当前位置:文档之家› 亚磷酸脂类抗氧剂

亚磷酸脂类抗氧剂

亚磷酸脂类抗氧剂
亚磷酸脂类抗氧剂

南京化工职业技术学院

课程论文

题目:亚磷酸酯类抗氧剂及其发展状况

课程名称高分子材料助剂

专业精细化学品生产技术

班级精细1123

姓名王洁琛

学号1101220312

指导教师胡虹

日期 2013年6月5日

亚磷酸三乙酯

危险化学品档案危险化学品名称:亚磷酸三乙酯CAS No.:122-52-1

表单编号:CJRT-AQ-020-01 亚磷酸三乙酯安全技术说明书 1 化学品及企业标识 1.1 化学品中文名:亚磷酸三乙酯 1.2 化学品英文名:Triethyl Phosphite 1.3 分子式:C6H15O3P 1.4 分子量:166.16 2 3 危险性概述 3.1 危险性类别:第3.3类,高闪点易燃液体 3.2 侵入途径:吸入、食入、皮肤接触 3.3 健康危害:蒸气或雾对眼、上呼吸道有刺激性,对皮肤有刺激性 3.4 环境危害:该物质对环境有危害,应特别注意对水体的污染

3.5 燃爆危险:遇明火、高热能引起燃烧爆炸。与强氧化剂发生反应,可引起燃烧。受热分解产生剧毒的氧化磷烟气 4 急救措施 4.1 皮肤接触:脱去污染的衣着,用大量流动清水冲洗 4.2 眼睛接触:立即提起眼睑,用大量流动清水冲洗眼睛 4.3 吸入:迅速撤离现场到空气新鲜处;保持呼吸道通畅。必要时进行人工呼吸;就医 4.4 食入:患者清醒时给饮大量温水,催吐;就医 5 5.1 5.2 5.3 5.4 6 7 7.1 操作注意事项:密闭操作,加强通风。操作人员必须经过专门培训,严格遵守操作规程。建议操作人员佩戴自吸过滤式防毒面具(半面罩),戴化学安全防护眼镜,穿防静电工作服,戴橡胶耐油手套。远离火种、热源,工作场所严禁吸烟。使用防爆型的通风系统和设备。防止蒸气泄漏到工作场所空气中。避免与氧化剂、碱类接触。搬运时要轻装轻卸,防止包装及容器损坏。配备相应品种和数量的消防器材及泄漏应急处理设备。倒空的容器可能残留有害物

抗氧剂简述

抗氧剂1076 1.产品特性: IRGANOX 1076是一种高效,无色污受阻酚抗氧剂。可用于塑料,合成纤维,弹性体,胶粘剂,蜡,油品和脂肪,防止基材热氧化降解。IRGANOX 1076无味,对光稳定,不易变色。同基材有很好的相容性。挥发性小,抗抽出性好。 2.技术指标:化学名称:β-(3,5-二叔丁基-4-羟基苯基)丙酸十八碳醇酯 分子量: 530.86g/mol 3.主要应用:IRGANOX 1076应用的范围包括聚烯烃,如聚乙烯,聚丙烯,聚丁烯。也推荐用于其他类型的高聚物,如工程塑料,如聚醛树脂,聚氨脂,苯乙烯均聚或共聚物,弹性体,黏合剂及其他有机材料。 4.功能:IRGANOX 1076可与BA其它添加剂同时使用,如辅助稳定剂(硫醚,亚磷酸酯),光稳定剂以及其它功能性添加剂。其与IRGANOX 168组成的二元复合体系(IRGANOX B 混料)以及三元复配体系IRGANOX GX(IRGANOX 1010,IRGANOX 168,HP-136)会有显著的协同增效作用。 5、产品外观:粉末白色自由流动粉末 6、使用方法:IRGANOX 1076典型用量在500-2000ppm时即可赋予基材长效热稳定性。也可根据基材种类和最终用途,提高IRGANOX 1076的使用量。 对于聚烯烃,IRGANOX 1076的用量范围在0.1%到0.4%之间,最佳添加量依具基材种类,加工条件以及长效热稳定性要求而定。 对于苯乙烯均聚或共聚物体,推荐使用量0.1%到0.3%之间。 对于热熔胶,IRGANOX 1076使用量在0.2%到1%之间。合成增粘树脂0.1%到0.5%。 IRGANOX 1076在其它材料中的用量用法及性能数据,请向当地销售、技术部门咨询。 7、物性:熔点 50-55℃ 闪点273℃ 蒸气压(20℃) 2.5E-7Pa 堆密度粉末:260-320g/l 挥发性(TGA,空气氛,20℃/min)

抗氧剂协同作用机理

抗氧剂的协同作用 聚合物稳定化助剂种类繁多,功能各异。但大量研究结果表明,不同类型,甚至同一类型、不同品种的抗氧剂之间都有可能存在协同或对抗作用。汽巴精化(Ciba—Geigy)公司开发的Irganox B系列复合型抗氧剂的研究表明,抗氧剂之间复配得当,不仅可以提高产品性能,增强抗氧效果,还可降低成本;但如果搭配不当,不但起不到抗氧作用,可能还会加速聚合物的老化。受阻酚类抗氧剂以其抗氧效果好、热稳定性高、低毒等诸多优点近年来倍受人们关注。但抗氧剂复配是否得当直接影响抗氧效果的好坏。因此,研究抗氧剂复配时的作用机理显得尤为重要。近年来,世界各大抗氧剂的生产厂商都在致力于研究开发复合型抗氧剂,而熟知各种抗氧剂之间的协同作用机理对抗氧剂新品种开发具有重要的指导 意义 1 受阻酚类抗氧剂的作用机理 聚合物材料在高温加工或使用过程中,由于氧原子的袭击会使其发生氧化降解。经过多年的研究发现,聚合物的A动氧化过程是一系列A由基反应过程。反应初期的主要产物是由氢过氧化物在适当条件下分解成活性自由基,该自由基又与大分子烃或氧反应生成新的自由基,这样周而复始地循环,使氧化反应按自由基链式历程进行。 在聚合物中添加抗氧剂,就是为了捕捉链反应阶段形成的自由基R.和R00 .,使它们不致引起有破坏作用的链式反应;抗氧剂还能够分解氢过氧化物RO0H,使其生成稳定的非活性产物。按作用机理,抗氧剂可分为主抗氧剂和辅助抗氧剂。主抗氧剂能够与自由基R.,ROO .反应,中断活性链的增长。辅助抗氧剂能够抑制、延缓引发过程中自由基的生成,分解氢过氧化物,钝化残存于聚合物中的金属离子[1]。 作为主抗氧剂的受阻酚类抗氧剂是一类在苯环上羟基(~OH)的一侧或两侧有取代基的化合物。由于一OH受到空间障碍,H原子容易从分子上脱落下来,与过氧化自由基(ROO .)、烷氧自由基(RO.)、羟自由基(.OH)等结合使之失去活性,从而使热氧老化的链反应终止,这种机理即为链终止供体机理[2]。 在聚合物老化过程中,如果可以有效地捕获过氧化自由基,就可以终止该氧化过程。但生成过氧化自由基的反应速率极快,所以在有氧气存在的条件下,自由基捕获剂便会失效。在受阻酚类抗氧剂存在的情况下,1个过氧化自由基(R00 7)将从聚合物(RH)上夺取1个质子,打断这一系列自由基反应,这是自动氧化的控制步骤。当加入受阻酚抗氧剂时,它比那些聚合物更易提供质子,即提供了一个更加有利的反应形成酚氧自由基,这使聚合物相对稳定,不会进一步发生氧化。 除此之外,受阻酚还可以进行一些捕捉碳自由基的反应。如上式的2,4,6一自由基可以生成二聚物,而这种二聚物又可与过氧化自由基反应使其失去活性,自身则变成稳定的醌分子[2]。由于每个受阻酚可以捕捉至少2个自由基,故其抗老化的效果较好。

万吨级草铵膦中间体甲基亚磷酸二乙酯的工业装置

万吨级草铵膦中间体甲基亚磷酸二乙酯的工业装置 李强雷青菊 摘要:以三氯化磷为起始原料,生产氯基亚磷酸二乙酯,再与格式试剂发生烷基化反应后,粗品经固液分离,精馏后得到高纯度的甲基亚磷酸二乙酯。由于大生产装置的安全性、复杂性、环保要求等,致使国内化工装置普遍偏小、简陋、安全隐患突出。因此,有必要建设万吨级高度安全、自控、环保的大型装置。 Abstract::with phosphorus trichloride as raw materials, production of chlorine radical phosphorous acid e t hyl ester two, and alkylation reactionwith Grignard reagent, the crude product by the solid-liquid separation,rectified to obtain high purity methyl phosphorous acid ethyl ester two. The production device security, complexity, environmental requirements,resulting in the domestic chemical device generally small, simple, security risks outstanding. Therefore, it is necessary to build large device million ton high security, environmental protection, automatic control. 关键词:甲基氯化镁烷基化精馏甲基亚磷酸二乙酯装置生产 随着草甘膦与百草枯部分剂型产品的禁用,以及转基因技术的发展,灭生性除草剂草铵膦即将成为全球第一大除草剂。 With the disabled glyphosate and paraquat part product formulations, as well as the development of transgenic technology, herbicide glufosinatewill become the world's first major herbicide. 在国内,生产草铵膦所需的原料成本六成以上来自中间体甲基亚磷酸二乙酯。 In China, the production of glufosinate required raw materials cost sixmore than from the intermediate methyl phosphorous acid ethyl ester two. 为降低草铵膦的使用成本,迫使厂家不断优化生产工艺,启用新技术新装备,所以降低甲基亚磷酸二乙酯的生产成本尤为关键。 In order to reduce the use cost of glufosinate, forcing manufacturers toconstantly optimize the production process, the opening of the newtechnology and new equipment, so reducing the methyl phosphorous acid ethyl ester two production cost is crucial. 一、粗品的合成 (1)歧化装置。来自亚磷酸三乙酯贮罐的三乙酯,经计量后与一定量的溶剂、催化剂进入混合釜,搅拌降温一定时间后,转入歧

抗氧剂264工艺设计

年产1500吨抗氧剂264工艺设计

目录 1 前言 (4) 1.1 抗氧剂264的物化性质 (4) 1.2 抗氧剂264的性能及用途 (4) 1.3 抗氧剂264的生产方法 (5) 1.4 设计所用原料及性质 (6) 1.5 设计工艺条件及工艺流程 (7) 2 物料衡算 (9) 2.1 基础数据及计算基准 (9) 2.2 合成釜物料衡算 (10) 2.3 萃取釜物料衡算 (11) 2.4 洗涤釜物料衡算 (13) 2.5 蒸馏釜物料衡算 (14) 2.6 结晶釜物料衡算 (15) 3 主要设备选型及能量衡算 (16) 3.1主要设备选型依据及选用方向 (16) 3.2 能量衡算基础数据 (17) 3.3 合成釜选型及能量衡算 (17) 3.3.1 设备选型 (17) 3.3.2 能量衡算 (18) 3.4 萃取釜选型 (18) 3.5 洗涤釜选型 (19) 3.6 蒸馏釜选型及能量衡算 (19) 3.6.1 设备选型 (19) 3.6.2 能量衡算 (19) 3.7 结晶釜选型及能量衡算 (19)

3.7.1 设备选型 (19) 3.7.2 能量衡算 (19) 3.8 离心机的选型 (19) 3.9主要设备一览表 (19) 4 结论 (19) 参考文献 (20) 致谢 (21) 设计图纸 (22)

1 前言 1.1 抗氧剂264的物化性质 中文名称:2,6-二叔丁基对甲酚、2,6-二叔丁基-4-甲基苯酚、抗氧剂BHT、防老剂T-501等。 英文名称:2,6-Di-tert-butyl-4-methylphenol; 2, 6-Di-tertbutylcresol; Dibu- tylated hydroxytoluene; Sustane BHT; Tenox BHT; 2 ,6-Bis(1,1-dimethylethyl)-4- methylphenol; 2 ,6 -Di-tert-butyl-p-cersol; 2 ,6-Di-tert-butyl-p-methylphenol; Nipan- ox BHT. 分子式及结构式:C15H24O 分子量:220.35 CAS号:128-37-0 熔点(mp):69-73℃,沸点(bp):265℃,相对密度(d204):1.048g/cm3,折射率:1.4859,闪点:127℃。无色晶体或白色晶体,遇光颜色变黄,并逐渐变深,可燃,低毒。无臭或有淡的特殊气味,无味。溶于苯、甲苯、甲醇、甲乙酮、乙醇、异丙醇、石油醚、亚麻子油,不溶于水及10℃烧碱溶液。防老剂BHT可压缩成重几克的圆柱体。比其他抗氧化剂的稳定性好,对热相当稳定,与金属离子反应不着色。 1.2 抗氧剂264的性能及用途 抗氧剂是一些很容易与氧作用的物质,将它们加入合成材料中,抗氧剂能够先与大气中的氧作用从而来保护合成材料免受或延迟氧化。抗氧剂264可以用于有机合成,用作橡胶、塑料防老剂,汽油、变压器油、透平油、动植物油、食品等的抗氧化剂。 2,6-二叔丁基对甲酚是国内外广泛使用的油溶性抗氧化剂。虽毒性较大,但其抗氧化能力较强,耐热及稳定性好,既没有特异臭,也没有遇金属离子呈色反应等缺点,而且价格低廉,仅为BHA的1/5~1/8,我国仍作为

心律失常如何规范使用胺碘酮

心律失常如何规范使用胺碘酮 中国医学论坛报2013-09-23分享 作者:北京阜外心血管病医院杨艳敏 心律失常是临床治疗中的难点,虽然射频消融和器械治疗已经取得了长足的进步,但是药物治疗仍占据心律失常治疗的重要临床地位。目前,用于心律失常治疗的药物非常有限,其中胺碘酮是临床应用最广泛的药物。 2004年,我国颁布了《胺碘酮抗心律失常治疗应用指南》,并在2008年对该指南进行更新,同期发表于《中华心血管病杂志》和《中国心脏起搏和心电生理杂志》。本文将从多个方面探讨胺碘酮的合理应用。 胺碘酮在抗心律失常治疗中的重要地位 尽管药物治疗不能根除心律失常,也不能降低患者总体死亡率,但是在心律失常急性期,药物治疗仍占据重要位置。 对于快速性心律失常,首先要终止症状,才能采取后续的射频消融或置入埋藏式心脏复律除颤器(ICD)等治疗。所以,抗心律失常药物在心律失常急性期起到了至关重要的作用。 胺碘酮是应用最广泛的一类抗心律失常药物,包括静脉制剂和口服制剂,其中静脉制剂是心律失常药物治疗的“主力军”。 胺碘酮合理用药一:正确掌握不同剂型胺碘酮的适应证 两种剂型,不同作用机制 胺碘酮属于Ⅲ类抗心律失常药物,是一种多离子通道阻滞剂,因此,同时具有Ⅰ、Ⅱ、Ⅳ类抗心律失常药物的作用。胺碘酮静脉早期应用和长期口服应用效果有所不同。静脉用胺碘酮,更多表现为Ⅲ类药物之外的作用,即钠通道阻滞、β受体阻滞及钙通道阻滞作用;而口服胺碘酮或长时间静脉应用胺碘酮后,则表现为Ⅲ类药物的作用,即钾通道阻滞作用。通过抑制这些离子通道带来的电生理效应包括抑制窦房结、房室交界区的自律性,减慢心房、房室结、房室旁路传导,延缓心房肌、心室肌的动作电位时程和有效不应期,由此带来广谱抗心律失常作用。 胺碘酮静脉注射液适应证 包括:室颤和无脉搏室速电击除颤失败后,静脉用胺碘酮以改善电击除颤的效果;不伴有QT间期延长的宽QRS心动过速(包括单形性室速和多形性室速);房颤患者室率控制和节律控制及其他心律失常。静脉用胺碘酮还适用于合并器质性心脏病,尤其是伴缺血性心脏病及心功能不全的心律失常。 在房颤治疗中,相关指南对静脉用胺碘酮进行了明确定位及建议:对于合并严重器质性心脏病的患者,优先考虑静脉用胺碘酮进行复律;对于伴中等结构功能异常的患者,推荐应用伊布利特和维纳卡兰,如无效可考虑静脉用胺碘酮;对于无器质性心脏病的患者,复律

草铵膦的生产工艺及研究进展

草铵膦的生产工艺及研究进展 2.1 草铵膦生产方法 综观国内外有关草铵膦的文献专利报道,除可用双丙氨酰磷经微生物发酵生产外,其合成方法绝大多数以三氯化磷或亚膦酸酯为起始原料,经过一定的反应过程合成膦酸酯,然后与某些氨基衍生物发生发应;由于其本身是一种氨基酸,因此也可将亚膦酸酯与烯醛反应后再利用Strecker 反应,或将膦酸酯与丙二酸二乙酯的衍生物反应后再利用Gaburial 反应等合成草铵膦。 2.1.1阿布佐夫合成法… 2.1.2高压催化合成法… 2.1.3 低温定向合成法… 2.1.4 盖布瑞尔-丙二酸二乙酯合成法… 2.1.5 斯垂克-泽林斯基法… 2.1.6 手性合成子法 草铵膦只有L理具有植物毒性,其除草活性为外消旋混合物的2倍。L理草铵膦的合 成也可从天然氨基酸出发。例如从谷氨酸出发,经酯化后热消除得到乙烯基甘氨酸的衍生物,在2-乙基过己酸叔丁酯催化作用下,与膦酸酯发生区域选择性加成,生成L理草铵膦 的衍生物,进一步处理即得L型草铵膦。 利用该方法制得的产物具有较高的光学纯度,可达99.4%;但总收率较低,且甲基环氧乙烷不易存放。

2.1.7 其它方法 草铵膦的合成方法中大部分都是合成外消旋混合物。此外,还有专门用于合成L理草铵膦高效体的方法。 1)酶合成法,即以Scholkopf法为基础,用生物酶来分离合成的外消旋体混合液,从而得到L理草铵膦。主要用到的酶为q-胰凝乳蛋白酶、磷酸二酯酶I等。 2)化学立体合成法,即以膦酸酯为起始原料,通过不同的立体选择剂(如L-乙烯基氨基 乙酸、L-3-fi基丁烯酸酯等)来合成L理草铵膦。 3)拆分法,即主要用酶催化拆分合成的DL-型草铵膦。酶合成法和拆分法虽然选择性高、专一性强, 但合成成本比较高,大型工业化生产受 到一定的限制而化学立体合成法一般步骤比较长、合成路线也较复杂,并且某些立体选择剂的制备也比较困难。 2.2 草铵膦的合成技术进展 2006年日本明治制果(MeijiSeika)公司成功开发了单异构体的精草铵膦,并申请了专利,又把草铵膦的产品技术水平提到一个新高度。这个专利产品可以进一步减少环境污染,实现了农药的更高精细化。 宋宏涛等人通过对各种合成路线进行分析比较,认为斯垂克-泽林斯基法虽然工艺较成熟,且反应条件要求不高,原料成本也较低,但剧毒物质KCN的介入难免影响其工业化大 规模生产。综合各合成路线,结合阿布佐夫合成法与迈克尔反应,拟订出“阿布佐夫-迈克 尔法”合成路线: 其中,第一步反应所需的I2为催化剂量,也可用CHI代替,该步利用阿布佐夫反应完成磷的重排转价;第三步反应利用格氏反应以引入乙烯基构建出迈克尔加成所需的,D-不 饱和结构单元,体系需绝对无水,另外,当投入工业生产时,乙烯基氯化镁(CH2=CHMgCl) 可由氯乙烯与金属镁反应制备,这可以在很大程度上进一步节约成本;第四步即利用了迈克尔加成反应,作为亲核试剂的N-乙酰甘氨酸乙酯(CHsCONHCHCOOCRs)可直接购买,也可自行制备。 浙江永农化工有限公司和日本明治制菓株式会社、以及高砂香料工业株式会社三方合作共同开发的精草铵膦项目经过多年的小试和2年的中试,于2013年3月20日在永农化工正式结束,中试取得了圆满成功,目前进入了实施工业化的阶段,取代普通草铵膦将是必然的发展趋势。 目前国际市场上草铵膦主要是采用生物发酵法来合成,缺点是产量小、成本高,导致精草铵膦在市场上缺乏竞争力,不能够大面积推广。经过这几年浙江永农化工有限公司和日本公司合作开发,其技术是世界上首个采用化学合成法生产精草铵膦,其生产成本比发酵发有大幅度下降,可以进行大规模工业化生产,在

抗氧剂的品种与性能

抗氧剂的品种与性能 广义的抗氧剂应包括金属钝化剂。 (一)抗氧剂 1.主抗氧剂 受阻酚和受阻胺是两大主抗氧剂。受阻酚抗氧剂多数是不变色的,适用于白色或浅色制品。而受阻胺不仅本身多是带色的而且在氧和光的作用下更会变成深色。将塑料中常用的主抗氧别分述于下。 (1)2,6二叔丁基对甲酚(又称BHT或抗氧剂264) 白色结晶,遇光变黄,无毒,溶于苯、酮、醇、汽油、四氯化碳而不溶于水。 (2)β(3,5二叔丁基—4—羟基苯基)丙酸十八醇酯(又称抗氧剂1076) 白色粉末,熔点119—123℃,无臭,微毒,耐热水抽出性强,溶于苯、丙酮、氯仿,不溶于水,与聚合物和其它助剂有良好的相溶性,运输时稳定。 (3)1,1,3三(2—甲基—4羟基—5叔丁基苯基)丁烷(又称抗氧剂CA) 溶于乙mi、醋酸乙酪,不得于水。 (4)1,3,5三甲基2,4,6三(3,5二叔丁基-4羟基苄基)苯(又称抗氧剂330) 白色结晶粉末,熔点200℃以上,溶于苯、二氯乙烷,微溶于醇,不溶于水。醇,不溶于水。 (5)2,2'-甲撑双(4—乙基—6叔丁基苯酚)(简称MEB) 白色粉末,易溶于苯、丙酮,不溶于水。 (6)N,N'-六次甲基双—3(3,5二叔丁基-4羟基苯基)丙酰胺(简称HBP) (7)1,3,5-三(3,5叔丁基-4-羟基苄基)三甲基苯(简称TBM) (8)1,3,5—三(3,5二叔丁基-4-羟基苯基)异氰酸酯(简称TBHI或抗氧剂3114) (9)4-羟基十二烷酸酰替苯胺(简称HLS) (10)4-羟基十八烷酸酰替苯胺(简称HSS) (11)4,4'-硫代双(3-甲基-6-叔丁基苯酚)(又称抗氧剂300) 白色粉末,溶于乙醇、苯、丙酮、乙mi、石脑油,熔点16l一164℃。 (12)2,2'-甲撑双(4-甲基—6-叔丁基苯酚)(又称抗氧剂2246,简称MMB) 白色粉末,长期暴露于空气中转黄,熔点125-133℃,溶于苯、丙酮,不溶于水。 (13)4,4'-二叔辛基二苯胺(简称DOD) (14)1,6六次甲基双(35二叔J基-4-羟基苯基)丙酸酯(简称EBP) 浅色片状晶体,比重1.26,易溶于热苯胺和硝基苯,不溶于水、醇、醚、酮、苯。 2.辅抗氧剂 亚磷酸酯类、硫代二丙酸酯类和硫醇类是典型的辅抗氧剂, 常用的有: (1)三(壬基代苯基)亚磷酸酯(简称TNP) 琥珀色粘稠液体,可溶于丙酮、乙醇、苯、四氯化碳,不溶于水,无臭、无味、无毒。 (2)三(2,4-二叔丁基苯基)亚磷酸酯(简称TBP) (3)二亚磷酸双十八酯季戊四醇酯(简称DPD) (4)四(2,4-二叔丁基苯基)4,4'-联苯撑二磷酸酯 (5)硫代二丙酸二月桂酸酯(简称DLTDP) 白色絮片状结晶固体,熔点38-40℃,毒性低,四氯化碳、石油醚,不溶于水。

胺碘酮在各类心律失常紧急处理中的用法

胺碘酮在各类心律失常紧急处理中的用法 2016-03-10 心在线用药参考 心律失常是临床常见的一类疾病,虽然射频消融和器械治疗已取得长足的进步,但药物治疗仍具有不可替代的地位。胺碘酮作用广谱,适应证多,是抗心律失常药物中的一枝独秀,但临床使用不规范的问题较为常见。下文为您盘点了胺碘酮在各类心律失常紧急处理中的常用方法。 1.室上性心动过速 当经刺激迷走神经仍无法终止,或伴有器质性心脏病应用腺苷、维拉帕米、地尔硫?等药物 存在禁忌证时可改用胺碘酮。 常用150mg加入20ml葡萄糖,10min内静脉注射,若无效后10?15min可重复静注150mg。完成第一次静脉推注后即刻使用1mg/min,维持6h;随后以0.5mg/min维持18h。第一个24h内用药一般为1200mg,最高不超过2000mg。终止后即停止用药。 2 .房性心动过速 对于持续性房速,普罗帕酮、胺碘酮可终止房速。胺碘酮负荷量5mg/kg ,0.5?1h 静脉输注,继之以 50mg/h 静脉输注。 3. 房颤 快速心室率和心律不齐易导致房颤患者出现严重的血流动力学紊乱和临床症状,因而,快速 心室率的房颤患者常需要积极控制心室率。 对于合并左心功能不全、低血压者应给予胺碘酮或洋地黄类药物。可使用胺碘酮5mg/kg ,静脉输注1h ,继之50mg/h静脉泵入。合并急性冠脉综合征的房颤患者,控制房颤心室率首选静脉胺碘酮,用药方法同上。 血流动力学不稳定的新发房颤或症状明显者、且不存在转律的禁忌证,可考虑进行复律治疗(包括电复律和药物复律)。为提高电复律的成功率和防止房颤复发,若时间允许,推荐复律前给予胺碘酮,用法同上。 采用药物复律时,对于有器质性心脏病的新发房颤患者,推荐静脉应用胺碘酮。5mg/kg ,静脉输注1h,继之以50mg/h静脉泵入。可以持续使用至转复,一般静脉用药24?48h。若短时间内未能转复,拟择期转复,可考虑加用口服胺碘酮(200mg/次,每日3次),直至累 积剂量已达10g。 4. 预激综合征合并房颤与房扑 预激综合征合并房颤、房扑可以使用普罗帕酮或胺碘酮(方法同房颤),但效果一般不理想。若应用一种药物后效果不好,不推荐序贯使用其他药物或联合用药,而应使用电复律。 5. 血液动力学稳定的单形室速

IC法测定乙烯利水剂中乙烯利_亚磷酸_磷酸的含量

第11卷第1期现代农药V ol.11 No.1 2012年2月Modern Agrochemicals Feb. 2012 ?农药分析? IC法测定乙烯利水剂中乙烯利、 亚磷酸、磷酸的含量 张锦梅1,王敬花1,毕富春2,张习志1 (1. 青岛盛瀚色谱技术有限公司,山东青岛 266101;2. 河北国欣诺农生物技术有限公司,河北河间 062450) 摘要:建立了IC法检测乙烯利水剂中乙烯利、磷酸、亚磷酸的方法。选用SH–AC–1阴离子分离柱,淋洗液选用3.6 mmol/L Na2CO3+4.5 mmol/L NaHCO3,等度淋洗,流速2.0 mL/min,进样量10 μL,抑制电导检测,样品水溶解。在此条件下,线性相关系数均大于0.999;亚磷酸、磷酸和乙烯利检出限 (S/N=3) 分别为12.1 μg/L、53.4 μg/L和73.7 μg/L;相对标准偏差 (RSD) 为 0.58%、2.87%和1.26%,样品平均加标回收率在97.0%~100.1%,重现性好。该方法简便、快速、 灵敏、准确,可以用于乙烯利水剂中乙烯利、磷酸和亚磷酸的同时测定。 关键词:IC;乙烯利;亚磷酸;磷酸;电导检测 中图分类号:TQ 450.7;O 657.7 文献标识码:A doi:10.3969/j.issn.1671-5284.2012.01.009 Determination of Ethephon, Phosphorous Acid and Phosphoric Acid in Ethephon 40% AS by IC ZHANG Jin-mei1, WANG Jing-hua1, BI Fu-chun2, ZHANG Xi-zhi1 (1. Qingdao Shenghan Chromatograph Technology Co., Ltd, Shandong Qingdao 266101, China; 2. Hebei Guoxinnuonong Biotechnology Co., Ltd, Hebei Hejian 062450, China) Abstract: A method for the determination of ethephon, phosphorous acid and phosphoric acid in ethephon 40% AS was established by IC.Sample was dissoluted by water; chromatographic separation was performed on a SH-AC-1 anion separator column; 3.6 mmol /L Na2CO3 + 4.5 mmol/L NaHCO3 was chosen as eluant; Isocratic elution, flow rate 2.0 mL/min, sample size 10 μL and suppressed conductivity detection were used.Under these conditions, the linear relative coefficient of ethephon, phosphorous acid and phosphoric acid attained more than 0.999; the detection limits of ethephon, phosphorous acid and phosphoric acid (S/N=3) were 12.1 μg/L, 53.4 μg/L and 73.7 μg/L, RSDs were 0.58%, 2.87% and 1.26%, respectively. Average recoveries of spiked sample were 97.0%-100.1%.The method is simple, rapid, sensitive and accurate. It is suitable for simulatenous determination of ethephon, phosphorous acid and phosphoric acid in ethephon 40% AS. Key words: IC; ethephon; phosphorous acid; phosphate acid; conductive detection 乙烯利 (ethephon) 化学名2-氯乙基膦酸,是一种能促进植物成熟,调节植物代谢、生长和发育的植物生长调节剂[1],在农业中具有广泛的用途。乙烯利可以加速水果及蔬菜成熟,增进橡胶树乳汁分泌,加速成熟、脱落、衰老以及促进开花和控制生长,近来被广泛应用于农作物生长调节和水果催熟。 对乙烯利的合成及其工艺改进有大量文献报道[2-5]。乙烯利的合成方法按其反应历程主要可分为两种:一种是Michaelis–Arbuzov重排反应,即主要以环氧乙烷和磷酸或者膦酸烷基酯为原料的合成路线;另一种是自由基反应历程,可由氯乙烯与亚磷酸二酯反应,或醋酸乙烯酯与亚磷酸二乙酯反应制 收稿日期:2011–09–26;修回日期:2011–10–12 基金项目:科技部科技型中小企业技术创新基金项目 (09C26213711749) 作者简介:张锦梅 (1978—),女,兰州市人,工程师,主要从事离子色谱应用研究。Tel:0532–80679875;E–mail:zhangjinmei@https://www.doczj.com/doc/5510954601.html,

抗氧剂原理

一.光与电磁波: 光是一种电磁波,速度为:30×10000 km/s 波长为780~380nm(纳米)。1纳米=10的-9次方米 二.光谱与颜色: 光谱:红、橙、黄、绿、蓝、靛、紫 红外线波长:620~780nm。紫外线的波长:380~420nm。如下图: 波长780~620~590~560~490~450~420~380nm 太阳光:波长是780~380nm,纯白色。 白炽灯:波长为780~400nm,缺少紫光,故合成后光色略偏红黄。 荧光灯:波长为750~310nm,缺少红光,故合成后略带青色或呈青白色。 三.荧光灯的种类 表3-1:灯管尺寸(英吋,1英吋=25.4mm)与功率对照表 表3-2:管径尺寸与灯管功率对照表: 一般:粗管指管径为38mm的灯管,细管包括32mm、25mm的灯管,小管指15mm的小功率灯管。 四.荧光灯的基本结构 五.荧光灯发光的基本原理: 灯丝导电加热,阴极发射出电子,与(灯管内充装的)惰性气体碰撞而电离,汞液化为汞蒸气,在电子撞击和两端电场作用下,汞离子大量电离,正负离子运动形成气体放电,即弧光放电,同时释放出能量并产生紫外线,玻璃管内壁上的荧光粉吸收紫外线的能量后,被激发而放出可见光。故荧光灯全称为:低压汞(水银)蒸气荧光放电灯(属于气体放电灯的一种)

浅谈荧光粉的配比对节能灯光色参数的影响 长期以来,外面一直把节能灯的色温、光效、显色指数、色容差、光衰等指标作为衡量灯光是否合格的标准,各光源制造厂也力求从制灯工艺(如涂粉、烤管、阴极分解、充汞量及充氩压力等工序)来进行控制以生产高质量的产品。在此,我就荧光粉的配比来谈一谈其对灯管的光效、显色指数、色容差、光衰等参数的影响。 1980年,紧凑型荧光灯(CFL5)节能灯上市,扩大了照明应用领域,因其高光效、高显色、结构紧凑,迅速在全世界推广应用,亚欧国家稀土紧凑型节能灯正以20%-30%的速度递增,而这得益于稀土三基色荧光粉代替传统的发光材料卤粉,这是照明材料领域的又一次飞跃。稀土三基色荧光粉则是由分别发红色、绿色、蓝色光的三种单色粉根据制灯要求按不同比例混合而成的。在三种单色粉中,红粉抗紫外辐射衰减能力最强,增加其在三种粉中的比例,灯管的显色指数上升,光衰会减小;绿粉的含量决定了灯管的光效;蓝粉抗紫外辐射性能较差,其含量不能过高,否则,灯管的光衰变大。因而三种粉的比例则直接影响着灯管的色温、色容差、光效等特性。 节能灯是根据低气压放电原理制成的。因低气压汞放电谱线的特点,大家所看到的节能灯的发光光谱实际上是由荧光粉在紫外线激发下的发光光谱与四条在可见光区发光的汞光谱迭加而成。因而荧光粉在制成灯管以后,灯管的色坐标(X、Y)值与粉的色坐标相比,会出现偏小的现象,这是由于汞放电谱线特别是435.8mm的蓝色谱线的迭加所制,经实验发现,不同规格灯管发生的偏移现象不同,且色坐标的偏移会带来灯管的色温、显色指数等参数变化。这主要是由灯管的长度、管径、阴极的发射强度等因素所引起。因而,在保证灯管尺寸及制灯工艺不变的条件下,找出不同规格灯管在符合光效、色温等光色参数要求下,需要何种配比的荧光粉就显得十分重要了。 目前,我公司所生产的节能灯规格较多,有2U、3U、4U、螺旋的;还有直径为? 9 mm、? 12mm、? 14.5mm的等等。各光源制造厂在灯管大批量投入生产之前,都会实现对荧光灯厂所提出的要求范围内进行混合粉的配制,因而就不能保证同一规格的荧光粉能够一次性符合所有规格的灯管在光效、色温、色容差等方面特性的要求。在此,我建议光源制造厂应根据自己厂的制灯工艺的特点,对自己所生产的灯管进行实验总结出不同规格灯管制灯规律,确定不同灯管需何种要求的荧光粉,以便荧光粉厂能够据此分匹配出更符合要求的荧光粉,同时也缩短了制灯前试样的时间。提高了工作效率,提高产品的质量。

草铵膦的生产工艺及研究进展

草铵膦的生产工艺及研 究进展 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

草铵膦的生产工艺及研究进展 草铵膦生产方法 综观国内外有关草铵膦的文献专利报道,除可用双丙氨酰磷经微生物发酵生产外,其合成方法绝大多数以三氯化磷或亚膦酸酯为起始原料,经过一定的反应过程合成膦酸酯,然后与某些氨基衍生物发生发应;由于其本身是一种氨基酸,因此也可将亚膦酸酯与烯醛反应后再利用Strecker反应,或将膦酸酯与丙二酸二乙酯的衍生物反应后再利用Gaburial反应等合成草铵膦。 阿布佐夫合成法… 高压催化合成法… 低温定向合成法… 盖布瑞尔-丙二酸二乙酯合成法… 斯垂克-泽林斯基法… 手性合成子法 草铵膦只有L-型具有植物毒性,其除草活性为外消旋混合物的2倍。L-型草铵膦的合成也可从天然氨基酸出发。例如从谷氨酸出发,经酯化后热消除得到乙烯基甘氨酸的衍生物,在2-乙基过己酸叔丁酯催化作用下,与膦酸酯发生区域选择性加成,生成L-型草铵膦的衍生物,进一步处理即得L型草铵膦。

利用该方法制得的产物具有较高的光学纯度,可达%;但总收率较低,且甲基环氧乙烷不易存放。 其它方法 草铵膦的合成方法中大部分都是合成外消旋混合物。此外,还有专门用于合成L-型草铵膦高效体的方法。 1)酶合成法,即以Scholkopf法为基础,用生物酶来分离合成的外消旋体混合液,从而得到L-型草铵膦。主要用到的酶为q-胰凝乳蛋白酶、磷酸二酯酶I 等。 2)化学立体合成法,即以膦酸酯为起始原料,通过不同的立体选择剂(如L-乙烯基氨基乙酸、L-3-氨基丁烯酸酯等)来合成L-型草铵膦。 3)拆分法,即主要用酶催化拆分合成的DL-型草铵膦。 酶合成法和拆分法虽然选择性高、专一性强,但合成成本比较高,大型工业化生产受到一定的限制而化学立体合成法一般步骤比较长、合成路线也较复杂,并且某些立体选择剂的制备也比较困难。 草铵膦的合成技术进展 2006年日本明治制果(Meiji Seika) 公司成功开发了单异构体的精草铵膦,并申请了专利,又把草铵膦的产品技术水平提到一个新高度。这个专利产品可以进一步减少环境污染,实现了农药的更高精细化。 宋宏涛等人通过对各种合成路线进行分析比较,认为斯垂克-泽林斯基法虽然工艺较成熟,且反应条件要求不高,原料成本也较低,但剧毒物质KCN的介

BASF抗氧剂和光稳定剂

B A S F抗氧剂和光稳定 剂 标准化工作室编码[XX968T-XX89628-XJ668-XT689N]

抗氧剂 以抑制聚合物树脂热氧化降解为主要功能的助剂,属于抗氧剂的范畴。抗氧剂是塑料稳定化助剂最主要的类型,几乎所有的聚合物树脂都涉及到抗氧剂的应用。按照作用机理,传统的抗氧剂体系一般包括主抗氧剂、辅助抗氧剂和重金属离子钝化剂等。主抗氧剂以捕获聚合物过氧自由基为主要功能,又有“过氧自由基捕获剂”和“链终止型抗氧剂”之称,涉及芳胺类化合物和受阻酚类化合物两大系列产品。辅助抗氧剂具有分解聚合物过氧化合物的作用,也称“过氧化物分解剂”,包括硫代二羧酸酯类和亚磷酸酯化合物,通常和主抗氧剂配合使用。重金属离子钝化剂俗称“抗铜剂”,能够络合过渡金属离子,防止其催化聚合物树脂的氧化降解反应,典型的结构如酰肼类化合物等。最近几年,随着聚合物抗氧理论研究的深入,抗氧剂的分类也发生了一定的变化,最突出的特征是引入了“碳自由基捕获剂”的概念。这种自由基捕获剂有别于传统意义上的主抗氧剂,它们能够捕获聚合物烷基自由基,相当于在传统抗氧体系中增设了一道防线。此类稳定化助剂目前见诸报道的主要包括芳基苯并呋喃酮类化合物、双酚单丙烯酸酯类化合物、受阻胺类化合物和羟胺类化合物等,它们和主抗氧剂、辅助抗氧剂配合构成的三元抗氧体系能够显着提高塑料制品的抗氧稳定效果。应当指出,胺类抗氧剂具有着色污染性,多用于橡胶制品,而酚类抗氧剂及其与辅助抗氧剂、碳自由基捕获剂构成的复合抗氧体系则主要用于塑料及艳色橡胶制品。 主抗氧剂IRGANOX1010 抗抽出能力强,挥发性低,相容性好,无味。高效, 无色污受阻酚抗氧剂。 PP、PE、PVC、PA、PBT、PET、胶粘剂等, 可保持长效稳定性 IRGANOX1076 无味,对光稳定,不易变色。与基材有很好的相容 性。挥发性小,抗抽出性好。 PP、PE、ABS、PS、PVC、SBS、PA、PU、 PC、PET、PMMA、UP等 IRGANOX1098 出色的加工与长效稳定性,能有效保持树脂的初始颜 色。与铜系稳定剂相比,该品在颜色与抗抽出性方面 表现更好。挥发性低,与聚酰胺以及其他基材相容性 好。 PA、TPE、TPUR等 IRGANOX1135 100%活性的液体受阻酚抗氧剂。PUR、PMMA、PVB等 IRGANOX245 高效受阻酚类抗氧剂,耐高温。PS、ABS、PVC、PUR、POM、PA、PMMA等IRGANOX565 高分子量型多功能受阻酚,主要适用与不饱和橡胶的 后加工稳定处理,对弹性体非常有效。添加量小,挥 发性低,色牢性高,能防止凝胶形成 SBS、SIS、TPE、BR、S-SBR等IRGANOX1330 无味,耐抽提性好,介电性能突出,和大多数基材相 容性好。特别适用于对耐水抽提性及变色性要求高的 聚烯烃制品 PP、HDPE、TPE等 IRGANOX1520 多效能的液体酚类抗氧剂,同时提供加工稳定性和长 期耐热稳定性,添加量低,无需加入辅助抗氧剂。适 用于各种弹性体。 BR、EPDM、SBS、SIS、TPE等 IRGANOX1726 多效能的酚类抗氧剂,同时提供加工稳定性和长期耐 热稳定性,添加量低,无需加入辅助抗氧剂。是有效 SBS、SIS、PUR、CR、SBR等

防老剂

本人不是原创 某些橡胶存在不饱和活性基团,使得橡胶容易与氧、臭氧及其它活性物质反应而使橡胶链产生断裂、交联等。同时橡胶制品在使用过程中也经常出现表面龟裂、泛白、物理机械性能的下降等,这些现象统称为“老化”。为了制造经久耐用的橡胶制品,就要在胶料种配入一下能够抑制上述各种老化现象的物质,这些物质概称为“防老剂”。 橡胶防老剂是主要的橡胶助剂门类,橡胶防老剂按结构细分可以分为:萘胺类,喹啉类、对苯二胺类、二苯胺类,目前国内外橡胶防老剂应用品种日趋集中,主要以对苯二胺类和喹啉类产品为主,另外一些用于浅色橡胶的环保型酚类橡胶防老剂也值得关注。随着我国橡胶及轮胎工业的迅猛发展,橡胶防老剂需求快速增加,本土化供应趋势越来越明显,另外全球橡胶防老剂生产与市场东移,显示出我国橡胶防老剂的良好市场前景,由于橡胶防老剂应用品种日趋集中化,加之国家环保要求越来越高,因此未来橡胶防老剂的竞争主要是产品质量、生产成本的竞争,因此如何改进合成工艺,不断提高产品质量,并且优化工艺,将污染消化在工艺之中成为我国橡胶防老剂发展的重中之重。 常见防老剂种类如下: 防老剂甲 化学名称:N-苯基-α萘胺 外观黄色或紫色片状 凝固点℃≥53.0 游离胺含量(以苯胺计)%≤0.20 用途;本品广泛应用于天然胶、合成胶中,用于制造轮胎、胶管、胶鞋及其它黑色工业橡胶制品。该品对氧、热和屈饶引起的老化有防护性能。本品可单独使用,也可与其他防老剂并用,还可用作丁苯胶的胶凝剂。 防老剂丁 橡胶防老剂D (N-苯基-2-萘胺) 分子式:C16H13N 技术指标:(HG2-469-79) 外观浅灰色至棕色粉末熔点,0℃≥105.0 加热减量,%≤0.20灰分含量,%≤0.20 苯胺含量,经定性检验不呈兰紫色反应。 筛余物含量(100目),%≤0.2 磁铁吸出物含量,%≤0.008 性质:为浅灰色,沸点365.5℃。易溶于丙酮、氯仿、乙醇、四氯化碳,不溶于汽油和水。用途:适用于天然橡胶、合成橡胶通用型防老剂。用于制造轮胎、胶带、胶鞋等工业制品。对热氧屈挠龟裂稍优于甲。

亚磷酸三乙酯

亚磷酸三乙酯 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

危险化学品档案 危险化学品名称:亚磷酸三乙酯CAS No.:122-52-1 表单编号:CJRT-AQ-020-01

亚磷酸三乙酯安全技术说明书 1 化学品及企业标识 化学品中文名:亚磷酸三乙酯 化学品英文名:Triethyl Phosphite 分子式:C6H15O3P 分子量: 生产企业名称: 生产企业地址: 邮政编码:434000 传真号码: 企业应急电话: 电子邮件地址: 技术说明书编码: 生效日期: 2 成分信息 主要成分 本品为纯品,其中有害组分的品名和浓度范围见下表: CAS编号:122-52-1 3 危险性概述 危险性类别:第类,高闪点易燃液体 侵入途径:吸入、食入、皮肤接触 健康危害:蒸气或雾对眼、上呼吸道有刺激性,对皮肤有刺激性 环境危害:该物质对环境有危害,应特别注意对水体的污染 燃爆危险:遇明火、高热能引起燃烧爆炸。与强氧化剂发生反应,可引起燃烧。受热分解产生剧毒的氧化磷烟气

4 急救措施 皮肤接触:脱去污染的衣着,用大量流动清水冲洗 眼睛接触:立即提起眼睑,用大量流动清水冲洗眼睛 吸入:迅速撤离现场到空气新鲜处;保持呼吸道通畅。必要时进行人工呼吸;就医 食入:患者清醒时给饮大量温水,催吐;就医 5 消防措施 危险特性:遇明火、高热能引起燃烧爆炸。与强氧化剂发生反应,可引起燃烧。受热分解产生剧毒的氧化磷烟气。在水中易逐渐水解成亚磷酸二乙酯,在酸性介质下加速水解反应 有害燃烧产物:一氧化碳、二氧化碳、氧化磷、磷烷 灭火方法及灭火剂:消防人员须佩戴防毒面具、穿全身消防服,在上风向灭火。尽可能将容器从火场移至空旷处。喷水保持火场容器冷却,直至灭火结束。处在火场中的容器若已变色或从安全泄压装置中产生声音,必须马上撤离。灭火剂:雾状水、泡沫、干粉、二氧化碳、砂土 灭火注意事项及措施:灭火时消防员应穿戴如全身消防防护服、消防防护靴、正压自给式呼吸器等6 泄漏应急处理 迅速撤离泄漏污染区人员至安全区,并进行隔离,严格限制出入。切断火源。建议应急处理人员戴自给正压式呼吸器,穿防静电工作服。尽可能切断泄漏源。防止流入下水道、排洪沟等限制性空间。小量泄漏:用砂土、蛭石或其它惰性材料吸收。也可以用不燃性分散剂制成的乳液刷洗,洗液稀释后放入废水系统。大量泄漏:构筑围堤或挖坑收容。用泵转移至槽车或专用收集器内,回收或运至废物处理场所处置 7 操作处置与储存 操作注意事项:密闭操作,加强通风。操作人员必须经过专门培训,严格遵守操作规程。建议操作人员佩戴自吸过滤式防毒面具(半面罩),戴化学安全防护眼镜,穿防静电工作服,戴橡胶耐油手套。远离火种、热源,工作场所严禁吸烟。使用防爆型的通风系统和设备。防止蒸气泄漏到工作场所空气中。避免与氧化剂、碱类接触。搬运时要轻装轻卸,防止包装及容器损坏。配备相应品种和数量的消防器材及泄漏应急处理设备。倒空的容器可能残留有害物 储存注意事项:储存于阴凉、通风库房内。远离火种、热源。防止阳光直射。保持容器密封。应与氧化剂分开存放。配备相应品种和数量的消防器材。禁止使用易产生火花的机械设备和工具。搬运时要轻装轻卸,防止包装及容器损坏

相关主题
文本预览
相关文档 最新文档