当前位置:文档之家› 哈工大工程热力学教案-第1章 基本概念

哈工大工程热力学教案-第1章 基本概念

哈工大工程热力学教案-第1章  基本概念
哈工大工程热力学教案-第1章  基本概念

第1章基本概念

本章基本要求:

深刻理解热力系统、外界、热力平衡状态、准静态过程、可逆过程、热力循环的概念,掌握温度、压力、比容的物理意义,掌握状态参数的特点。本章重点:

取热力系统,对工质状态的描述,状态与状态参数的关系,状态参数,平衡状态,状态方程,可逆过程。

1. 1 热力系统

一、热力系统

系统:用界面从周围的环境中分割出来的研究对象,或空间内物体的总和。外界:与系统相互作用的环境。

界面:假想的、实际的、固定的、运动的、变形的。

依据:系统与外界的关系,系统与外界的作用:

热交换、功交换、质交换。

二、闭口系统和开口系统(按系统与外界有无物质交换)

闭口系统:系统内外无物质交换,称控制质量。

开口系统:系统内外有物质交换,称控制体积。

三、绝热系统与孤立系统

绝热系统:系统内外无热量交换(系统传递的热量可忽略不计时,可认为绝热)

孤立系统:系统与外界既无能量传递也无物质交换

=系统+相关外界=各相互作用的子系统之和= 一切热力系统连同相互作用的外界

四、根据系统内部状况划分

可压缩系统:由可压缩流体组成的系统。

简单可压缩系统:与外界只有热量及准静态容积变化

均匀系统:内部各部分化学成分和物理'性质都均匀一致的系统,是由单相组成的。

非均匀系统:由两个或两个以上的相所组成的系统。

单元系统:一种均匀的和化学成分不变的物质组成的系统。

多元系统:由两种或两种以上物质组成的系统。

单相系:系统中工质的物理、化学性质都均匀一致的系统称为单相系。

复相系:由两个相以上组成的系统称为复相系,如固、液、气组成的三相系统。

注意:

系统的选取方法仅影响解决问题的繁复程度,与研究问题的结果无关。思考题:

孤立系统一定是闭口系统吗。反之怎样。

孤立系统一定不是开口的吗。

孤立系统是否一定绝热。

1.2 工质的热力状态与状态参数

一、状态与状态参数

状态:热力系统中某瞬间表现的工质热力性质的总状况。

状态参数:描述工质状态特性的各种状态的宏观物理量。

如:温度(T )、压力(P )、比容(υ)或密度(ρ)、内能(u )、焓(h )、熵(s )、自由能(f )、自由焓(g )等。

状态参数的数学特性:

1. 1212x x dx -=?

表明:状态的路径积分仅与初、终状态有关,而与状态变化的途径无关。 2.?dx =0

表明:状态参数的循环积分为零

基本状态参数:可直接或间接地用仪表测量出来的状态参数。

如:温度、压力、比容或密度

1. 温度:宏观上,是描述系统热力平衡状况时冷热程度的物理量。

微观上,是大量分子热运动强烈程度的量度

BT w m =2

2

式中 2

2

w m —分子平移运动的动能,其中m 是一个分子的质量,w 是分子平移运动的均方根速度;B —比例常数;

T —气体的热力学温度。

热力学第零定律:如两个物体分别和第三个物体处于热平衡,则它们彼此之间也必然处于热平衡。

摄氏度与热力学温度的换算: t T +=273

2.压力:

垂直作用于器壁单位面积上的力,称为压力,也称压强。

f

F p = 式中:F —整个容器壁受到的力,单位为牛顿(N );

f —容器壁的总面积(m 2)。

微观上:分子热运动产生的垂直作用于容器壁上单位面积的力。

nBT w m n p 3

22322== 式中:P —单位面积上的绝对压力;n —分子浓度,即单位容积内含有气体的分子数V

N n =,其中N 为容积V 包含的气体分子总数。 压力测量依据:力平衡原理 压力单位:MPa

相对压力:相对于大气环境所测得的压力。工程上常用测压仪表测定的压力。

以大气压力为计算起点,也称表压力。

g p B p += (P >B )

H B p -=

(P

B —当地大气压力

P g —高于当地大气压力时的相对压力,称表压力;

H —低于当地大气压力时的相对压力,称为真空值。

注意:只有绝对压力才能代表工质的状态参数

3.比容:

比容:单位质量工质所具有的容积。 密度:单位容积的工质所具有的质量。

m V v =

m 3/kg

关系:1

ρ

v

=

式中:ρ—工质的密度kg/m3,v—工质的比容m3/kg

例:表压力或真空度为什么不能当作工质的压力?工质的压力不变化,测量它的压力表或真空表的读数是否会变化?

解:作为工质状态参数的压力是绝对压力,测得的表压力或真空度都是工质的绝对压力与大气压力的相对值,因此不能作为工质的压力;因为测得的是工质绝对压力与大气压力的相对值,即使工质的压力不变,当大气压力改变时也会引起压力表或真空表读数的变化。

三、强度性参数与广延性参数

强度性参数:系统中单元体的参数值与整个系统的参数值相同,与质量多少无关,没有可加性。在热力过程中,强度性参数起着推动力作用,称为广义力或势。如温度、压力等。

广延性参数:系统中各单元体该广延性参数值之和,在热力过程中,广延性参数的变化起着类似力学中位移的作用,称为广义位移。

如系统的容积、内能、焓、熵等。

1.3平衡状态、状态公理及状态方程

一、平衡状态

系统在不受外界影响的条件下,如果宏观热力性质不随时间而变化,系统内外同时建立了热的和力的平衡,这时系统的状态称为热力平衡状态,简

称为平衡状态。

平衡状态的充要条件:

热平衡(温度平衡) 力平衡(压力平衡)

化学势平衡(包括相平衡和化学平衡)

注意:平衡必稳定,反之稳定未必平衡。

平衡与均匀也是不同的概念,均匀是相对于空间,平衡是相对于时间。

平衡不一定均匀。

状态公理:确定纯物质系统平衡状态的独立参数=n+1

式中n表示传递可逆功的形式,而加1表示能量传递中的热量传递。

例如:对除热量传递外只有膨胀功(容积功)传递的简单可压缩系统,n=1,于是确定系统平衡状态的独立参数为1十1=2

所有状态参数都可表示为任意两个独立参数的函数。

状态方程: 反映工质处于平衡状态时基本状态参数的制约关系。

纯物质简单可压缩系统的状态方程:F(P,V,T)=0

1.4 准静态过程与可逆过程

热力过程:系统状态的连续变化称系统经历了一个热力过程。

一、准静过程:如果造成系统状态改变的不平衡势差无限小,以致该系统在任意时刻均无限接近于某个平衡态,这样的过程称为准静态过程。

注意:准静态过程是一种理想化的过程,实际过程只能接近准静态过程。

二、可逆过程:系统经历一个过程后,如令过程逆行而使系统与外界同时恢复到初始状态,而不留下任何痕迹,则此过程称为可逆过程。

实现可逆过程的条件:

1.过程无势差 (传热无温差,作功无力差)

2.过程无耗散效应。

三、可逆过程的膨胀功 (容积功)

系统容积发生变化而通过界面向外传递的机械功。

?=2

1

pdv w J/kg

规定: 系统对外做功为正,外界对系统作功为负。

问题: 比较不可逆过程的膨胀功与可逆过程膨胀功

四、可逆过程的热量:

系统与外界之间依靠温差传递的能量称为热量。

可逆过程传热量:?=2

1

Tds q q J/kg

规定:系统吸热为正,放热为负。

1.5 热力循环:

定义:工质从某一初态开始,经历一系列状态变化,最后由回复到初态的过程。,

一、正循环

正循环中的热转换功的经济性指标用循环热效率:

1

2121101q q q q q q w t -=-==η 式中

q 1—工质从热源吸热;q 2—工质向冷源放热; w 0—循环所作的净功。

二、逆循环 以获取制冷量为目的。

致冷系数: 2

12021q q q w q -==ε 式中:q 1—工质向热源放出热量;q 2—工质从冷源吸取热量;w 0—循环所作

的净功。

供热系数: 2

11012q q q w q -==ε 式中:q 1—工质向热源放出热量,q 2—工质从冷源吸取热量,w 0—循环所作的净功

本章应注意的问题

1.热力系统概念,它与环境的相互作用,三种分类方法及其特点,以及它们之间的相互关系。

2.引入准静态过程和可逆过程的必要性,以及它们在实际应用时的条件。

3.系统的选择取决于研究目的与任务,随边界而定,具有随意性。选取不当将不便于分析。 选定系统后需要精心确定系统与外界之间的各种相互作用以及系统本身能量的变化,否则很难获得正确的结论。

4.稳定状态与平衡状态的区分:稳定状态时状态参数虽然不随时间改变,但是靠外界影响来的。平衡状态是系统不受外界影响时,参数不随时间变化的状态。二者既有所区别,又有联系。平衡必稳定,稳定未必平衡。

5.状态参数的特性及状态参数与过程参数的区别。

思考题:

1.温度为100℃的热源,非常缓慢地把热量加给处于平衡状态下的0℃的冰水混合物,试问:1、冰水混合物经历的是准静态过程吗?2、加热过程是否可逆?

2.平衡态与稳态(稳态即系统内各点的状态参数均不随时间而变)有何异同?热力学中讨论平衡态有什么意义?

3.外界条件变化时系统有无达到平衡的可能?在外界条件不变时,系统是否一定处于平衡态?

4.判断下列过程是否为可逆过程:

1)对刚性容器内的水加热使其在恒温下蒸发。

2)对刚性容器内的水作功使其在恒温下蒸发。

3)对刚性容器中的空气缓慢加热使其从50℃升温到100℃

4)定质量的空气在无摩擦、不导热的气缸和活塞中被慢慢压缩

5)100℃的蒸汽流与25℃的水流绝热混合。

6)锅炉中的水蒸汽定压发生过程(温度、压力保持不变)。

7)高压气体突然膨胀至低压。

8)摩托车发动机气缸中的热燃气随活塞迅速移动而膨胀。

9)气缸中充有水,水上面有无摩擦的活塞,缓慢地对水加热使之蒸发。作业:1-2、1-6、1-8

最新工程热力学课程 高中其它科目课件教案

高等职业教育教学课程标准工程热力学 适用专业:化工机械 2006年4月

一、课程性质与任务 工程热力学课程是化工机械专业的一门专业基础课,是研究物质的热力性质、热能与其它能量之间相互转换规律的科学,是培养化机专业技术人员的一门重要技术基础课,它以热力学基本作为基础,通过物质的压力、温度、比容等宏观参数和受热、冷却、膨胀、收缩等整体行为,对宏观现象和热力过程进行研究,同时探讨各种热力过程的特性,达到提高热能利用率和热功转换效率的最终目的。 本课程的任务是使学生掌握能量转换与利用的基本定律及其运用,掌握工质的热力性质分析,了解工程中节能技术的热力学原理及其分析方法,以实现能量转换的高效性和经济性,并为学习其他有关课程及从事有关生产技术工作打下必要的基础。 二、课程教学目标 工程热力学是研究热能与其他形式的能量(尤其是机械能)之间相互转换规律的一门学科。通过热能利用在整个能源利用中地位的阐述,使学生认识研究热能利用和学习工程热力学的重要性, 并注意渗透思想教育,逐步培养学生的辩证思维能力,加强学生的职业道德观念,向学生渗透爱课程、爱专业教育。通过对我国能源及其利用现状的介绍,增强学生对我国能源问题的忧患意识和责任意识,激发学生为解决我国能源问题而努力学习的热情。初步形成解决实际问题的能力,为学习专业知识和职业技能打下基础。 三、理论教学内容和要求 1 教学内容体系结构 课程体系结构为: (1) 研究能量转化的宏观规律,即热力学第一定律与第二定律。这是工程热力学的理论基础。其中热力学第一定律从数量上描述了热能和机械能相互转换时的关系;热力

学第二定律从质量上说明了热能和机械能之间的差别,指出能量转换的方向性。 (2) 研究工质(能量转换所凭借的物质)的基本热力性质。 (3) 研究常用典型热工设备中的工作过程。即应用热力学基本定律,分析工质在各种热工设备中经历的状态变化过程和循环,并探讨和分析影响能量转换效果的因素,以其提高转换效果的途径。 从工程应用角度,全部教学内容紧紧围绕热能与机械能的相互转换规律和提高转换效率途径的研究主题。 2 课程要求 通过本课程的学习,学生应达到下列基本要求: (1)掌握热力学基本定律及其运用; (2)理解工质的热力性质及各种机械装置中热力过程和热力循环的基本原理,正确运用各种公式和图表。 (3)从课程内容的角度,学生在学习了热力学第一定律与第二定律,初步了解和掌握了理想气体热力性质和过程基本规律之后,可以应用这些基本知识分析、解决一些实际问题,达到对所学知识的第一次初步理解和应用。然后,在进一步学习了实际气体热力性质和过程之后,更深层次的应用前面所学的基本知识,深入分析实际装置中的热力过程和多种循环,从而达到能在更高的认知层面上进一步综合、灵活应用工程热力学的知识去解决实际问题。(4)从研究方法的角度,像其他学科一样,在工程热力学中,普遍采用抽象、概括、理想化和简化的方法。这种略去细节、抽出共性、抓住主要矛盾的处理问题的方法,这种科学的抽象,不但不脱离实际,而且更深刻地反映了事物的本质,是科学研究的重要方法。 (5) 本课程的教学内容分为基础模块和选学模块两个部分。基础模块是本课程的必修内容,为最低要求必学内容。选学模块是根据学期学时、学生基础好坏以及本届学

工程热力学教案105版

教案 课程名称:工程热力学 所在单位:动力及能源工程学院 课程性质:专业基础课 授课学时:64学时(8学时实验) 授课专业:热能及动力工程,核工程及核技术,轮机工程授课学期:第3(或4)学期

高等教育出版社,2001 严家騄,余晓福著. 水和水蒸汽热力性质图表. 北京:高等教育出版社,1995 主要参考资料: 曾丹苓,敖越,朱克雄等编.工程热力学(第二版)北京:高等教育出版社,1986 朱明善,林兆庄,刘颖等. 工程热力学.北京:.清华大学出版社.1995 严家騄编著.工程热力学(第二版).北京:高等教育出版社,1989朱明善,陈宏芳.热力学分析.北京:高等教育出版社,1992 赵冠春,钱立仑.火用分析及其应用. 北京:高等教育出版社,1984

绪论 (课时1) 一、为什么学习“工程热力学” 热力学及专业培养目标的联系,说明学习工程热力学对本学科的重要性。 二、能量 能量的形式:?? ? ???→ ?? ? ???→ ?? ? ???→ ?? ? ???→ ?? ? ?? ????→ ???→ ??←??? ? ?? ?? ?? ??????→ ?? ?? ??????→? ? ????→ 燃烧 光热 转换热机 利用 发电机 聚变 裂变电动机 风 车 水 轮 机 光 电 转 换 化学能热能 太阳能热能 机械能 地热能热能 电能 原子能热能 风 能机械能 水力能机械能 太阳能 ? ? ? ? ? ? ? ?? → ? ? ? ? ? ? ? ???????? ? ????????????→?? 燃 料 电 池 直接应用 电能 化学能电能 由能量的形式,人类面临的能源形式说明工程热力学对于动力工程的重要性。 三、工程热力学的主要内容 热力学基本概念;热力学第一定律;气体和蒸汽的性质和基本热力过程;热力学第二定律;实际气体性质简介;气体和蒸汽的流动;压气机的热力过程;气体动力循环;蒸汽动力装置循环;制冷循环;理想气体混合物及湿空气;化学热力学基础。 四、热力学的研究方法 1. 宏观的研究方法(宏观热力学;经典热力学) 2. 微观的研究方法(微观热力学;统计热力学) 工程热力学主要应用宏观的研究方法,但有时也引用气体分子运

哈工大工程热力学习题

第3章 热力学第一定律 本章基本要求 深刻理解热量、储存能、功的概念,深刻理解内能、焓的物理意义 理解膨胀(压缩)功、轴功、技术功、流动功的联系与区别 本章重点 熟练应用热力学第一定律解决具体问题 热力学第一定律的实质: 能量守恒与转换定律在热力学中的应用 收入-支出=系统储能的变化 = +sur sys E E 常数 对孤立系统:0=?isol E 或 0=?+?sur sys E E 第一类永动机:不消耗任何能量而能连续不断作功的循环发动机。 3.1系统的储存能 系统的储存能的构成:内部储存能+外部储存能 一.内能 热力系处于宏观静止状态时系统内所有微观粒子所具有的能量之和,单位质量工质所具有的内能,称为比内能,简称内能。U=mu 内能=分子动能+分子位能 分子动能包括: 1.分子的移动动能 2。分子的转动动能. 3.分子内部原子振动动能和位能 分子位能:克服分子间的作用力所形成 u=f (T,V) 或u=f (T,P) u=f (P,V)

注意: 内能是状态参数. 特别的: 对理想气体u=f (T) 问题思考: 为什么? 外储存能:系统工质与外力场的相互作用(如重力位能)及以外界为参考坐标的系统宏观运动所具有的能量(宏观动能)。 宏观动能:2 2 1mc E k = 重力位能:mgz E p = 式中 g —重力加速度。 系统总储存能:p k E E U E ++= 或mgz mc U E ++ =2 2 1 gz c u e ++ =2 21 3.2 系统与外界传递的能量 与外界热源,功源,质源之间进行的能量传递 一、热量 在温差作用下,系统与外界通过界面传递的能量。 规定: 系统吸热热量为正,系统放热热量为负。 单位:kJ kcal l kcal=4.1868kJ 特点: 热量是传递过程中能量的一种形式,热量与热力过程有关,或与过程的路径有关. 二、功 除温差以外的其它不平衡势差所引起的系统与外界传递的能量. 1.膨胀功W :在力差作用下,通过系统容积变化与外界传递的能量。 单位:l J=l Nm 规定: 系统对外作功为正,外界对系统作功为负。

工程热力学第七章水蒸气教案

1) 第七章 水蒸汽 ) 水蒸气是工程上应用较广泛的一种工质,例如蒸汽动力装置、压气式 制冷装置都是以水蒸气作为工质来实现热能→机械能相互转化的。这些动力装置也可用燃气或其他工质代替,那为什么要用水蒸汽呢?原因如下 ) 1、水蒸气容易获得,只要通过水的定性加热即可获得。 ) 2、有事宜的热力状态参数,靠卡诺循环、朗肯循环 ) 3、不会污染环境 ) 由于水蒸汽处于离液态较近的状态,常有集态现象而且,物理性质也很复杂,所以不能把它看作是理想气体,理想气体的状态方程式以及由它推导的其他计算公式一般都不能用来分析和计算水蒸汽。所以必须对水蒸汽的性质另行研究。 ) 这章重点研究:1、水蒸汽产生的一般原理 ) 2、水蒸汽状态参数确立 ) 3、水蒸汽图表的结构及应用 ) 4、计算水蒸汽热力过程中的,q w ) ) 7—1 基本概念和术语 ) 1、汽化:物质有液态转化为气态的过程。 ) 蒸发:在液态表面上进行的汽化过程,在任何温度下进行 ) 汽化的形式 沸腾:在液体内部和表面同时进行剧烈的汽化现象。沸腾时温度保持不变 解释:蒸发在任何温度下都可进行,它是由于液体表面总有一些能量较高的分子,克服临近分子的引力而脱离叶面,逸入液体外的空间,t 越高,能量较大的分子越多,蒸发愈激烈,汽化速度取决于温度。 沸腾时,实在液体内部产生大量的汽泡。汽泡上升到液面,破裂而放出大量的蒸汽, 工业上用的蒸汽都是通过沸腾的方式获得,液体在沸腾时温度不变,虽加热也保持不变,且液体和气体的温度相同。沸腾时的温度叫沸点。()ts f p = 2、液化:蒸汽转变为液体的现象,液化和汽化时相反的过程,他取决于(p) 3、饱和状态:当液体和蒸汽处于动平衡的状态 解释:当液体在有限的密闭空间里汽化时,不仅液体表面的液体分子蒸发到空间去,而空间的蒸汽分子也会因分子密度大,压力增大,撞击到液体表面回到液体中, 当液面上空的蒸汽分子密度达到一定程度时,在单位时间内逸出液面和回到液面的分子数相等时,蒸汽和液体的无量保持不变,汽、液两相处于动平衡状态。 4、饱和温度:当汽体和液体处于饱和状态时,液体和汽体温度称饱和温度 5、饱和压力:()s ts f p = 6、饱和蒸汽:处于饱和状态的蒸汽 7、饱和液体:处于饱和状态的液体 8、温饱和蒸汽:饱和液和饱和蒸汽的混合物,称温饱和蒸汽

哈工大工程热力学习题

一.是非题 (10分) 1.系统的平衡状态是指系统在无外界影响的条件下,不考虑外力场作用,宏观热力性质 不随时间而变化的状态。( ) 2.不管过程是否可逆,开口绝热稳流系统的技术功总是等于初、终态的焓差。 ( ) 3.工质经历一可逆循环,其∮d s =0,而工质经历一不可逆循环,其∮d s >0。( ) 4.理想气体在绝热容器中作自由膨胀,则气体温度与压力的表达式为 k k p p T T 1 1212-???? ??= ( ) 5.对一渐放型喷管,当进口流速为超音速时,可做扩压管使用。 ( ) 6.对于过热水蒸气,干度1>x ( ) 7.在研究热力系统能量平衡时,存在下列关系式:sur sys E E += 恒量, △S s y s +△S s u r = 恒量。( ) 8.对于渐缩喷管,若气流的初参数一定,那么随着背压的降低,流量将增大,但最多 增大到临界流量。( ) 9.膨胀功、流动功和技术功都是与过程路径有关的过程量 ( ) 10.在管道内定熵流动过程中,各点的滞止参数都相同。( ) 二.选择题 (10分) 1.湿蒸汽经定温膨胀过程后其内能变化_________ (A )△U = 0 (B )△U >0 (C )△U <0 (D )△U <0或△U >0 2.压气机压缩气体所耗理论轴功为_________ (A ) pdv 12? (B )d pv ()12? (C )pdu 1 2 ?+p 1v 1-p 2v 2 3.多级(共Z 级)压气机压力比的分配原则应是_________ (A )βi = (P Z+1 +P 1)/ Z (B )βi = (P Z+1 / P 1)1 / Z (C )βi = P Z+1/P 1 (D )βi =(P Z+1 / P 1)/ Z 4. 工质熵减少的过程_________ (A ) 不能进行 (B ) 可以进行 (C ) 必须伴随自发过程才能进行

《工程热力学A》(含实验)课程教学大纲.

《工程热力学A》(含实验)课程教学大纲 课程编码:08242025 课程名称:工程热力学A 英文名称:Engineering Thermodynamics A 开课学期:4 学时/学分:54 / 4 (其中实验学时:6 ) 课程类型:学科基础课 开课专业:热能与动力工程(汽车发动机方向)、热能与动力工程(热能方向) 选用教材:陈贵堂《工程热力学》北京理工大学出版社,1998; 陈贵堂王永珍《工程热力学》(第二版)北京理工大学出版社,2008 主要参考书: 1.陈贵堂王永珍《工程热力学学习指导》北京理工大学出版社,2008 2.华自强张忠进《工程热力学》.高等教育出版社.2000 3.沈维道,蒋智敏,童钧耕.工程热力学.第三版.北京:高等教育出版社,2001 4.曾丹苓,敖越,张新铭,刘朝编.工程热力学.第三版.北京:高等教育出版社,2002 5.严家马录.工程热力学.第三版.北京:高等教育出版社,2001 执笔人:王永珍 一、课程性质、目的与任务 该课程是热能与动力工程专业、建筑环境与设备工程专业基础课,是本专业学生未来学习、生活与工作的基石。通过它的认真学习可以可使学生了解并掌握一种新的理论方法体系,了解并掌握关于能量转换规律及能量有效利用的基本理论、树立合理用能思想,并能应用这些理论对热力过程及热力循环进行正确的分析、计算,为学生学习专业课程提供充分的理论准备,同时培养学生对工程中有关热工问题的判断、估算和综合分析的能力,为将来解决生产实际问题和参加科学研究打下必要的理论基础。 二、教学基本要求 通过本课程的学习可使学生了解并掌握关于能量转换规律及能量有效利用的基本理论、树立合理用能思想,并能应用这些理论对热力过程及热力循环进行正确的分析、计算。同时学生还可了解并掌握一种新的理论方法体系——外界分析法(The Surrounding Analysis Method, SAM),有利与开阔学生分析问题、解决问题的思路,有利于培养学生对工程中有关热工问题的判断、估算和综合分析的能力与素质,为将来解决生产实际问题和参加科学研究打下必要的理论基础。 三、各章节内容及学时分配 绪论introduction(1学时) 主要内容是让学生了解工程热力学的研究对象及研究方法、经典热力学理论体系的逻辑结构、SAM体系的逻辑结构及其主要特点。 一、热力学的定义、研究目的及分类Definition, Purpose, Classification 二、本门课的主要内容Contents 三、本门课的理论体系theory systems 第一章基本概念及定义Basic Concepts and Definitions(3学时,重点) 1-1 热力学模型The Thermodynamic Model of the SAM System 让学生了解并掌握热力学系统、边界、外界等概念,了解并重点掌握外界分析法的基本热力学

工程热力学 教案 第四讲

{复习提问} 1、什么是热力学第一定律? 2、什么事准平衡过程和可逆过程?举例描述。 3、系统储存能包括及部分,各是什么,表示符号和表达式是什么? {导入新课} 第三节系统与外界传递的能量 上一节课我们学习了系统的总储存能,这一节我们来学你系统与外界传递的能量。 在热力过程中,热力系与外界交换的能量包括三部分,分别是功量、热量和工质通过边界时所携带的能量。下面我们分别来学习这三种能量: 一、热量 1、定义:系统和外界之间仅仅由于温度不同(温差)而通过边界传递的能量称 为热量。符号:Q , 单位为J或kJ 2、单位质量工质与外界交换的热量用q表示,单位为J/kg或kJ/kg 。 微元过程中热力系与外界交换的微小热量用δQ或δq表示。 3、热量为在热传递中物体能量改变的量度,是过程量。其数值大小与过程有关, 所以不是状态参数。 4、热量正负规定: 系统吸热,热量取正值,Q(q)>0 ;系统放热,热量取 负值,Q(q)<0 。 5、热量的记算式(推导): 引入新概念【熵】 熵:指热能除以温度所得的商,标志热量转化为功的程度。有温差便有热量的传递,可用熵的变化量作为热力系与外界间有无热量传递以及热量传递方向的标志。 1、符号: S , 单位为J/K 或kJ/K 。 2、单位质量工质所具有的熵称为比熵, 用s 表示, 单位为J/(kg?K) 或kJ/(kg?K)。 用熵计算热量

在微元可逆过程中,系统与外界传递的热量可表示为: δq =Tds δQ =TdS 在可逆过程1-2中,系统吸收的热量可写为: q =?21Tds Q=?2 1TdS 根据熵的变化判断一个可逆过程中系统与外界之 间热量交换的方向:ds >0,δq >0,系统吸热; ds <0,δq <0,系统放热; ds =0,δq =0,系统与外界没有热量交换,是绝热(定熵)过程。 3. 温熵图 (T -s 图) 在可逆过程中单位质量工质与外界交换的热量 q =?21 Tds , 大小等于T -s 图(温熵图)上过程曲线下的面积,因此温熵图也称示热图。对于分析热力过程和热力循环很有用处。 二、功量 我们知道热量是由于温差的作用使系统与外界发生能量交换,顾名思义,功量是在力差作用下,系统与外界发生的能量交换。 1、功量亦为过程量,不是状态参数。 2、有各种形式的功,如电功、磁功、膨胀功、轴功等。工程热力学主要研究 两种功量形式: ⑴体积变化功,⑵轴功。 ⑴体积变化功——由于热力系体积发生变化(增大或缩小)而通过边 界向外界传递的机械功称为体积变化功(膨胀功或压缩功)。 ①符号: W , 单位为J 或kJ 。 ②1kg 工质传递的体积变化功用符号w 表示,单位为J/kg 或kJ/kg 。 ③正负规定: d v > 0 , w > 0 , 热力系对外作膨胀功; d v < 0 , w < 0 , 热力系对外作压缩功。 ④体积变化功的计算式(推导) 课本图2-4 假设质量为1kg 的气体工质在汽缸中进行一个可逆膨胀过程,缸内气体压力p ,活塞截面积A ,活塞在某一瞬间移动微小位移dx 。则整个热力过程工质对活塞所作功量为 : 1→2为可逆过程 (pdv pAdx w ==δ)

哈工大工程热力学习题答案——杨玉顺版

第二章 热力学第一定律 思 考 题 1. 热量和热力学能有什么区别?有什么联系? 答:热量和热力学能是有明显区别的两个概念:热量指的是热力系通过界面与外界进行的热能交换量,是与热力过程有关的过程量。热力系经历不同的过程与外界交换的热量是不同的;而热力学能指的是热力系内部大量微观粒子本身所具有的能量的总合,是与热力过程无关而与热力系所处的热力状态有关的状态量。简言之,热量是热能的传输量,热力学能是能量?的储存量。二者的联系可由热力学第一定律表达式 d d q u p v δ=+ 看出;热量的传输除了可能引起做功或者消耗功外还会引起热力学能的变化。 2. 如果将能量方程写为 或 d d q h v p δ=- 那么它们的适用范围如何? 答:二式均适用于任意工质组成的闭口系所进行的无摩擦的内部平衡过程。因为 u h pv =-,()du d h pv dh pdv vdp =-=-- 对闭口系将 du 代入第一式得 q dh pdv vdp pdv δ=--+ 即 q dh vdp δ=-。 3. 能量方程 δq u p v =+d d (变大) 与焓的微分式 ()d d d h u pv =+(变大) 很相像,为什么热量 q 不是状态参数,而焓 h 是状态参数? 答:尽管能量方程 q du pdv δ=+ 与焓的微分式 ()d d d h u pv =+(变大)似乎相象,但两者的数学本质不同,前者不是全微分的形式,而后者是全微分的形式。是否状态参数的数学检验就是,看该参数的循环积分是否为零。对焓的微分式来说,其循环积分:()dh du d pv =+??? 因为 0du =?,()0d pv =? 所以 0dh =?, 因此焓是状态参数。 而对于能量方程来说,其循环积分: 虽然: 0du =? 但是: 0pdv ≠? 所以: 0q δ≠? 因此热量q 不是状态参数。 4. 用隔板将绝热刚性容器分成A 、B 两部分(图2-13),A 部分装有1 kg 气体,B 部分为高度真空。将隔板抽去后,气体热力学能是否会发生变化?能不能用 d d q u p v δ=+ 来分析这一过程?

工程热力学第三版电子教案第7章

第7章水蒸汽 7.1 本章基本要求 (62) 7.2 本章难点 (62) 7.3 例题 (62) 7.4 思考及练习题 (66) 7.5 自测题 (69)

7.1 本章基本要求 理解水蒸汽的产生过程,掌握水蒸汽状态参数的计算,学会查水蒸汽图表和正确使用水蒸汽h-s 图。 掌握水蒸汽热力过程、功量、热量和状态参数的计算方法。 自学水蒸汽基本热力过程(§7-4)。 7.2 本章难点 1.水蒸汽是实际气体,前面章节中适用于理想气体的计算公式,对于水蒸汽不能适用,水蒸汽状态参数的计算,只能使用水蒸汽图表和水蒸汽h-s 图。 2.理想气体的内能、焓只是温度的函数,而实际气体的内能、焓则和温度及压力都有关。 3.查水蒸汽h-s 图,要注意各热力学状态参数的单位。 7.3 例题 例1:容积为0.63 m 的密闭容器内盛有压力为3.6bar 的干饱和蒸汽,问蒸汽的质量为多少,若对蒸汽进行冷却,当压力降低到2bar 时,问蒸汽的干度为多少,冷却过程中由蒸汽向外传出的热量为多少 解:查以压力为序的饱和蒸汽表得: 1p =3.6bar 时,"1v =0.51056kg m /3 "1h =2733.8kJ /kg 蒸汽质量 m=V/"1v =1.1752kg

查饱和蒸汽表得: 2p =2bar 时,'2v =0.0010608kg m /3 "2v =0.88592kg m /3 '2h =504.7kJ /kg ''2h =2706.9kJ /kg 在冷却过程中,工质的容积、质量不变,故冷却前干饱和蒸汽的比容等于冷却后湿蒸 汽的比容即: "1v =2x v 或"1v =''22'22)1(v x v x +- 由于"1v ≈''22v x =≈"2"12v v x 0.5763 取蒸汽为闭系,由闭系能量方程 w u q +?= 由于是定容放热过程,故0=w 所以 1212u u u q -=?= 而u=h-pv 故 )()("11"1222v p h v p h q x x ---= 其中:2x h =''22'22)1(h x h x +-=1773.8kJ /kg 则 3.878-=q kJ /kg Q=mq=1.1752?(-878.3) =-1032.2kJ 例2:1p =50bar C t 01 400=的蒸汽进入汽轮机绝热膨胀至2p =0.04bar 。设环境温度C t 0020=求: (1)若过程是可逆的,1kg 蒸汽所做的膨胀功及技术功各为多少。 (2)若汽轮机的相对内效率为0.88时,其作功能力损失为多少 解:用h-s 图确定初、终参数 初态参数:1p =50bar C t 01400=时,1h =3197kJ /kg 1v =0.058 kg m /3 1s =6.65kJ /kgK

(完整版)哈工大工程热力学习题答案——杨玉顺版

第二章 热力学第一定律 思 考 题 1. 热量和热力学能有什么区别?有什么联系? 答:热量和热力学能是有明显区别的两个概念:热量指的是热力系通过界面与外界进行的热能交换量,是与热力过程有关的过程量。热力系经历不同的过程与外界交换的热量是不同的;而热力学能指的是热力系内部大量微观粒子本身所具有的能量的总合,是与热力过程无关而与热力系所处的热力状态有关的状态量。简言之,热量是热能的传输量,热力学能是能量?的储存量。二者的联系可由热力学第一定律表达式 d d q u p v δ=+ 看出;热量的传输除了可能引起做功或者消耗功外还会引起热力学能的变化。 2. 如果将能量方程写为 d d q u p v δ=+ 或 d d q h v p δ=- 那么它们的适用范围如何? 答:二式均适用于任意工质组成的闭口系所进行的无摩擦的内部平衡过程。因为 u h pv =-,()du d h pv dh pdv vdp =-=-- 对闭口系将 du 代入第一式得 q dh pdv vdp pdv δ=--+ 即 q dh vdp δ=-。 3. 能量方程 δq u p v =+d d (变大) 与焓的微分式 ()d d d h u pv =+(变大) 很相像,为什么热量 q 不是状态参数,而焓 h 是状态参数? 答:尽管能量方程 q du pdv δ=+ 与焓的微分式 ()d d d h u pv =+(变大)似乎相象,但两者 的数学本质不同,前者不是全微分的形式,而后者是全微分的形式。是否状态参数的数学检验就是,看该参数的循环积分是否为零。对焓的微分式来说,其循环积分:()dh du d pv =+???蜒? 因为 0du =??,()0d pv =?? 所以 0dh =??, 因此焓是状态参数。 而对于能量方程来说,其循环积分: q du pdv δ=+???蜒?

工程热力学教案

《工程热力学》教案 课程名称:工程热力学 学分:2或3 学时:32或48 课程教材:李永,宋健. 工程热力学[M]. 北京:机械工业出版社,2017 专业年级:工科类相关专业本科生 一、目的与任务 工程热力学基本定律反映了自然界的客观规律,以这些定律为基础进行演绎、逻辑推理而得到的工程热力学方法、关系与结论,具有高度的普遍性、可行性、可靠性与实用性,可以应用于力学、宇航工程、机械与车辆工程等各个领域。工程热力学目的是研究和讲授热力学系统、热能动力装置中工作介质的基本热力学性质、热力学定律、热力学各种装置的工作过程以及提高能量转化效率的途径等,使学生熟练掌握解决工程热力学问题的基本方法,培养学生灵活应用热力学定律合理分析热力学系统的基本能力。 工程热力学任务是研究和传授热力系统能量、能量转换以及与能量转换有关的物性间相互关系和基本研究方法,培养学生对热力学的基本概念、基本理论的熟练掌握,分析求解热力学基本问题的能力。工程热力学起源于对热机和工质等的研究,热力学定律条理清楚,推理严格。工程热力学的内容多、概念多、公式多与方法多,工程热力学广泛联系热力工程和能源工程等领域。 二、主要教学内容与学时分配 绪论(2 学时) 第一节热力学的发展意义 第二节热力学的历史沿革 第三节热力学的基本定律

第四节熵与能源 第一章基本概念(2学时) 第一节热能、热力系统、状态及状态参数 第二节热力过程、功量及热量 第三节热力循环 第二章热力学第一定律及其应用(2学时) 第一节热力学第一定律及其表达 第二节热力学能和总储存能 第三节热力学第一定律的实质(2学时) 第四节能量方程式 第五节稳定流动系统的能量方程(2学时) 第六节能量方程的应用 第七节循环过程 第三章理想气体的性质(2学时) 理想气体及其状态方程 理想气体的比热容、比热力学能、比焓及比熵 理想气体的混合物 第四章理想气体的热力过程(2学时) 第一节热力过程的方法概述 热力过程的基本分析方法 第二节理想气体的基本热力过程(2学时) 第三节理想气体的多变过程(2学时) 第四节压气机的理论压缩功(2学时) 第五章热力学第二定律(2学时) 第一节热力过程的方向性

工程热力学课程教案完整版

工程热力学课程教案 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

《工程热力学》课程教案 *** 本课程教材及主要参考书目 教材: 沈维道、蒋智敏、童钧耕编,工程热力学(第三版),高等教育出版社,2001.6手册: 严家騄、余晓福着,水和水蒸气热力性质图表,高等教育出版社,1995.5 实验指导书: 华北电力大学动力系编,热力实验指导书,2001 参考书: 曾丹苓、敖越、张新铭、刘朝编,工程热力学(第三版),高等教育出版社,2002.12 王加璇等编着,工程热力学,华北电力大学,1992年。 朱明善、刘颖、林兆庄、彭晓峰合编,工程热力学,清华大学出版,1995年。 曾丹苓等编着,工程热力学(第一版),高教出版社,2002年 全美经典学习指导系列,[美]M.C. 波特尔、C.W. 萨默顿着郭航、孙嗣莹等 译,工程热力学,科学出版社,2002年。 何雅玲编,工程热力学精要分析及典型题精解,西安交通大学出版社,2000.4 概论(2学时) 1. 教学目标及基本要求 从人类用能的历史和能量转换装置的实例中认识理解:热能利用的广泛性和特殊性;工程热力学的研究内容和研究方法;本课程在专业学习中的地位;本课程与后续专业课程乃至专业培养目标的关系。 2. 各节教学内容及学时分配 0-1 热能及其利用(0.5学时) 0-2 热力学及其发展简史(0.5学时) 0-3 能量转换装置的工作过程(0.2学时) 0-4 工程热力学研究的对象及主要内容(0.8学时) 3. 重点难点 工程热力学的主要研究内容;研究内容与本课程四大部分(特别是前三大部分)之联系;工程热力学的研究方法 4. 教学内容的深化和拓宽 热力学基本定律的建立;热力学各分支;本课程与传热学、流体力学等课程各自的任务及联系;有关工程热力学及其应用的网上资源。 5. 教学方式 讲授,讨论,视频片段 6. 教学过程中应注意的问题

工程热力学课程教学大纲

《工程热力学》课程教学大纲 一、课程的性质和任务 本课程是建筑环境与能源应用工程及能源与动力工程专业必修的一门专业基础课。 本课程的任务是:通过对本课程的学习,使学生掌握有关物质热力性质、热能有效利用以及热能与其它能量转换的基本规律,培养学生运用热力学的定律、定理及有关的理论知识,对热力过程进行热力学分析的能力;初步掌握工程设计与研究中获取物性数据,对热力过程进行相关计算的方法。 二、课程的基本内容及要求 1、绪论 了解热能及其利用,热能装置的基本工作原理。 掌握工程热力学的研究对象、研究内容、研究方法及发展概况。 2、基本概念 了解工程热力学中一些基本术语和概念:热力系、平衡态、准平衡过程、可逆过程等。 掌握状态参数的特征,基本状态参数p,v,T的定义和单位等。 熟练应用热量和功量过程量的特征,并会用系统的状态参数对可逆过程的热量、功量进行计算。 3、气体的热力性质 了解理想气体与实际气体、混合气体的性质、气体常数、通用气体常数、比热容等。 掌握气体的状态方程及其应用。 熟练应用气体状态方程解决气体的变化过程参数的变化。 4、热力学第一定律 了解能量、储存能、热力学能、迁移能、膨胀功、技术功、推动功的概念,深入理解热力学第一定律的实质。 掌握热力学第一定律及其表达式、掌握体积变化功、推动功、轴功和技术功

的概念及计算式。注意焓的引出及其定义式。 熟练应用热力学第一定律表达式来分析计算工程实际中的有关问题。 5、理想气体的热力过程及气体压缩 了解理想气体热力学能、焓和熵的变化。了解活塞式压气机的余隙影响及多级压缩的过程 掌握正确应用理想气体状态方程式及4种基本过程以及多变过程的初终态基本状态参数p,v,T之间的关系。 熟练应用4种基本过程以及多变过程系统与外界交换的热量、功量的计算。能将各过程表示在p-v图和T-s图上,并能正确地应用在p-v图和T-s图判断过程的特点。 6、热力学第二定律 了解用可用能、有效能的概念及其计算。在深刻领会热力学第二定律实质的基础上,认识能量不仅有"量"的多少,而且还有"质"的高低。 掌握热力学第二定律的表述和实质,掌握熵的意义、计算和应用;掌握孤立系统和绝热系统熵增的计算,从而明确能量损耗的计算方法。 熟练应用孤立系统熵增原理、可用能的损失及计算对热力过程进行热工分析,认识提高能量利用经济性的方向、途径和方法。 7、水蒸气 了解水蒸相变过程、蒸气图表的结构及有关蒸气的各种术语及其意义。例如:汽化、凝结、饱和状态、饱和蒸气、饱和液体、饱和温度、饱和压、三相点、临界点、汽化潜热等。 掌握水蒸汽的定压汽化过程及水蒸汽的P—V图和T—S图。 熟练应用水蒸气图表分析水蒸气基本热力过程中热量及功量的变化。 8、湿空气 了解湿空气的组成,及焓湿图的绘制方法、了解实际应用的湿空气过程。 掌握湿空气状态参数的意义及其计算方法,并能区别哪些参数是独立参数,哪些参数存在相互关系。熟练掌握相对湿度、绝对湿度、含湿量等概念。 熟练应用含湿图分析湿空气的状态变化过程。 9、气体和蒸汽的流动

哈工大工程热力学教案-第8章 湿 空 气

第8章 湿 空 气 本章基本要求 理解绝对湿度、相对湿度、含湿量、饱和度、湿空气密度、干球温度、湿球温度、露点温度和角系数等概念的定义式及物理意义。 熟练使用湿空气的焓湿图。 掌握湿空气的基本热力过程的计算和分析。 8.1 湿空气性质 一、湿空气成分及压力 湿空气=干空气+水蒸汽 v a p p p B +== 二、饱和空气与未饱和空气 未饱和空气=干空气+过热水蒸汽 饱和空气=干空气+饱和水蒸汽 注意:由未饱和空气到饱和空气的途径: 1.等压降温 2.等温加压 露点温度:维持水蒸汽含量不变,冷却使未饱和湿空气的温度降至水蒸汽的饱和状态,所对应的温度。 三、湿空气的分子量及气体常数 B p M r M r M v v v a a 95.1097.28-=+= B p R v 378.01287 -=

结论:湿空气的气体常数随水蒸汽分压力的提高而增大 四、绝对湿度和相对湿度 绝对湿度:每立方米湿空气终所含水蒸汽的质量。 相对湿度:湿空气的绝对湿度与同温度下饱和空气的饱和绝对湿度的比值, s v ρρφ= 相对湿度反映湿空气中水蒸气含量接近饱和的程度。 思考:在某温度t 下,φ值小,表示空气如何,吸湿能力如何; φ 值大,示空气如何,吸湿能力如何。 相对湿度的范围:0<φ<1。 应用理想气体状态方程 ,相对湿度又可表示为 s v p p = φ 五、含温量(比湿度) 由于湿空气中只有干空气的质量,不会随湿空气的温度和湿度而改变。定义: 含湿量(或称比湿度):在含有1kg 干空气的湿空气中,所混有的水蒸气质量称为湿空气的)。 V v P B p d -=622 g/kg(a) 六、焓 定义:1kg 干空气的焓和0.001dkg 水蒸汽的焓的总和 v a dh h h 001.0+= 代入:)85.12501(001.001.1t d t h ++= g/kg(a) 七、湿球温度

工程热力学教学大纲-山东大学课程中心

山东大学 “工程燃烧学I”课程教学大纲 课程号:0183100310 课程名称:工程燃烧学I 英文名称:Engineering CombustionⅠ 总学分:2 总学时:34 授课学时:30 实验学时:4 上机学时:0 适用对象:热能与动力工程专业 先修课程:大学物理高等数学热工学流体力学 使用教材及参考书: 1、汪军,工程燃烧学,中国电力出版社,2008.7 2、霍然等,工程燃烧概论,中国科学技术大学出版社,2001.9 3、岑可法等,高等燃烧学,浙江大学出版社,2002.12 4、严传俊,范玮等,燃烧学(第2版),西北工业大学出版社,2008.7。 5、刘联胜,燃烧理论与技术,化学工业出版社,2008.6 6、黄勇,燃烧与燃烧室,北京航空航天大学出版社,2009.9 7、(美)特纳斯著,姚强,李水清,王宇译,燃烧学导论:概念与应用(第2版),清华大学出版社,2009.4 8、C. K. Law, Combustion Physics, Cambridge University Press, 2006. 9、Poinsot, T. and Veynante, D., Theoretical and Numerical Combustion, 2005. 10、Irvin Glassman, Richard A. Yetter, Combustion, 4th Edition- Elsevier,2008 11、徐通模,燃烧学,机械工业出版社,2010.7 * 在教材及主要参考资料中第1项为教材,其它为主要参考资料。 一、课程教学目的 工程燃烧学是热能与动力工程专业的一门重要的技术基础课,也是该专业的必修主干课。本课程的授课对象是热能与动力工程专业本科生,属热动类专业基础必修课。课程主要任务是通过各个教学环节,运用各种教学手段和方法,使学生对燃烧现象和基本理论的认识。通过本课程的学习掌握燃烧技术中所必须的热化学、燃烧动力学及燃烧过程的基本知识与基本理论。掌握热能与动力机械工程中典型燃料的特性、燃烧特点和规律,包括着火的形式和条件、火焰的传播、燃烧产物的生成机理、新型燃烧技术等。通过本课程的学习,能对锅炉、内燃机、涡轮机、火灾、家用炉灶、焊枪等燃烧现象从宏观上能有所认识,微观上能有所解释。为改进燃烧设备、提高能源利用率、分析有害排放物的生成机理和过程、避免不正常的燃烧现象、控制和降低有害排放物的生成,具有一定的基本理论知识。为今后从事工程技术工作、科学研究及开拓新技术领域,打下坚实的基础。 二、课程教学基本内容和要求 本课程由燃烧热力学、燃烧反应动力学、着火理论、火焰传播与稳定性、煤燃烧原理与技术、燃烧污染物控制技术、新型燃烧技术等部分组成。学完本大纲规定的内容后,应达到下列基本要求:

过控专业工程热力学教案

枣庄学院 化学化工系教案 2008--2009学年第2学期 课程名称:工程热力学 总学时数:72 学时 讲授时数:72学时 实践(实验、技能、上机等)时数:0学时 授课班级:07级本2班 主讲教师:丛兴顺 使用教材:大连理工大学《工程热力学》毕明树 2009年2月22日

教学日志

说明:1教学日志是记载任课教师课堂教学内容、教学进度等教学基本情况的教学管理方面的重要资料,

枣庄学院《工程热力学》课程教案

讨论、示教、指导等;3 、教学手段:指板书、多媒体、网络、模型、挂图音像等教学工具;4、首次开课的青年教师的教案应由导师审核;5、讲稿内容附后。 绪论(2 学时) 一、基本知识1.什么是工程热力学从工程技术观点出发,研究物质的热力学性质,热能转换为机械能的规律和方法,以及有效、合理地利用热能的途径。 电能一一机械能 锅炉一一烟气一一水一一水蒸气一一(直接利用)供热锅炉一一烟气一一水一一水蒸气一一汽轮机一一(间接利用)发电冰箱一一-(耗能)制冷 2.能源的地位与作用及我国能源面临的主要问题 3. 热能及其利用 (1).热能:能量的一种形式 (2).来源:一次能源:以自然形式存在,可利用的能源。 如风能,水力能,太阳能、地热能、化学能和核能等。二次能 源:由一次能源转换而来的能源,如机械能、机械能等。 (3).利用形式: 直接利用:将热能利用来直接加热物体。如烘干、采暖、熔炼(能源消耗比例大)间接利用:各种热能动力装置,将热能转换成机械能或者再转换成电能,4..热能动力转换装置的工作过程5.热能利用的方向性及能量的两种属性 过程的方向性:如:由高温传向低温 能量属性:数量属性、,质量属性(即做功能力) 数量守衡、质量不守衡 提高热能利用率:能源消耗量与国民生产总值成正比。6.本课程的研究对象及主要内容研究对象:与热现象有关的能量利用与转换规律的科学。研究内容:

2015-哈工大高等热力学-复习与思考题

2015年秋季学期《高等热力学》复习题及思考题(张昊春讲授部分) 一. 论述题 1. 简述最小熵产原理的内容。 2. 线性不可逆过程热力学的基本假设和主要内容。 3. 流动与传热过程的基本熵产计算公式。 4. 耗散结构的特点及其热力学解释。 5. 简述互唯象系数的物理含义。 6. 实际气体的状态方程具有哪些特征。 对比理想气体的状态方程g pv R T = Van der Waals 方程 2RT a p v b v = -- RK 方程 0.5 ()RT a p v b T v v b = --+ Wilson 方程 () RT a p v b v v b = - -+ PR 方程 ()()RT a p v b v v b b v b = - -++- PT 方程 ()()R T a p v b v v b c v b = - -++- 实际气体状态方程考虑到了气体分子具有一定的体积,所以用分子可自由活动的空间-b ν来取代理想气体状态方程中的体积v ,考虑到气体分子间的引力作用,气体 对容器壁面所施加的压力要比理想气体的小,用内压力修正压力项。 7. 实际流体如何对压缩因子进行通用化关联。 对多种流体的实验数据分析显示,接近各自的临界点时,所有流体都显示出相似的性质,因此产生了用相对于临界参数的对比值,代替压力、温度和比体积的绝对值,并用它们导出普遍适用的实际气体状态方程的想法。 实际流体的压缩因子是温度和压力的函数,在没有足够多的p-v-T 数据关联状态方程的条件下,可以用对比态原理估算压缩因子。 对比态原理:当用一组无量纲的对比参数表示流体性质时,所有流体具有同

哈工大工程热力学教案

绪论 (2学时) 一、基本知识点 基本要求 理解和掌握工程热力学的研究对象、主要研究内容和研究方法 ·理解热能利用的两种主要方式及其特点 ·了解常用的热能动力转换装置的工作过程 1.什么是工程热力学 从工程技术观点出发,研究物质的热力学性质,热能转换为机械能的规律和方法,以及有效、合理地利用热能的途径。 电能一一机械能 锅炉一一烟气一一水一一水蒸气一一(直接利用) 供热 锅炉一一烟气一一水一一水蒸气一一汽轮机一一 (间接利用)发电 冰箱一一-(耗能) 制冷 2.能源的地位与作用及我国能源面临的主要问题 3. 热能及其利用 (1).热能:能量的一种形式 (2).来源:一次能源:以自然形式存在,可利用的能源。

如风能,水力能,太阳能、地热能、化学能和核能等。 二次能源:由一次能源转换而来的能源,如机械能、机械能等。 (3).利用形式: 直接利用:将热能利用来直接加热物体。如烘干、采暖、熔炼(能源消耗比例大) 间接利用:各种热能动力装置,将热能转换成机械能或者再转换成电能, 4..热能动力转换装置的工作过程 5.热能利用的方向性及能量的两种属性 过程的方向性:如:由高温传向低温 能量属性:数量属性、,质量属性 (即做功能力) 注意: 数量守衡、质量不守衡 提高热能利用率:能源消耗量与国民生产总值成正比。 6.本课程的研究对象及主要内容 研究对象:与热现象有关的能量利用与转换规律的科学。 研究内容: (1).研究能量转换的客观规律,即热力学第一与第二定律。

(2).研究工质的基本热力性质。 (3).研究各种热工设备中的工作过程。 (4).研究与热工设备工作过程直接有关的一些化学和物理化学问题。 7..热力学的研究方法与主要特点 (1)宏观方法:唯现象、总结规律,称经典热力学。 优点:简单、明确、可靠、普遍。 缺点:不能解决热现象的本质。 (2)微观方法:从物质的微观结构与微观运动出发,统计的方法总结规律,称统计热力学。 优点:可解决热现象的本质。缺点:复杂,不直观。 主要特点:三多一广,内容多、概念多、公式多。 联系工程实际面广。条理清楚,推理严格。 二、重点、难点 重点:热能利用的方向性及能量的两种属性 难点:使学生认识到学习本课程的重要性,激发学生的学习兴趣和学习积极性,教会学生掌握专业基础课的学习方法。 四、德育点

相关主题
文本预览
相关文档 最新文档