当前位置:文档之家› 冷却塔风机变频控制与节能改造

冷却塔风机变频控制与节能改造

冷却塔风机变频控制与节能改造
冷却塔风机变频控制与节能改造

冷却塔风机的节能及安全控制研究

冷却塔风机的节能及安全控制研究 摘要:对冷却塔风机节能及安全控制进行研究,以实现风机运行的节能、安全自动化在线管理,通过对实际使用效果考察表明:该控制系统解决了风机管理上存在的一些难题,实现了风机节能、安全自动化控制。提高了经济效益和设备可靠度,收到理想效果,也为加强设备的科学管理提供了新的思路。 关键词:冷却塔风机节能 A Study on Energy Saving and Safety Control for Cooling Tower Fan Abstract: The energy saving and safety control for cooling tower fans were studied to realize an energy-saving,sale and automatic operation of the fans as well as an on-line management.The study on the practical application results showed:With the said controlling system,some diffculties existing in the management of the fans were solved,an energy-saving,safe and automatic control of the fans was reallied,both economic efficiency and equipment reliability were improved,with ideal results achieved, which provided a new way of thinking in strengthening the scientific management of the equipment Keywords:cooling tower;fan;energy savin 冷却塔风机是循环水系统的核心设备[1]。北京燕山石化公司炼油厂目前拥有7套循环水装置,循环冷却水总设计处理量为4.665×104t/h;凉水塔风机105台(其中4.7m 98台,8.5m 7台),总装机功率为4060kW,同时开机情况下最大日耗电量达 9.74×104kW·h。 就循环水设备管理情况看,无论是从设备的数量、维修工作量、耗电量等哪个方面来讲,冷却塔风机都占有很大占比。风机台数占车间设备总量的57%,维修工时占总量的60%,电耗占总量的22%。如何在节能降耗、减少劳动力的情况下来保证设备的长周期运行,必然要应用先进的科学技术及管理方法 [2]。自1993年开始,笔者单位与中科院 工程热物理所合作,配合研制开发了风机节能自控和安全自控2套监测系统,即“KR-933

300MW机组自然通风冷却塔节能技术研究

300MW机组自然通风冷却塔节能技术研究 摘要对循环水系统及冷却塔淋水区的不同排列组合,通过实验的方法得到不同气温下的运行组合,去除冷却塔低效换热区运行,降低循环水量,提高冷却塔换热效率。 关键词自然通风冷却塔;循环水;堵塞现象;深度节能;节能运行 1 概述 目前我国最常用的冷却塔塔型仍为双曲线型常规冷却塔,具有能创造良好的空气动力条件,可减少通风阻力和塔顶出口处的空气回流,冷却效果相对稳定等特点。 自然通风冷却塔是发电厂冷端系统中重要的热力设备,冷却塔主要作用是循环水系统冷却,循环水通过循环水泵在冷却塔与凝汽器之间打循环,循环水在凝汽器端吸收汽轮机排汽热量,在冷却塔通过喷淋与空气进行换热降温。循环水在冷却塔中是通过塔底部的水道压入中央竖井,通过与中央竖井相连通的四个水槽流出,并在水槽两侧均布配水管道,通过配水喷头均匀地喷洒在冷却塔填料上方,通过填料进一步分散后从冷却塔填料层淋入底部水池中,高差約12米[1]。 2 国内外研究概况 以前,国内外研究人员对锅炉、汽轮机做了大量、深入、细致的研究工作,并研究出了相应的优化调整方法来提高热效率。目前,围绕电厂的节能降耗,更多的节能工作逐渐转向于电站的冷端系统,即致力于降低汽轮机的排汽温度,以提高朗肯循环热效率,主要体现在两方面:一是改善凝汽器的传热,提高真空度;二是研究冷却塔出水温度的降低途径,提高冷却塔的效率。近几年,关于冷却塔的研究多集中于塔内传热传质。 3 科技意义和应用前景 自然通风湿式冷却塔广泛应用于电站汽轮机冷端循环水的冷却。来自凝汽器的循环水由喷嘴喷淋出来,依次在配水区、填料区和雨区与进塔空气发生传热传质的换热,被冷却后返回凝汽器,参与系统的循环。 冷却塔冷却性能的好坏直接影响机组的效率。若冷却塔的性能不好或运行不稳定,将导致循环冷却水温度升高,进而导致凝汽器的真空下降,使汽轮机组的工作效率下降,导致发电煤耗量的增加。研究表明,对于300MW的机组,出塔水温升高1℃,汽轮机组效率降低0.23%,煤耗增加0.798g/kW·h。因此,研究冷却塔特性并提高其换热效率具有十分重要的意义。 目前,火力发电厂的冷端主要采用“一机一塔”的配置方式。

水轮机冷却塔节能改造的条件

水轮机冷却塔节能改造的条件 水轮机冷却塔节能原理用水力驱动风机,而不是传统的电力。是以水轮机取代电机作为风机动力源,水轮机的工作动力来自循环水泵所具有的设计能量,换句话说:是能源的二次利用。该设计能量是在循环系统设计时必须保留的。改造后用水轮机的输出轴传动变速箱驱动风机旋转,达到节能目的,并确保水轮机设计参数时不另增水泵电耗。 水泵是必须具有富余扬程的,其来处有如下几个方面: 1、从流体力学方面计算,在计算设备和管路阻损及提升高度、输送距离的每个环节中,汽蚀、结垢等原因会使效率降低,所以必须放有一定余量以保证长期的正常运行,而水泵的富余扬程部分是完全可以用于水轮机取代电机驱动。 2、在计算出总的阻损后还应再乘1.1~1.3倍,并以此作为水泵选型的依据。 3、在水泵选型时,因没有恰好与选定参数一致的扬程和流量,而往往选择扬程较大的水泵. 4、系统中必然存在的富余流量可在很大程度上转化为富余扬程。 流量和富余扬程的关系? 流量和富余扬程之间是一种相互依存的关系。对水轮机节能改造而言,富余流量的存在有着至关重要的作用,尤其注意现场阀门的开启程度,阀门开启程度小于40%的,基本可以确定能改造。 水轮机节能改造的前提条件 水轮机是利用水泵的余压做功的,因此节能改造的成功与否,关键要看系统中水泵的富余流量和富余扬程,如果水泵没有富余流量和富余扬程(即没有余压),则不能用水轮机进行节造,但这种情况在现实工作中极为少见(采购时的疏忽)。 水轮机节能改造后的工作情况 一般情况下冷却塔布水器工作压力仅需0.5~1m,而从水轮机出口的压力仅势能部分就可以满足布水要求,水轮机取代了上塔阀门而工作。 水轮机冷却塔在北方严寒地区冬季使用时应采取的防冻措施,解决防冻问题主要有以下几种方法可供选择: 1、工业用冷却塔在冬季使用不需要风机运转时,关闭水轮机阀门,循环水直接进补水系统运行。碰到特别寒冷时可以在循环水中添加防冻剂; 2、加装消冰管; 3、设置室内水箱及时排净存水。 冷却塔节能改造的周期:一般情况下,合同签订后45天交货,改造时间需要4~5个无雨天。 冷却塔节能改造的经济回报 节能投资是一种长期性的高回报投资,相比于其他投资方式更为稳妥,风险更低,直观能看到节能率。东莞盈卓节能科技有限公司的报价是基于客户提前支付1年半至2年电费就可免费使用8年多的设备。也就是说1年半至2年内全部收回投资,政府还有节能奖励。这种投资所带来的效益是显而易见的。

除尘风机节能改造方案

第一部分项目综述 一、本次拟改对象简介 通过我公司工程师对炼铁分厂原料场除尘风机的细致勘察和科学分析,调查工况如下: 原料场除尘系统采用布袋除尘方式,风机动力由一台1250kw的电机提供,采用风门调节来控制系统风量,主要是针对翻斗机来料和返矿经皮带机输送至料场,再将料从料场经堆取料机提取,经混料机混匀后供给烧结的过程中产生的扬尘进行处理。期间主要扬尘来自于各皮带转换时,卸料产生。系统将扬尘经除尘点进行收集后,进行集中除尘处理。系统除尘管道共包含各类阀门39个,以下为阀门相关情况:

二、本项目实施的必要性 原料场除尘风机采用调节阀的方式调节系统参数,这种调节方式是最原始的调节方法,仅仅是改变通道的流通阻力,其开合度大小不与流量成比例,从而驱动源的输出功率并没有改变,浪费了大量电能,而且调节阀调节人工操作控制精度差、无法实现自动化控制,容易误操作,且设备使用效率不高,不能充分满足工艺要求。经我司技术人员根据风机工况进行多次检测,如采用适配风机加变频调速,年节能量在42万Kwh。 原料场除尘系统覆盖范围广,除尘点多且位置分散,除尘管道比较长且弯道多,导致风阻、风损增大,进而降低了除尘风量和风压,导致除尘效果差,达不到环保要求。 由于大功率电机的起停和非线性负载的使用,供电线路中电压、电流谐波含量大;电力污染较严重;电压、电流波形失真;设备及短网损耗大、输送效率降低。电力系统低劣的电力品质,易造成输电线路及电机等设备温升增高,噪音增大,损耗增加,设备故障率上升,严重时可引起开关保护跳闸和其它停车事故,增加企业生产成本,造成设备维修成本升高、生产不稳定等危害。 因此企业有必要采取有效措施减少能源的浪费,提高除尘系统能源利用率,提升系统除尘效果。

冷却塔风机变频接线图

1 引言 在中央空调水冷式机组中,使用循环冷却水是最常用的方法之一。为了使机组中加热了的水再降温冷却,重新循环使用,常使用冷却塔。风机为机械通风冷却塔的关键部件,通常都采用户外立式冷却塔专用电机,具有效率高,耗电省,防水性能好等特点。水在冷却塔滴下时,冷却风机使之与空气较充分的接触,将热量传递给周围空气,将水温降下来。 由于冷却塔的设备容量是根据在夏天最大热负载的条件下选定的,也就是考虑到最恶劣的条件,然而在实际设备运行中,由于季节、气候、工作负载的等效热负载等诸多因素都决定了机组设备经常是处于在较低热负载的情况下运行,所以机组的耗电常常是不必要的和浪费的。因此,使用变频调速控制冷却风机的转速,在夜间或在气温较低的季节气候条件下,通过调节冷却风机的转速和冷却风机的开启台数,节能效果就非常显著。 冷却水系统能耗是空调系统总能耗的重要组成部分之一。采用截止阀对冷却水流量进行调节将导致能量无谓的浪费,在部分负荷时固定冷却水流量以及不对冷却塔风机电机进行控制也将浪费大量电能。如采用微机控制技术和变频调速技术对冷却水系统进行控制节能效果约为30%,具有显著的节能效益。特别对于宾馆、饭店、商场等工作期较长的集中空调系统以及南方地区空调运行期长的其他建筑物空调系统,采用空调冷却水系统的节能运行系统的投资回收期一般在1~2年,具有非常显著的经济效益。 2 典型的冷却塔风机控制方式 在典型的冷却塔风机控制系统中,变频器可以利用内置PID功能,可以组成以温度为控制对象的闭环控制。图1所示为典型的冷却塔变频控制原理,冷却塔风机的作用是将出水温度降到一定的值,其降温的效果可以通过变频器的速度调整来进行。被控量(出水温度)与设定值的差值经过变频器内置的PID控制器后,送出速度命令并控制变频器频率的输出,最终调节冷却塔风机的转速。

23冷却塔风机变频改造方案

冷却塔风机变频改造方案 一、变频器的工作原理和节能分析 1.1 风机的特性 风机是传送气体的机械设备,是把电动机的轴功率转变为流体的一种机械。风机电机输出的轴功率为: 图1中风机的压力与风量的关系曲线及扭矩与电机速度的关系曲线,充分说明了调节阀调节风量法与变频器控制的调节风量法的本质区别与节能效果。 (1) 电动机恒速运转,由调节阀控制风量

图1 风机的运行曲线 如图1所示,调节阀门的开启度,R会变化。关紧阀门,管道阻力就增大。 管道阻力由R1变到R2,风机的工作点由A点移到B点。 在风量从Q1减少到Q4的同时,风压却从H1上升到H5,此时电机轴的功率从P1变化到P2。 (2) 变频器调节电机的速度来控制风量 当风量由Q1变化到Q4时,便出现图上虚线所示的特性。达到Q4、H4所需的电机轴功率为P3,显然P2大于P3,其差值P2-P3就是电机调速控制所节约的功率。 二、冷却塔系统变频改造过程 2.1 冷冻机组冷却循环水系统介绍: 冷冻机组的冷却循环水系统如图2所示。冷冻机组的冷却循环水系统主要由冷冻机组、冷却水泵、冷却塔组成。冷却水经冷却水泵加压后,送入冷冻机组的冷凝器,届时,由冷却水吸收制冷剂蒸气的热量,使制冷剂冷却、冷凝。冷却水带走制冷剂热

量后,被送入冷却塔,经布水器,通过冷却塔风机降温,降温后的冷却水通过出水管,流入冷却水泵,经加压后再送入冷冻机组的冷凝器。 图2 冷冻机组冷却循环水系统图 2.2 冷却塔变频节能改造原理 图3 冷却塔变频改造示意图 三、变频器选择

由于风机负载为平方转矩类负载,因此变频器应选择V/F控制型通用变频器,日锋变频器为优化电压空间矢量型变频器,使用寿命高于同类产品,接近于零的故障率,性能价格比非常好,为变频器市场上最优越产品之一。 四、总结 冷却塔风机加装变频后具有以下优点: ·操作方便,安装简单; ·能进行无级调速,调速范围宽,精度高,适应性强。 ·节能效果非常明显; ·由于采用了变频控制,随着转速的下降,风压、风量也随之下降,使得冷却水的散失也下降,节约了水量。 ·由于用水量下降,水的硬度指标上升减慢,使得水处理的用药量减少; ·由于转速下降,减少了减速箱的磨损,延长了减速箱的寿命; 总之,冷却塔变频器控制系统的使用,使得厂房调温系统可靠性提高,安全性好,具有明显的节电效果。 冷却塔是冷冻机组的冷却水最主要的热交换设备之一,它主要靠冷却塔风机对冷却水降温,风机过去是靠交流接触器直接启动控制,风机的转速是恒定的,不能调速,因此,风机的风量也是恒定的,不能调节。为了使冷冻机组进口冷却水温度保持在某个温度段之间,我们在冷却水泵的出口,即冷冻机组的冷却水进口管道上安装一个温度传感器,采集冷却水温度,通过给出一路模拟信号给变频器,经变频器自身的PID进行调节如图3所示,变频器给出适当的电压和频率给冷却塔电机调节冷却塔风机转速

中小型冷却塔的节能环保改造

中小型冷却塔的节能环保改造 1 玻璃钢冷却塔在河南神火铝业有限公司的应用 河南神火集团有限公司是以煤炭、发电、电解铝生产及产品深加工为主的大型企业集团,中国企业500强,河南省百户重点企业,河南省重点扶持的七家煤炭骨干企业及七家铝加工企业,河南省第一批循环经济试点企业。现有总资产160亿元,员工26000人,拥有10余家全资、控股、参股企业。其子公司河南神火铝业公司基础完善、实力雄厚,集铝电解、铝加工、发电、碳素阳极块生产于一体。拥有电解铝厂3个,铝加工厂2个,自备电厂2个,碳素厂2个,总资产逾70亿元。几年来公司始终以技术进步引导企业发展,进行了多项科技创新、技术改造,槽控机防雷技术、不停电开停槽技术、给电解槽增加“看门狗”装置等多项科技创新成果均创同行业的先例。其中于08年,对一台200m3/h的冷却塔进行了两次成功改造,不仅冷却效果明显变好,而且节能环保,经济和社会效益显著。有着良好的市场前景。 该公司永城铝厂铸造车间于04年6月份建成投产,共有4条铸锭生产线加上辅助设施用水,单小时循环水量约800m3/h,整个循环冷却水系统按循环水量的1.15倍计算约920m3/h,共配置6台开式200m3/h的冷却塔,运行方式为5台运行1台备用,至09年运行近5年,进行设备改造经济划算。 1.1 运行原理 介质水在起到冷却作用后进入顶部,湿热的水自淋水系统淋入塔内,到淋水填料上,便分成膜状下落,干燥的空气经过风机的抽动后,自进风网处进入冷却塔内;饱和蒸汽压力大的高温水分子向压力低的空气流动,当水滴和空气接触时,一方面由于空气与水的直接传热,另一方面由于水蒸汽表面和空气之间存在压力差,在压力的作用下产生蒸发现象,将水中的热量带走即蒸发传热,从而达到降温之目的,满足生产使用。 1.2 冷却塔的组成及功能简介 主要构件为:冷却风机(电机、减速器及扇叶)、风筒、收水器、气流分配装置、淋水填料、淋水系统、塔体、进风百叶窗、立柱等,结构简图见图1。

风机变频调速节能改造的分析及计算

风机变频调速节能改造的分析及计算 张恒谢国政张黎海 (昆明电器科学研究所,云南昆明 650221) 摘要:以变频调速改造来达到调节工业工程所需风量成为目前实现电机节能的一种主要途径。当我们进行变频节能改造时,投入和收益是必须认真考虑的,收益就涉及到节能量的计算。在变频器未投运之前,计算节能量是比较困难的。本文通过分析变频节能的原理,介绍了针对阀门及液力耦合器调节流量系统的变频改造的节能估算的一些思考及方法。 关键词:风机变频节能原理调速节能阀门液力耦合器节能估算 一、 引言 在工业生产、发电、居民供暖(热电厂)和产品加工制造业中,风机水泵类设备应用范围广泛。其电能消耗和诸如阀门、挡板、液力耦合器等相关设备的节流损失以及维护、维修费用约占到生产成本的7%~25%,是一笔不小的生产费用开支。随着经济改革的不断深入,以及能源的危机,节能降耗业已成为降低生产成本、提高产品质量的重要手段之一。变频调速因其调速效率高,力能指标(功率因数)高,调速范围宽,调速精度高等优势,又可以实现软起动,减少电网的电流冲击及设备的机械冲击,延长设备使用寿命,对于大部分采用笼型异步电动机拖动的风机水泵,变频调速不失为目前最理想的调速节能方案。 由于电机的电流的大小随负载的轻重而改变,也即电机消耗的功率也是随负载的大小而改变,因此要想精确地计算系统的节能量是困难的,这在一定程度上影响了变频调速节能改造的实施。

二、 变频器节能的调速实质和原理 节约能源最根本的方法就是要提高能源的利用率,所谓的“节能”,不仅仅是节省能耗,还包括不浪费能源,用一句最简单的话说就是:“需要多少,就提供多少!” 变频器本身不是发电机。在变频器应用到风机等平方转矩负载的工业场合中,其节能原因不是由变频器本身带来的,而是通过变频器的调速特性来减小风机输出流量以适应工况中实际所需流量。 叶片式风机水泵的负载特性属于平方转矩型,即负载的转矩与转速的二次方成正比。风机水泵在满足三个相似条件:几何相似、运动相似和动力相似的情况下遵循相似定律;对于同一台风机(或水泵),当输送的流体密度ρ不变仅转速改变时,其性能参数的变化遵循比例定律:流量 (Q)与转速(n)的一次方成正比;扬程(压力)H 与转速的二次方成正比;轴功率 (P)则与转速的三次方成正比。即: ''n n Q Q = ; 2''(n n H H = 2''(n n p p = ; 3''(n n P P = 当风机、水泵的转速变化时,其本身性能曲线的变化可由比例定律作出,如图1所示。因管路阻力曲线不随转速变化而变化,故当流量由Q1变至Q2时,运行工况点将由A 点变至C 点。 图1风机流量、压力特性

冷却塔控制

温度模拟信号(4-20MA)PLC控制的冷却塔风机变频控制系统 2009年10月22日 星期四 06:30 P.M. PLC控制的冷却塔风机变频控制系统,主要用到了PLC、触摸屏和变频器。冷却塔风机变频控制系统配备有一台变频器,对一台风机进行变频控制,其余两台风机工频运行;根据出水温度的变化来控制工频运行风机的起动和停止,实现对水温的初步调节,并对一台风机进行变频控制,对水温进行微调,从而使冷却塔内的水温控制在一个稳定的状态。 设计方案:通过安装在出水总管上的温度传感器,把出水温度信号变成4-20mA 的标准信号送入PLC的模拟输入模块,并最终转换为相应的数值(BCD码),通过编好的PLC程序,得出的此数值和在触摸屏设定的温度值进行比较,得到一比较参数,送给变频器,由变频器控制一台电机的转速,并根据出水温度的高低,由PLC控制工频启动的风机的数量,使冷却塔的回水温度控制在设定的温度上。冷却塔风机变频控制系统原理图: 上图为冷却塔风机变频控制系统,其中变频器的作用是为电机提供可变频率的电源,实现电机的无机调速;温度传感器的作用是检测出水管的水温;人机界面主要是通过和PLC通讯,实时显示水温、电机频率,并可设定相关的给定值。如图所示,共有三台风机,其中M3是变频控制的,M1和M2是工频控制的。当系统供电开始时,三台风机处于待机状态,根据出水温度的变化,自动运行系统。当出水温度达到设定的开机温度时,变频风机M3开始变频运转;如温度继续上升,水温超出工频启动的设定值,且M3变频风机上升到全频运行,开启M1风机工频运转;如温度继续上升,开启M2风机工频运转。如M3运转频率达到50.0HZ,M2、M3也工频运转,且温度达到报警上限值,则系统会产生一个报警。当温度下降到工频启动的设定值时,M2风机停止运转;如温度继续下降,M1风机停止运转;当温度下降到一定的下限值和M3的运转频率低于一定的值时,M3风机停止运转。系统控制要求: 1 三台风机的基本工作方式 方式一:3#风机变频运行 方式二:3#风机变频运行 1#风机工频运行

上海市地方标准《冷却塔能效限定值、能源效率等级及节能评价值》

备案号: 上海市地方标 DB 31/414-2008 冷却塔能效限定值、能源效率等级 及节能评价值 The minimum allowable values of energy efficiency、energy efficiency grades and evaluating values of energy conservation for cooling tower. (报批稿) 2008-09-26发布2009-03-01 实施 上海市质量技术监督局发布

DB31/414-2008 前言 为加强合理用电、合理用水、推动产品的升级换代﹑确保上海市“十一五”节能减排目标的实现,提高冷却塔产品质量及其系统的经济运行管理水平,特制订本标准。 本标准中6.2条和7.1条是强制性的,其余是推荐性的。 本标准由上海市经济委员会、上海市能源标准化技术委员会共同提出。 本标准由上海市能源标准化技术委员会归口。 本标准主要起草单位:上海交通大学、上海市能源标准化技术委员会、上海市供水管理处本标准参加起草单位:上海良机冷却设备有限公司、上海金日冷却设备有限公司、上海尔华杰机电装备制造有限公司、斯必克(广州)冷却技术有限公司、江阴富兴复合材料制品有限公司、吴江北宇冷却塔有限公司。 本标准主要起草人:任世瑶、陈津迪、吴耀民、陈溢进﹑赖春发、罗金枝、张焕武、韩振东、江建林、吴金土。 DB31/414-2008 冷却塔能效限定值、能源效率等级及节能评价值 1 范围 本标准规定了机力通风冷却塔的能效限定值、能效等级、节能评价值、试验方法及检验规则。 本标准适用于以空气作冷源的机力通风横流、逆流、混流式湿式冷却塔。 2 规范性引用文件 下列文件中的条款通过在本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修改版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB7190.1 玻璃纤维增强塑料冷却塔第一部分:中小型玻璃纤维增强塑料冷却塔 GB7190.2 玻璃纤维增强塑料冷却塔第二部分:大型玻璃纤维增强塑料冷却塔 GB/T18870节水型产品技术条件与管理通则 DB31/T204 冷却塔及其系统经济运行管理 3 术语

《循环水冷却塔节能改造可行性方案》

《循环水冷却塔节能改造可行性方案》 化循环水冷却塔技改可行性计算 1、系统各单元实际运行参数及工作状况1.1循环水泵型号:rdl700-820a;向外供水实际压力:0.48mpa出口阀门开度:全开;额定电压:10kv额定电流:96.8a;实际电流:86-89a1.2风机部分电机额定功率:200kw;额定电压:380v电机额定电流:362a;电机实际电流:260a1.3冷却塔部分 海鸥方形逆流塔:7台;设计流量4500m3/h;实际流量3800-4000m3/h;实际温差8-9℃;上塔管径:900;上塔阀门开度40o;系统回水压力0.25-0.26mpa;布水器高度:11米。 2、风机轴功率及系统富余能量核算2.1风机轴功率计算 p电机=3×u×i×cosφ=1.732×380×260×0.85=145.45kw受电机效率、传动轴效率、减速机效率等影响风机实际功率为:p风机=p 电机×η电机×η减速机×η传动轴=145.45×0.92×0.91× 0.98=119.33kw(说明:根据机械设计手册第 二、四卷电机效率为0.9 2、传动轴效率为0.9 8、减速机效率为0.91)2.2系统富余压头计算目前上塔阀门没有完全打开,开度为400,阀门消耗的压头可由下列公式计算流速:v=q/s压头:h=§v2/2g其中:h-----系统中阀门所消耗的扬程 §-----阻力系数;查《水工业工程设计手册》水力计算表;取为

400阀门开度时,§=81v-----循环水系统水的流速g-----重力加速度9.81m2/sq-----实际流量:按实际3850m2/h计算s-----管道横截面积 计算。v=q/s=1.68m/s。 h=§v2/2g=81×1.682/2×9.81=11.65m。 目前系统回水压力按0.25mpa计,克服阀门阻力和布水高程11m 阻力,布水阻力按3m损失计算到达布水喷头余压为:25-11.65-11-2=0.35m理论计算与实际基本相差不大。 从上计算可以看出,改造后将阀门全开,水轮机可利用的系统富余压头为:回水管阀前压力-布水管高程-布水管至塔顶高程-布水阻力=25-11-2=12m2.3系统实际富余能量计算 p=η水轮机×g×q×h÷3600η水轮机:贯流式水轮机效率93p 水轮机=0.93×9.81×3850×12÷3600=117.08kwp风机(水)=p水轮机×η减速机×η传动轴=117.08×0.91×0.98=104.41kw 3、水轮机改造条件判断 水轮机输出功率为:p风机(水)=104.41kw;冷却塔风机需要的功率为:p风机=119.33kw。 改造条件判断:p风机(水)/p风机(电)=104.41/119.33=0.875从计算结果看,回水压力在0.25mpa时,改造p水轮机/p风机为0.875,基本达到电机功率水平但仍有差距, 回水压力在0.26mpa时则p水轮机=0.93×9.81×3850×13÷3600=126.84kwp风机(水)=p水轮机×η减速机×η传动轴=126.84×0.91×0.98=113.12kw改造条件判断:p风机(水)/p风机(电)

冷却塔风机的检修与维护

冷却塔风机的检修与维护 1、减速机的维护与检修ffice ffice" /> 减速机的主要部件是锥齿轮、伞齿轮、斜齿轮及滚动轴承。在负荷的长期作用下,齿轮常发生的失效形式是轮齿工作面磨损和点蚀。齿轮出现磨损或点蚀后,运动精度降低,噪音和振动增大。如果点蚀尺寸大,蚀坑往往成为疲劳源,最终导致轮齿疲劳断裂。因此每年要对齿轮接触精度和点蚀情况进行检查。点蚀坑的尺寸长度不超过齿长的1/3和齿高的1/2。滚动轴承正常的失效形式是滚动体或内外圈滚道上的点蚀破坏。当点蚀破坏发生以后减速机会出现比较强烈的振动、噪声和发热现象。由于滚动轴承不宜经常拆卸,并且受到结构和安装位置所限,对滚动轴承直接检查比较困难。在停机后盘车,用听音棒贴住轴承函,仔细听轴承转动的声音,正常轴承转动的声音应是清脆、连续、均匀的。如果声音沉闷、断续、发卡说明轴承可能存在缺陷,要拆下进一步检查,确定失效后更换。此外,使用优质的润滑油并加入适当添加剂有助于延长齿轮、轴承的使用寿命。 2、联轴器维护与检修 联轴器直接关系到风机运行的平稳程度。分为弹性圈柱销联轴器、弹性柱销联轴器、膜片联轴器。这三种联轴器都起着传递扭矩和缓冲减振的作用。其中,弹性圈柱销联轴器的橡胶弹性圈、弹性柱销联轴器橡胶接头、膜片联轴器的弹性膜片都是弹性元件,可以补偿轴线的相对位移。由于受到多次启动冲击,长期的振动磨损以及腐蚀、老化的影响,弹性元件会失效。因此,每年必须定期间检查。如果橡胶元件出现老化、磨损,弹性膜片出现倒伏或缺损都要及时更换。另外,在安装或检修时,为减小联轴器不对中的影响,两半联轴器的同轴度误差不超过ffice:smarttags" />0.1mm。 3、扇叶与风筒的检查与调整 扇叶与风筒一般都是玻璃钢材料制作。起抽风、导流作用。由于扇叶由轮毂中的夹块夹持,经过长时间运转扇叶可能会围绕中心转动,影响平衡引起振动。为此,每年必须要检查、调整扇叶角度。所有扇叶倾角允差不大于0.5°。为了提高风机的效率,扇叶与风筒间保持很小的间隙。由于风筒是玻璃钢材质刚度较差容易变形,所以大型风机的风筒除了肋筋还有拉筋,控制和调整风筒的圆度。经过长期运行,由于风筒螺栓和拉筋螺栓松动,拉筋磨损、折断,会引起风筒变形,变形严重时,扇叶会蹭到风筒,剧烈摩擦会使扇叶和风筒严重磨损,甚至折断扇叶。因此必须定期检查、调整风筒的圆度误差及扇叶与风筒间隙。根据不同的间隙要求,圆度误差控制在3~5mm。另外,要定期检查风筒拉筋,当锈蚀磨损达到直径或壁厚的1/3时更换。 4、润滑油系统的监测与维护 润滑油是风机的“血液”,存在于减速机、油管、油视镜内。润滑油泄漏减速机齿轮将有烧毁的危险。油管一般细而长容易折断,为此,每年至少要检查一次油管,当油管有裂口或壁厚减薄1mm时要更换油管。如果减速机使用的是骨架橡胶密封每年要更换一次,如果使

风机变频节能改造案例

风机变频节能改造案例 一、森兰变频恒压供风系统节能原理 1、恒压供风变频调速系统原理 说明:图中风机是输出环节,转速由变频器控制,实现变风量恒压控制。变频器接受PID调节器的信号对风机进行速度控制,控制器综合给定信号与反馈信号后,经PID调节,向变频器输出运转频率指令。压力传感器监测风口压力,并将其转换为控制其可接受的模拟信号,进行调节。 2、系统工作原理 变频调速恒压供风控制终极通过调节风机转速实现的,风机是供风的执行单元。通过调速能实现风压恒定是由风机特性决定的,风机特性见下图所示。图中,横坐标为风机风量Q,纵坐标为压力P。EA 为恒压线,n1、n2……nn是不同转速下的风量—压力特性。可见,在转速n1下,假如控制阀门的开度使风量从QA减少到QB,压力将沿n1曲线到达B点,很显然减少风量的同时进步了压力。假如转速由n1到n2,风量将QA减少到QC,而压力不变,由此可见,在一定范围,可以保持风压恒定的条件下,可以通过改变转速来调节风量,并且不改变风压。这种特性表明,调节风机转速,改变出风压力,改变风量,使压力稳定在恒压线上,就可以完成恒压供风。 二、250KW风机变频节能改造方案及功能 1、贵厂风机运行目前现状 现有风机一台,配套电机为250KW一台,工作电压380V,电流

460A,现采用阀门调节,控制供风风量、压力。这种调节方式既不方便,又浪费大量的电能,很轻易造成阀门及风机的损坏。 我公司经过多年对化工、轮胎行业的水泵、风机等设备的节能改造,积累了丰富的经验,具有雄厚的技术实力。 2、改造方案 现采用一台280KW森兰变频器控制一台250KW风机。 3、系统功能 A.风压任意设定,风压稳定且无波动 B.软启动软停机,对电网无冲击,无需电力增容 C.延长风机机械寿命 D.缺相,欠压,过流,过载,过热及堵转保护 E.节约电能,投资回收快 三、供风风机运用变频节能分析 1、现行实际运行功率(I实=350A) P运=√3UICOSω=√3×380×350×0.85=196kw W=196×320×24=1505280kwh 注:按一年320天运行计算 2、转速自动控制节能 A理论基础 因风机属于典型的平方转矩负载类型, 所以其功率(轴功率),转矩(压力),转速(风量)满足以下关系(相似定理):

冷却塔变频控制

【论文题目】 冷却塔风机变频控制 本设计的内容是PLC 控制的冷却塔风机变频控制系统,主要用到了PLC 、触摸屏和变频器。冷却塔风机变频控制系统配备有一台变频器,对一台风机进行变频控制,其余两台风机工频运行;根据出水温度的变化来控制工频运行风机的起动和停止,实现对水温的初步调节,并对一台风机进行变频控制,对水温进行微调,从而使冷却塔内的水温控制在一个稳定的状态。 关键词:可编程控制器(PLC )、变频器、触摸屏 随着变频技术的不断发展和人类节能意识的提高,各种变频装置的应用已在全球各行业产生了显著的经济效益。 【设计方案】 通过安装在出水总管上的温度传感器,把出水温度信号变成4-20mA 的标准信号送入PLC 的模拟输入模块,并最终转换为相应的数值(BCD 码),通过编好的PLC 程序,得出的此数值和在触摸屏设定的温度值进行比较,得到一比较参数,送给变频器,由变频器控制一台电机的转速,并根据出水温度的高低,由PLC 控制工频启动的风机的数量,使冷却塔的回水温度控制在设定的温度上。 模拟模块 冷 却 塔 冷 却 塔 出水总管 温 度 传 感 器 触 摸 屏 图1-1 冷却塔风机变频控制系统原理图 图1-1为冷却塔风机变频控制系统,其中变频器的作用是为电机提供可变频率的电源,实现电机的无机调速;温度传感器的作用是检测出水管的水温;人机界面主要是通过和PLC 通讯,实时显示水温、电机频率,并可设定相关的给定值。如图所示,共有三台风机,其中

M3是变频控制的,M1和M2是工频控制的。当系统供电开始时,三台风机处于待机状态,根据出水温度的变化,自动运行系统。当出水温度达到设定的开机温度时,变频风机M3开始变频运转;如温度继续上升,水温超出工频启动的设定值,且M3变频风机上升到全频运行,开启M1风机工频运转;如温度继续上升,开启M2风机工频运转。如M3运转频率达到50.0HZ,M2、M3也工频运转,且温度达到报警上限值,则系统会产生一个报警。当温度下降到工频启动的设定值时,M2风机停止运转;如温度继续下降,M1风机停止运转;当温度下降到一定的下限值和M3的运转频率低于一定的值时,M3风机停止运转。 【系统控制要求】 1 三台风机的基本工作方式 方式一:3#风机变频运行 方式二:3#风机变频运行1#风机工频运行 方式三:3#风机变频运行1#风机工频运行2#风机工频运行 2 三台风机启动时有延时,减小电流过大时对其它用电设备的冲击; 3 有完善的报警功能; 4 对风机的操作有手动和自动两种控制功能。 5 传感器选用PT100,将4-20mA的信号送入模拟输入模块; 6 变频器选用施耐德的ATV28,该产品具有过热和过流保护、电源欠压和过压保护、缺相保护等功能;通过PLC模拟量输出端子来控制变频器的频率,从而达到风机速度跟随温度给定,保证冷却塔水温的恒定。 变频器主要参数设定 代码说明设定 ACC Acceleration---s 5s DEC Deceleration---s 5s TCC TermStripCon 2W TCT Type 2 Wire LEL CrL AI2 min Ref 4mA CrH AI2 max Ref 20mA 7 PLC及模块采用施耐德Neza系列产品的TSX08CD12R8D和TSX08EA4A2,前者为CPU本体,带有12点输入,8点继电器输出,有实时时钟,24VDC电源;后者为扩展模块,模拟量4路入,2路出,12位精度。

火力发电厂冷却塔节能节水技术

火力发电厂冷却塔节能节水技术 高效雾化降温降低蒸发损耗装置 一、技术背景 冷却塔是能源动力及化工等领域的重要传热传质设备,其作用是将排出生产工艺流程的废热,通过使循环冷却水在塔内进行传热传质过程,将循环冷却水的温度降低。循环水在冷却塔中以传热和蒸发两种方式与空气进行热交换,传热即直接将循环水的热量传递给空气使其的温度升高;而蒸发是通过循环水向空气中的蒸发使空气湿度增大,称为潜热传递方式。由于空气在冷却塔中的温度升高,且蒸发饱和压力随其温度增高而增大,而冷却塔出口即为饱和湿空气,因此潜热占总热量传递的份额相当大,对火电厂的大型自然循环冷却塔而言冬天潜热占50%左右,而夏天潜热则占70%以上。这种换热方式导致了大量的蒸发水量损失。然而淡水资源短缺是当前世界面临的重要问题。火电企业是耗水大户,目前普遍采用的常规湿冷系统的冷却塔在冷却循环水的同时通过蒸发向环境排出大量的水分,以300MW机组为例,每年通过冷却塔消耗的淡水量在500万吨左右。 二、冷却塔的工作原理 冷却塔是指在塔内将热水喷洒到淋水填料上形成水滴或水膜,自上而下地与从下向上流动的具有吸热能力的冷空气进行对流传热,并利用水的蒸发扩散作用带走水中热量的冷却设备。这种冷却设备主要为湿式冷却塔。湿式冷却塔又以抽风式逆流冷却塔型式为主。在设计冷却塔时,为了减少水量损失,一般设有节水装置收水器。它是由一排或多排倾斜的板条或弧形叶板组成,布置在整个塔断面上,作用是阻拦热水与填料碰撞形成散溅的小水滴。小水滴夹杂在上升的湿热空气中,因突然改变方向,被截留下来。这种节水装置对湿热空气中的水蒸汽基本不起作用。冷却塔的设计是根据水的蒸发原理进行的,是以蒸发扩散带出热量为前提。蒸发损失是为完成水的冷却而必须蒸发的水量。因此,根据冷却塔理论,为达到一定的冷却效果,应尽可能增大蒸发量。 三、冷却塔蒸发水损耗

冷却塔的节能潜力分析

冷却塔的节能潜力分析 随着经济意识的增强,节能降耗已经越来越引起人们的高度重视。发电 厂的热力系统及设备的节能给电厂运行和经营带来明显的经济效益。目前,节 能降耗主要集中于三大主要设备和复杂系统,经过理论研究和广泛应用,已经 取得很大经济效益。但是长期以来我们对循环水系统中冷却塔缺乏足够的重视。一方面,认为凝结器循环水入口温度为环境因素的单值函数;另一方面,它的 维护比较繁重复杂,由于缺乏对冷却塔节能潜力的认识,甚至许多电厂忽略本文针对自然通风冷却塔的节能潜力和热力性能影响因素进行分析讨论, 以其对发电厂优化运行和检修维护有所帮助和参考。 1 冷水塔节能潜力分析 循环水1oC温差并存在的节能潜力 冷却塔的工作过程是循环水从凝结器中吸收排气热量,以温度t1送入冷水塔经由压力管道分流至配水槽,热水通过喷溅装置散成细小均匀的水珠洒落到 淋水填料上,沿填料层高度和深度与冷空气以蒸发,传导和对流等方式完成热 交换。空气吸收热量和水分,其温度和湿度逐渐增加接近饱和状态由塔顶逸出,冷却后的循环水以温度t2返回凝结器。由此可见,冷却塔的出塔水温直接影响汽轮机的排气压力和循环热效率。运行的电厂中,冷水塔经常在偏离设计条件 的环境下工作,出塔水温高于设计值导致真空下降,机组经济性降低。表2给 出6种型号机组因为塔的冷却能力降低造成出塔水温升高1oC对机组经济性能 影响。 由此可见,运行电厂凝结器循环水进口温度升高1oC伴随的节能潜力。目 前大多数冷水塔缺少性能检测,因热负荷增加或检修维护不当致使冷却塔出力 不足,出口温度偏高是普遍现象。例如我公司135MW机组循环水淤泥浑浊,淋 水填料严重结垢,出塔水温比相同条件下设计温度升高4oC,这台机组每年因 此而损失的标准煤约达2706t,仅此一项经济损失约达55万元(煤价按200元 /t)。 因此选择性能优良的淋水填料能降低出塔水温且有较小的通风阻力。据文 献介绍,无论顺流还是逆流的冷却塔该换高性能的薄膜填料能导致冷却水降低 5~8 oC,对于现存的冷却塔等于提高50%的冷却能力或者增加的更多。重视淋 水填料运行维护,减少冷却塔结冰和填料损坏,是提高冷却塔热力性能的重要 手段。 1.3 淋水密度潜在的节能效益 淋水密度是指单位面积淋水填料所通过的冷却水量,它也是影响冷却塔出 力的主要因素之一。由于运行方式不当,维护不及时造成喷嘴堵塞、填料破损 及生长藻类,致使换热面积减少、淋水密度增加。附图为淋水面积相对减少 1%~25%的出塔水温变化情况。

一次风机变频改造及节能分析

一次风机变频改造及节能分析 摘要:介绍了某电厂一次风机的变频改造方案,给出了一套可靠的控制策略。比较了一次风机变频控制和工频控制的节能效果,阐述了变频控制技术在电厂节能降耗的效果,对降低厂用电率,提高机组运行效率有很大的意义。 关键词:一次风机;变频改造;控制策略;节能 Abstract: A certain power plant is introduced of the primary air fan frequency converter design, and design a reliable control strategy for the primary air energy-saving effect of adopting transducer fore-and-aft is compared, which has practical meaning on reducing power plant curl consumption and increasing unit running efficiency. Key words: induced draft fan; frequency converter reconstruction; control strategy; energy-saving 1引言 在火力发电厂中,一次风机是最主要的耗电设备之一,这些设备都是长期连续运行并常常处于变负荷运行状态,其节能潜力巨大。发电厂辅机的经济运行,直接关系到厂用电率的高低。随着电力行业改革的不断深化,厂网分家、竞价上网等政策的逐步实施,降低厂用电率,降低发电成本,已成为发电厂努力追求的经济目标。在目前电力短缺的情况下,厉行节能,已经被推到了能源战略的首位。 2设备概述 华电集团某电厂一期工程采用2×330MW国产亚临界、燃煤空冷抽汽凝汽式供热机组,锅炉、汽轮机均采用上海电气集团公司设备。其中锅炉型号SG-1170/,为亚临界参数汽包炉,单炉膛、一次再热、平衡通风、露天布置、固态排渣、全钢构架、全悬吊结构Π型锅炉。每台锅炉配四台钢球磨煤机,一次风机为静叶可调轴流风机。 3 一次风机变频改造方案 % 主要设计原则 目前,交流调速取代其它调速及计算机数字控制技术取代模拟控制技术已成为发展趋势。电机交流调速技术是节能、改善工艺流程以提高产品质量和改善环境、推动技术进步的一种主要手段。变频调速以其优异的调速、启动和制动性能、高效率、高功率因素和节电效果、广泛的适用范围及其它许多优点而被国内外公认为是最有发展前途的调速方式。

冷机群控控制实施方案(修)

冷机群控控制方案(修)

————————————————————————————————作者:————————————————————————————————日期:

前言 晋江机场中央空调主要设备统计: 1台1000千瓦水冷螺杆式冷水机组CH-B1-01;2台2000千瓦水冷离心式冷水机CH-B1-02~03;2台158.4立方冷冻泵CHWP-B1-01~02; 2台316.8立方冷冻泵CHWP-B1-03~04; 6台冷却泵CWP1-B1-1~6; 5台冷却塔CT-B1-1~5; 1台总集水器;1台总分水器; 一.冷水机组群控方案说明 根据主设备参数,将上述设备分成如下几个控制搭配组: 1)CH-B1-01~03冷水机组、CHWP-B1-01~04冷冻泵、CWP1-B1-1~6冷却泵、CT-B1-1~5冷却塔构成1个设备搭配控制组,在这一组中任何设备可以按照运行时间、故障切换、负荷决定台数控制等任意搭配。下图是个冷水机组监控原理图 冷却泵CWP1-1-7 冷却泵CWP1-1-6 根据Honeywell WEBS系统的特点,一个搭配组中,冷冻机和相关蝶阀为一个程序组;冷冻泵冷却泵分别为一个程序组;冷却塔和相关蝶阀为一个程序组;各程序组独立运行,分别由1个DDC控制器完成其控制逻辑。每个DDC独立完成该组设备的启停和故障切换控制,通过lonworks总线进行DDC之间点对点的数据交换,以实现启停过程的顺序控制和负荷控制。

2)冷却塔控制 第一,开机顺序:(延迟时间为5~300秒可调) 开冷却阀-开冷却塔阀-开冷却泵-开冷却塔风机-开冷冻阀-开冷冻泵-开冷水机组第二,关机顺序:(延迟时间为5~300秒可调) 关冷水机组-关冷冻泵-关冷冻阀-关冷却塔风机-关冷却泵 -关冷却塔阀-关冷却阀从上述冷源系统控制流程可见,冷却塔是冷却水系统中最后启动的一个设备,故冷却塔启动的前提条件是在冷却阀、冷却塔阀和冷却泵均已经正常启动运行,并且冷却水回水温度达到了设定值。(冷却水回水温度预设定:下限是27°C,上限时32°C;设定值可以在用户界面上根据用户实际需要直接修改。) a)运行时间比较 每台冷却塔都有运行时间累计,根据冷却塔累计的运行时间,程序自动寻找运行时间最少的冷却塔并启动该设备开机子程序。当任一冷却塔一旦启动后,设备根据累计运行时间排序的程序立即锁定,不再执行时间排序,避免多个设备累计运行时间相近而导致频繁启动设备。每次执行设备时间累计计算是在任一台同类设备未启动前至任一台设备启动为止。 b)启动失败自动切换 每台冷却塔都有一个开机、关机子程序,该程序会自动监测设备故障、手自动状态,在冷却塔都在没有故障并且自动状态下,才可发出开机命令。如果冷却塔开机命令发出后,30S 后没有得到状态反馈系统认为该主设备故障(启动失败)。发出报警信息并退出该设备开机子程序、启动该设备关机子程序及下一台同类设备开机子程序。 c)设备故障自动切换 每台冷却塔都有一个开机、关机子程序,该程序会自动监测设备故障、手自动状态,在设备都在没有故障并且自动状态下,才可发出开机命令。如果在启动前或者在运行过程中检测到设备突然发生故障而状态反馈消失,系统则认为主设备故障,将立即发出报警信息并退出该设备开机子程序、启动该设备关机子程序及下一台同类设备开机子程序。 d)冷却塔风机启停控制: 根据冷却塔出水温度和冷水机组运行状态两个条件进行冷却塔风机启停控制。启动冷却塔风机的前提条件是冷水机组在运行,且冷却水回水温度大于27°C时,启动累计时间最少的冷却塔风机,先开两台冷却塔风机;当冷却水回水温度大于30°C,则再增开两台冷却塔风机;当冷却水回水温度大于32°C,则再增加一台冷却塔风机。当冷却水回水温度小于31°C,则再关闭一台冷却塔风机;当冷却水回水温度小于29°C,则再关闭两台冷却塔风机;当冷却水回水温度小于26°C,则再关闭两台冷却塔风机。 3)冷却泵控制 根据项目情况,冷却泵有6台,采取的控制方法是四用两备。在冷却回水总管设置2个流量计,根据冷却水泵供回水水管温度及总管水流量平均值算出冷却负荷,假如运行台数是n

相关主题
文本预览
相关文档 最新文档