当前位置:文档之家› 二次函数的实际问题应用(分类讲解变式)

二次函数的实际问题应用(分类讲解变式)

二次函数的应用

【今日目标】

1、学会建立二次函数模型解决实际问题(与方程、最值相结合);

2、能在限制条件下求出符合题意的最值。

【精彩知识】

【引例】求下列二次函数的最值:

(1)求函数223

x

y x x的最值.(2)求函数223

y x x的最值.(03)

★方法归纳:

如果自变量的取值范围是全体实数,那么函数在处取得最大值(或最小值).

如果自变量的取值范围是

x x x,分两种情况:

12

a为例,最大值是;最小值是顶点在自变量的取值范围内时,以0

顶点不在此范围内,则需考虑函数在自变量的取值范围内的增减性

专题一应用之利润最值问题

【例1】某种商品的进价为每件50元,售价为每件60元,每个月可卖出200件;如果每件商品的售价上涨1元,则每个月少卖10件(每件售价不能高于72元),设每件商品的售价上涨x元(x 为整数),每个月的销售利润为y元.

(1)求y与x的函数关系式并直接写出自变量x的取值范围;

(2)每件商品的售价定为多少时每个月可获得最大利润?最大利润是多少?

●变式练习:

某商品的进价为每件20元,售价为每件30,每个月可买出180件;如果每件商品的售价每上

涨1元,则每个月就会少卖出10件,但每件售价不能高于35元,设每件商品的售价上涨x元(x为整数),每个月的销售利润为x的取值范围为y元。

(1)求y与x的函数关系式,并直接写出自变量x的取值范围;

(2)每件商品的售价为多少元时,每个月可获得最大利润?最大利润是多少?

(3)每件商品的售价定为多少元时,每个月的利润恰好是1920元?

【例2】某电子商投产一种新型电子产品,每件制造成本为18元,试销过程发现,每月销量y (万件)与销售单价x(元)之间关系可以近似地看作一次函数y=-2x+100.(利润=售价-制造成本) (1)写出每月的利润z(万元)与销售单价x(元)之间函数解析式;

(2)当销售单价为多少元时,厂商每月能够获得350万元的利润?当销售单价为多少元时,厂商每月能够获得最大利润?最大利润是多少?

(3)根据相关部门规定,这种电子产品的销售单价不得高于32元.如果厂商要获得每月不低于350万元的利润,那么制造这种产品每月的最低制造成本需要多少万元?

专题二应用之面积最值问题

【例3】把一边长为40cm的正方形硬纸板,进行适当的剪裁,折成一个长方形盒子(纸板的厚

度忽略不计)。

(1)如图,若在正方形硬纸板的四角各剪一个同样大小的正方形,将剩余部分折成一个无盖的

长方形盒子。

①要使折成的长方形盒子的底面积为484cm2,那么剪掉的正方形的边长为多少?

②折成的长方形盒子的侧面积是否有最大值?如果有,求出这个最大值和此时剪掉的正方形的

边长;如果没有,说明理由。

(2)若在正方形硬纸板的四周剪掉一些矩形(即剪掉的矩形至少有一条边在正方形硬纸板的边

上),将剩余部分折成一个有盖的长方形盒子,若折成的一个长方形盒子的表面积为550cm2,求此时长方形盒子的长、宽、高(只需求出符合要求的一种情况)。

专题三实际应用问题

【例4】如图,排球运动员站在点O处练习发球,将球从O点正上方 2 m的A处发出,把球看

成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x-6)2+h.已知球网与O点的水平距离为9m,高度为 2.43m,球场的边界距O点的水平距离为18m。

(1)当h=2.6时,求y与x的关系式

(不要求写出自变量x的取值范围);

(2)当h=2.6时,球能否越过球网?

球会不会出界?请说明理由;

(3)若球一定能越过球网,又不出

边界,求h的取值范围。

【例5】卢浦大桥拱形可以近似看作抛物线的一部分.在大桥截面1∶11000的比例图上,跨度

AB=5 cm,拱高OC=0.9 cm,线段DE表示大桥拱内桥长,DE∥AB,如图(1).在比例图上,以直线AB为x轴,抛物线的对称轴为y轴,以1cm作为数轴的单位长度,建立平面直角坐标系,如

图(2).

(1)求出图(2)上以这一部分抛物线为图象的函数解析式,写出自变量的取值范围;

2,(2)如果DE与AB的距离OM=0.45 cm,求卢浦大桥拱内实际桥长(备用数据:4.1

计算结果精确到1米).

●变式练习:

如图,小明在一次高尔夫球争霸赛中,从山坡下O点打出一球向球洞A点飞去,球的飞行路线为抛物线,如果不考虑空气阻力,当球达到最大高度12米时,

球移动的水平距离为9米.已知山坡OA与水平方向OC的夹

角为30o,O、A两点相距83米.

(1)求出点A的坐标及直线OA的解析式;

(2)求出球的飞行路线所在抛物线的解析式;

(3)判断小明这一杆能否把高尔夫球从O点直接打入球洞A点.

【课后练习】

1、某地区准备筹办特色小商品展销会,芙蓉工艺厂设计一款成本为10元/件的工艺品投放市场进行

试销。经过调查,得到如下数据:

(1)已知y与x之间是一次函数关系,求出此函数关系式;

(2)当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?(利润

=销售总价-成本总价)

2、政府大力支持大学生创业。大学毕业生小明在政府的扶持下投资销售一种进价为每件

30元的学生台灯。销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=-10x+700.

(1) 小明每月获得的利润为w(元),试问当销售单价定为多少元时,每月可获得最大利润?

最大利润是多少?

(2) 如果小明想要每月获得3000元的利润,那么销售单价应定为多少元?

3、某汽车租赁公司拥有20辆同类汽车.据统计,当每辆车的日租金为400元时,可全部租出;当

每辆车的日租金每增加50元,未租出的车将增加1辆;公司平均每日的各项支出共4800元.设公司每日租出x辆车时,日收益为y元.(日收益=日租金收入一平均每日各项支出)

(1)公司每日租出x辆车时,每辆车的日租金为元(用含x的代数式表示,要求填写化简后的结果);

(2)当每日租出多少辆时,租赁公司的日收益不盈也不亏?

(3)当每日租出多少辆时,租赁公司日收益最大?最大是多少元?

上,二次函数应用的类型

教师一对一个性化教案 学生姓名年级9年级科目数学日期时间段课时 教学目标 教学内容 二次函数应用专题训练个性化学习问题解决掌握二次函数常见题型应用的最值问题 教学重 点、难点及 考点分析 重难点:函数解析式的确定以及根据实际情况处理最值问题 教学过程Part1桥·隧道 【基础题型】 1.如图所示的抛物线的解析式可设为,若AB∥x轴, 且AB=4,OC=1,则点A的坐标为, 点B的坐标为;代入解析式可得出此抛物线的 解析式为。 2.飞机着陆后滑行的距离s(单位:m)与滑行的时间t(单位:s)的函数关系式是: 2 5.1 60t t s- =.飞机着陆后滑行多少秒(m)后才能停下来. 例题1:有座抛物线形拱桥(如图),正常水位时桥下河面宽20m,河面距拱顶4m,为了保证过往船只顺利航行,桥下水面的宽度不得小于18m,求水面在正常水位基础上上涨多少米时,就会影响过往船只航行。 例题2如图,河上有一座抛物线桥洞,已知桥下的水面离桥顶部3m时,水面宽AB为6m,当水位上升0.5m时: (1)求水面的宽度CD为多少米? (2)有一艘游船,它的左右两边缘最宽处有一个长方体形状的遮阳棚,此船正对着桥洞在上述河流中航行。 ①若游船宽(指船的最大宽度)为2m,从水面到棚顶的高度为1.8m,问这艘游船能否从桥洞下通过? y x O A B

教学过程 例题3.许多桥梁都采用抛物线型设计,小明将他家乡的彩虹桥按比例缩小后,绘成如下的示意图,图中的三条抛物线分别表示桥上的三条钢梁,x 轴表示桥面,y 轴经过中间抛物线的最高点,左右两条抛物线关于y 轴对称.经过测算,中间抛物线的解析式为2 11040 y x =-+,并且BD=12CD. (1)求钢梁最高点离桥面的高度OE 的长; (2)求桥上三条钢梁的总跨度AB 的长; (3)若拉杆DE ∥拉杆BN ,求右侧抛物线的解析式. 例题4. 一座拱桥的轮廓是抛物线型(如图1所示) , 拱高6m, 跨度20m, 相邻两支柱间的距离均为5m . (1) 将抛物线放在所给的平面直角坐标系中(如图2所示), 求抛物线的解析式; (2) 求支柱EF 的长度; (3) 拱桥下地平面是双向行车道(正中间是一条宽2m 的隔离带), 若并排行驶宽2m 、高3m 的汽车,要求车与车之间, 车与隔离带之间的间隔均为0.5米, 车与桥的竖直距离至少为0.1米, 问其中一条行车道最多能同时并排行驶几辆车? 图1 图2 例5.如图1,一座拱桥的轮廓是抛物线型,拱高6m ,跨度20m ,相邻两支柱间的距离均为5m . (1)如图2,将抛物线放在所给的直角坐标系中,求该抛物线的解析式(不需要写出自变量x 的取值

二次函数综合应用题(有答案)

解:(1) y=50- x (0≤x ≤160,且 x 是 10 的整数倍)。 2 2(3) W= - x +34x +8000= - (x -170) +10890, ∴当 x=160 时,W 最大=10880,当 x=160 时,y=50- x=34。答:一天订住 34 个房间时, ( ( 函数综合应用题 题目分析及题目对学生的要求 1. 求解析式:要求能够根据题意建立相应坐标系,将实际问题转化成数学问题。 需要注意的是: (1) 不能忘记写自变量的取值范围(需要用的前提下) (2) 在考虑自变量的取值范围时要结合它所代表的实际意义。 2. 求最值:实际生活中的最值能够指导人们进行决策,这一问要求能够熟练地对二次三项 式进行配方,利用解析式探讨实际问题中的最值问题。 一般式化为定点式) 最值的求法: (1) 一次函数和反比例函数中求最值是根据函数在自变量取值范围内的增减性来确定的。 (2) 二次函数求最值是将解析式配方后,结合自变量取值范围来确定的。 3. 求范围,要求学生利用解析式求实际问题中的范围问题,主要是将函数与不等式结合起 来。 推荐思路:画出不等式左右两边的图象,结合函数图象求出 x 的取值范围。 备选思路一:先将不等号看做等号,求出 x 的取值,再结合图象考虑将等号还原为不等号后 x 的取值范围; 备选思路二:通过分类讨论或者其它方法,直接解出这个不等式。这一问里需要注意的是在 注意:最后下结论时一定要结合它的实际意义和前面所求得的自变量取值范围进行判断。 一、求利润的最值 1. (本题满分 10 分) 某宾馆有 50 个房间供游客住宿,当每个房间的房价为每天 180 元时, 房间会全部住满。当每个房间每天的房价每增加 10 元时,就会有一个房间空闲。宾馆需对 游客居住的每个房间每天支出 20 元的各种费用。根据规定,每个房间每天的房价不得高于 340 元。设每个房间的房价每天增加 x 元(x 为 10 的正整数倍)。 (1) 设一天订住的房间数为 y ,直接写出 y 与 x 的函数关系式及自变量 x 的取值范围; (2) 设宾馆一天的利润为 w 元,求 w 与 x 的函数关系式; (3) 一天订住多少个房间时,宾馆的利润最大?最大利润是多少元? 1 10 1 1 (2) W=(50- x)(180+x -20)= - x 2 +34x +8000; 10 10 1 1 10 10 当 x<170 时,W 随 x 增大而增大,但 0≤x ≤160, 1 10 宾馆每天利润最大,最大利润是 10880 元。 2. 本题满分 10 分)某商品的进价为每件 40 元,售价为每件 50 元,每个月可卖出 210 件; 如果每件商品的售价每上涨 1 元,则每个月少卖 10 件(每件售价不能高于 65 元).设每件 商品的售价上涨 x 元( x 为正整数),每个月的销售利润为 y 元. (1)求 y 与 x 的函数关系式并直接写出自变量 x 的取值范围; (2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元? (3)每件商品的售价定为多少元时,每个月的利润恰为 2200 元?根据以上结论,请你直接 写出售价在什么范围时,每个月的利润不低于 2200 元?

含参数二次函数分类讨论的方法

二次函数求最值参数分类讨论的方法 分类讨论是数学中重要的思想方法和解题策略,它是根据研究对象的本质属性的相同点和不同点,将对象分为不同种类然后逐类解决问题. 一般地,对于二次函数y=a (x -m )2+n ,x ∈[t ,s ]求最值的问题;解决此类问题的基本思路为:根据对称轴相对定义域区间的位置,利用分类讨论思想方法。为做到分类时不重不漏,可画对称轴相对于定义域区间的简图分类。 ①表示对称轴在区间[t ,s ]的左侧,②表示对称轴在区间[t ,s ]内且靠近区间的左端点,③表示对称轴在区间内且靠近区间的右端点,④表示对称轴在区间[t ,s ]的右侧。然后,再根据口诀“开口向上,近则小、远则大”;“开口向下,近则大、远则小”即可快速求出最值。 含参数的二次函数求最值的问题大致分为三种题型,无论哪种题型都围绕着对称轴与定义域区间的位置关系进行分类讨论 题型一:“动轴定区间”型的二次函数最值 例1、求函数2()23f x x ax =-+在[0,4]x ∈上的最值。 分析:先配方,再根据对称轴相对于区间的位置讨论,然后根据口诀写出最值。 解:222()23()3f x x ax x a a =-+=-+- ∴此函数图像开口向上,对称轴x=a ①、当a <0时,0距对称轴x=a 最近,4距对称轴x=a 最远, ∴x=0时,min y =3,x=4时,max y =19-8a ②、当0≤a<2时,a 距对称轴x=a 最近,4距对称轴x=a 最远, ∴x=a 时,min y =3-a2,x=4时,max y =19-8a ③、当2≤a <4时,a 距对称轴x=a 最近,0距对称轴x=a 最远, ∴x=a 时,min y =3-a2,x=0时,max y =3 ④、当4≤a 时,4距对称轴x=a 最近,0距对称轴x=a 最远, ∴x=4时,min y =19-8a ,x=0时,max y =3 例2、已知函数2()(21)3f x ax a x =+--在区间3 [,2]2 -上最大值为1,求实数a 的值 分析:取a=0,a ≠0,分别化为一次函数与二次函数,根据一次函数、二次函数的性质分类讨论.

《二次函数顶点式》教学设计

二次函数y =(x -h)2 +k 的图象 学习目标: 1.会画二次函数的顶点式y =a (x -h)2+k 的图象; 2.掌握二次函数y =a (x -h)2+k 的性质; 3.会应用二次函数y =a (x -h)2+k 的性质解题. 重点:会画二次函数的顶点式y =a (x -h)2+k 的图象. 难点:掌握二次函数a (x -h)2+k 的性质。 一、课前小测 1.函数24(2)y x =-的图象开口向______,顶点是_________,对称轴是_______, 当x =_________时,有最_________值是_________. 2.写出一个顶点坐标为(0,-3),开口向下抛物线解析式__________________. 写出一个顶点坐标为(-3,0),开口向下抛物线解析式__________________. 二、探索新知 1、问题一:提出问题,创设情境 画出函数y =-1 2 (x +1)2-1的图象,指出它的开口方向、对称轴及顶点、最值 观察图象得: (1)函数y =-1 2 (x +1)2-1的图象开口向______,顶点是_________,对称轴是_______,当x =_________时,有最_________值是_________. (2)把抛物线y =-1 2 x 2向_______平移______个单位,再向_______平移_______ 个单位,就得到抛物线y =-1 2 (x +1)2-1. 3、问题二:应用法则 探索解题.

例1.顶点坐标为(-2,3),开口方向和大小与抛物线y=1 2x 2相同的解析式为 () A.y=1 2(x-2) 2+3 B.y= 1 2(x+2) 2-3 C.y=1 2(x+2) 2+3 D.y=- 1 2(x+2) 2+3 三、作业:A组: 1.填表 2 3.将抛物线y=5(x-1)2+3先向左平移2个单位,再向下平移4个单位后,得到抛物线的解析式为_______________________. B组: 1.抛物线y=-3 (x+4)2+1中,的图象开口向______,顶点是_________,对称轴是_______,当x=_______时,y有最________值是________. 2.将抛物线y=2 (x+1)2-3向右平移1个单位,再向上平移3个单位,则所得抛物线的表达式为________________________。 3.足球守门员大脚开出去的球的高度随时间的变化而变化,这一过程可近似地用下列哪幅图表示() A B C D 4.一条抛物线的对称轴是x=1,且与x轴有唯一的公共点,并且开口方向向下,则这条抛物线的解析式为___________________________.(任写一个)

二次函数典型应用题

个性化辅导教育 新启点教育学科辅导讲义 年级:姓名:辅导科目: 授课内容 教学内容

个性化辅导教育 二次函数应用题分类 二次函数是初中学段的难点,学生学起来觉的比较的吃力,可以把应用问题进行分类: 第一类、利用待定系数法 对于题目明确给出两个变量间是二次函数关系,并且给出几对变量值,要求求出函数关系式,并进行简单的应用。解答的关键是熟练运用待定系数法,准确求出函数关系式。 例1. 某公司生产的A 种产品,它的成本是2元,售价是3元,年销售量为100万件,为了获得更好的效益,公司准备拿出一定的资金做广告。根据经验,每年投入的广告费是x (十万元)时,产品的年销售量将是原销售量的y 倍,且y 是x 的二次函数,它们的关系如下表: x (十万元) 0 1 2 … y 1 1.5 1.8 … (1)求y 与x 的函数关系式; (2)如果把利润看作是销售总额减去成本费和广告费,试写出年利润S (十万元)与广告费x (十万元)的函数关系式; (3)如果投入的年广告费为10—30万元,问广告费在什么范围内,公司获得的年利润随广告费的增大而增大? 二、分析数量关系型 题设结合实际情景给出了一定数与量的关系,要求在分析的基础上直接写出函数关系式,并进行应用。解答的关键是认真分析题意,正确写出数量关系式。 例2. 某化工材料经销公司购进了一种化工原料共7000千克,购进价格为每千克30元。物价部门规定其销售单价不得高于每千克70元,也不得低于30元。市场调查发现:单价定为70元时,日均销售60千克;单价每降低1元,日均多售出2千克。在销售过程中,每天还要支出其它费用500元(天数不足一天时,按整天计算)。设销售单价为x 元,日均获利为y 元。 (1)求y 关于x 的二次函数关系式,并注明x 的取值范围; (2)将(1)中所求出的二次函数配方成的形 式,写出顶点坐标;在图2所示的坐标系中画出草图;观察图象,指出单价 定为多少元时日均获得最多,是多少? a 4 b a c 4)a 2b x (a y 2 2-+ +=

高中数学二次函数分类讨论经典例题

例1(1)关于x 的方程0142)3(22=++++m x m x 有两个实根,且一个大于1,一个小于1,求m 的取值范围; (2)关于x 的方程0142)3(22=++++m x m x 有两实根都在)4,0[内,求m 的取值范围; ⑶关于x 的方程0142)3(22=++++m x m x 有两实根在[]3,1外,求m 的取值范围 (4)关于x 的方程0142)3(22=++++m x m mx 有两实根,且一个大于4,一个小于4,求m 的取值范围. 例3已知函数3)12()(2--+=x a ax x f 在区间]2,2 3[-上的最大值为1,求实数a 的值。

解(1)令142)3(2)(2++++=m x m x x f ,∵对应抛物线开口向上,∴方程有两个实根,且一个大于1,一个小于1等价于0)1(?吗?),即.4 21-++++≥+????? ?????≥+-+<+-<≥≥m m m m m m m m m m f f (3)令142)3(2)(2++++=m x m x x f ,原命题等价于 ???<<0)3(0)1(f f 即? ??<++++<++++0142)3(690142)3(21m m m m 得.421-0)4(0g m 或,0 )4(0???>)(恒成立,求实数a 的取 值范围。 解:(1)0)()(恒成立?.)]([min a x f >又当]1,1[-∈x 时, 5)1()]([min -=-=f x f ,所以).5,(--∞∈a 【评注】“有解”与“恒成立”是很容易搞混的两个概念。一般地,对于“有解”与“恒成立”,有下列常用结论:(1)a x f >)(恒成立?a x f >min )]([;(2)a x f <)(恒成立?a x f )(有解?a x f >max )]([;(4)a x f <)(有解?.)]([min a x f < 分析:这是一个逆向最值问题,若从求最值入手,首先应搞清二次项系数a 是否为零,如果)(,0x f a ≠的最大值与二次函数系数a 的正负有关,也与对称轴

中考专项复习:二次函数的应用题型总结解析版

专题10二次函数的应用一.解读考点 知识点 二次函(1)利润问题 数应用(2)几何问题 类型(3)抛物线型问题 名师点晴 利用二次函数的最值确定最大利润、最大面积是二次函数应用最常见的问题. 一般方法是: (1)建模(最重要的 就是可以读懂题意),然 二次后求二次函数的解析式,解决此类问题的关键是①函数并把x的取值范围求出;认真审题,理解题意,建 应用(2)求x= ﹣b 2a 的值;立二次函数的数学模型, 的解(3)判断x=﹣b的值在再用二次函数的相关知识 2a 题步不在自变量x的取值范解决②注意自变量的取值骤围 ①在,即相当于求顶点处 函数的最大值或最小值 ②不在,可画草图根据二 范围.

次函数的增减性来解答. 二.考点归纳 归纳1:利润问题 基础知识归纳: ①每件商品的利润=售价—进价 ②商品的总利润=每件商品的利润×销售量=(售价—进价)×销售量 ③商品的总利润=总收入-总支出 ④商品的利润率==

例1.(2017湖北十堰)某超市销售一种牛奶,进价为每箱24元,规定售价不低于进价.现在的售价为每箱36元,每月可销售60箱.市场调查发现:若这种牛奶的售价每降价1元,则每月的销量将增加10箱.设每箱牛奶降价x元(x为正整数),每月的销量为y箱. (1)写出y与x之间的函数关系式和自变量x的取值范围; (2)超市如何定价,才能使每月销售牛奶的利润最大?最大利润是多少元? 【答案】(1)y=60+10x(1≤x≤12,且x为整数); (2)超市定价为33元时,才能使每月销售牛奶的利润最大,最大利润是810元. 【解析】 试题分析:(1)根据题意,得:y=60+10x,由36?x≥24得x ≤12, ∴1≤x≤12,且x为整数; (2)设所获利润为W, 则W=(36?x?24)(10x+60)=?10x2+60x+720=?10(x?3)2+810, ∴当x=3时,W取得最大值,最大值为810, 答:超市定价为33元时,才能使每月销售牛奶的利润最大,最大利润是810元.

二次函数应用题题型归纳.docx

二次函数应用题 题型一面积问题 1星光中学课外活动小组准备围建一个矩形生物苗圃园.其中一边靠墙,另外三边用长为30 米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为兀米. (1)若平行于墙的一边的长为y米,直接写出y与无之间的函数关系式及其自变量兀的取值范围; (2)垂直于墙的一边的长为多少米时,这个苗圃园的面积最大,并求出这个最大值; (3)当这个苗圃园的面积不小于能平方米时,试结合函数图像,直接写出x的取值范围. 1BX 2某学校要在I韦I墙旁建一个长方形的中药材种植实习苗圃,苗圃的一边靠I韦I墙(墙的长度不限),另三边用木栏围成,建成的苗圃为如图所示的长方形ABCD.己知木栏总长为120米, 设AB边的长为x米,长方形ABCD的面积为S平方米. (1)求S与x之间的函数关系式(不要求写出自变量X的収值范围).当x为何值时,S収得最值(请指出是最大值还是最小值)?并求出这个最值; (2)学校计划将苗圃内药材种植区域设计为如图所示的两个相外切的等圆,其圆心分别为0、 和q ,且0\到AB. BC、AD的距离与O2到CD、BC、AD的距离都相等,并要求在苗圃内药材种植区域外四周至少要留够0.5米宽的平直路面,以方便同学们参观学习.当⑴中S収得最大值时,请问这个设计是否可行?若可行,求出圆的半径;若不可行,请说明理由. B ------------------------------ C ° F G

题型二利润问题 1利民商店经销甲、乙两种商品.现有如下信息:请根据以上信息,解答下列问题: (1)甲、乙两种商品的进货单价各多少元? (2)该商店平均每天卖出甲商品500件和乙商品300件.经调查发现,甲、乙两种商品零售单价分别每降0.1元,这两种商品每天可各多销售100件.为了使每天获取更大的利润,商店决定把甲、乙两种商品的零售单价都下降加元.在不考虑其他因素的条件下,当加定为多少时,才能使商店每天销售甲、乙两种商品获取的利润最大?每天的最大利润是多少? 信息仁甲、乙两种商品的进货单价之和是5元; 信息2:甲商品零售单价比进货单价多1元, 乙商品零售单价比进货单价的2倍少 c 1元. 2 ,2015年长江屮下游地区发生了特大旱情,为抗旱保丰收,某地政府制定民农户投资购买抗旱设备的补贴办法,其中购买I型、II型抗旱设备所投资的金额与政府补贴的额度存在下表所示的函数对应关系. (1)分别求出%和乃的函数解析式; (2)有一农户同时对I型、II型两种设备共投资10万元购买,请你设计一个能获得最人补贴金额的方案,并求出按此方案能获得的最人补贴金额. I型设备11型设备 型号 金额 投资金额x(万元) X5X24 补贴金额y (万元) yi=kx(k^0)2y2=ax2+bx(a^0) 2.4 3.2

(完整版)二次函数综合题分类讨论带答案.doc

二次函数综合题分类讨论 一、直角三角形分类讨论: 1 1、已知点 A(1 ,0),B( -5,0),在直线y 2 x 2 上存在点C,使得 ABC 为直角三角形, 这样的 C 点你能找到个 2、如图 1,已知抛物线C1:y a x 2 2 5 的顶点为 P,与 x 轴相较于 A 、 B 两点(点 A 在点 B 的左边),点 B 的横坐标是 1.( 1)求 P 点坐标及a的值;( 2)如图 1,抛物线 C2与抛物线 C1关于 x 轴对称,将抛物线C2向右平移,平移后得到抛物线C3, C,3的顶点为 M ,当点 P、 M 关于点 B 成中心对称时,求C,3的解析式;( 3)如图 2,点 Q 是 x 轴正半轴上一点,将抛物线C1绕点 Q 旋转180 后得到抛物线 C,4,抛物线 C,4的顶点为 N,与 x 轴相交于 E、 F 两点(点 E 在点 F 的左边),当以点 P、 N、 F 为顶点的三角形 是直角三角形时,求点Q 的坐标。(2013 汇编 P56+P147)

3、如图,矩形 A’BC’O’是矩形 OABC( 边 OA 在 x 轴正半轴上,边 OC 在 y 轴正半轴上 )绕 B 点逆时针旋转得到的. O’点在 x 轴的正半轴上, B 点的坐标为 (1,3). (1)如果二次函数 y= ax2+ bx+c(a≠0)的图象经过 O、O’两点且图象顶点 M 的纵坐标为 —1.求这个二次函数的解析式; ? (2) 在 (1)中求出的二次函数图象对称轴的右支上是否存在点P,使得POM 为直角三角形 若存在,请求出P 点的坐标和POM 的面积;若不存在,请说明理由; (3)求边 C’O’所在直线的解析式.

二次函数应用的九种类型

如图所示,抛物线y=-12x 2-32x+2和直线y=12x+2相交于A 、C 两点,抛物线与 x 轴的另一个交点为B ,在抛物线的对称轴上是否存在点P,使得△PBC 为直角三角形,如果存在请求出P 点坐标,如果不存在,请说明理由。 此类问题分别以三角形的三条边为斜边(或三个顶点为直角顶点)分三种情况进行讨论,其中要应用勾股定理等知识。 类型三:直角三角形的分类讨论: 如图所示,抛物线y=-12x 2-32x+2和直线y=12x+2相交于A 、C 两点,抛物线与 x 轴的另一个交点为B ,在抛物线的对称轴上是否存在点P,使得△PBC 的周长最小,如果存在请求出P 点坐标,如果不存在,请说明理由。此类问题有一个动点在一条直线上运动,在直线的一侧有两个定点,先找出其中一个定点关于这条直线的对称点,然后连接这个对称点和另一个定点,与已知直线有个交点,这个交点就是使得这个动点到两个定点距离之和最小的点。 类型二:将军饮马问题: 如图所示,抛物线y=-12x 2-32x+2和直线y=12x+2相交于A 、C 两点,抛物线与 x 轴的另一个交点为B ,在直线AC 的上方的抛物线上是否存在点P,使得△PAC 的面积最大,如果存在请求出P 点坐标,如果不存在,请说明理由。 把图形面积用二次函数表达式表示出来,然后 利用函数表达式求最值补充知识:平面直角坐 标系中三角形的面积一般用铅直高乘以水平宽 再乘以二分之一来求。 类型一:利用二次函数表达式求最大值的问题 如图所示,抛物线y=-12x 2-32x+2和直线y=12相交于A 、C 两点,抛物线与 x 轴的另一个交点为B ,在抛物线的对称轴上是否存在点P,使得△PBC 为等腰三角形,如果存在请求出P 点坐标,如果不存在,请说明理由。此类问题分别以三角形的三条边为底边分三种情况进行讨论, 其中要应用两点之间的距离公式等知识。 类型四:等腰三角形的分类讨论:

二次函数的应用题总结

二次函数的应用 一、顶点坐标公式的应用(基本题型) 1、某超市销售某种品牌的纯牛奶,已知进价为每箱40元,生产厂家要求每箱的售价在40元~70元之间.市场调查发现:若每箱50 元销售,平均每天可销售90 箱,价格每降低1 元,平均每天多销售3 箱;价格每升高1 元,平均每天少销售3 箱. (1)写出平均每天的销售量y(箱)与每箱售价x(元)之间的函数关系式(注明自变量x 的取值范围); (2)求出超市平均每天销售这种牛奶的利润W(元)与每箱牛奶的售价x(元)之间的二次函数关系式(每箱的利润 b 24a c b 2 =售价-进价);(3)请把(2)中所求出的二次函数配方成y a(x )2的形式,并指出当x=40、70 时, 2a 4a W 的值.(4)在坐标系中画出(2)中二次函数的图象,请你观察图象说明:当牛奶售价为多少时,平均每天的利润最大?最大利润为多少? 练习:2、我市有一种可食用的野生菌,上市时,外商李经理按市场价格30 元/千克收购了这种野生菌1000 千克存 放入冷库中,据预测,该野生菌的市场价格将以每天每千克上涨 1 元;但冷冻存放这批野生菌时每天需要支出各种费用合计310 元,而且这类野生菌在冷库中最多保存160 天,同时,平均每天有 3 千克的野生菌损坏不能出售. (1)设x天后每千克该野生菌的市场价格为y元,试写出y与x之间的函数关系式. (2)若存放x天后,将这批野生菌一次性出售,设这批野生菌的销售总额为P元,试写出P与x之间的函数关系式.(3)李经理将这批野生茵存放多少天后出售可获得最大利润W 元? (利润=销售总额-收购成本-各种费用) 练习3、汽车城销售某种型号的汽车,每辆进货价为25 万元,市场调研表明:当销售价为29 万元时,平均每周能售 出8 辆,而当销售价每降低0.5 万元时,平均每周能多售出4 辆.如果设每.辆.汽车降价x 万元,每辆汽车的销售.利.润.为y 万元.(销售利润销售价进货价) (1)求y 与x的函数关系式;在保证商家不亏本的前提下,写出x的取值范围;(3 分) (2)假设这种汽车平均每周..的销售利润为z万元,试写出z与x之间的函数关系式;(3分) (3)当每辆汽车的定价为多少万元时,平均每周的销售利润最大?最大利润是多少?( 4 分) 练习4、某集团将下设的内部小型车场改为对外开放的收费停车场。试运营发现:每辆次小车的停车费不超过 5 元时,每天来此处停放的小车为1440 辆次,超过 5 元时,每涨 1 元,每天来此处停放的小车就减少120 辆次,而此停车场每天需固定支出的费用(设施维修费、车辆管理人员工资等)为800 元。为便天结算,规定每辆次小车的停车费x(元)只取整数,用y (元)表示此停车场的日净收入,且要求日净收不低于2512 元。(日净收入=每天共收取的停车费-每天的固定支出) (1)当x≤5时,写出y 与x 之间的关系式。并说明每辆次小车的停车费最少不低于多少元;(2)当x>5时,写出y 与x 之间的函数关系式(不必写出x 的取值范围); (3)该集团要求此停车场既要吸引客户,使每天小车停放的辆次校多,又要有较大的日净收入。按此要求,每辆次小车的停

运用顶点式求二次函数的解析式

运用顶点式求二次函数的解析式 李保国 一、学习目标:1、进一步巩固用待定系数法求二次函数的解析式。 2、掌握顶点式求二次函数的步骤。 3、会用顶点式求二次函数的解析式。 二、预习提纲: (一)忆一忆 (1)y=3(x-1)2+1 对称轴______.顶点坐标______。 (2)y=ax2+bx+c 对称轴______.顶点坐标_______。2 (3)y=a(x-h)2+k 对称轴______.顶点坐标______。 (一组:预测性困难: 学生在记忆一般式的顶点坐标公式时有可能出错。 教师追问: 根据顶点式找顶点坐标的技巧是什么? 点评: 括号内等于0求出x的值是顶点的横坐标,纵坐标是k的值。)(二) 学一学: 例:已知二次函数的顶点是(1,-3),且过P(2,0)点,求这个二次函数的解析式。 分析:求二次函数的解析式,知道了二次函数的顶点坐标和其中的一个点的坐标,因此设为顶点式来求二次函数的解析式比较简单 解:∵二次函数的顶点是(1,3)

∴设抛物线的解析式为y=a(x-1)2-3 ∵抛物线过P(2,0)点 ∴0=a(2-1)2-3 ∴a=3 ∴y=3(x-1)2-3 =3x2-6x ∴二次函数的解析式为:y=3x2-6x 总结:运用顶点式求二次函数的解析式的步骤: ①设出顶点式,注意符号的变化。 ②代入点的坐标求a值。 ③把顶点式化为一般式。 (三)练一练: (1)已知抛物线过点(3,1),顶点为(2,3),求抛物线的解析式。 (2)已知抛物线的顶点为(-1,3)并过原点,求抛物线的解析式。 (三组:预测性困难: 学生有可能在求出二次函数的顶点式后忘记化成一般式。 教师追问: 二次函数图像过原点提供了什么? 点评: 二次函数图像过原点,即(0,0)点的坐标适合函数的解析式。)(4)已知抛物线的图像如图所示,求抛物线的解析式。

初中数学二次函数的应用题型分类——动态几何图形问题1( 精选50题 附答案)

初中数学二次函数的应用题型分类——动态几何图形问题1( 精选50题 附答案) 1.我们规定,以二次函数y =ax 2+bx +c 的二次项系数a 的2倍为一次项系数,一次项系数b 为常数项构造的一次函数y =2ax +b 叫做二次函数y =ax 2+bx +c 的“子函数”,反过来,二次函数y =ax 2+bx +c 叫做一次函数y =2ax +b 的“母函数”. (1)若一次函数y =2x -4是二次函数y =ax 2+bx +c 的“子函数”,且二次函数经过点(3,0), 求此二次函数的解析式及顶点坐标. (2)若“子函数”y =x -6的“母函数”的最小值为1,求“母函数”的函数表达式. (3)已知二次函数y =-x 2-4x +8的“子函数”图象直线l 与x 轴、y 轴交于C 、D 两点,动点P 为二次函数y =-x 2-4x +8对称轴右侧上的动点,求△PCD 的面积的最大值. 2.如图①,在矩形ABCD 中,动点P 从点A 出发,以2cm/s 的速度沿AD 向终点D 移动,设移动时间为t(s).连接PC ,以PC 为一边作正方形PCEF ,连接DE 、DF .设PCD ?的面积为y (cm 2). y 与t 之间的函数关系如图②所示. (1) AB = cm ,AD = cm; (2) 点P 从点A 到点D 的移动过程中,点E 的路径是_________________ cm. (3)当t 为何值时,DEF ?的面积最小?并求出这个最小值; (4) 当t 为何值时,DEF ?为等腰三角形?请直接.. 写出结果。 3.已知开口向下的抛物线y=ax 2+bx+c 可以由y=a (x-m )2向上平移n 个单位长度所得,且抛物线过点B (t ,0)(t>0)和C (0,3),实数a ,m 是一元二次方程8x 2-6x-9=0的两个根,若点P 是抛物线上的一个动点,过点P 作PE ⊥x 轴于点E ,交直线BC 于点D ,连接PC . (1)求抛物线的解析式和实数n 的值; (2)当动点P 在第一象限的抛物线上运动时,过点P 作PF ⊥BC 于点F ,试问△PDF 的周长是否有最大值?如果有,请求出其最大值;如果没有,请说明理由; (3)当点P 在抛物线上运动时,将△CPD 沿直线CP 翻折,点D 的对应点为点Q ,试问四边形CDPQ 能否成为菱形?如果能,请求出此时点P 的坐标;如果不能,请说明理由.

二次函数应用题含答案

二次函数应用题 1、某体育用品商店购进一批滑板,每件进价为100元,售价为130元,每星期可卖出80件.商家决定降价促销,根据市场调查,每降价5元,每星期可多卖出20件. (1)求商家降价前每星期的销售利润为多少元? (2)降价后,商家要使每星期的销售利润最大,应将售价定为多少元?最大销售利润是多少? 2、某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台. (1)假设每台冰箱降价x 元,商场每天销售这种冰箱的利润是y 元,请写出y 与x 之间的函数表达式;(不要求写自变量的取值范围) (2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元? (3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少? 3、张大爷要围成一个矩形花圃.花圃的一边利用足够长的墙 另三边用总长为32米的篱笆恰好围成.围成的花圃是如图所 示的矩形ABCD .设AB 边的长为x 米.矩形ABCD 的面积 为S 平方米. (1)求S 与x 之间的函数关系式(不要求写出自变量x 的 取值范围). (2)当x 为何值时,S 有最大值?并求出最大值. (参考公式:二次函数2 y ax bx c =++(0a ≠),当2b x a =-时,244ac b y a -=最大(小)值) 4、某电视机生产厂家去年销往农村的某品牌电视机每台的售价y (元)与月份x 之间满足函数关系502600y x =-+,去年的月销售量p (万台)与月份x 之间成一次函数关系,其中两个月的销售情况如下表: 月份 1月 5月 销售量 3.9万台 4.3万台 (1)求该品牌电视机在去年哪个月销往农村的销售金额最大?最大是多少? (2)由于受国际金融危机的影响,今年1、2月份该品牌电视机销往农村的售价都比去年12月份下降了%m ,且每月的销售量都比去年12月份下降了1.5m%.国家实施“家电下乡”政策,即对农村家庭购买新的家电产品,国家按该产品售价的13%给予财政补贴.受此政策的影响,今年3至5月份,该厂家销往农村的这种电视机在保持今年2月份的售价不变的情况下,平均每月的销售量比今年2月份增加了1.5万台.若今年3至5月份国家对这种电视机的销售共给予了财政补贴936万元,求m 的值(保留一位小数). 34 5.83135 5.91637 6.08338 6.164) 5、某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y (件)与销售单价x (元)符合一次函数y kx b =+,且65x =时,55y =;75x =时,45y =.

二次函数(专题)教学设计

二次函数(专题) ——线段问题 【教学目标】 一、知识技能 1.会用坐标表示线段长度; 2.能解决与抛物线有关的线段问题. 二、数学思考 1.通过用点的坐标表示线段的长度,体现数形结合的思想; 2.体会分类讨论的思想方法. 三、问题解决 1.引导学生归纳出解决与抛物线有关的线段问题的方法; 2.通过小组讨论发现问题,解决问题,体会在解决问题过程中小组合作的重要性. 四、情感态度 在解决问题的过程中,培养学生独立思考、敢于发表自己见解的学习习惯.在合作交流的过程中使学生体验成功的喜悦,增强学好数学的信心. 【教学重点】 1.用坐标表示线段长; 2.解决与抛物线有关的线段问题. 【教学难点】用坐标表示线段长. 【教学方法】探究归纳法、讲练结合法、小组合作法. 【教学准备】多媒体课件、学案等. 【教学过程】 一、知识回顾

1.已知(,) ,(,)A B --5212,则AB = ; 2.已知(,) ,(,-)C D --1512,则CD = . 一 般地,若 ()(),,, A x y B x y 1122,则当 y y =12时,AB x x =-12; 当x x =12时,AB y y =-12. 【设计意图】 在平面直角坐标系中,若已知点的坐标,可以用坐标求线段的长度.通过观察两点与坐标轴的关系,强调平行于x 轴(或在x 轴上)或者y 轴(或在y 轴上)这一重要前提条件.由两道具体问题的计算推广到一般情况,得出结论,体现了数学由特殊到一般的思想. 二、典例精讲 (一)知识准备 例 如图,抛物线y x bx c =- ++2 14 的图象过点(,)A 40,(,)B --44; (1)求抛物线和直线AB 的解析式; 学生在学案上独立完成,老师在大屏幕上展示解题过程,学生对改、订正. 【设计意图】 复习用待定系数法求函数解析式的过程,加强学生对坐标与解析式关系的 理解,加深对直线和抛物线图形的认识,为下一环节做准备.通过课件展示,规 范学生的解题过程. (二)问题解决 (2)若点D 是线段AB 上的一动点(不与、A B 重合),过点D 作y 轴的平行线,与抛物线交于点E ,与x 轴交于点C ,设点D 的横坐标为.m

二次函数的顶点式

二次函数的顶点式 一、教学目标: 22h)-=a(xc+bx+通过配方化成顶点式、经历把二次函数的一般式1y=axy+k 的过程,推导出顶点坐标公式,并求其开口方向、对称轴、顶点坐标与最值。 2、在探索过程中,学生经历了知识的产生过程,从而培养勇于探究、积极进取的精神。 二、重难点: 重点:将二次函数一般式通过配方化成顶点式,并求其有关性质。 难点:运用配方法把二次函数一般式化成顶点式。 三、教学过程: (一)承上启下,自然导入 通过提问的方式进行复习,讲完第3、4题后,引导学生回忆二次函数y=a(x2+kh)的性质,再出示:-

(二)提出问题,启发思考 2-4x+5化成y=y师:下面,我们思考一个问题:如何把二次函数=xa(x-2+k的形式? h)生:两边加上一次项系数一半的平方。 生:不对,这里只有一边。 生:加上并减去就可以了。 出示: 师:看看,解答过程正确吗? 1 2+1,这里是完全平方差公式。y=(x-2) 学生很快发现了:应该是师:我们总结一下:二次项系数是1的二次函数应该如何配方? 生:加上并减去一次项系数一半的平方。 (三)探索——我行 师:如果二次项系数不是1呢? 出示课件:

学生进入了思考、讨论的状态…… 待学生完成后,出示: 2-6x+5?3x师:我们把它这个结果化简一下,看能否得到y= 学生马上运算,不一会儿就纷纷表示:不能。 师:错在哪里? 生:没有把二次项系数提取出来,配方时二次项系数要先化为1。 师:对!二次项系数要先化为1,这是用配方法的前提条件。做错的同学请重新

做一遍。接着出示: 2-6x+5?y师:这个解答过程正确吗?我们把结果化简一下,看能否得到=3x 学生马上运算,不一会儿就纷纷表示:不能。 师:错在哪里? 2。1 没有乖以-生:运用乘法分配率时,3出示: 2

初中数学二次函数的应用

二次函数的应用 ◆目标指引 1.运用二次函数的知识去分析问题、解决问题,?并在运用中体会二次函数的实际意义. 2.体会利用二次函数的最值方面的性质解决一些实际问题. 3.经历把实际问题的解决转化为数学问题的解决的过程,?学会运用这种“转化”的数学思想方法. ◆要点讲解 1.在具体问题中经历数量关系的变化规律的过程,?运用二次函数的相关知识解决简单的实际问题,体会二次函数是刻画现实世界的一个有效的数学模型. 2.运用函数思想求最值和数形结合的思想方法研究问题. ◆学法指导 1.当涉及最值问题时,应运用二次函数的性质选取合适的变量,?建立目标函数,再求该目标函数的最值,求最值时应注意两点:(1)变量的取值范围;(2)?求最值时,宜用配方法. 2.有关最大值或最小值的应用题,关键是列出函数解析式,?再利用函数最值的知识求函数值,并根据问题的实际情况作答. ◆例题分析 【例1】如图,在△ABC 中,∠B=90°,AB=6cm ,BC=12cm ,点P 从点A 开始,?沿着AB 向点B 以1cm/s 的速度移动;点Q 从点B 开始,沿BC 边向点C 以2cm/s 的速度移动,?设P ,Q 同时出发,问: (1)经过几秒后P ,Q 的距离最短? (2)经过几秒后△PBQ 的面积最大?最大面积是多少? 【分析】这是一个动点问题,也是一个最值问题,设经过ts ,显然AP 和BQ?的长度分别为AP=t ,BQ=2t (0≤t≤6).PQ 的距离PQ=2 2 BP BQ +=251236t t -+.因此,只需求出被开方 式5t 2-12t+36的最小值,就可以求P ,Q 的最短距离. 【解】(1)设经过ts 后P ,Q 的距离最短,则: ∵PQ=22BP BQ +=22 (6)(2)t t -+=251236t t -+=2 6144 5()5 5 t -+

二次函数应用题题型归纳

二次函数应用题 题型一 面积问题 1星光中学课外活动小组准备围建一个矩形生物苗圃园.其中一边靠墙,另外三边用长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为x 米. (1)若平行于墙的一边的长为y 米,直接写出y 与x 之间的函数关系式及其自变量x 的取值围; (2)垂直于墙的一边的长为多少米时,这个苗圃园的面积最大,并求出这个最大值; (3)当这个苗圃园的面积不小于88平方米时,试结合函数图像,直接写出x 的取值围. 2某学校要在围墙旁建一个长方形的中药材种植实习苗圃,苗圃的一边靠围墙(墙的长度不限),另三边用木栏围成,建成的苗圃为如图所示的长方形ABCD .已知木栏总长为120米,设A B 边的长为x 米,长方形ABCD 的面积为S 平方米. (1)求S 与x 之间的函数关系式(不要求写出自变量x 的取值围).当x 为何值时,S 取得最值(请指出是最大值还是最小值)?并求出这个最值; (2)学校计划将苗圃药材种植区域设计为如图所示的两个相外切的等圆,其圆心分别为 1O 和2O ,且1O 到AB 、BC 、AD 的距离与2O 到CD 、BC 、AD 的距离都相等,并要求在苗 圃药材种植区域外四周至少要留够0.5米宽的平直路面,以方便同学们参观学习.当(l)中S 取得最大值时,请问这个设计是否可行?若可行,求出圆的半径;若不可行,请说明理由. O 2 O 1 围墙 D A B C O 2 O 1 围墙D A B C E F H I J

题型二 利润问题 1利民商店经销甲、乙两种商品. 现有如下信息: 请根据以上信息,解答下列问题: (1)甲、乙两种商品的进货单价各多少元? (2)该商店平均每天卖出甲商品500件和乙商品300件.经调查发现,甲、乙两种商品零售单价分别每降0.1元,这两种商品每天可各多销售100件.为了使每天获取更大的利润,商店决定把甲、乙两种商品的零售单价都下降m 元. 在不考虑其他因素的条件下,当 m 定为多少时,才能使商店每天销售甲、乙两种商品获取的利润最大?每天的最大利润是 多少? 2 ,2015年长江中下游地区发生了特大旱情,为抗旱保丰收,某地政府制定民农户投资购买抗旱设备的补贴办法,其中购买Ⅰ型、Ⅱ型抗旱设备所投资的金额与政府补贴的额度存在下表所示的函数对应关系. (1)分别求出1y 和2y 的函数解析式; (2)有一农户同时对Ⅰ型、Ⅱ型两种设备共投资10万元购买,请你设计一个能获得最大补贴金额的方案,并求出按此方案能获得的最大补贴金额.

相关主题
文本预览
相关文档 最新文档