两个部分。 1. 总体布置草图 总体布置草图也称为整体布置草图、整车布置草图。绘制汽车总布置草图是汽车总体设计和总布置的重要内容,其主要任务是根据汽车的总体方案及整车性能要求提出对各总成及部件的布置要求和特性参

车门设计中硬点布置和主断面

车门设计中硬点布置和主断面 0 前言 车门设计是汽车车身设计的重要组成部分,车门系统包括4大部分:车门开闭系?玻璃升降系?门锁系?车门密封系?车门质量的好坏对整车质量有很大的影响?车门设计也是车身设计中相对复杂的部分? 设计硬点是总布置设计过程中,为保证零部件之间的协调和装配,及造型风格要求所确定的控制点(或坐标)?控制线?控制面及控制结构的总称?这是汽车零部件设计和选型?附件及车身设计最重要的尺度和设计原则,能使项目组分而不乱,是并行设计的重要方法,一旦确定后不要轻易调整?开始粗定的硬点随着开发逐步深化,变得更加“硬”起来,越接近设计终结硬点越“硬”,不要轻易改动?设计硬点是所有设计的灵魂?车身结构主断面是对车身结构方案的具体描述,分布在车身各个位置以决定车身结构设计? 1 车门设计的主要硬点和设计过程 车门设计总的设计原则是由外而内?先外板再内板?先断面再数模?先周边再内部的过程?主要设计硬点有外板曲面?分缝线?门锁结构?内板结构?密封间隙?铰链中心线长度姿态?玻璃升降器位置和玻璃曲面等? 1.1车门外板设计 车门外板设计是在光顺好的整体造型面和车门轮廓线的切割面片基础上加周边翻边和门锁等特征后的车身零件?分缝线和锁机构等是门外板的设计硬点?分缝线通

过2种方法获得: (1)一般先将汽车内外观面整体造型面光顺到A级曲面(CLASS A),同时将造型边界线投影到XZ铅垂平面后光顺到A级曲线,然后采用该投影的边界线投影到光顺好的A级大造型面与造型面相交,获得边界线,该交线理论上定为A级曲线?(2)另外也可以采用空间曲线光顺后与曲面相交,反复相交反复光顺的方法,相交后将交线进一步光顺,重新获得边界线,再将该线投影到光顺面上获得更新的边界线,重复这一过程直到边界线达到A级曲线要求,用最后获得的边界线作为车门边界线,并与大的光顺面相切割得到车门外板面? 外板面设计好后,将门锁机构等有关设计硬点特征加上去便完成了车门外板设计(见图1),较大的门外板需与内板或车门侧向防撞梁,采用传力胶进行支承,不允许直接接触外板焊接,以防止热变形和几何干涉变形? 1.2门锁设计 车门内板设计是先建立门锁?门锁与上下铰链共同构成车门的3个受力点,因此要求门锁高度的理想位置居于铰链轴线的中心垂直面;门锁的位置还应保证车门顺利开启和锁止,因此在后视图中锁舌的中心线必须与铰链轴线平行?锁扣到门内板鱼

车身主断面设计的规定

上海同济同捷科技有限公司企业标准 TJI/YJY·03·12-2005 车身主断面设计的规定 2005-08-10 发布2005-08-16 实施

上海同济同捷科技有限公司发布 前言 本标准对车身主断面设计的具体内容和要求作了较详细的规定,今后新设计的车型可参照本规定的断面位置和断面代号,来剖切断面和标注断面。使本公司的车身主断面设计日趋规范化。 本标准于2005年8月16日实施。 本标准的附录A为规范性附录。 本标准由上海同济同捷科技有限公司提出。 本标准由上海同济同捷科技有限公司技术总监室负责归口管理。 本标准主要起草人:夏平云邓建国杨志莹江巧英

车身主断面设计的规定 1 范围 本标准规定了选择主断面位置的原则、车身主断面设计的主要要点和要求、车身主断面图的标注及检验规则。 本标准适用于本公司所有车型的车身主断面设计。 2 规范性引用文件 无 3 概述 3.1车身主断面是指车身上主要的关键断面。 3.2主断面设计是白车身设计中品质控制的关键内容,它能体现出部件的焊装关系、关键尺寸要素、公差设计、工艺合理性等诸多设计要素,是国外设计公司控制车身设计品质的重要方法。 3.3主断面设计,在车身设计中分三个阶段控制车身设计品质 3.3.1第一阶段在参考样车拆解过程中结合测量的点云、公司数据库、车身部件资料、专家经验,经过多次讨论后完成《主断面初步设计报告》。根据不同车型一般在车身不同部位设计55~~80个主断面实现全车的设计控制。 3.3.2第二阶段在车身设计过程中,《主断面初步设计报告》作为指令性技术文件贯穿每一个零部件的设计过程。设计过程中,如遇到协调原因,与初步设计有偏差时,必须办理更改审查手续。 3.3.3第三阶段时工艺数模、NC数模分两次按《主断面初步设计报告》在车身数模的相应位置作切剖断面进行检查控制。 3.3.4 设计过程中造型变动时,主断面要一起予以修改。

汽车外饰正向CAS设计要点与步骤

江淮汽车股份有限公司 员工成长路径专业论文 题目正向CAS设计的要点及相关步骤 单位技术中心 姓名黄健昆 工号 20060777 晋升职级技术师 指导教师徐志海 日期 2010 年 5 月 5 日

目录 目录 (1) 中文摘要 (2) 英文摘要 (3) 1 引言 (4) 正向CAS设计的必要性和可行性 (4) 2 正向CAS设计的流程及原则 (5) 2。1 正向CAS设计的流程 (5) 2。1 正向CAS设计的流程 (5) 2.2 正向CAS设计的原则 (6) 3 正向CAS设计的应用……………………………………… 结论………………………………………………………………………………… 谢辞………………………………………………………………………………… 参考文献…………………………………………………………………………… 指导教师评语……………………………………………………………………… 附录………………………………………………………………………………

摘要:在汽车造型设计中数字化技术已经获得了广泛应用,相关学术文章也有不少,但是绝大多数是论述汽车逆向CAS设计的工作。本文有针对性地论述汽车正向CAS设计在造型设计阶段的应用,阐述了汽车正向CAS设计的必要性和可行性,并试图归纳汽车正向CAS设计的要点和相关步骤. 关键词:正向CAS设计效果图特征线 AliasStudio 虚拟仿真样机

Abstract:This paper firstly presents the importance of optimal design in the car industry, describes the function,composition and classification of the suspensions and analyzes the form of ……………… Keywords:CAS car_style ALIAS styling

车身主断面设计规范汇总

车身主断面设计 1 范围 本标准规定了选择主断面位置的原则,车身主断面设计的主要要点和要求,车身主断面图的标注及检验规则。 本标准适用于本公司所有车型车身主断面设计。 2 引用文件 无 3 术语和定义 3.1 主断面 能反映结构关系、控制后续结构设计工作的主要断面 4 设计输入及输出(附录A) 5 设计工作内容 5.1 配合样件测量 5.2 根据点云逆向设计(参考)主断面 5.3 根据项目输入条件,结合正向设计理念,建立二维主断面。 5.4 根据造型变动修改主断面 5.5 与数模进行符合性检查,保持两者统一。 6 技术条件与质量控制要求 6.1 车身主断面必须经过相关检验程序的检查。 6.2 断面符合性检验要求 6.2.1 所有断面均要作符合性检查,必要时可同时对左右对称部分作断面检查; 6.2.2 配合面是否有干涉和间隙; 6.2.3 焊接边的接合宽度是否满足设计要求; 6.2.4 安装密封件的配合面是否满足设计要求; 6.2.5 开闭件配合间隙及外观分缝间隙是否满足设计要求、是否均匀; 6.2.6 主要控制尺寸标注是否有遗漏; 6.2.7 密封条压缩量是否满足设计要求;密封条的断面是否正确,密封条与钣金、装饰板的配合位置关系是否正确。

6.2.8 图面上的件号是否与明细栏相一致; 6.2.9 所选标准件的规格是否合理,如:尺寸大小、螺距、长度等; 6.2.10 座标系是否有误; 6.2.11 图面及尺寸标注是否符合国家相关标准; 6.2.12 发现主断面与数模不一致处,要说明原因,并要指出以哪一个为准,作相应修改后保持两者相一致。 6..3 检验项目 按主断面检查的规定进行100% 的校对,由主管专业工程师抽检。 7 设计规则、设计定义与要求 7.1 概述 7.1.1车身主断面是指能反映出车身不同部位上主要的、并控制后续结构设计工作的关键断面。 7.1.2主断面设计是白车身设计中品质控制的关键内容,它能体现出部件的焊装关系、关键尺寸要素、公差设计、工艺合理性等诸多设计要素,是国外设计公司控制车身设计品质的重要方法。 7.1.3主断面设计,在车身设计中分三个阶段控制车身设计品质 7.1.3.1第一阶段在参考样车拆解过程中结合测量的点云、公司数据库、车身部件资料、专家经验,经过多次讨论后完成《主断面初步设计报告》。根据不同车型一般在车身不同部位设计55~80个主断面实现全车的设计控制。 7.1.3.2第二阶段在车身设计过程中,《主断面初步设计报告》作为指令性技术文件贯穿每一个零部件的设计过程。设计过程中,如遇到协调原因,与初步设计有偏差时,必须办理更改审查手续。 7.1.3.3第三阶段时工艺数模、NC数模分两次按《主断面初步设计报告》在车身数模的相应位置作切剖断面进行主断面符合性检查控制。 7.1.4 设计过程中造型变动时,主断面要一起予以修改。 7.1.5 对于重要位置的部分,要做密集断面检查。 7.2 要求 7.2.1 选择主断面位置的原则 7.2.1.1应将位于剖切区域内的所有零件按装配状态(除密封条压缩按自由状态)剖切,安装密封件的剖切断面的方向为法向,其它剖切部位的断面应尽可能平行于坐标轴方向。 7.2.1.2 应尽可能多地反映剖切部位的特征信息。 7.2.1.3 应反映密封件的安装方式。 7.2.1.4 汽车纵向对称中心平面(Y0)、车门铰链及限位器部位、车门锁及锁扣部位、大灯安装部位、保险杠安装部位等为车身的必剖断面。

车身主断面设计方式解析 于广通

车身主断面设计方式解析于广通 发表时间:2019-06-20T17:21:27.387Z 来源:《电力设备》2019年第3期作者:于广通[导读] 摘要:论述了轿车车身主断面的设计流程,给出了典型的轿车车身主断面位置图.从断面基准定义、零件焊接面之间圆角半径确定、门洞法兰面相关参数确定、包边结构相关参数确定等方面,介绍了轿车车身主断面所表达的内容;并例举了前门、侧围上部、顶盖关系主断面,以及前门、后门、中支柱、后门铰链关系主断面的设计。 (长城汽车股份有限公司河北保定 071000)摘要:论述了轿车车身主断面的设计流程,给出了典型的轿车车身主断面位置图.从断面基准定义、零件焊接面之间圆角半径确定、门洞法兰面相关参数确定、包边结构相关参数确定等方面,介绍了轿车车身主断面所表达的内容;并例举了前门、侧围上部、顶盖关系主断面,以及前门、后门、中支柱、后门铰链关系主断面的设计。关键词:轿车;车身主断面;设计方式车身主断面设计是汽车车身设计中的重要环节,它贯穿于整个汽车车身设计开发过程中,从车身油泥模型制作开始到车身结构设计完成的整个过程中,它是车身工程可行性分析的重要手段和指导车身结构设计的重要依据⑴;车身主断面定义了零件之间的结构断面形式以及装配、焊接、密封、涂胶等关系。 1、车身主断面的设计流程在进行车身主断面和车身结构设计时,首先要选择一款合理的标杆样车,这样会给设计工作带来许多好处。选择标杆样车的原则是:①车身结构形式借鉴意义较大;②造型风格类同;③车型、档次类同。为了使车身主断面和结构设计工作更加顺利、可靠地进行,一般先对标杆样车进行逆向建模,建模内容包括三维数模与二维主断面;在定义车身主断面位置时,标杆样车和新车型主断面的位置一定要协调一致。以建立的三维数模与二维主断面为依据,对标杆样车进行各种性能评价,如标杆样车的整体扭转、弯曲刚度分析,车身接头部位的刚度分析、车身门洞部位的刚度分析,车身骨架关键部位封闭断面的封闭面积、转动惯量系数的计算,这些部位主要包括:A、B、C、D 柱断面、门槛断面、顶盖侧围断面、前后风挡断面等,这些部位断面的封闭面积、转动惯量系数的大小将极大地影响着整个白车身的刚度好坏。 根据计算出白车身各个部位的封闭面积、材料面积、转动惯量系数的大小,就能判断出标杆样车的刚度分布状况,找出白车身刚度过剩和不足的部位,在新车型设计时,对原车刚度不足的部位进行加强设计,对原车刚度过剩的部位进行削弱设计,使新设计的车身具有一个良好的刚度分布状态。除对标杆样车进行刚度分析外,还应对标杆样车进行正碰、侧碰、追尾碰撞、低速正碰、翻滚压顶的CAE分析,根据国家碰撞法规,判断车身结构的耐碰撞性,并根据标杆样车的碰撞CAE结果,来指导新车型的车身主断面和结构设计。在整个车身开发流程中,主断面设计始于车身的油泥模型的制作过程中,在油泥模型的制作过程中,要进行油泥模型的工程可行性分析,主断面是工程可行性分析的有力工具之一。在油泥模型制作初始阶段,应在模型关键位置和危险断面,提取一些断面数据,然后输入CAD软件之中,进行相关内容的分析,如结构可行性分析、运动干涉分析、装配可行性分析、焊接可行性分析、冲压可行性分析等内容;为了更加准确地进行上述分析,可以采集车身油泥模型的表面数据,建立汽车车身CLASS-B表面模型,进行车身表面三维数据的工程可行性分析,进行初始的工程可行性分析后,就形成了第一版的新开发车型的主断面数据,并作为今后车身三维结构设计的依据;在以此车身主断面为依据进行车身三维结构设计的过程中,会发现一些结构设计不合理、实现困难甚至无法实现的问题,这样反过来就要修改有关的断面数据,使之符合三维结构设计要求,通过反复修改主断面设计和三维结构设计的相互关系,就能使主断面设计与三维结构设计匹配、协调地进行,形成用户满意的最终主断面,完成车身主断面的设计工作。 2、车身主断面表达的内容 2.1 车身主断面的设计基本要素 2.1.1断面基准定义 因车身CLASS-A表面是呈现汽车车身外表面形状与尺寸的表面,因此,对汽车外覆盖件、外装饰件而言,外表面就是这些零件的基准面;而对内覆盖件而言,内覆盖件的设计基准面是加工该零件拉延模的凸模表面。在主断面图绘制时,要求基准面不仅有倒圆信息,而且带有理论交点信息;而非基准面不带理论交点,只带倒圆信息。 2.1.2零件焊接面之间的圆角半径定义为了使两焊接零件在圆角处不产生干涉,使焊接面能正常贴合,内外板金件的圆角一定要合理定义。当R1≤15mm时,R2=R1+2mm;当15<R1≤30mm时,R2=R1+3mm;当R1>30mm时,R2=R1+5mm。 2.1.3 门洞法兰面相关参数的定义如图1所示是B柱断面结构图,是以侧围外板密封条安装面的边缘线为安装密封条的基准线,考虑到板金件冲压修边线制造误差和焊接装配误差,保证侧围外板、B柱内板、B柱加强板焊接后,侧围外板密封条安装面的边缘线始终是这些零件的最外缘边,避免这些板金件焊接后的边缘线参差不齐,影响门洞密封条的安装精度;L2为侧围外板门洞法兰面的宽度,该宽度一般定义为15-18mm,该尺寸主要考虑焊接要求,密封条安装要求等因素;圆角R1一般定义为3-6mm,该尺寸主要考虑冲压、焊接工艺要求与安装密封条的要求;α为B柱侧面的斜角,一般定义为大于4°,主要考虑冲压工艺要求和保证适当的断面封闭面积。 图1 B柱断面结构参数

车身数据检查规范标准

车身数据检查规范 2015-05-23制订2015-06-15发布 汽车工程研究院车身部

车身数据检查规范 1.适用范围 本规范适用于各类汽车的白车身数据检查。 2.白车身设计流程图 3.适用流程阶段 此规范用于数据冻结前的工程化设计阶段。即上图刷红阶段。 4.检查内容: 4.1干涉,搭接及孔的检查: 4.1.1 干涉检查

在CATIA装配里,打开要检查的总成,进行干涉检查: 对检查的结果进行筛选: 只选出干涩的部分进行校验,注意不包括凸焊标件的干涉。 对筛选出的干涉结果检查时,一般干涉值≦0.02mm时,不认为是干涉。对干涉值大于0.02mm的做好记录(可CATIA直接导出)。

4.1.2 搭接检查: 4.1.2.1 件与件的边缘处搭接: 以避免焊装时件与件干涉。 4.1.2.2 件与件的R处搭接: 间隙1.5mm只作参考,不能做到的地方适当放宽。内外板R值大小错开2mm以上 4.1.2.3 件与件无焊点不贴合处搭接:

不贴合处间隙不小于2mm。 4.1.3 孔的检查: 4.1.3.1:孔尽量做在凸台上(特别是定位孔) 4.1.3.2 标件开孔

4.1.3.3 定位孔及过孔 定位孔垂直于车体线,最好大于φ10,过孔一般R取值大2mm 4.1.3.4 孔边距 孔到边缘的距离增加到5mm或3t以上。 4.2焊装分析 4.2.1 焊接边宽度 ⑴悬挂式点焊机:Φ13、Φ16 ------焊接边宽度:14~17mm ⑵固定式点焊机:Φ20 -----焊接边宽度:21mm以上 局部地方在焊钳活动不受影响的情况下,焊接边宽度最小10mm,需工艺部门确认。 4.2.2 焊钳通过孔 W ≤ 130 mm ΦX ≥Φ50 mm ; W > 130 mm ΦX ≥Φ80 mm

轿车车身主断面设计方法

轿车车身主断面设计方法 卢金火1 赵紫剑2 梁国贵3 (1.长春凯迪汽车车身设计有限公司;2.吉林大学;3.一汽-大众汽车有限公司) 【摘要】论述了轿车车身主断面的设计流程,给出了典型的轿车车身主断面位置图。从断面基准定义、零件焊接面之间圆角半径确定、门洞法兰面相关参数确定、包边结构相关参数确定等方面,介绍了轿车车身主断面所表达的内容;并例举了前门、侧围上部、顶盖关系主断面,以及前门、后门、中支柱、后门铰链关系主断面的设计。 主题词:轿车车身主断面设计中图分类号:U463.82+1 文献标识码:A 文章编号:1000-3703(2006)09-0009-04 DesignMethodofMainSectionofPassengerCarBody LuJinhuo1,ZhaoZijian2,LiangGuogui3 (1.ChangchunKaidiAutomotiveBodyDesignCo.,Ltd;2.JinlinUniversity;3.FAWVWAutomotiveCo.,Ltd)【Abstract】Thedesignprocessofpassengercarbodymainsectionisdiscussedinthispaper.Thepositionchartsof typicalpassengercarbodymainsectionarepresented.Thispaperalsointroducesthecontentswhichareexpressedbypas-sengercarbodymainsectionthroughtheseaspectssuchassectionreferencedefinition,determinationoffilletbetweenpartsweldingsurfaces,relevantparametersdeterminationofgatewayflangesurface,relevantparametersdeterminationofwrappingstructure;andexemplifiestherelationmainsectionoffrontdoor,topofsidewallandtopcover,andexemplifiestherelationmainsectiondesignoffrontdoor,reardoor,middlepillarandreardoorhinge. Keywords:Passengercar,Body,Mainsectiondesign 主断面设计是轿车车身设计中的重要环节,它贯穿于从车身油泥模型制作开始到车身结构设计完成的整个过程中,是车身工程可行性分析的重要手段和指导车身结构设计的重要依据[1]。 1轿车车身主断面设计流程 图1所示为轿车车身主断面设计流程。在进行 车身主断面、车身结构设计时,首先要选择一款合理的标杆样车,这样会给设计工作带来许多好处。选择标杆样车的原则是:车身结构形式借鉴意义较大;造型风格与所设计车型类同;档次与所设计车型类同。为了使车身主断面和结构设计工作顺利进行,一般先对标杆样车进行逆向建模,建模内容包括三维数模与二维主断面,然后以建立的三维数模与二维主断面为依据,对标杆样车进行各种性能评价,如标杆样车的整体扭转刚度分析、弯曲刚度分析、车身接头部位刚度分析、车身门洞部位刚度分析及车身骨架关键部位封闭断面的封闭面积、转动惯量系数的计算,这些部位主要包括A、B、C、D柱断面,以及门槛断面、顶盖侧围断面、前后风挡断面等。根据计算得白车身各个部位的封闭面积、材料面积、转动惯量系数的大小,就能判断出标杆样车的刚度分布状况,找 出白车身刚度过剩和不足的部位,在新车型设计时, 对刚度不足的部位进行加强设计,对刚度过剩的部位进行削弱设计,使新设计的车身具有一个良好的刚度分布状态。除对标杆样车进行刚度分析外,还应对标杆样车进行正碰、侧碰、追尾碰撞、低速正碰、翻滚压顶的CAE分析,并根据标杆样车的碰撞CAE结果来指导新车型的车身主断面和结构设计[2,3]。 图1 车身主断面设计流程 主断面设计始于车身油泥模型的制作过程中。在油泥模型制作初始阶段,应在模型关键位置和危险断面提取一些断面数据,然后输入CAD软件之

Q ZTB 05 005-2010 车身主断面设计规范

Q/ZT 车身主断面设计规范

前言 本标准的附录A是规范性附录。 本标准由众泰汽车工程研究院提出。 本标准由众泰汽车工程研究院标准法规科归口管理。本标准由众泰汽车工程研究院车身部负责起草。 本标准主要起草人:赵为纲。

车身主断面设计规范 1 范围 本标准规定了选择主断面位置的原则、车身主断面设计的要点和要求、车身主断面的标注及检验规则。 本标准适用于本公司所有车型的车身主断面设计,包括两厢车和三厢车。 2 术语和定义 下列术语和定义适用于本标准。 2.1 车身主断面 是指车身上重要的断面,它是白车身设计中品质控制的关键内容,它能体现出部件的断面形状、 装配关系、焊装关系、关键尺寸要素、公差设计、工艺合理性等诸多设计要素,是设计公司控制车 身设计品质的重要方法。 2.2 造型冻结 车辆外观设计的确定,是车身设计的重要里程碑。在冻结之前,必须对造型做多方面的分析, 特别是结构可行性分析,如果结构上不能满足造型要求,就必须重新调整造型。冻结以后,车身造 型就不会有大的修改。 2.3 可行性分析 在造型设计阶段,针对造型部门设计的外形,工程设计、工艺设计、成本和法规等部门要从各 自负责的专业范围作出分析,提出修改意见,以保证产品符合各方面的要求。 3 车身主断面的设计要求 3.1 主断面设计在初步设计阶段就必须确定,作为车身设计的指导性文件。办法是结合参考样车测量的点云、公司数据库、车身部件资料、专家经验,经过讨论后确定《主断面初步设计报告》。一般在车身不同部位设计50~80个主断面,以控制全车的设计。 3.2 在车身设计过程中,《主断面初步设计报告》作为指令性技术文件贯穿每一个零部件的设计。设计过程中,如需修改时,必须办理更改审查手续。 3.3 审查工艺数模、NC数模时,应按《主断面初步设计报告》在车身数模的相应位置作切剖断面进行检查控制。 3.4 选择主断面位置的原则 3.4.1 应尽可能多地反映该处的特征信息。位于剖切区域内的所有零件按装配状态剖切,密封条按自由状态,但应反映密封件的安装方式。 3.4.2 断面原则上应平行于坐标轴方向剖切。安装密封件的剖切断面的剖切方向为法向。 3.4.3 汽车纵向对称中心平面(Y0)为必剖的剖面。 3.4.4 主断面数量 主断面数量一般为50~80个,可以根据要求适当增加。 3.4.5 主断面代号 主断面代号以数字表示,如“断面1-1”、“断面15-15”。在新车型设计时,对于不同车型的 主断面代号与主断面位置可作适当的调整,原则上不能遗漏涉及到装配的关键断面。 3.5 车身主断面设计要体现以下主要信息 3.5.1 车身结构方案。 3.5.2 安装和配合关系,开闭件、车身附件、内饰件、外饰件、灯具等的安装,螺纹,铆接,粘接和卡扣等安装连接方式。 3.5.3 开闭件的铰链结构、安装结构和配合间隙段差。 3.5.4 白车身板金的焊接,焊接边的接合宽度。

汽车外饰正向CAS设计的要点及步骤

汽车外饰正向C A S设计的 要点及步骤 Prepared on 22 November 2020

江淮汽车股份有限公司员工成长路径专业论文 题目正向CAS设计的要点及相关步骤单位技术中心 姓名黄健昆 工号 晋升职级技术师 指导教师徐志海 日期2010年5月5日

目录 目录 (1) 中文摘要 (2) 英文摘要 (3) 1引言 (4) 正向CAS设计的必要性和可行性 (4) 2正向CAS设计的流程及原则 (5) 正向CAS设计的流程 (5) 正向CAS设计的流程 (5) 正向CAS设计的原则 (6) 3正向CAS设计的应用……………………………………… 结论………………………………………………………………………………… 谢辞…………………………………………………………………………………参考文献……………………………………………………………………………指导教师评语……………………………………………………………………… 附录………………………………………………………………………………

摘要:在汽车造型设计中数字化技术已经获得了广泛应用,相关学术文章也有不少,但是绝大多数是论述汽车逆向CAS设计的工作。本文有针对性地论述汽车正向CAS设计在造型设计阶段的应用,阐述了汽车正向CAS设计的必要性和可行性,并试图归纳汽车正向CAS设计的要点和相关步骤。 关键词:正向CAS设计效果图特征线AliasStudio虚拟仿真样机

Abstract:Thispaperfirstlypresentstheimportanceofoptimaldesigninthecarindustry,desc ribesthe function,compositionandclassificationofthesuspensionsandanalyzestheformof……………… Keywords:CAScar_styleALIASstyling

汽车白车身设计规范

汽车白车身设计规范 1. 范围 本标准归纳了[BIW]白车身结构设计的一些基本方法和注意事项。 本标准适用于长春宇创公司白车身结构设计及检查。 2.基本原则 2.1 白车身设计是一个复杂的系统并行设计过程,要彻底地摒弃孤立地单个零件设计方法,任何一个零件只是其所处在的分总成的一个零件,设计时均应考虑其与周边相关零部件的相互关系。 评注:周边造型匹配[面差、分缝影响外观];周边安装匹配[焊接装配、安装件的连接、安装空间] 2.2 任何一种车型的白车身结构均可按三层板的设计思想去构思结构设计,即最外层是外板,最内层是内板,中间是加强板,在车身附件安装连接部位应考虑设计加强板。 评注:结构的强度、刚度与横截面积有关系,与周边的展开的周长也有关系,“红旗3”轿车的一个宣传点就是其前防撞横梁为六边型。 2.3 所设计的白车身结构在满足整车性能上、结构上、四大工艺[冲压工艺、焊接工艺、涂装工艺、总装工艺]是否比参考样车或其他车型更优越,是否符合国内(尤其是客户)的实际生产状况,以便预先确定结构及工艺的改良方案。 2.4 白车身在结构与性能上应提供车身所需的承载能力,即强度和刚度要求。 3.冲压工艺要求 3.1 在设计钣金件时,对于影响拉延成型的圆角要尽可能放大,原则上内角R≥5,以利于拉延成型;对于折弯成型的圆角可以适当放小,原则上R≈3即可,以减小折弯后的回弹。 1)板件最小弯曲半径

2) 弯曲的直边高度不宜过小,其值h ≥R+2t 。见上表。 3)弯曲边冲孔时,孔边到弯曲半径R 中心的距离L 不得过小 ,其值L ≥2t 。见上表。 4)圆角弯曲处预留切口。 5)凸部的弯曲 避免如a 图情形的弯曲,使弯曲线让开阶梯线如图b ,或设计切口如c 、d 。 r ≥2t n=r m ≥2t k ≥1.5t L ≥t+R+k/2 3.2在设计钣金件时,考虑防止成型时起皱,应在适当的地方(如材料聚集处)布置工艺缺口,或布置工艺凸台、筋。 3.3 孔与孔,孔与边界距离应大于2t ,若在圆角处冲孔,孔与翻边的距离应大于R+2t 。 开孔时尽量不要开在倒角面上,以避免模具刃口早期磨损。 正冲孔孔径与最大倾斜角 拉深件或弯曲件冲孔的合适位置

相关主题
文本预览
相关文档 最新文档