当前位置:文档之家› 地铁基坑墙体深层水平位移自动化监测分析

地铁基坑墙体深层水平位移自动化监测分析

地铁基坑墙体深层水平位移自动化监测分析
地铁基坑墙体深层水平位移自动化监测分析

地铁基坑墙体深层水平位移自动化监测分析

摘要:本文以地铁车站基坑项目施工为例,阐述围护结构墙体水平位移自动化

监测环节平台组成、监测要求、数据统计、曲线形态分析、监测结果等监测流程,结合监测结果为控制位移量相关决策提供参考。

关键词:地铁基坑;墙体;围护结构;水平位移;自动化监测

引言:地铁基坑项目开挖施工环节,使用测斜管,利用测斜仪对围护墙体展

开水平位移监测,可高效测量出位移量,为施工安全奠定基础。使用自动化信息

监测平台,对测点位移量和曲线形态展开监测,效益良好。

一、项目介绍

该项目为某市地铁车站土建施工基坑项目,施工区域存在砂土、软土和风化层、水化层等不良地质,地下水量丰富,地下1~3m为水位埋深,基坑墙体使用

钢结构作为支护体系,开挖环节需要使用斜测仪对不同深度墙体的水平位移展开

监测。

二、地铁基坑围护墙体深层水平位移自动化监测分析

(一)平台组成

该项目自动化监测平台分为3个层次:第一,采集层,主要负责对工程资料、数据和人工等进行自动化采集和上传;第二,中心层,具备工点设计、权限管理、参数修改、数据分析和计算、生产报表等功能;第三,用户层,能够实现预警监

测数据,为用户提供查询当前监测数据、图形曲线、历史数据、施工进度、数据

提示各项功能,图1为自动化监测系统框架图。

图1自动化监测系统框架图

该项目利用此平台对地铁基坑围护墙体的位移情况展开实时监测,使用数据查

询这一功能,监测基坑数据,找出墙体水平位移的规律,展开分析,便于管理部、施工方掌握墙体实际的位移情况,一旦超出标准,系统可立即报警。

(二)监测要求

第一,使用该平台监测环节,在围护墙体间隔20~30m位置设置测斜管,将

其设置在位移量较大位置,设计环节注意各个控制点的畅通连接,确保埋深合理、孔底深入地层,设置标识保护。第二,监测周期≤7d,当基坑处于开挖施工阶段,

监测周期≤3d,保证每天监测,按照基坑围护墙体位移情况确定观测次数,直到

主体结构结束,回填完土体即可。第三,在报警值的设置方面,当墙体的累计位

移量处于25~30mm之间,速度>2mm/d时发出报警。

(三)数据统计

统计10各个基坑共计179个测斜孔,重点统计各个测斜孔累计位移、位移速

率和预警孔个数等数据信息。

表 1 为围护墙体水平位移数据统计表

通过上表可以看出,参与调查的基坑最大累计位移为74.4mm,日最高位移

值达到9.1mm,产生预警的测斜孔数量为70个,占据总数39%,每个基坑内都

有达到预警值的测斜孔,因此说明基坑存在累计位移、移动速率值较高。所有的

基坑施工到特定深度之后,围护墙体的水平位移通常处于挖深中下方位置,虽然

基坑项目当前处于安全施工状态,但是出现的累计位移、位移速率值均较大,因

地铁车站基坑监测方案

地铁车站基坑监测方案 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

1 工程概况 武汉市轨道交通3号线为武汉市第一条穿汉江地铁,它起始于沌阳大道站,终止于汉口三金潭站。全长28公里,设站23座,范湖站为第14座车站。 范湖站为地下三层单柱两跨式岛式站台车站,地下分站厅、设备、站台三层,车站标准段结构外包尺寸为×,顶部覆土约~。主体建筑面积16443m2,附属建筑面积6808 m2,总建筑面积23251 m2。有效站台宽11m,有效站台中心处轨面绝对标高为。车站主体围护结构采用1000mm厚地下连续墙,并入岩以满足抗浮要求;出入口和风道部分采取SMW工法桩加内支撑,桩径850mm,咬合250mm 本站位于规划马场角路与青年路的交叉路口,沿规划马场角路布置于路下,路口北侧有富苑假日酒店,马场角路北侧为在建葛洲坝国际广场北区住宅小区,南侧为规划葛洲坝国际广场(如图1-1所示)。车站与2号线范湖站通过通道换乘。车站内主要有电力、电信、自来水、排水等管线。 图1-1 现场图片 拟建场区地形平坦,原始地貌属长江冲积I级阶地。场区内地表水体不发育,未发现有河、沟、塘等地表水体分布。地下水按赋存条件,可分为上部滞水、潜水、孔隙承压水、碎屑岩裂隙水。地下水对砼及砼中钢筋不具腐蚀性,对地下钢结构具弱腐蚀性。 2 编制依据及主要原则 编制依据 1)武汉市轨道交通3号线一期工程设计施工图 2)地下铁道、轻轨交通工程测量规范(GB-50308-1999) 3)《建筑变形测量规范》(JGJ8-2007) 4)《工程测量规范》(GB50026-2007) 5)《建筑基坑工程监测技术规范》GB 50497-2009 主要原则 1)对围护体系及支撑系统中相当敏感的区域加密测点数和项目,进行重点监测; 2)对勘察工程中发现地质变化起伏较大的位置,施工过程中有异常的部位进行重点监测; 3)除关键部位优先布设测点外,在系统性的基础上均匀布设监测点;结合施工实际确定测试方法、监测元件的种类、监测点的保护措施,调整监测点的布设位置,尽量减少对施工质量的影响;结合施工实际确定测试频率。

地铁车站下穿既有线安全施工技术

地铁车站下穿既有线安全施工技术 摘要: 北京地铁九号线军事博物馆站下穿一号线区间隧道,在下穿施工过程中,必须保证既有线路的正常运营。为此,先进行超前支护,再采用多分部的CRD 法施工,大刚度和强度初支进行支护,并采用三维数值方法分析了车站隧道下穿施工对既有线的影响,施工过程中的多项现场监测结果表明,既有结构的沉降和新建隧道结构受力都控制在安全范围之内,保证了既有隧道的正常和新建隧道安全。 关键词: 地铁车站; 下穿施工; 多分部CRD 法; 施工监测; 安全分析 1 概述 随着城市地铁建设规模的不断扩大,新建地铁结构下穿既有线的情况也越来越多,新建隧道的下穿施工如何保证既有线结构的安全,不影响既有线的正常运营,越来越受到研究人员的重视[1-3]。北京地铁9 号线军事博物馆站主体下穿既有一号线区间隧道结构,与既有线区间结构轴向呈81°夹角。车站地面周边建筑物密集且多为高层建筑,地下管线密布,地面交通异常繁忙。 车站主体站两端主体结构为三拱两柱双层结构,下穿段采用分离式的单层双洞形式。隧道开挖断面高10.505 m,宽9.55 m,两隧道间净距仅4.7 m,单层段结构拱顶与既有1 号线区间隧道框架结构底板底面的垂直距离为10.8 m。下穿段总长度为23. 2 m。既有1 号线区间隧道结构为双跨单层矩形框架的钢筋混凝土结构,顶板厚0.75 m,底板厚0.7 m,侧墙厚0.7 m,区间纵向每22.8 m 设置一道变形缝。下穿段隧道断面和既有1 号线区间隧道的情况及相互位置关系如图1。 下穿隧道支护为复合式衬砌结构,初支为35 cm 厚C25 格栅拱架喷混凝土,二衬为800 cm 厚的C30模筑混凝土结构,初支与二衬之间设防水板。 在车站下穿施工过程中,需要严格控制施工引起的地层变位及既有结构的沉降,保证1 号线的正常运营,因此,必须选择合适的施工方案并分析施工对既有结构的安全性。 2 工程地质及水文地质

地铁车站施工方案

目录1、施工方案 1.1 编制说明 1.1.1编制依据 1.1.2编制原则 1.2 工程概况 1.2.1车站结构 1.2.2工程及水文地质与气候情况 1.2.3工程环境 1.2.4工程目标 1.2.5主要工程量 1.2.6工程特点与难点 1.3 工程施工组织与部署 1.3.1施工组织管理系统 1.3.2管线切改组织 1.3.3交通导行组织 1.3.4总体施工安排 1.3.5施工测量组织 1.4 围护结构施工方法及技术措施 1.5 基坑开挖施工方法及技术措施 1.5.1基坑开挖原则 1.5.2开挖准备工作 1.5.3基坑开挖施工方法及措施 1.5.4基坑开挖注意事项及应急措施

1.5.5土方回填 1.6 车站主体结构施工方法及技术措施 1.7 防水 1.8 监测 1.9 地下管线、地上设施、周围建筑物保护措施1.10 冬季、雨季施工措施 1.11 工程风险分析对策 2、施工进度计划及措施 3、机械计划 4、质量保证及措施 5、文明施工、环境保护体系及措施 6、消防、安全、保卫、健康体系及措施 7、劳动力、材料计划 8、用款计划 9、分包计划和管理措施 10、与监理设计的配合措施 11、施工现场总平面

1、施工方案 1.1编制说明 1.1.1编制依据 (1)天津市区至滨海新区快速轨道交通工程中山门西段工程招标文件的《专用技术规范》。 (2)天津滨海快速交通发展有限公司组织的现场勘察和交底答疑。 (3)国家和部颁的有关施工、设计规范、规程和标准及天津地方政府及业主颁布的有关法规性文件。 《地铁工程施工及验收规范》(GB50299—1999) 《混凝土结构工程施工及验收规范》(GB50204—2001) 《地下防水工程施工及验收规范》(GB50208—2002) 《建筑深基坑支护技术规程》(JGJ120—99)等。 (4)铁道第三勘察设计院对天津市至滨海新区快速轨道交通工程中山门西段工程【SZm标段】工程的招标设计图纸。 1.1.2编制原则 (1)严格遵循招标文件、设计图纸、地质资料及国家、部委和地方政府颁布的有关技术规范、规程的规定,认真分析研究,制定切实可行的施工技术措施。 (2)总体考虑,全面协作,选择适宜本工程条件的施工机械设备和人员,发挥设备、人才优势,认真分析,充分比较、论证,合理规划整个工程的施工程序、技术措施,减小施工干扰,加强各施工工序间的衔接,提高施工效率,确保施工质量和进度。 (3)进行多方案分析比较,选择可靠的供水、供电、排水、排污、防噪、防尘方案,选择最有利于工程施工,同时又对周围环境影响最小的施工布置方案。 (4)认真贯彻执行“百年大计,质量第一”的质量方针政策,在业主和监理工程师的指导下,优质、快速、高效地完成本工程施工,交给业主一份满意的答卷,为天津市快速轨道的高速发展贡献力量。

地铁车站监控量测方案_(车站)

一、汉中门车站基坑施工监测方案 1.1 工程概况 汉中门车站位于汉中路南侧,其南侧为汉中门市民广场,北侧为南京中医药大学,车站西端离虎踞路高架桥最近的桥墩约30m车站总长度为:161. 50米, 车站标准段宽度:20. 90米。顶板埋深约2. 8?3. 6米,基坑开挖深度约20. 93?23. 1米。车站西端南北侧在施工阶段各设一个10nm8m的盾构吊出井,东端车站底板设1. 9X1. 9的电缆过轨通道与I号风道内电缆夹层相界接。车站东西两端北侧设活动塞风道、风井,在南北两侧共设四个出入口通道。车站西端地下三层设防淹门一道(与人防隔断门结合),其承载力按秦淮河百年一遇洪水标高11 . 5m 考虑。汉中门站地形平坦,本场地南侧为汉中门广场。车站设计为地下三层三跨箱形结构,采用明挖顺做法施工;岛式站台,站台宽12m 有效站台长度140m。 根据本工程特点,车站土体基坑围扩设计采用间隔布设、桩芯相切、护壁咬合人工挖孔桩,同时利用人工挖孔桩设混凝土圈梁,与主体结构共同参与基坑围护。车站西端的2、3 号出入口由于地质条件好分别采用锚喷支护及土钉支护;位于车站东端的1、4号出入口采用? 800钻孔灌注桩作为基坑围护结构,桩间距900。地下二层框架结构,围护结构采用密排的? 1000人工挖孔桩,挖孔桩采用钢筋砼桩与素砼桩间隔布设(局部地段采用密排钢筋砼桩),桩芯相切,护壁咬合。东端1号风道为地下三层框架结构,围护结构采用密排的?1200人工挖孔 桩,挖孔桩采用钢筋砼桩,桩芯相切,护壁咬合。围护结构支撑采用?609mm勺钢管支撑(壁厚t=12mm),竖向设四道,支撑水平间距为5m

1. 2工程地质条件和周边环境情况 1. 2. 1.地形、地貌、地质 汉中门站拟建场区隶属于I级阶地地貌单元。地表以下1. 80—4. 30米为近期杂填土、粉质粘土、素填土;第四系沉积层底板埋深5. 10—22. 90米,主要为全新世?上更新世沉积粉质粘土和混合土:下部基岩为白垩系“红层” ,岩芯为泥质粉砂岩加粉砂质泥岩,软硬相间,属极软岩。汉中门车站地质参数由《南京地铁二号线汉中门站岩土工程详细勘察报告》(编号:2004168-1)提供。穿越的主要土层由上至下依次为:①—杂填土; ①—2b2-3素填土;②—15-2粉质粘土;②一3b2-3粉质粘土;③一lb |-2粉质粘土:③一2b2-3粉质粘土;③一3b1- 2粉质粘土:③一4e粉质粘土:Klg-1a强风化泥质粉砂岩:Klg-2a中风化泥质粉砂岩。 1. 2. 2.水文 本站地下水类型主要为上层滞水、孔隙潜水和基岩风化裂隙水。上层滞水主要赋存于①层填土的碎砖、碎石等杂物的孔隙格架中;孔隙潜水分布在②层软土中;③层硬可塑粉质粘土,可视为相对隔水层;基岩风化裂隙水土要分布于岩石风化界面和粉砂岩、泥质粉砂岩裂隙中,裂隙多被允填、裂隙一般不富水。地下水年变幅0. 50?1. 50米,地下水对砼无腐蚀性,对钢筋砼结构中的钢筋无腐蚀性,对钢结构具有弱腐蚀性。场地土对砼无腐蚀性,对钢结构有弱腐蚀性。 设计时,地下水位埋深按1. 00米考虑。 1. 2. 3.气象 本项目所在区域处于长江下游北热带季风气候区,具有气候温和,雨量充沛,日照充足,无霜期长,四季分明等特点,因受大陆、海洋以及来自南北天气系统段影响,气候比较复杂,年际间的变化大,气象灾害比较频繁,年降雨量为1000?1200mm年内分布也不

地铁车站主体基坑施工监测方案

基坑和区间隧道施工监测方案 二〇〇六年八月

一、x基坑施工监测方案 1.1工程概况 位于汉中路南侧,其南侧为汉中门市民广场,北侧为南京中医药大学,车站西端离虎踞路高架桥最近的桥墩约30m。车站总长度为:161.50米,车站标准段宽度:20.90米。顶板埋深约2.8~3.6米,基坑开挖深度约20.93~23.1米。车站西端南北侧在施工阶段各设一个10m×8m的盾构吊出井,东端车站底板设1.9×1.9的电缆过轨通道与l号风道内电缆夹层相界接。车站东西两端北侧设活动塞风道、风井,在南北两侧共设四个出入口通道。车站西端地下三层设防淹门一道(与人防隔断门结合),其承载力按秦淮河百年一遇洪水标高11.5m考虑。汉中门站地形平坦,本场地南侧为汉中门广场。车站设计为地下三层三跨箱形结构,采用明挖顺做法施工;岛式站台,站台宽12m,有效站台长度140m。 根据本工程特点,车站土体基坑围扩设计采用间隔布设、桩芯相切、护壁咬合人工挖孔桩,同时利用人工挖孔桩设混凝土圈梁,与主体结构共同参与基坑围护。车站西端的2、3号出入口由于地质条件好分别采用锚喷支护及土钉支护;位于车站东端的1、4号出入口采用φ800钻孔灌注桩作为基坑围护结构,桩间距900。地下二层框架结构,围护结构采用密排的φ1000人工挖孔桩,挖孔桩采用钢筋砼桩与素砼桩间隔布设(局部地段采用密排钢筋砼桩),桩芯相切,护壁咬合。东端1号风道为地下三层框架结构,围护结构采用密排的φ1200人工挖孔桩,挖孔桩采用钢筋砼桩,桩芯相切,护壁咬合。围护结构支撑采用φ609mm 的钢管支撑(壁厚t=12mm),竖向设四道,支撑水平间距为5m。 1.2工程地质条件和周边环境情况 1.2.1.地形、地貌、地质 汉中门站拟建场区隶属于I级阶地地貌单元。地表以下1.80—4.30米为近期杂填土、粉质粘土、素填土;第四系沉积层底板埋深5.10—22.90米,主要为全新世~上更新世沉积粉质粘土和混合土:下部基岩为白垩系“红层”,岩芯为泥质粉砂岩加粉砂质泥岩,软硬相间,属极软岩。x地质参数由《南京地铁二号线汉中门站岩土工程详细勘察报告》(编号:2004168-1)提供。穿越的主要土层由上至下依次为:①-杂填土;①-2b2-3素填土;②-1b1-2粉质粘土;②

地铁车站监控量测方案

一、汉中门车站基坑施工监测方案 1.1工程概况 汉中门车站位于汉中路南侧,其南侧为汉中门市民广场,北侧为南京中医药大学,车站西端离虎踞路高架桥最近的桥墩约30m。车站总长度为:161.50米,车站标准段宽度:20.90米。顶板埋深约2.8~3.6米,基坑开挖深度约20.93~23.1米。车站西端南北侧在施工阶段各设一个10m×8m的盾构吊出井,东端车站底板设1.9×1.9的电缆过轨通道与l号风道内电缆夹层相界接。车站东西两端北侧设活动塞风道、风井,在南北两侧共设四个出入口通道。车站西端地下三层设防淹门一道(与人防隔断门结合),其承载力按秦淮河百年一遇洪水标高11.5m考虑。汉中门站地形平坦,本场地南侧为汉中门广场。车站设计为地下三层三跨箱形结构,采用明挖顺做法施工;岛式站台,站台宽12m,有效站台长度140m。 根据本工程特点,车站土体基坑围扩设计采用间隔布设、桩芯相切、护壁咬合人工挖孔桩,同时利用人工挖孔桩设混凝土圈梁,与主体结构共同参与基坑围护。车站西端的2、3号出入口由于地质条件好分别采用锚喷支护及土钉支护;位于车站东端的1、4号出入口采用φ800钻孔灌注桩作为基坑围护结构,桩间距900。地下二层框架结构,围护结构采用密排的φ1000人工挖孔桩,挖孔桩采用钢筋砼桩与素砼桩间隔布设(局部地段采用密排钢筋砼桩),桩芯相切,护壁咬合。东端1号风道为地下三层框架结构,围护结构采用密排的φ1200人工挖孔桩,挖孔桩采用钢筋砼桩,桩芯相切,护壁咬合。围护结构支撑采用φ609mm 的钢管支撑(壁厚t=12mm),竖向设四道,支撑水平间距为5m。 1.2工程地质条件和周边环境情况 1.2.1.地形、地貌、地质 汉中门站拟建场区隶属于I级阶地地貌单元。地表以下1.80—4.30米为近期杂填土、粉质粘土、素填土;第四系沉积层底板埋深5.10—22.90米,主要为全新世~上更新世沉积粉质粘土和混合土:下部基岩为白垩系“红层”,岩

最新(地铁隧道)XXXX站-XXXX站区间监测方案教案资料

XX市及轨道交通XX号线 监控量测方案 编制: 审核: 批准: XX集团XX项目部 年月

目录 一、监测方案编制依据 (2) 二、工程概况 (2) 三、监测的目的和意义 (3) 四、信息化施工组织 (3) 五、施工监测设计 (4) 5.1、地表沉降监测 (4) 5.2、地表建筑物(构造物)沉降、位移、倾斜、裂缝监测 (6) 5.3、管线变形监测 (8) 5.4、隧道内管片沉降、收敛监测 (9) 5.5、东风渠、七里河交叉口过河监测 (9) 六、警戒值的确定及监测频率 (9) 七、人员设置及仪器配备 (10) 八、监测质量保证 (11) 九、监测成果报告 (11)

XX市及轨道交通XX号线体育中心站~博学路站隧道工程 监控量测方案 一、监测方案编制依据 1、XX市轨道交通XX号线XX标段设计图纸; 2、《地铁工程监控量测技术规程》DBI 1/490-2007 5、《地铁设计规范》GB50157-2003 6、《地下铁道、轻轨交通工程测量规范》GB50308-1999 7、《地下铁道工程施工及验收规范》GB50299-2003 8、《工程测量规范》(GB50026-2007) 9、《建筑基坑工程监测技术规范》GB50497-2009 10、《XX市轨道交通工程监控量测管理办法》; 二、工程概况 本工程为XX市轨道交通XX线一期工程土建施工第XX标段,包括一个车站(XX站)和两个区间段,区间段即XX站——XX站盾构区间段,XX站——XX段区间段(其间包括盾构区间、明挖区间)。 第XX合同段全长XXXX米,其中XXXX站长XXXX米,盾构区间长XXXX米,盾构段双线总长XXXX米,明挖区间长XXXX米。 XXXX站——XXXX站盾构区间段起止里程为,西起左线CK32+487.74(右CK32+487.74),东至CK34+698.25(CK34+698.25);XXXX站——车辆出入线段区间段,西起RCK0+056.152东至RCK2+962.0 ;XXXX站的起止里程为CK34+698.25至RCK0+056.152 。 其中XXXX站至XXXX区间工程区间长度约为XXXX米,联络通道三处,其中中间联络通道带有通风井。三处联络通道离始发井距离分别约为:490米、1309米、1869米。 线路平面包含两段圆曲线,曲率半径分别为350米和450米。竖曲线由21.4‰-2‰等坡度组成的V字型。 隧道盾构施工选用德国Herrenknecht公司生产的复合盾构机作为隧道掘进设备。该设

地铁基坑监测方案

地铁XXXX深基坑监测技术方案 第一章工程概况 1、工程概况 XXXX是XXXX轨道交通二号线一期工程的第三个车站,车站位于金雅二路中段,东侧是正在建设中的XXXXC区,西侧是XXX移动公司,站前折返线上部地面东侧为常青花园空地,西侧为建设中的XXXXD区。周边空间比较狭窄。长港路以北西北角拟占用作为轨排基地。车站外包尺寸为530.2×30.5×12.61m(长×宽×高),车站顶部覆土约3.0m。车站所处位置周边交通处于发育中,车流量不大。 XXXX主体结构为两层两跨局部单跨双层矩形框架结构,采用明挖法施工。车站标准段明挖基坑深度15.89米,宽度18.5米;盾构井加宽段明挖基坑北侧深度约17.8米,宽度约30.5米;南侧深度16.822米,宽度约为23.3米。根据本站基坑深度和周边环境条件,确定本基坑安全等级为一级,支护结构的水平位移ε≤3‰H,且ε≤30mm。 2、工程地质、水文地质情况 2.1工程地质 拟建场区地形平坦,原始地貌属长江冲积一级阶地。根据钻探揭示及对地层成因、年代的分析,本代地层主要由第四纪全新统人工堆积层(Q4ml)组成,岩性为粉质粘土、淤泥质粉质粘土、淤泥质粉质粘土夹粉土、粉质粘土粉土粉砂互层、粉砂夹粉土、粉砂、砂类土。各土层描述如下: (1-1)层杂填土:松散,由粘性土,砂土与砖块、碎石、块石、炉渣等建筑及生活垃圾混成。该层全场地分布,层厚约0.6~2.4m。 (1-2)素填土:褐黄~灰色,松散,高压缩性,粘性土及砂土为主组成,混少量碎石,砖瓦片等。该层局部分布,层厚1.1~1.7m。 (1-3)层淤土:灰黑色,软~流塑,高压缩性,含有机质及生活垃圾。该层局部分布,层厚2.8~3.9m。 (3-1)层粘土:黄褐~褐黄~灰褐色,可塑(局部偏硬塑),中压缩性,含氧化钛、铁锰质结核。该层大部分地段分布,厚1.0~6.8m。 (3-1a)层粘土:褐黄色,中偏高压缩性,含氧化铁、铁锰质结核。该层局部分

地铁车站施工站监测方案计划

XX站监测工程监测方案 1 工程概况 此次监测工程的监测范围是XX地铁站设计监测点、断面上的各项监测内容。 1.1 工程位置及范围 XX站位于XX市XX区周水子XX拟建新航站楼前停车场下方,呈东西向设置,车站主体北侧为周水子XX拟建航站楼停车场;东侧为现状XX航站楼落客平台环道;南侧、西侧为XX绕行道路。车站计算站台中心里程为右CK26+485.993;起、终点里程分别为右CK26+417.493(结构外皮)、右CK26+577.093(结构外皮)。建筑总面积共计9054 m2,车站共设2个出入口,一个紧急疏散口及两个风亭。车站2个出入口均布置在车站北侧,靠近XX拟建航站楼。1号出入口位于现有航站楼与拟建航站楼中间连廊下方道路一侧;2号出入口与XX拟建航站楼结合设置;无障碍电梯设置在1号出入口内;车站消防专用出入口设置于XX拟建停车场上,靠近2号风亭位置;车站两组风亭均为高风亭,设置在拟建XX航站楼前停车场上。 XX站采用明挖法施工,基坑支护采用混凝土灌注桩加钢管内支撑的方案。施工场地位于扩建XX范围内,原场地为XX前绿地及内部通道。地面树木及建筑已拆迁,地下部分管线有待改移。周围XX扩建工程正在施工,施工场需交叉作业,存在一定干扰。 1.2 工程地质及水文地质 XX站所处地貌为剥蚀低丘陵。表土层为第四系全新统冲积层(Q a1+p1),层厚0.6m~1m。其下为全-中风化震旦系XX组白云质灰岩(Z whg),层厚为12m~18m,风化震旦系XX组白云质灰岩强度为220~250KPa。再其下为坚硬基岩,其间杂散分布燕山期辉绿岩(βμ),分布于车站基坑层厚为0m~3m,岩石强度达1500KPa。

地铁车站基坑监测方案

地铁车站基坑监测方案 【摘要】本文介绍了对该地铁车站的的基坑监测过程及方法步骤,为基坑周围环境进行及时、有效的保护提供依据。验证基坑设计方法,完善基坑设计理论,及时反馈信息,指导基坑开挖和支护结构的施工。【关键词】基坑监测基坑结构稳定性 一、工程概况 哈尔滨市轨道交通一号线一期工程医大二院站(以该地铁车站为例),它是一期工程的起点站,位于学府路与保健路交叉口,为地下二层岛式车站。该车站主体采用中间盖挖、两侧明挖的施工方法。其中SK3+211.75~SK3+242.25采用盖挖顺作工法施工,其余段均采用明挖工法施工。 基坑开挖深度约10-15m,平面为比较规则的长方形,长约为241.3m,宽约为24.1m,基坑开挖面积约5813.33m2,基坑周长约530m。本基坑采用钻孔灌注桩围护结构。开挖土方数量102881.52m3,回填土方数量18438.82m3。 围护结构材料:C30钢筋混凝土钻孔桩,分别为!800@1300,!1000@1300;支撑体系:横撑:!609钢管,Q235钢,壁厚12mm及14mm;桩顶冠梁:C30钢筋混凝土;腰梁:2I45C及钢板组合截面,小于2m的短斜撑可用型钢H400*200*8*13代替;垫层:C15细石砼(150mm厚)。 二、监测目的 1.为基坑周围环境进行及时、有效的保护提供依据。 2.验证基坑设计方法,完善基坑设计理论,及时反馈信息,指导基坑开挖和支护结构的施工。 3.确保医大二院站基坑工程的稳定安全性。确保施工影响区域内的已有建筑物及地下管线的安全稳定,为控制施工对周围环境的影响提供判断数据。 4.通过测量数据的分析,掌握围护结构稳定性的变化规律,随时根据监测资料调整施工程序,消除安全隐患,是工程信息化施工的重要组成部分。 5.将现场监测结果反馈设计单位,使设计能根据现场工况发展,进一步优化方案,达到优质安全、经济合理、施工快捷的目的; 三、监测设计及实施原则 1.对围护体及支撑系统中相当敏感的区域加密测点数和项目,进行重点监测。 2.对勘察工程中发现地质变化起伏较大的位置,施工过程中有异常的部位进行重点监测。 3.除关键部位优先布设测点外,在系统性的基础上均匀布设监测点;结合施工实际确定测试方法、监测元件的种类、监测点的保护措施;调整监测点的布设位置,尽量减少对施工质量的影响;结合施工实际确定测试频率。 4.监测网监测点的数量,在确保全面、安全的前提下,设置不少于3个点。 5.结合设计规定和规范要求,确定监测仪器埋设位置。 6.考虑监测区域内观测点的布设位置,使各观测数据具有互相验证性和分析性。 7.明确监测人员与施工人员的责任。 四、监测方法与原理,观测精度 1.周边环境监测。沉降监测主要采用精密水准测量,测量的范围宜从基坑边线起到开挖深度约2~3倍的距离。水准仪采用(WILD)N3精密水准仪或者S1精密水准仪,并配用铟钢水准尺。监测过程中应使用固定的仪器和水准尺,监测人员也应相对固定。

地铁车站施工监测

地铁车站施工监测 更新:2012-8-2 阅读:栏目:建筑施工 地铁车站施工监测提要:必须制定详细的监测方案,对围护结构、支撑、主体结构、周围建(构)筑物和地下管线进行跟踪监测,并根据监测成果 来源自房地产e网 地铁车站施工监测 1监测的目的和意义 围护结构施工和主体基坑的开挖、降水、支护、结构施工的过程中,基坑内外地基应力的重分布会引起围护结构及周围土体的变形,从而有可能危及基坑、主体结构的稳定和周围建(构)筑物、地下管线的安全。因此在基坑和结构施工过程中,必须制定详细的监测方案,对围护结构、支撑、主体结构、周围建(构)筑物和地下管线进行跟踪监测,并根据监测成果,及时地分析资料,反馈信息,进一步掌握基坑工程施工过程中基坑及周围环境的实际工作状态,以便动态掌握基坑的安全情况,确保结构安全、经济、可靠和施工的顺利进行。 2监测项目 根据施工现场情况及设计要求,三溪站监测项目主要包括桩顶水平位移、土体侧向变形、支护结构变形、支撑轴力、地下水位、地面沉降、支撑立柱沉降、管线沉降/变形、孔隙水压力、围护桩侧向土压力等共12项,监测方式详见表8-1 表8 1 监测项目及监测要求 序号 监测 项目 监测仪表 位置或对象 测点布置 测试精度 监测频率 限值 开挖过程中 主体结构施工 1 桩顶水平位移 全站仪 桩顶冠梁 10~15m 1mm

1次/2天 1次/1周 0.2H%,30mm (取小值) 2 土体侧向变形 测斜管测斜仪 结构的周边土体 5孔竖向间距0.5m 1mm 开挖前1次(初读数),1次/天 底板浇筑1次/周,浇筑后1次/半月 0.2H%,30mm (取小值) 3 桩体变形 测斜管测斜仪 桩体内 孔间距离5~20m竖向间距0.5m 1mm 开挖前1次(初读数),1次/天 底板浇筑1次/周,浇筑后1次/半月 0.2H%,30mm (取小值) 4 支撑轴力 轴力计 应变计 支撑端部或中部 布置在轴力较大的地方 1/100F.s 锁定后前三天1次/天,第一个月内1次/周以后1次/2周 2000kN 5 地下水位 水位管 水位仪 基坑周边 孔间距15~25m 5mm 1次/3天 1次/周

地铁车站明挖深基坑工程施工组织设计方案

深基坑开挖专项施工方案

目录1、编制依据及编制原则 1.1编制依据 1.2编制范围 1.3编制原则 2、工程概况 2.1基本概况 2.2工程地质及水文地质 2.2.1工程地质 2.2.2水文地质 2.3本工程特征分析 2.3.1工程特点 2.3.2工程重点、难点 2.4主要地下管线情况 2.5施工现场周围环境 3、施工总体安排 3.1施工现场平面布置 3.2施工管理机构及劳动力组织 3.3施工进度计划 3.4拟投入的主要施工机械、材料及人员 4、基坑开挖施工方案 4.1开挖原则 4.2车站基坑土方开挖 4.2.1 开挖顺序 4.2.2基坑开挖方法

4.2.3 基坑开挖应急措施 4.3钢支撑安装 4.3.1钢支撑制作 4.3.2支撑安装工艺流程 4.3.3钢支撑体系安装施工要点 4.3.4 钢支撑拆除 4.4钢支撑保护及防脱落措施 4.5开挖、支撑施工必要的措施 4.5.1充分备好排除基坑积水的排水设备 4.5.2坑顶防护措施 4.5.3预应力复加 4.5.4施工间隔期间变形控制 4.5.5其它保证措施 4.6桩间土护壁施工 4.6.1 桩间土护壁形式 4.6.2 喷射混凝土施工要点 5、基坑开挖质量保证措施 5.1质量保证体系 5.2质量体系要素职责分配 5.3组织措施 5.4技术保证措施 6、施工安全保证措施 6.1安全生产目标及保证体系 6.1.1安全生产目标 6.1.2安全管理机构及安全监控网络 6.1.3 建立健全项目部安全保证体系6.2落实安全生产责任制 6.3安全技术交底 6.4安全教育 6.5完善各项安全管理制度 6.6认真执行安全检查制度

(完整版)地铁施工监测方案

施工监测方案编制: 审核: 审定:

目录 1工程概况 (1) 1.1工程概况 (1) 1.1.2 监测范围、内容 (3) 1.2工程地质条件 (3) 1.2.1地质条件 (3) 1.2.2地下水 (3) 2编制依据及原则 (4) 2.1编制依据 (4) 2.2编制原则 (4) 2.2.1 系统性原则 (4) 2.2.2 可靠性原则 (4) 2.2.3 与设计图纸相结合原则 (4) 2.2.4 关键部位优先、兼顾全局的原则 (5) 2.2.5 与施工相结合的原则 (5) 2.2.6 经济合理性原则 (5) 3监测的目的及意义 (6) 4监测的实施方法 (7) 4.1监测基准点的布设 (7) 4.1.1、设计交桩情况 (8) 4.1.2、监测基点的布设 (7) 4.1.3、监测控制工作基点测量要求 (8) 4.1.4、工作基点的复核测量 (14) 4.2地表及周边建筑物沉降 (12) 4.2.1 监测目的 (12) 4.2.2 监测仪器 (12) 4.2.3 监测实施方法 (12) 4.3桩顶位移 (14) 4.3.1 监测目的 (14) 4.3.2测点埋设 (14) 4.3.2 监测仪器 (14) 4.3.3 监测实施 (14) 4.4钻孔桩位移 (15) 4.4.1 监测目的 (15) 4.4.2 监测仪器 (15) 4.4.3 监测实施 (16) 4.5钢支撑轴力 (17) 4.5.1 监测目的 (17) 4.5.2 监测仪器 (17) 4.5.3 监测实施 (18)

4.6地下管线沉降监测 (19) 4.6.1 管线测点埋设原则 (19) 4.6.2 管线埋设方式 (20) 4.7水位监测 (21) 4.7.1 监测目的 (21) 4.7.2 监测仪器 (21) 4.7.3 监测实施 (21) 5北一路站附属结构监测的风险源及应对措施 (22) 5.1风险源统计 (22) 5.2针对风险源的监测措施 (22) 6现场巡视工作要求 (23) 6.1现场巡视工作范围 (23) 6.2现场巡视内容 (23) 6.2.1施工工况 (23) 6.2.2北二路站附属结构支护状况 (24) 6.2.3周边环境 (24) 6.2.5监测设施 (24) 6.3现场巡视频率 (24) 6.4现场巡视工作实施方法 (25) 7监测点位初始值的采集、报审程序及监测工作程序 (25) 7.1监测点埋设后报审程序 (25) 7.2初始值的采集及报审程序 (25) 7.3监测工作程序 (26) 8监测预警分级及监测频率 (26) 8.1预警等级划分 (26) 8.2监测项目预警值及控制值 (27) 8.3风险预警管理程序 (27) 8.4预警应急处置措施 (28) 8.5北一路站附属结构工程监测项目及频率 (28) 9 监测资料的收集整理和信息反馈 (29) 9.1、监控监测数据的分析与预测 (29) 9.1.1监测成果整理 (29) 9.1.2内业数据处理 (30) 9.1.3监测资料的收集整理 (30) 9.2监测信息反馈 (31) 9.3监测管理体系及质量保证措施 (32) 10 监测成果分析及成果要求 (33) 10.1监测成果分析 (33) 10.2监测要求 (33) 10.3监测上报的内容 (33)

[云南]地铁车站深基坑开挖支护监测施工方案_secret

目录 一.编制说明 ...................................................................................................................................................... - 1 - 1.1编制目的 (1) 1.2编制依据 (1) 1.3编制原则 (2) 二.工程概况 ...................................................................................................................................................... - 2 - 2.1工程简况 (3) 2.2水文地质 (3) 2.2.1工程水文概况............................................................................................................................................. - 3 - 2.2.2工程地质概况........................................................................................................................................... - 3 -2.3管线调查 (4) 2.4建筑物调查 (5) 2.5车站开挖分区情况 (6) 三.施工监测项目及要求 ................................................................................................................................... - 6 - 3.1监测布点原则 (6) 3.2监测频率 (7) 3.3基坑监测项目实施细则 (8) 3.3.1基坑工作状态观察..................................................................................................................................... - 8 - 3.3.2地表沉降监测............................................................................................................................................. - 8 - 3.3.3坡顶水平位移监测................................................................................................................................... - 11 - 3.3.4地下水位监测........................................................................................................................................... - 12 - 3.3.5建筑物倾斜观测及沉降监测................................................................................................................... - 12 - 3.3.6管线沉降监测........................................................................................................................................... - 13 - 3.3.7土钉应力的监测....................................................................................................................................... - 15 - 3.3.8重要监测项目........................................................................................................................................... - 15 - 3.3.9风险源分析及应对................................................................................................................................... - 16 -3.4控制值标准 (18) 3.5主要设备精度要求 (20) 四.监测数据处理及监测报告 ..........................................................................................................................- 21 -4.1监测报告. (22) 五.监测组织机构人员、设备配置...................................................................................................................- 23 -六.监测质量系统保证......................................................................................................................................- 25 -七.预警响应程序 .............................................................................................................................................- 25 - 7.1预警管理 (25) 7.2预警及响应 (26) 7.3监测数据处理及监测报告 (27) 7.4其它 (28) 八.附图...........................................................................................................................................................- 28 -

地铁车站施工监测方案

第一章、编制依据 (1) 监控分中心优化的监测设计文件 (2)《地下铁道工程施工及验收规范》GB 50299-1999(2003版) (3)《城市轨道交通工程测量规范》GB50308-2008 (4)《工程测量规范》GB50036-2007 (5)《建筑基坑支护技术规程》DB11/489-2007 (6)《建筑变形测量规范》JGJ8-2007 (7)《城市测量规范》CJJ8-99 (8)《建筑地基基础设计规范》GB50007-2002 (9)《建筑基坑工程技术规范》YB9258-97 (10)《地铁工程监控量测技术规程》DB11/490-2007, (11)《测绘作业人员安全规范》(CH1016-2008) (12)《国家一、二等水准测量规范》GB/T 12897-2006 (13)《安全风险评估指南》(建设部) (14)《地铁及地下工程建设风险管理指南》(中国建筑出版社,2007年) (15)《建筑施工测量技术规程》DB11/T446-2007 (16)《北京市轨道交通工程建设安全风险技术管理体系(试行)》 第二章、工程概况 2.1 工程位置及周边环境概况 xxx位于现状xx西大街,处于xxx之间,沿xxx布置。现状xxx大街路为双向6车道,两侧各有一非机动车道,路边设人行道。道路设置三道绿化隔离带,基本实现规划,规划道路红线宽60m。目前,该路交通繁忙,车流量大。 xxx西侧是过街天桥,东侧与地铁x号线xxx相邻,西北角为隆福广场,是较为繁华的商业区,南、北侧地块多为低层商铺和民宅,车站南侧从西向东依次为xxx办公楼(砖混结构,地上5层,地下一层),xxx和xxx,后两者为六、七十年代建筑,条形砖石基础,基础深度1.5~5m。场地内对车站影响较大的管线主要有Ф2600雨水管、2000×2000电力管沟、880×1600污水管、Ф1500污水管、3000×1500热力管沟、Ф800给水管、Ф2400雨水管等。 xxx主体结构施工涉及到的环境风险工程如表1所示:

地铁车站深基坑监测与分析

地铁车站深基坑监测与分析 添加时间:2007-10-13 原文发表:2007-10-13 人气:11 本文章共2590字,分2页,当前第1页,快速翻页: 地铁车站深基坑监测与分析 摘要: 针对北京地铁 5 号线北土城站深基坑的地质情况和施工要求, 介绍了车站深基坑监控量测方案, 并对基坑围护结构水平位移和邻近建筑物沉降监测数据进行了分析整理, 还对该次工程实践归纳了几点认识。 关键词: 深基坑; 围护结构; 监控量测 1 工程概况 北京地铁 5 号线北土城东路站位于惠新西街与北土城东路交叉口处, 也是与地铁 10 号线的换乘车站。5 号线车站有效站台中心里程为 K15 500.2; 车站起点里程K15 401.1,终点里程 K15 601.3, 总长 200.2 m。车站顶覆土厚度为 4.1 m。南端与 10 号线交叉处宽36.9 m, 北端宽 24.7 m,车站总建筑面积 16 972 m2。车站主体结构及外轮廓均位于惠新西街道路下方, 水平方向距临街建筑较远, 但东北侧 1 号出入口临近交通部科技信息研究所, 西北侧出入口紧邻中国航空信息中心; 车站西南、东南 2 部分主体结构外轮廓及出入口位于太阳宫路附近的一片平房区及土城遗址公园内, 沿街主要为 机关单位和一些小型商店、住宅建筑。 2 工程环境 2. 1 地质条件 拟建场地地形基本平坦, 流经场区的主要河流为南侧的小月河。勘探区地貌为冲积平原, 土层的第四纪地层组成如下: (1) 人工填土层(Q ml)。粉土素填土①层、杂填土①1 层, γ=1.820 kN/m, 厚度为 5.3~9.0 m。 (2)第四纪全新世冲洪积层(Q4al pl)。粉土③层、粉质黏土③1、黏土③2 层、γ=20 kN/m , c=29 kPa, Ф=24°,厚度为 0~2.5 m; 粉质黏土④层、黏土④1 层、粉土④2 层, γ=20.6 kN/m, c=35 kPa, Ф=24°厚度为 1.80~7.10 m。 (3)第四纪晚更新世冲洪积层(Q3al pl)。粉细砂⑤2层、粉质黏土⑥层、黏土⑥层、粉土⑥层, 粉细砂⑦2层、粉质黏土⑦4 层。 2. 2 水文条件 场区地下水自上而下分层为: (1)上层滞水。主要赋存于人工填土底部, 含水层主要为粉土③层, 局部为粉土填土①层底部, 水位标高为 36.00~38.94 m( 水位埋深为 4.00~6.80 m); 主要为接受大气降水和绿地灌溉水垂直渗透补给和管沟渗透补给。 (2)潜水。含水层为粉土④2 层, 水位标高为 32.54~33.45 m(水位埋深为 9.52~10.50 m); 含水层为粉细砂④2 层, 地下水径流方向为自西向东, 与地铁 5 号线方向近于直交, 地下水对钢筋混凝土 中的钢筋和钢结构具有弱腐蚀性。 (3) 承压水。含水层为粉土⑥2 层及粉细砂⑦2层, 该层水的承压性较小, 水位标高为 20.84~22.30 m(水位埋深为 21.50~22.40 m)。 拟建车站主体结构底板埋深约 18.4m, 地基持力层主要为粉质黏土④层、黏土④层、粉土④层, 车站主体主要处于上层滞水、潜水层, 结构底板未进入承压水层。 根据地质勘察资料显示, 该场区所在地地震基本烈度为八度。 3 深基坑支护概况 鉴于该工程地质及水文条件, 以及车站主体结构的基坑深为 18.9 m, 因此, 结构基础大部分采用

相关主题
文本预览
相关文档 最新文档