当前位置:文档之家› 基于单片机控制的交流调速系统设计-(1)

基于单片机控制的交流调速系统设计-(1)

基于单片机控制的交流调速系统设计-(1)
基于单片机控制的交流调速系统设计-(1)

基于单片机控制的交流调速系统设计

摘要

单片机控制的变频调速系统设计思想是用转差频率进行控制。通过改变程序来达到控制转速的目的。由于设计中电动机功率不大,所以整流器采用不可控电路,电容器滤波;逆变器采用电力晶体管三相逆变器。系统的总体结构主要由主回路,驱动电路,光电隔离电路,SA8282大规模集成电路,保护电路,AT89C51单片机, 8255可编程接口芯片,I/O接口芯片,测速发电机等组成。回路中有了检测保护电路就可以使整个系统运行的可靠性有了保障。

关键词:AT89C51单片机;SA8282;转差频率;交流调速;三相异步电动机

目录

前言 (1)

第1章交流调速系统的概述 (4)

1.1交流调速的基本原理 (4)

1.2 交流调速的特点 (5)

第2章交流调速系统的硬件设计 (7)

2. 1 转差频率控制原理: (7)

2. 2 系统设计的参数 (7)

2.3 用单片机控制的电机交流调速系统设计 (7)

2.3.1调速系统总体方案设计 (7)

2.3.2 元器件的选用 (9)

2.3.3 系统主回路的设计以及参数计算 (12)

2.3.4 SPWM控制信号的产生 (15)

2.3.5 光电隔离及驱动电路设计 (17)

2.3.6 故障检测及保护电路设计 (18)

2.3.7 模拟量输入通道的设计 (18)

第3章系统软件的设计 (19)

3.1 主程序的设计 (19)

3.2 转速调节程序 (19)

3.3 增量式PI运算子程序 (20)

3.4故障处理程序 (21)

3.5 部分子程序 (22)

3.5.1 AD0809的编程 (22)

3.5.2 8255的编程 (23)

结论 (23)

参考文献 (23)

前言

自上个世纪90年代以来,近代交流调速步入了以变频调速为主导的发展阶段。其间,由于各种新型电力电子器件的支持,使变频调速在低压(380 V)、中小容量(200 kW以下)方面取得了较大的进展。但是面对高压(6~10 kV)中大容量领域,由于电力电子器件自身规律的限制,变频调速在技术上遇到了很大困难,无论是“高-低”“、高-低-高”以及“多电平串联”等方案,都在实践中暴露出技术复杂、价格昂贵、效率降低、可靠性较差等缺点。从理论上看,高压变频所面临的问题是违反电力电子器件客观规律的结果,因为目前几乎所有的电力电子器件,其材料、工艺机理都决定了其属性是低压大电流的。

尽管如此,高压变频的势头仍有增无减,除了客观市场需求的拉动以外(诸如高压中大容量的风机泵类节能),主要是“变频调速是唯一的最佳交流调速”理论导向的结果。根据近代交流调速理论,交流调速被划分为变频、变极和变转差率三种方案,在缺乏科学分析的条件下,认定变转差率调速是低效率的,而变极调速又属于有级调速,因此惟有变频调速最佳。而变频调速方法与变转差调速方法有本质不同,从高速到低速都可以保持有限的转差率,因而变频调速具有高效率、宽范围和高精度的调速性能。可以认为,变频调速是交流电动机的一种比较合理和理想的调速方法。”

随着电力电子技术、微电子技术和自动控制理论的发展,交流调速技术也有了日新月异的变化。可调速的高性能交流电力拖动系统在工业上的应用也越来越广。进入21世纪交流调速技术也进入了现代交流调速技术时代,现代交流调速技术也成为人类社会的重大技术进步之一。其发展速度之快、应用覆盖范围之广都是前所未有的。而且应用实践表明,采用现代交流调速技术极大的提高了传动系统的运行质量,同时,带来了巨大的经济和社会效益。

第1章 交流调速系统的概述

1.1 交流调速的基本原理

本文以地毯背涂机为例叙述在地毯制造业上的应用。

图1-1三相异步电动机结构示意图

1—机座;2—定子铁心;3—定子绕组;

4—转子铁心;5—转子绕组;

变频调速是通过改变电机定子绕组供电的频率来达到调速的目的。常用三相交流异步电动机的结构为图1所示。定子由铁心及绕组构成,转子绕组做成笼型(见图1-2),俗称鼠笼型电动机。当在定子绕组上接入三相交流电时,在定子与转子之间的空气隙内产生一个旋转磁场,它与转子绕组产生相对运动,使转子绕组产生感应电势,出现感应电流,此电流与旋转磁场相互作用,产生电磁转矩,使电动机转动起来。电机磁场的转速称为同步转速,用n1表示

()m r p

f n /601= (1-1) 式中:f ——三相交流电源频率,一般为50Hz 。

p ——磁极对数。

当p=1时,1n =3000r/min ;p=2时,1n =1500r/min 。可见磁极对数p 越多,转速1n 越慢。

转子的实际转速n 比磁场的同步转速n1要慢一点,所以称为异步电机,这个差别用转差率s 表示:

()

0011100?-=n n n s (1-2)

当加上电源转子尚未转动瞬间,n=0,这时s=1;起动后的极端情况n=1n ,则s=0,即s 在0~1之间变化。一般异步电机在额定负载下的s=(1~6)%。综合式(1-1)和式(1-2)可以得出

()p

s f n -=160 (1-3) 由式(1-3)可以看出,对于成品电机,其磁极对数p 已经确定,转差率s 变化不大,则电机的转速n 与电源频率f 成正比,因此改变输入电源的频率就可以改变电机的同步转速,进而达到异步电机调速的目的。

1.2 交流调速的特点

对于可调速的电力拖动系统,工程上往往把它分为直流调速系统和交流调速系统两类。这主要是根据采用什么电流制型式的电动机来进行电能与机械能的转换而划分的,所谓交流调速系统,就是以交流电动机作为电能—机械能的转换装置,并对其进行控制以产生所需要的转速。

交流调速系统与直流调速系统相比较,具有如下特点:

1. 容量大 这是电动机本身的容量所决定的。直流电动机的单机容量能达到12—14MW ,而交流电动机的容量却远远的高与此数值。

2. 转速高,而且耐压 直流电动机受到换向器的限制,最高电压只能达到1000多伏,而交流电动机容量可达到6—10KV ,甚至更高。一般直流电动机最高转速只能达到3000转/min 左右,而交流电动机则可以高达每分钟几万转。这使得交流电动机的调速系统具有耐高压,转速高的特点。

3. 交流电动机本身的体积,重量,价格比同等容量的直流电动机要小,且交流电动机结构简单,坚固耐用,经济可靠,惯性小成了交流调速系统的一大优点。

4. 交流电动机的调速装置环境适应性广。直流电动机由于结构复杂,换向器工作要求高,使用中受到很多限制,如工厂里的酸洗车间,由于腐蚀严重,使用直流电动机每周都要检查碳刷,维修起来比较困难,而交流电动机却可以用在十分恶劣的环境下不至于损坏。

5. 由于高性能,高精度,新型调速系统的出现和不断发展,交流拖动系统已达到同直流拖动系统一样的性能指标,越来越广泛的应用于 国民经济的各个生产领域。

6. 交流调速装置能显著的节能。工业上大量使用的风机,水泵,压缩机类负载都是靠交流电动机拖动的,这类装置的用电量占工业用电量的50%,以往都不对电动机调速,而仅采用挡板,节流阀来控制风量或流量。大量的电能被白白的浪费掉,如果采用交流电动机调速系统来改变风量或流量的话,效率就会大大的提高,从各方面来看,改造恒速交流电动机为交流调速电动机,有着可观的能源效益。

交流电动机因其结构简单,运行可靠,价格低廉,维修方便,故而应用面很广,几乎所有的调速传动都采用交流电动机。尽管从1930年开始,人们就致力于交流调速系统的研究,然而主要局限于利用开关设备来切换主回路达到控制电动机启动,制动和有级调速的目的。变极对调速,电抗或自藕降压启动以及绕线式异步电动机转子回路串电阻的有级调速都还处于开发的阶段。交流调速缓慢的主要原因是决定电动机转速调节主要因素的交流电源频率的改变和电动机的转距控制都是非常困难的,使交流调速的稳定性,可靠性,经济性以及效率均不能满足生产要求。后来发展起来的调压,调频控制只控制了电动机的气隙磁通,而不能调节转距。转差频率控制在一定程度上能控制电动机的转距。

第2章 交流调速系统的硬件设计

2.1 转差频率控制原理:

当稳态气隙磁通恒定时.异步电机的机械特性参数表达式为:

()()()220

2221022

222212

11)(3???? ???+?Φ=+=σσωωωx n n r r n n C sx r r s E P T n (2-1)

当实际转差错误!未找到引用源。额定空载转速错误!未找到引用源。相比很小时(0n n <

错误!未找到引用源。,220

r x n n <

()()

202222210

2n r C r r n n C T s m n m n 'Φ=?Φ≈ωω 其中

1602ωπωn n p s ?=?=

(2-2) 从式(2-2)中可得,当转差频率s ω较小且磁通m Φ恒定时,电机的电磁转矩T 与s ω错误!未找到引用源。成正比。这时只要控制转差频率s ω就能控制转矩T ,从而实现对转速的控制。

若要使转差频率s ω错误!未找到引用源。较小,只要有提供异步电动机的实际转速反馈即可实现。若要保持m Φ错误!未找到引用源。为恒值,即保持励磁电流m I 恒定,而励磁电流m I 与定子电流

1I 有如下关系,

()()[]()22

2221221σσωωωL r L L r f s m m s '+''++'I ==I (2-3) 因此若,1I 按照上述规律变化,则m I 恒定,即m Φ恒定。转差频率控制策略

是:利用测速环节得到转速ωU 与转速给定*ωU 、比较,限制输出频率错误!未找

到引用源。,使转差率S U ω (即S ω)不太大;控制定子电流1I 错误!未找到引用源。,使得励磁电流m I 保持恒定;这时控制s ω实现调速。系统原理图如图2-l 所示。

图2-l 转差频率控制变频调速系统原理图

从图2-1可知.系统由速度调节器、电流调节器、函数发生器、加法器,整流与逆变电路,PWM 控制电路,异步电动机及测量电路等组成,其中异步电动机由SPWM 控制逆变器供电。转速调节器ASR 的输出是转差频率给定值ωU ,表转矩给定。函数发生器输入转差频率产生*1i U 。

信号,并控制定子电流。以保持m Φ为恒值;加法器对转差频率和转速信号求和得到变频器的输出频率。从而实现三相异步电机变频调速。 2.2 系统设计的参数

对一台三相异步电动机调速系统进行设计。异步电动机的参数:

KW n 2.2=P ,min /1440r n =N ,V U s 380=,?接法,A =I N 8.4

采用转差频率控制方法,由单片机组成核心。调速范围(2.2—51HZ ),无级调速,静差率005≤S 。根据对象参数,完成各功能单元的结构设计,参数计算。

2.3 用单片机控制的电机交流调速系统设计

2.31 调速系统总体方案设计

转速开环恒压频比的调速系统,虽然结构简单,异步电动机在不同频率小都能获得较硬的机械特性但不能保证必要的调速精度,而且在动态过程中由于不能保持所需的转速,动态性能也很差,它只能用于对调速系统的静,动态性能要求不高的场合。如果异步电动机能象直流电动机一样,用控制电枢电流的方法来控制转矩,那么就可能得到和直流电动机一样的较为理想的静,动态特性。转差频率控制是一种解决异步电动机电磁转矩控制问题的方法,采用这种控制方案的调速系统,可以获得与直流电动机 恒磁通调速系统相似的性能。调速系统总体

结构图见图2-2所示。

图2-2 调速系统总体结构图

如图2-2所示,系统主电路由二极管整流电路、SPWM逆变器和中间直流电路等组成,都是电压源型的,采用大电容C1滤波,同时兼具无功功率交换大的作用。为了避免大电容在合上电源开关后通电的瞬间产生过大的充电电流,在整流器和滤波电容间的直流回路上串入电抗,刚通上电源时,由L1限制充电电流,然后经过一段时间延时,L失去限流作用,使电路正常供电。

2.32元器件的选用

1. 8255的资料

8255是可编程的并行I/O接口芯片,它具有3个8位的并行I/O口,三种工作方式,可通过编程改变其功能,因而使用方便,通用性强,可作为单片机与多种外围设备连接时的中间接口电路。8255的引脚图如图2-3所示。由图可知,8255共有40个引脚,各引脚功能如下:

图2-3 8255引脚图

2. ADC0809的资料

ADC0809是一种逐次逼近式8路模拟输入,8位数字量输出的A/D转换器。其引脚如图2-4所示。

由引脚可见,ADC0809共有28个引脚,采用双插直列示封装

图2-4 ADC0809引脚图

3. SA8282的资料

SA8282是MITEL公司推出的一种用于三相SPWM波发生和控制的集成电路,它与微处理器接口方便,内置波形ROM及相应的控制逻辑,设置完成后可以独立产生三相PWM波形,只有当输出频率或幅值等需要改变时才需微处理器的干预,微处理器只用很少的时间控制它,因而有能力进行整个系统的检测、保

护和控制等。基于SA8282和89C51的变频器具有电路简单、功能齐全、性能价格比高、可靠性好等优点。

图2-5SA8282的引脚排列图

4. AT89C51的资料

AT89C51是一种带4K字节闪烁可编程可擦除只读存储器(FPEROM—Flash Programmable and Erasable Read Only Memory)的低电压,高性能CMOS 8位微处理器,俗称单片机。AT89C2051是一种带2K 字节闪烁可编程可擦除只读存储器的单片机。单片机的可擦除只读存储器可以反复擦除100次。该器件采用ATMEL高密度非易失存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容。由于将多功能8位CPU和闪烁存储器组合在单个芯片中,ATMEL的AT89C51是一种高效微控制器,AT89C2051是它的一种精简版本。AT89C51单片机为很多嵌入式控制系统提供了一种灵活性高且价廉的方案。外形及引脚排列如图2-6所示

图2-6 AT89C51的管脚排列图 2.33 系统主回路的设计以及参数计算

1. 主回路的结构

系统主回路是交—直—交电压型变频电路,其图2-7如下所示:

图2-7 系统主回路电路图

整流采用三相桥式不可控整流器,L 、C1、C2组成滤波电路,Rb 用来吸收制动能量。整流逆变电路采用的是GRT 三相桥式PWM 逆变器。

2. 参数计算和元件选择

(1) 大功率开关管 SPWM 正弦脉宽调制方法的直流利用率为0.866,即866.01 d

U U 。为了使逆变器输出380V 的线电压,要求直流侧的电源电压:

V

V U d 8.438866

.0380≈= , 考虑到大功率的晶体管的管压降等,取V U d 450=,则大功率晶体管的参数为()()V U U d BR CBO 1350~9003~2== ,

()()V U U d BR CBO 1350~9003~2==。选择晶体管模块QCA50A —100A 三块,作为大功率开关管。QCA50A —100A 为两单元组件,c-e 极带反向续流二极管,绝缘式结构,其极限参数为:()V U CBO BR 1000=,A =I 50CM ,W d 2400*=P ,它的内部结构图如图2-8所示。

图2-8 QCA50A —100模块内部结构 (2) 三相整流桥 整流桥输入侧电压为:V U U d 19234

.22≈= ,直流侧功率可估算如下: 取电动机的效率为0.82,则电动机的输入功率为KW KW 7.282.022001≈=

P 。取逆变器的效率为0.93,则 直流侧的功率为:KW d 9.293

.01=P =P ,故直流侧电流:A ≈A =P =I 4.64502900d d d U 。整流二极管最高反压:V V U U RM 94019262622≈*==。

基于以上数据,选用MDS 型三相整流桥模块,其最大输出电流为40A ,最高耐压为1000V 。

(3) LC 滤波器 取uF C 44000=,其最大耐压V U 47062=。选择两只2200uF ,耐压在500V 以上的电容器并联使用。

滤波电感在这里主要用来限制电流脉动(PWM 变频调速系统不存在电流不连续问题)和短路电流上升率,按照晶体管三相桥式整流电路限制电流脉动的电感量算式估计如下(取0010=i S )

mH mH S U f U U L d d dm M 1274

.6%1019230014.32108.02103232≈*****=I **???? ??=I π

考虑到电动机和整流变压器存在一定的电感量,取实际的电感为100mH 。选择一台电感量为100mH ,额定电流不小于6.4A 的电抗器L 。

3. 调节器的设计

本系统采用增量式转差频率调节方式,转差调节器设计为带有死区的调节器,即:

()()()K U K U K K K U k U S s s s ?+-=?+-=111

()???????

??????????

SM n n SM U K U sign K U UnB U 0 K U K U K U n n n -=?* (2-4)

转速反馈

转速给定

转速误差

控制增量

---------?---?*K U K U K U K U n n n s 因n s f f f +=1,所以()k U s 与()k U n 之和反映了频率1f ,即为频率指令信号。控制结构框图和控制曲线如下图2-9所示。nB nA U U ??-~为死区,它是为了避免因量化误差,舍入误差引起系统运行不平衡而引起的。

()B U A U B U A U n n n n ?-??-???为线性调节区,当()B U K U n n ?>?时,输出限幅,用以现在转差频率的最大增量,亦即限制1f 的最大增量,亦即限制1f 的最大增量,防止系统过冲,提高系统的稳定性。sM U ?决定系统的积分系数???

? ????=nB sM U U K 1,它由电位器给定,通过A/D 转换器转换后输入。当nB U ?确定后,通过调节电位器,就能改变积分系数1K ,整定方便。nA U ?的值根据静态精度要求和实际系统工作时的最低转速来确定,nB U ?,sM U ?通过实验确定。

a) 控制结构框图 b ) 控制曲线

图2-9 控制结构框图和曲线图

2.34 SPWM 控制信号的产生

在本系统中,控制信号用SA8282大规模集成块来产生。电动机转速的调节是通过调频,调压实现的。以正弦波作为逆变器输出的期望波形,以频率比期望波高得多的等腰三角波作为载波(Carrier wave ),并用频率和期望波相同的正弦波作为调制波(Modulation wave ),当调制波与载波相交时,由它们的交点确定逆变器开关器件的通断时刻,从而获得在正弦调制波的半个周期内呈两边窄中间宽的一系列等幅不等宽的矩形波。如图2-11为其调制原理图。按照波形面积相等的原则,每一个矩形波的面积与相应位置的正弦波面积相等,因而这个序列的矩形波与期望的正弦波等效。正弦调制波在半个周期内,三角载波在正负极性之间连续变化,则SPWM 波也在正负之间变化,也称为双极性控制方式。

将三相电压和幅值为cm U 频率为c f 的三角载波分别送到三个独立的比较器,比较器的输出一方面接到相应的上桥臂开关作为驱动信号,另一方面经过反相后接到相应的下桥臂开关作为驱动信号,在系统主回路电路图图2-10中参考波是U 相,则其直接输出将驱动V1开关,反相输出驱动V4开关。将三相参考

波和载波放在同一个坐标系上,则如图2-11所示,以UN u 为例,当uc U u >时,

1g U

图2-11 SPWM 逆变器电压波图形 2/d un U u =;当uc U u <时,1g U 为低电平,V1截止,V4导通,2/d un U u =,输出都波形为双极性。更为实际的是SPWM 逆变器往往加上调节器,加上调节器后,实际的是输出电压与参考电压或指令电压比较后作为调节器的输入,其输出形成相应的u U ,v U ,w U ,这样输出总是跟随者指令电压变化。

在模拟电子电路中,采用正弦波发生器、三角波发生器和比较器来实 现SPWM 的双极性控制;改成数字控制后,开始时只是把同样的方法数字化,称做“自然采样法”而在工程上,采用的是简化后的“规则采样法”。

在本设计中,SA8282控制脉冲波的输出采用数字方法,数字方法是按照不同的数字模型用计算机算出各切换点并将其存入内存 然后通过查表及必要的计算生成PWM波,从而实现以软件方式控制的,在SA8282的ROM 中储存有脉冲表,SA8282可通过查表得知应该输出的脉冲的频率与幅值,从而可以控制电机的转速与输出转矩。AT89C51则通过检测电路检测的

图2-12 AT89C51与SA8282连接电路图 数据通过P0口向SA8282的AD 口传送数据,使SA8282输出相应的脉冲波,从而达到转差频率控制电动机的交流调速。

2.35光电隔离及驱动电路设计

SA8282输出的PWM 控制信号功率很小,无法直接驱动GTR ,要经过脉冲功率放大才能驱动GTR ,脉冲功率放大电路选用模块EX359。该模块是一

图2-13 EX359驱动模块内部结构 个带有光隔离的功率放大电路,其电源电压为12V ,输入信号5V ,输出电压1.6V (对应GTR 导通)和-2V (对应GTR 关断),工作频率为2.5Z H ,可驱动50A 以下的逆变器,其内部电路如图2-13所示。

2.36故障检测及保护电路设计

故障检测及保护电路如图2-14所示,该电路采用电阻取样的电压、电流保护电路,通过调节电位器RP1、RP2来设定最大的允许电压、电流值。电路中C1、C2接8255的C 口中的PC2、PC3,O 端接SA8282的CLK 。

图2-14 过电流,过电压保护电路控制端 这样保护电路可通过门1输出控制信号的封锁SA8282输出的PWM 控制信号,断开主回路电源。A1、A2接8255的C 口中的PC4、PC5,通过PC4、PC5输入故障信号,用以检测故障类型。

2.37 模拟量输入通道的设计

由于本次设计中选用的AT89C51单片机没有模数转换器所以需要在外部电路中加上模数转换电路。经过考虑选用的是ADC0809芯片。它能完成8路模拟量的转换,为了削弱反馈信号中的交流分量,在需在反馈信号输入前加一RC 滤波电路,取,10KΩ=R F C μ47.0=,对应的时间常数为0.005S 。

第3章 系统软件的设计

3.1 主程序的设计

主程序框图如图3-1所示。先进行芯片初始化,然后,清系统工作区,开放89C51外部中断,启动软件定时器10ms (采样周期)。所以,系统初始化完毕,

进入控制循环:测速→中断服务(*n U ,n U 和sm U ?,PI 运算,查表求出

v v f f x z x z ,,,)→可逆切换程序→输出控制量→测速。

图3-1 系统主程序框图 3.2 转速调节程序

转速调节程序即为软件定时器O 的中断服务程序,其程序框图如图3-2所示。在转速调节程序中,完成转速、SM U 的采样,进行PI 运算,求出频率指令信号1f U ,然后查表求得分频系数v v f f x z x z ,,,。

图3-2 转速调节程序框图 3.3 增量式PI 运算子程序

增量式PI 运算子程序框图如图3-3所示,它包括按图所示控制曲线计算转差频率增量()K U S ?, 由()K U S ?求出转差频率控制量()K U S ,再由()K U S 求出频率指令信号()k U f 1,再由AT89C51单片机向SA8282发出调频指令。

交流调速系统概述

交流调速系统概述 1.1、交流调速系统的特点 对于可调速的电力拖动系统,工程上往往把它分为直流调速系统和交流调速系统两类,这主要是根据采用什么电流制型式的电动机来进行电能与机械能的转换而划分的。所谓交流调速系统,就是以交流电动机作为电能—机械能的转换装置,并对其进行控制以产生所需要的转速。相比于直流电动机,交流电动机具有结构简单,制造成本低,坚固耐用,运行可靠,维护方便,惯性小,动态响应好,以及易于向高压、高速和大功率方向发展等优点。 随着电力电子技术,大规模集成电路和计算机控制技术的迅速发展,交流可调传动得到了广泛的发展,诸如交流电动机的串级调速、各种类型的变频调速,特别是矢量控制技术的应用,使得交流调速系统逐步具备了宽的调速范围、较高的稳速精度、快速的动态响应以及在四象限作可逆运行等良好的技术性能。现在从数百瓦的伺服系统到数百千瓦的特大功率高速传动系统,从一般要求的小范围调速传动到高精度、快响应、大范围的调速传动,从单机传动到多机协调运转,已几乎都可采用交流调速传动。 1.2交流调速系统的应用 由于交流调速系统的优越性,其已经普遍应用于现代工业中,主要由以下几个方面:(1)、风机、水泵、压缩机耗能占工业用电的40%,进行变频、串级调速,可以节能。 (2)、对电梯等垂直升降装置调速实现无级调速,运行平稳、档次提高。 (3)、纺织、造纸、印刷、烟草等各种生产机械,采用交流无级变速,提高产品的质量和效率。 (4)、钢铁企业在轧钢、输料、通风等多种电气传动设备上使用交流变频传动。 (5)、有色冶金行业如冶炼厂对回转炉、培烧炉、球磨机、给料等进行变频无级调速控制。 (6)、油田利用变频器拖动输油泵控制输油管线输油。此外,在炼油行业变频器还被应用于锅炉引风、送风、输煤等控制系统。 (7)、变频器用于供水企业、高层建筑的恒压供水。 (8)、变频器在食品、饮料、包装生产线上被广泛使用,提高调速性能和产品质量。 (9)、变频器在建材、陶瓷行业也获得大量应用。如水泥厂的回转窑、给料机、风机均可采用交流无级变速。 (10)、机械行业是企业最多、分布最广的基础行业。从电线电缆的制造到数控机床的制造。电线电缆的拉制需要大量的交流调速系统。一台高档数控机床上就需要多台交流调速甚至精确定位传动系统,主轴一般采用变频器调速(只调节转速)或交流伺服主轴系统(既无级变速又使刀具准确定位停止),各伺服轴均使用交流伺服系统,各轴联动完成指定坐标位置移动。

基于单片机控制的交流调速系统设计 (1)

基于单片机转差频率控制的交流调速系统设计 摘要 单片机控制的变频调速系统设计思想是用转差频率进行控制。通过改变程序来达到控制转速的目的。由于设计中电动机功率不大,所以整流器采用不可控电路,电容器滤波;逆变器采用电力晶体管三相逆变器。系统的总体结构主要由主回路,驱动电路,光电隔离电路,SA8282大规模集成电路,保护电路,AT89C51单片机, 8255可编程接口芯片,I/O接口芯片,测速发电机等组成。回路中有了检测保护电路就可以使整个系统运行的可靠性有了保障。 关键词:AT89C51单片机;SA8282;转差频率;交流调速;三相异步电动机

目录 前言 (1) 第1章交流调速系统的概述 (4) 1.1交流调速的基本原理 (4) 1.2 交流调速的特点 (5) 第2章交流调速系统的硬件设计 (7) 2. 1 转差频率控制原理: (7) 2. 2 系统设计的参数 (7) 2.3 用单片机控制的电机交流调速系统设计 (7) 2.3.1调速系统总体方案设计 (7) 2.3.2 元器件的选用 (9) 2.3.3 系统主回路的设计以及参数计算 (12) 2.3.4 SPWM控制信号的产生 (15) 2.3.5 光电隔离及驱动电路设计 (17) 2.3.6 故障检测及保护电路设计 (18) 2.3.7 模拟量输入通道的设计 (18) 第3章系统软件的设计 (19) 3.1 主程序的设计 (19) 3.2 转速调节程序 (19) 3.3 增量式PI运算子程序 (20) 3.4故障处理程序 (21) 3.5 部分子程序 (22) 3.5.1 AD0809的编程 (22) 3.5.2 8255的编程 (23) 结论 (23) 参考文献 (23)

直流电机双闭环调速系统设计.

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊ 目录 1 绪论 (1) 1.1课题研究背景 (1) 1.2研究双闭环直流调速系统的目的和意义 (1) 2 直流电机双闭环调速系统 (3) 2.1直流电动机的起动与调速 (3) 2.2直流调速系统的性能指标 (3) 2.2.1静态性能指标 (3) 2.2.2动态的性能指标 (4) 2.3双闭环直流调速系统的组成 (6) 3 双闭环直流调速系统的设计 (8) 3.1电流调节器的设计 (8) 3.2转速调节器的设计 (10) 3.3闭环动态结构框图设计 (12) 3.4设计实例 (12) 3.4.1设计电流调节器 (13) 3.4.2设计转速调节器 (15) 4.Matlab仿真 (17) 4.1仿真结果分析 (19) 5 结论 (20) 参考文献 (21)

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊1 绪论 1.1课题研究背景 直流调速是现代电力拖动自动控制系统中发展较早的技术。就目前而言,直流调速系统仍然是自动调速系统的主要形式,电机自动控制系统广泛应用于机械,钢铁,矿山,冶金,化工,石油,纺织,军工等行业。这些行业中绝大部分生产机械都采用电动机作原动机。有效地控制电机,提高其运行性能,对国民经济具有十分重要的现实意义。 以上等等需要高性能调速的场合得到广泛的应用。然而传统双闭环直流电动机调速系统多数采用结构比较简单、性能相对稳定的常规PID控制技术,在实际的拖动控制系统中,由于电机本身及拖动负载的参数(如转动惯量)并不像模型那样保持不变,而是在某些具体场合会随工况发生改变;与此同时,电机作为被控对象是非线性的,很多拖动负载含有间隙或弹性等非线性的因素。因此被控制对象的参数发生改变或非线性特性,使得线性的常参数的PID控制器往往顾此失彼,不能使得系统在各种工况下都保持与设计时一致的性能指标,常常使控制系统的鲁棒性较差,尤其对模型参数变化范围大且具的非线性环节较强的系统,常规PID调节器就很难满足精度高、响应快的控制指标,往往不能有效克服模型参数变化范围大及非线性因素的影响。 1.2研究双闭环直流调速系统的目的和意义 双闭环直流调速系统是性能很好,应用最广的直流调速系统。采用该系统可获得优良的静、动态调速特性。此系统的控制规律,性能特点和设计方法是各种交、直流电力拖动自动控制系统的重要基础。 20世纪90年代前的大约50年的时间里,直流电动机几乎是唯一的一种能实现高性能拖动控制的电动机,直流电动机的定子磁场和转子磁场相互独立并且正交,为控制提供了便捷的方式,使得电动机具有优良的起动,制动和调速性能。尽管近年来直流电动机不断受到交流电动机及其它电动机的挑战,但至今直流电动机仍然是大多数变速运动控制和闭环位置伺服控制首选。因为它具有良好的线性特性,优异的控制性能,高效率等优点。直流调速仍然是目前最可靠,精度最高的调速方法。 通过对转速、电流双闭环直流调速系统的了解,使我们能够更好的掌握调速系统的基本理论及相关内容,在对其各种性能加深了解的同时,能够发现其缺陷之处,通过对该系统不足之处的完善,可提高该系统的性能,使其能够适用于各种工作场合,提高其使用效率。并以此为基础,再对交流调速系统进行研究,最终掌握各种交、直流调速系统的原理,使之能够应用于国民经济各个

长安大学交流调速课程设计

长安大学交流调速课程设计

一.摘要 变频调速是一种新兴的技术,将变频调速技术用于供水控制系统中,具有高效节能、水压恒定等优点。随着社会经济的发展,绿色、节能、环保已成为社会建设的主题。对于一个城市的建设,供水系统的建设是其中重要的一部分,供水的可靠性、稳定性、经济性直接影响到居民的生活质量。近年来,随着自动化技术、控制技术的发展,以及这些技术在供水系统的应用,高性能、高节能的变频恒压控制的供水系统已成为现在城市供水管理的必然趋势。本次课程设计采用CPM1A PLC控制器结合富士变频器控制两台水泵的各种转换,实现变频恒压供水系统的功能,并且实现故障转换与报警等保护功能,使得系统控制可靠,操作方便。 二.设计要求 一楼宇供水系统,正常供水量为30m3/小时,最大供水量40m3/小时,扬程24米。采用变频调速技术组成一闭环调节系统,控制水泵的运行,保证用户水压恒定。当用水量增大或减小时,水泵电动机速度发生变化,改变流量,以保证水压恒定。 要求设计实现: ⑴设二台水泵。一台工作,一台备用。正常工作时,始终由一台水 泵供水。当工作泵出现故障时,备用泵自投。 ⑵二台泵可以互换。 ⑶给定压力可调。压力控制点设在水泵出口处。

⑷具有自动、手动工作方式,各种保护、报警装置。采用OMRON CPM1A PLC、富士变频器完成设计。 三.方案的论证分析 传统的小区供水方式有: ⑴恒速泵加压供水方式 该方式无法对供水管网的压力做出及时的反应,水泵的增减都依赖人工进行手工操作,自动化程度低,而且为保证供水,机组常处于满负荷运行,不但效率低、耗电量大,而且在用水量较少时,管网长期处于超压运行状态,爆损现象严重,电机硬起动易产生水锤效应,目前较少采用。 ⑵气压罐供水方式 气压罐供水具有体积小、技术简单、不受高度限制等特点,但此方式调节量小、水泵电机为硬起动且起动频繁,对电器设备要求较高、系统维护工作量大,而且为减少水泵起动次数,停泵压力往往比较高,致使水泵在低效段工作,也使浪费加大,从而限制了其发展。 ⑶水塔高位水箱供水方式 水塔高位水箱供水具有控制方式简单、运行经济合理、短时间维修或停电可不停水等优点,但存在基建投资大,占地面积大,维护不方便,水泵电机为硬起动,启动电流大等缺点,频繁起动易损坏联轴器,目前主要应用于高层建筑。 综上所述,传统的供水方式普遍不同程度的存在浪费水力、

交流异步电动机变频调速系统设计样本

中南大学 《工程训练》 ——设计报告 设计题目:异步电机变频调速 指引教师:黎群辉 设计人:冯露 学号: 专业班级:自动化0906班 设计日期:9月

交流异步电动机变频调速系统设计 摘要 近年来,交流电机变频调速及其有关技术研究己成为当代电气传动领域一种重要课题,并且随着新电力电子器件和微解决器推出以及交流电机控制理论发展,交流变频调速技术还将会获得巨大进步。 本文对变频调速理论,逆变技术,SPWM产生原理进行了研究,在此基本上设计了一种新型数字化三相SPWM变频调速系统,以8051控制专用集成芯片 SA4828为控制核心,采用IGBT作为主功率器件,同步采用EXB840构成IGBT驱动电路,整流电路采用二极管,可使功率因数接近1,并且只用一级可控功率环节,电路构造比较简朴。 V控制,同步,软件程序使得参数输入和变频器运营方式变本文在控制上采用恒 f 化极为以便,新型集成元件采用也使得它开发周期短。 此外,本文对SA4828三相SPWM波发生器使用和编程进行了详细简介,完毕了整个系统控制某些软硬件设计。 V控制,SA4828波形发生器 核心字:变频调速,正弦脉宽调制, f

目录 摘要................................................ 错误!未定义书签。 1.1 研究目与意义 (1) 1.2本次设计方案简介 (2) 1.2.1 变频器主电路方案选定 (2) 1.2.2 系统原理框图及各某些简介 (3) 1.2.3 选用电动机原始参数 (4) 2交流异步电动机变频调速原理及办法 (5) 2.1 异步电机变频调速原理 (5) 2.2 变频调速控制方式及选定 (6) V比恒定控制 (6) 2.2.1 f 2.2.2 其他控制方式................................ 错误!未定义书签。3变频器主电路设计. (13) 3.1 主电路工作原理 (13) 3.2 主电路各某些设计 (13) 3.3. 采用EXB840IGBT驱动电路 (15) 4控制回路设计 (16) 4.1 驱动电路设计 (16) 4.2 保护电路......................................... 错误!未定义书签。 4.2.1 过、欠压保护电路设计........................ 错误!未定义书签。 4.2.2 过流保护设计................................ 错误!未定义书签。 4.3 控制系统实现 (19) 5变频器软件设计....................................... 错误!未定义书签。 5.1 流程图 (22)

《交直流调速系统系统课程设计》

《交直流调速系统》课程设计 一、性质和目的 自动化专业、电气工程及其自动化专业的专业课,在学完本课程理论部分之后,通过课程设计使学生巩固本课程所学的理论知识,提高学生的综合运用所学知识,获取工程设计技能的能力;综合计算及编写报告的能力。 二、设计内容 1.根据指导教师所下达的《课程设计任务书》课程设计。 2.主要内容包括: (1)根据任务书要求确定总体设计方案 (2)主电路设计:主电路结构设计(结构选择、器件选型、考虑器件的保护)、变压器的选型设计; (3)控制回路设计:控制方案的选择、控制器设计 (4)保护电路的选择和设计 (5)调速系统的设计原理图,调速性能分析、调速特点 3.编写详细的课程设计说明书一份。 三、设计内容与要求 1.熟练掌握主电路结构选择方法、主电路元器件的选型计算方法。 2.熟练掌握保护方式的配置及其整定计算。 3.掌握触发控制电路的设计选型方法。。 4.掌握速度调节器、电流调节器的典型设计方法。 5.掌握绘制系统电路图绘制方法。 6.掌握说明书的书写方法。 四、对设计成品的要求 1.图纸的要求: 1)图纸要符合国家电气工程制图标准; 2)图纸大小规格化(例如:1#图,2#图); 3)布局合理、美观。 2.对设计说明书的要求 1)说明书中应包括如下内容

①目录 ②课题设计任务书; ③调速方案的论证分析(至少有两种方案,从经济性能和技术性能方面进行分析论证)和选择; ④所要完成的设计内容 ⑤变压器的接线方式确定和选型; ⑥主电路元器件的选型计算过程及结果; ⑦控制电路、保护电路的选型和设计; ⑧调速系统的总结线图 系统电路设计及结果。 2)说明书的书写要求 ①文字简明扼要,理论正确,程序功能完备,框图清楚明了。 ②字迹工整;书写整齐,使用统一规定的说明书用纸。 ③图和表格不能徒手绘制。 ④附参考资料说明。

(交流电机变频调速系统设计)

机电传动与控制课程综合训练三 一、综合训练项目任务书 综合训练项目:交流电机变频调速系统 目的和要求:加强对交流变频调速系统及变频器的理解;应用交流变频调速系统及变频器解决交流电机变频调速问题。提高分析和解决实际工程问题的能力。促成“富于探索精神,具有较强的自学能力、开拓创新意识和敏锐的观察事物以及分析处理事物的能力”的目标实现。 成果形式:交流电机变频调速系统设计说明书。 相关参数:参看《机电传动控制》(第五版),冯清秀等编著,华中科技大学出版社,P291~316。 一、综合训练项目设计内容 1.变频调速系统 1.1 三相交流异步电动机的结构和工作原理 三相交流异步电动机是把电能转换成机械能的设备。一般电动机主要由两部分组成:固定部分称为定子,旋转部分称为转子。三相交流异步电动机的工作原理是建立在电磁感应定律、全电流定律、电路定律和电磁力定律等基础上的。当磁极沿顺时针方向旋转,磁极的磁力线切割转子导条,导条中就感应出电动势。电动势的方向由右手定则来确定。因为运动是相对的,假如磁极不动,转子导条沿逆时针方向旋转,则导条中同样也能感应出电动势来。在电动势的作用下,闭合的导条中就产生电流。该电流与旋转磁极的磁场相互作用,而使转子导条受到电磁力,电磁力的方向可用左手定则确定。由电磁力进而产生电磁转矩,转子就转动起来。 1.2 变频调速原理 变频器可以分为四个部分,如图1.1所示。 通用变频器由主电路和控制回路组成。给异步电动机提供调压调频电源的电力变换部分,称为主电路。主电路包括整流器、中间直流环节(又称平波回路)、逆变器。

图1.1 变频器简化结构图 ⑴整流器。它的作用是把工频电源变换成直流电源。 ⑵平波回路(中间直流环节)。由于逆变器的负载为异步电动机,属于感性负载。无论电动机处于电动状态还是发电状态,起始功率因数总不会等于1。因此,在中间直流环节和电动机之间总会有无功功率的交换,这种无功能量要靠中间直流环节的储能元件—电容器或电感器来缓冲,所以中间直流环节实际上是中间储能环节。 ⑶逆变器。与整流器的作用相反,逆变器是将直流功率变换为所要求频率的交流功率。逆变器的结构形式是利用6个半导体开关器件组成的三相桥式逆变器电路。通过有规律的控制逆变器中主开关的导通和断开,可以得到任意频率的三相交流输出波形。 ⑷控制回路。控制回路常由运算电路,检测电路,控制信号的输入、输出电路,驱动电路和制动电路等构成。其主要任务是完成对逆变器的开关控制,对整流器的电压控制,以及完成各种保护功能。控制方式有模拟控制或数字控制。 2.系统的控制模型 本系统的结构如图1.2所示。

#直流电机调速系统分析与设计

第一部分并励直流电动机的工作原理 并励直流电机的励磁绕组和电枢绕组相并联,作为并励发电机来说,是电机本身发出来的端电压为励磁绕组供电;作为并励电动机来说,励磁绕组和电枢共用同一电源,从性能上讲和他励直流电动机相同。 导体受力的方向用左手定则确定。这一对电磁力形成了作用于电枢一个力矩,这个力矩在旋转电机里称为电磁转矩,转矩的方向是逆时针方向,企图使电枢逆时针方向转动。如果此电磁转矩能够克服电枢上的阻转矩(例如由摩擦引起的阻转矩以及其它负载转矩),电枢就能按逆时针方向旋转起来。 当电枢转了180°后,导体 cd转到 N极下,导体ab转到S极下时,由于直流电源供给的电流方向不变,仍从电刷 A流入,经导体cd 、ab 后,从电刷B流出。这时导体cd 受力方向变为从右向左,导体ab 受力方向是从左向右,产生的电磁转矩的方向仍为逆时针方向。 因此,电枢一经转动,由于换向器配合电刷对电流的换向作用,直流电流交替地由导体 ab和cd 流入,使线圈边只要处于N 极下,其中通过电流的方向总是由电刷A 流入的方向,而在S 极下时,总是从电刷 B流出的方向。这就保证了每个极下线圈边中的电流始终是一个方向,从而形成一种方向不变的转矩,使电动机能连续地旋转。这就是直流电动机的工作原理。 转速电流双闭环原理 转速、电流双闭环直流调速系统的组成,把转速调节器的输出当作电流调节器的输入,再用电流调节器的输出去控制电力电子变换器UPE。 从闭环结构上看,电流环在里面,称作内环;转速环在外边,称作外环。 这就形成了转速、电流双闭环调速系统。 限幅的作用: 转速调节器ASR的输出限幅电压U*im --电流给定电压的最大值,即限制了最大电流; τ电流调节器ACR的输出限幅电压Ucm --Uc的最大值,即限制了电力电子变换器的最大输出电压Udm。 第二部分 PID算法的基本原理 PID调节器各校正环节的作用 1、比例环节:即时成比例地反应控制系统的偏差信号e(t),偏差一旦产生,调节 器立即产生控制作用以减小偏差。 2、积分环节:主要用于消除静差,提高系统的无差度。积分作用的强弱取决于积分 时间常数TI,TI越大,积分作用越弱,反之则越强。 3、微分环节:能反应偏差信号的变化趋势(变化速率),并能在偏差信号的值变得太 大之前,在系统中引入一个有效的早期修正信号,从而加快系统的动作速度,减 小调节时间。 下面对控制点所采用的PID控制算法进行说明。

交流调速系统 与变频器应用(课程设计)

河南机电高等专科学校课程设计报告书 课程名称:《交流调速系统与变频器应用》课题名称:造纸机同步控制系统设计 系部名称:自动控制系 专业班级: 姓名: 学号: 1 2014年12月25日

目录 一、造纸机同步控制系统的设计目的 (1) 二、系统的设计要求 (1) 三、造纸机同步控制系统的系统图 (1) 四、控制系统电气原理图 (3) 五、软件设计 (4) 六、程序调试 (5) 七、力控组态及调试 (7) 八、心得与体会 (8) 附录一参考文献 (9) 附录二程序清单 (10)

一、造纸机同步控制系统的设计目的 设计四台电机构成的变频调速同步控制系统:四台电机速度可以同步升降,也可以微调,1#电机微调其他电机同步微调,2#电机微调1#不同步微调,其他电机须同步微调,3#电机微调1#和2#不同步微调,4#电机同步微调,4#电机微调,其他电机均不同步微调。 二、系统的设计要求 1、采用西门子S7-200PLC和MM440变频器。 2、设有启动/停止按钮和速度同步升/降旋钮。 3、每台电机设有选择开关和升/降微调旋钮。 4、采用力控组态软件进行远程控制 三、造纸机同步控制系统的系统图

单相AC 220V 图一、造纸机同步控制系统图 1)就地控制:即外部端子控制,把200PLC程序下载到PLC中,通过外部端子来实现电机的启停,同步增减和微调增减。 2)远程控制:即组态控制,把PLC与力控通过PPI电缆连接,通过组态界面上设置的按钮,开关,速度仪表实现速度的调节。

四、控制系统电气原理图 1)原理图 2)I/O分配图

五、软件设计 控制系统的软件设计基于以下原则: 1)程序模块化、结构化设计、其中负荷分配、速度增减、初始化、紧纸、速比计算、校验、数据发送、接收等功能由子程序完成,这样结构程序较为简洁。2)程序采用循环扫描的方式对传动点进行处理,简化程序,提高程序执行效率。3)采用中断子程序进行数据的发送、接收;确保数据准确快速的传输。 4)必要的软件保护措施,以免造成重大机械损害。该程序通用性强,可移植性好,使用不同的变频器时,只需要进行相应协议的格式定义,即对数据发送、接收、校验程序作相应修改即可满足纸机运行的需要。

三相异步电机闭环调速设计

《控制系统设计》课程设计报告 学院:信息工程学院 姓名: 班级:11自动化 学号: 题目:三相异步电动机闭环调速系统设计与实践指导老师: 完成时间:2014年6月20日

目录 摘要............................................................... I 1概述.. (1) 1.1三相异步电动机的调速方法 (2) 1.2调压调速的简介 (3) 1.3课程设计的要求 (5) 2三相异步电动机调压调速系统的组成 (5) 3三相异步电动机调压调速系统的设计和实现 (8) 3.1三相异步电动机调压调速系统的电路 (8) 3.2闭环调速结构图 (10) 3.3 系统各部分参数的计算 (10) 4三相异步电动机调压调速系统的仿真 (13) 4.1MATLAB仿真的介绍 (13) 4.2电路的建模和参数设置........................ 错误!未定义书签。 4.3异步电机调压调速系统仿真模型................ 错误!未定义书签。 4.4仿真效果图 (17) 总结 (22) 参考文献 (23)

摘要 异步电动机具有结构简单、制造容易、维修工作量小等优点,早期多用于不可拖动。随着电力电子技术的发展,静止式变频器的诞生,异步电动机在可拖动中逐渐得到广泛的应用。实现电机调速有不少方法。研究电机调速,找出符合实际的调速方法能最大限度的节约能源,所以研究调压调速就显得很有必要。异步电机调压调速控制系统是一种比较简单实用的调速系统,该系统具有良好的运行、控制及经济性能,显示出巨大的发展潜力。 本课程设计介绍了异步电动机调压调速系统的几大组成部分,并着重讲述了三相异步电动机(M)、测速发电机(TG)、晶闸管交流调压器(TVC)的简单的工作原理。在了解异步电动机调压调速的基本原理的基础上,设计了异步电动机单闭环调压调速系统的结构原理图。还将调压调速与其他的调速方法相比,所具有的优点以及不足之处。 以转速单闭环调压调速系统为例,电机调速开环控制系统调速范围较小,采用速度作为负反馈的闭环控制系统解决了这个问题,使调速性能得到改善。 最后,经过理论分析建立模型后,基于Matlab语言开发仿真软件,并进行仿真实验,并且对仿真结果进行了一定的分析及改进。 关键词: 调压调速MATLAB三相异步电动机转速调节器

双闭环交流调速系统课程设计

皖西学院 课程设计任务书 系别:机电学院 专业:10电气 课程设计题目:双闭环串级交流调速控制系统设计学生姓名:诚学号:2010010694 起迄日期: 6 月17日~ 6 月28日课程设计地点:电机与拖动控制实验室 指导教师:世林 下达任务书日期: 6 月17日

摘要 本设计介绍了交流调速系统的基本概况及其研究意义,同时提出了本设计所要研究解决的问题,接着对系统各部分所需元器件进行比较选择并进行总体设计,最后采用工程设计方法对双闭环交流调速系统进行辅助设计,进行参数计算和近似校验。 在调节器选择方面,本设计选择的PI调节器,使得线路大为简化,且性能优良、调试方便、运行可靠、成本降低。触发电路则采用一种新型高性能集成移相触发器(MC787)设计的触发电路,它克服了分立元件缺点,抗干扰性优良,具有输入阻抗高、移相围宽、装调简便、使用可靠、只需一片MC787就可以完成三相相移功能,使用效果较好。 目录

1 绪论 (3) 1.1研究交流调速系统的意义 (3) 1.2本设计所做的主要工作 (3) 2 交流调速系统 (3) 2.1交流电机常用的调速方案及其性能比较 (3) 2.2三相交流调压调速的工作原理 (4) 2.3双闭环控制的交流调速系统 (5) 2.3.1转速电流双闭环调速系统的组成 (6) 2.3.2 稳态结构图和静特性 (6) 3 电路参数计算 (9) 3.1系统主电路的参数计算....................................................... .9 3.2根据系统方块图进行动态计算 (9) 3.3调节器的设计参数计算 .................................................. . (11) 3.3.1 电流调节器的参数计算 ................................................ .12 3.3.2 转速调节器的参数计算................................................ .14 4 控制系统硬件电路设计..................................................... .16 4.1调节器的选择和调整 . (16) 4.2触发电路的设计 (16) 4.3串级调速系统设计 (18) 4. 4双闭环系统设计........................ (19) 5 仿真........................................ .. (21) 6设计体会 (22)

交流调速系统论文

摘要 对于可调速的电力拖动系统来说,工程上通常分为直流调速系统和交流调速系统两大类。根据电动机在电能和机械能的转换时电流制型式的不同来分类,关于交流调速系统,它利用交流电动机来进行电能—机械能的转换,并且通过控制产生我们所需要的转速。在电力拖动的发展过程中,交流调速系统和直流调速系统一直并存于各个工业领域中,但是,在科学技术发展的不同时期,他们所处的地位也有所不同。相对于直流调速系统,交流调速系统具有结构简单,制造成本低,坚固耐用,运行可靠,维护方便,惯性小,动态响应好,等优点并且在向高速,高压和大功率的发展前景也较好。近年来,很多国家偏向于对交流调速系统的研究。 关键词:矢量控制,交流调速,变频器,变频调速 第一章交流调速系统的发展 1.1交流调速系统的发展历程 在工业发展的初级阶段,交流电动机仅仅作为动力使用而无需调速。随着工业的进一步发展,尤其是电子方面和起重运输机械的发展,才对电动机的调速提出了要求,才有了直流电动机的出现。直流电机提高了生产的连续性和产品的产量以及质量,并且以其快速的正反转,准确的定位逐渐取代了简单可靠的交流电机,并且到了了广泛的运用于各行业。 80年代以来,由于直流调速系统造价高,维护投入大等缺点,在工业较为发达的国家开始使用直流调速系统,并且逐渐取代直流调速系统。这主要是由于电力电子器件,脉宽调制技术,矢量控制技术的发展,特别是以微处理机为核心的全数字化控制的应用,这才使得简单廉价的交流电机又得以取代直流电机调速系统占据主导地位。 现代控制理论的发展和应用,才促成矢量控制的出现,更是奠定了现代交流电机调速技术的理论基础,这才使得交流电机调速系统的性能能够与直流调速系统相媲美。国家的重视使得各种各样的的交流调速系统不断被开发,应用,普及,节约了社会上的大量资源,更是将社会上的传统产业发生了巨大的变革。 1.2交流调速系统的发展趋势 1.2.1交流调速系统的高性能化 交流电动机是一个多变量,强耦合,非线性的被控对象,单单用电压/频率恒定控制是不能满足我们对调速系统的要求的。接下来,交流调速系统将采用矢量控制技术,它将使调速性能达到并且超过直流调速系统。 矢量变换控制是新时期控制技术的发展随之产生的控制理论和技术,它是根据直流电动机的控制特点模拟它的控制方式来进行交流电动机的控制。直流调速的调速性能好的根本原因是交流电动机的转矩比较容易控制,而交流电动机的调速性能差就由于它的转矩难以控制,所以,要想交流电机得到的控制性能和直流电机的一样,就要通过电机统一理论和坐标变换理论,通过将交流电机的定子电流分解成磁场定向坐标的磁场电流分量以及跟它相垂直的坐标的转矩电流分量,将固定的坐标系转化为旋转坐标系解耦后,就是把交流量的控制转化为

用单片机控制的电机交流调速系统设计毕业论文设计

(此文档为word格式,下载后您可任意编辑修改!) 用单片机控制的电机交流调速系统设计 摘要 单片机控制的变频调速系统设计思想是用转差频率进行控制。通过改变程序来达到控制转速的目的。由于设计中电动机功率不大,所以整流器采用不可控电路,电容器滤波;逆变器采用电力晶体管三相逆变器。系统的总体结构主要由主回路,驱动电路,光电隔离电路,HEF4752大规模集成电路,保护电路,Intel系列单片机,Intel8253定时记数器,Intel8255可编程接口芯片,Intel8279通用键盘显示器,IO接口芯片,CD4527比例分频器和测速发电机等组成。回路中有了检测保护电路就可以使整个系统运行的可靠性有了保障。非传统的CMOS变革了存储器技术。直到现在,我们仍然依靠DRAM 作为主要的存储体。不幸的是,随着芯片的缩小,只有芯片外围速度上的增长——处理器芯片和它相关的缓存速度每两年增加一倍。这就是存储器代沟并且是人们焦虑的根源。存储技术的一个可能突破是,使用一种非传统的CMOS管,在计算机整体性能上将导致一个很大的进步,将解决大存储器的需求,即缓存不能解决的问题。 关键词:MCS-51单片机;HEF4752;8253定时器;晶闸管;整流器

Exchange the speed of adjusting to design systematically with the electrical machinery that the one-chip computer controls ABSTRACT Frequency conversion that one-chip computer control transfer speed systematic design philosophy with transfer to difference frequency control. Achieve the goal of controlling rotational speed through changing the procedure . Because the motor is not big in power in the design, the rectifier can not adopt controlledly the circuit, the condenser strains waves; Going against the becoming device adopts three phases of the electric transistor to go against the becoming device. The systematic ensemble architecture is by the main return circuit mainly, drive the circuit, the photo electricity isolates the circuit, HEF4752 large scale integrated circuit, protects the circuit, the Intel series one-chip computer, Intel8253 timing count device of,Intel8255 programmable interface chip,Intel8279 keyboard not in common use display, IO interface chip, CD4527 proportion frequency division device and tests the speed such composition as the generator ,etc.. Have the dependability that can make the whole system operate of measuring and protecting the circuit to the return circuit.Unconventional CMOS could revolutionalize memory technology. Up to now, we DRAMs for main memory. Unfortunately, these are only increasing in speed marginally as shrinkage continues, whereas processor chips and their associated cache memory continue to double in speed every two years. The result is a growing gap in speed between the processor and the main memory. This is the memory gap and is a current source of anxiety. A breakthrough in memory technology, possibly using some form of unconventional CMOS, could lead to a major advance in overall performance on problems with large memory requirements, that is, problems which fail to fit into the cache.

微机原理课程设计—直流电机闭环调速控制系统

实验课题:直流电机调速控制 实验内容: 本实验完成的是一个实现对直流电机转速调节的应用。 编写实验程序,用ADC0809完成模拟信号到数字信号的转换。输入模拟信号有A/D转换单元可调电位器提供的0~5V,将其转换后的数字信号读入累加器,做为控制电机的给定转速。用8255的B口作为直流电机的控制信号输出口,通过对电机转速反馈量的运算,调节控制信号,达到控制电机匀速转动的的作用。并将累加器中给定的转速和当前测量转速显示在屏幕上。再通过LED灯显示出转速的大小变化。 实验目的: (1)学习掌握模/数信号转换的基本原理。 (2)掌握的ADC0809、8255芯片的使用方法。 (3)学习PC系统中扩展简单I/O接口的方法。 (4)了解实现直流电机转速调节的基本方法。 实验要求: 利用微机接口实验系统的硬件资源,运用汇编语言设计实现直流电机的调速控制功能。 基本功能要求:1、利用A/D转换方式实现模拟量给定信号的采样;2、实现PWM方式直流电机速度调节;3、LED灯显示当前直流电机速度状态。 实验设备: (1)硬件要求: PC微机一台、TD-PIT实验系统一套 (2)软件要求:唐都编程软件,tdpit编程软件,“轻松编程”软件 实验原理: 各芯片的功能简介: (1)8255的基本输出接口电路: 并行接口是以数据的字节为单位与I/O设备或被控制对象之间传递信息,CPU 和接口之间的数据传递总是并行的,即可以同时进行传递8位,16位,32位等。8255可编程外围接口芯片是具有A、B、C三个并行接口,+5V单电源供电,能在以下三种方式下工作:方式0—基本输入/出方式、方式1—选通输入/出方式、方式2—双向选通工作方式。

基于PLC的变频调速系统设计课程设计之令狐文艳创作

《电气控制与PLC》课程设计说明书 令狐文艳 基于PLC的变频调速系统设计 The variable frequency speed regulation system based on PLC design 学生姓名 学生学号 学院名称 专业名称电气工程及其自动化 指导教师 2013年12月1日

摘要 本文主要介绍了研究和设计的基于可编程控制器的变频调速系统的成果,在本次的设计中,我的设计系统主要由PLC、变频器、电动机等几部分组成。经过本次设计和研究,使我对所有器件有了新的认识,尤其对PLC有了更多的了解:PLC是能进行行逻辑运算,顺序运算,计时,计数,和算术运算等操作指令,并能通过数字式或模拟式的输入输出,控制各种类型的机械或生产过程的工业计算机。首先我们查阅各个器件的资料,先对其有个明确的认识,然后通过老师的指点明白了整个系统的大概工作原理框图后,通过学习资料与老师指点将硬件设备连接成功。本文综合应用电子学与机械学知识去解决基于可编程控制器的变频调速系统,本次设计选用三相异步交流电机,而 PLC和交流电机无论在工业还是生活中都是应用最广,因此本次设计具有相当的实用价值。 关键词PLC;变频器;电动机;调速

目录 1 引言1 1.1 概述1 1.2设计内容1 2 系统的功能设计分析和总体思路2 2.1 系统功能设计分析2 2.2 系统设计的总体思路2 3 PLC和变频器的选择3 3.1PLC的概述3 3.1.1 PLC的基本结构3 3.1.2 PLC的工作原理5 3.1.3PLC的型号选择6 3.2变频器的选择和参数设置6 3.2.1 变频器的选择6 3.2.2 变频调速原理7 3.2.3 变频器的工作原理8 3.2.4 变频器的快速设置8 4 开环控制设计及PLC编程9 4.1 硬件设计9 4.2 PLC软件编程10 4.2.1设计步骤10 4.2.2系统流程框图10 4.2.3 程序的主体11 4.2.4 控制程序T形图11 5 PLC系统的抗干扰设计17 5.1 变频器的干扰源17 5.2 干扰信号的传播方式17 5.3 主要抗干扰措施18 5.3.1 电源抗干扰措施18 5.3.2 硬件滤波及软件抗干扰措施18 5.3.3 接地抗干扰措施18 结论与心得19 参考文献20 附录21

直流电机双闭环系统设计

直流电机双闭环系统设计 院系:机电工程学院 班级:电气自动化一班 姓名: 学号: 1 1 0 2 0 3 0 1 4 2 指导教师: 目录

1引言 2调速系统的性能指标 2.1调速系统的稳态指标 2.2调速系统的动态性能指标 2.3系统结构选择 3数字直流电机调速系统的数字PID控制3.1基于单片机控制的直流电机双闭环调速系统3.2 PID调节器的基本原理 4总结与展望 4.1工作总结 4.2研究展 参考文献 直流电机双闭环系统设计摘要

近年来,自动化控制系统在各行业中得到了广泛的应用和发展,而直流调速系统作为电力拖动系统的主要方式之一,在现代化生产中起着十分重要的作用。随着微电子技术的不断发展,计算机在调速系统中的应用使控制系统得到简化,体积减小,可靠性提高,而且各种经典和智能算法也都分别在调速系统中得到了灵活。 以单片机为控制核心的数字直流调速系统有着许多优点:由于速度给定和测速采用了数字化,能够在很宽的范围内高精度测速,所以扩大了调速的范围,提高了测速控制系统的精度;由于硬件的高度集成化,所以使得零部件数量大大减少;由于很多功能都是由软件实现的,使硬件得以简化,因此故障率小;单片机以数字信号工作,控制方法灵活便捷,抗干扰能力较强。 关键词:直流电动机;调速;双闭环 1引言 按照拖动的电动机的类型来划分,自动调速系统可以分为直流调速系统和交流调速系统两大类。由于直流电动机的电压、电流和磁通的耦合较弱,使直流电动机具有良好的运行性能和控制特性,能够在大范围内平滑调速,启动、制动性能良好,其在20世纪70年代以来一直在高精度,大调速范围的传动领域内占据主导地位。在要求高起、制动转矩,快速响应和较宽速度调节范围的电气传动领域中,采用直流电动机作为调速系统的执行电机。由于直流电动机具有良好的机械特性和调速特性,调速平滑,方便,易于在大范围内进行平滑调速,过载能力较大,能够承受频繁的冲击负载,可

交直流调速系统课程设计(DOC)

交直流调速系统课程设计说明书 转速、电流双闭环控制直流调速系统设计 院部:电气与信息工程学院 学生姓名:李旭 指导教师:李建军老师 专业:自动化 班级:自本1001 完成时间:2013年12月

摘要 转速、电流双闭环控制直流调速系统的性能很好,具有调速范围广、精度高、双闭环调速系统中设置了两个调节器,即转速调节器(ASR)和电流调节器(ACR),分别调节转速和电流。本文对直流双闭环调速系统的设计进行了分析,对直流双闭环调速系统的原理进行了一些说明,介绍了其主电路、检测电路的设计,详细介绍了电流调节器和转速调节器的设计以及一些参数的选择和计算,使其满足工程设计参数标准。 关键词:直流双闭环调速系统电流调节器转速调节器

ABSTRACT Speed and current double closed-loop control dc speed control system performance is very good, has a wide speed range, high accuracy, good dynamic performance and the advantages of easy to control, so has been widely used in the electric drive system. Dc double closed loop speed regulation system set up two regulator, speed regulator (ASR) and current regulator (ACR), adjusting the rotational speed and current respectively. In this paper, the design of dc double closed loop speed regulation system is analyzed, the principle of dc double closed loop speed regulation system with some instructions, introduces the design of main circuit, detection circuit, the design of the current regulator and speed regulator is introduced and some parameters selection and calculation, to make it satisfy the standard of engineering design parameters. Keywords: current regulator dc double closed loop speed regulation system of speed regulator

相关主题
文本预览
相关文档 最新文档