当前位置:文档之家› 锂离子电池不同充电倍率下的能量效率研究

锂离子电池不同充电倍率下的能量效率研究

锂离子电池不同充电倍率下的能量效率研究
锂离子电池不同充电倍率下的能量效率研究

锂离子电池不同充电倍率下的能量效率研究

【摘要】目前电动汽车用锂离子电池已发布使用的行业标准是QCT/743-2006,其规定的锂离子通用的充放电电流为C/3(C为电池的标称容量),沿用参考的是国际标准ISO WD12405-1-2011,所以目前大多数电池厂家给定的标准充电方法为:以恒定电流速率(C/3)对电池充电,直至达到充电截止电压上限,然后保持该电压级别,同时充电速率会降至涓流充电。而本文通过测试锂离子电池在不同充电倍率下能量效率,综合比较各种充电倍率下的优缺点,从而积累电动汽车用锂离子电池的相关充电特性数据,分析得出一种最优的充电策略。

【关键词】锂离子电池;不同倍率;充电效率

1.引言

近年来,随着锂离子电池研究水平的提高和制造技术的不断改进,锂离子电池的应用领域也越来越广泛,锂离子电池作为化学电源的一种能源形式,具有工作电压高、循环寿命长、无记忆效应、安全性好等优点,在煤炭、石油、天然气等不可再生能源日益枯竭的今天被看好可以作为未来普遍使用的新能源之一,尤其是在电动汽车以及混合电动汽车及其相关领域的研究和应用得到迅速的发展[1]。

与此同时,锂离子电池的快速充放电问题也越来越受到人们关注。如何设计出一种安全、快速、有效率的充电方式,也是锂离子动力电池应用于电动汽车行业研究的热潮,目前国内生产锂离子动力电池的厂家非常多,虽然每种不同的电池都有各自的充电策略,但普遍使用的充电方式为CCCV(即恒流恒压充电),恒流充电的电流若过大,虽然节省了时间但同时可能会导致电池内部过热,电池过充等问题,恒流充电选取的电流若过小,虽然保护了电池,但会严重降低充电效率,所以选取一个合适的充电电流值,在保证电池寿命及安全的前提下,最大的提高充电效率及能量的利用率就显得十分必要。

本文以磷酸亚铁锂电池作为充放电的测试对象,采用美国A V (AeroVironment)公司生产的MT-30电池测试设备以及SmartGuard采集器,以恒流恒压充电方式测试单体电池在不同倍率充电电流下的能量往返效率、充电时间,综合评价不同倍率充电的优缺点。

2.测试方法

本次试验以中航锂电生产的SE180AH磷酸铁锂蓄电池为研究对象,为排除电池差异所引起的影响,选取同一批次一致性相对较好的3块电池进行试验,将电池编号为141,142,143,如图1所示:

图1 被测电池样品

松下4Ah18650型锂离子电池

2010.9Vol.34No.9 新产品新技术 865 松下4Ah 18650型锂离子电池 本刊贾旭平 2009年12月,松下发布了一款可用于多种便携式设备的“18650”尺寸的锂离子充电电池的高性能产品,型号为NCR18650A 。与原产品“NCR18650”相比,容量从2.9Ah 提高到了 3.1Ah 。与原产品“NCR18650”一样,正极材料同样使用镍类材料,但是对材料进行了改进,因此使18650尺寸电池实现了业界较高的容量(3.1Ah),松下已为此申请了专利。另外,该材料和处理技术可阻止合金负极因重复充电造成的变形。 通常情况下,电池容量提高会导致电池不安全因素的增加。而松下电池能继续保持非常好的安全性主要是依仗专利耐热层(HRL :Heat Re-sistance Layer)技术,即在正负极之间配置了绝缘金属氧化膜,它可阻止电池过热,甚至是在内部短路情况下的过热。HRL 与隔膜是分开配置的,能最大限度地保证电池的安全性。 该新型电池质量轻,电压仍与原来一样同为3.6V ,但体积能量密度由620Wh/L 提高到了675Wh/L ,电池能量由10.4Wh 提高至11.2 Wh 。质量由44g 左右增至44.5g 左右。除了具备高的循环稳定性,优良的充电性能和卓越的储存容量,还具备非常低的自放电。这些性能都使电池在整个生命周期里拥有非常好的整体性能。 因为松下电池具有非常好的性能,所以移动市场的需求一直在攀升,如在笔记本电脑方面。该公司表示,计划今后通过连接多个18650尺寸的电池,使其同样能够用于电动自行车和电动汽车。 2010年4月,松下又宣布成功研发了采用更新型电极材料的18650型锂离子电池,容量达到3.4Ah 和4.0Ah ,可以为更多移动设备带来更持久的电池续航能力。据松下介绍, 3.4Ah 的18650型锂离子电池将在2012年3月正式大规模量产,而 4.0Ah 的18650型锂离子电池将在2013年进行大规模量产。新款锂离子电池容量提升的秘密在于都采用了改进的镍金属正极,而4.0Ah 的18650型锂离子电池则采用了硅混合型材料作为负极替代传统的 碳。这种4.0Ah 的18650款式锂离子电池有高的体积能量密度800Wh/L ,每个重约54g ,比NCR-18650A 型重约10g 。但比能量约为252Wh/kg ,与现有石墨设计相当。该锂离子电池在充放电500次后,仍可 保持至少80%的能力。该公司表示,通过连接多个18650尺寸的电池组成模块,然后多个模块连接在一起就可用于EV(电动汽车),这使得电脑业界的标准电池已开始瞄准EV 领域的业界标准。 松下改进电极材料增加锂离子电池容量 松下向Tesla 交付首批3.1Ah 锂离子电池单体

软包装锂离子电池的高倍率放电性能

软包装锂离子电池的高倍率放电性能 ■<1.河南师范大学化学与环境科学学院常照荣吕豪杰 ■<2.新乡学院化学与环境工程学院付小宁 ■<3.河南新飞科隆电源有限公司尹正中 摘 要:以额定容量为1100mAh的063465型软包装锂离子电池为研究对象,研究了电池结构,正极活性物质与导电剂、粘结剂的配比,极板的面密度、压实密度等因素对锂离子电池高倍率放电性能的影响。制备的实验电池以15C大电流放电,电压平台为3.5V,循环220次(15C放电),容量保持率为87.0%。 关键词:软包装; 锂离子电池; 高倍率放电 锂离子电池具有能量密度高、循环寿命长、开路电压高及污染小等优点[1],已用于小电流放电的移动通讯、笔记本和数码相机等领域,但高倍率放电性能有待提高[2-4]。程建聪等[5]通过提高导电剂含量,采用薄正极和中间相炭微球(MCMB),并使用功能电解液,改善了电池的大电流性能;V.Subramanian 等[6]以气相法烧制的纳米纤维碳为负极制备的锂离子电池,可进行10C放电;M.Okuho等[7]通过水热法制备纳米级(17 nm)的LiCoO2,l00C放电容量达到1C时的65%,可满足电动汽车等大功率放电要求,但是制备工艺苛刻。 本文作者采用工业化的正负极材料,通过优化电池结构,调整配比参数,制备软包装电池,并测试了相关性能。 1 实验 1.1 极板制备 将正极活性物质LiCoO2(北京产,≥99.4%)、导电炭黑SP(Timcal公司产,≥99.75%)和导电石墨KS6(Timcal公司产,≥99.4%)按不同的比例混合后,以PVDF(美国产,≥99.9%)作为粘结剂,配制成浆料;将负极活性材料人工石墨(深圳产,≥99.9%)、导电炭黑SP、分散剂SBR(河南产,≥99.0%)和粘结剂CMC(德国产,≥99.9%)按质量比90.5:1.5:4:4混合后,配制成浆料。用涂布机将正极浆料均匀涂覆于铝箔(江苏产,≥99.8%)上,负极浆料均匀涂覆于铜箔(湖南产,≥99.8%)上,在80℃下真空(-0.1 MPa)干燥12h后,辊压,制成正、负极片。电解液为1mol/L LiPF6/ DMC+EMC+EC(体积比1:1:1,张家港产),隔膜为0.025 mm厚的聚丙烯微孔膜(日本产)。 1.2 测试仪器 采用BS-8802二次电池检测装置(广州产)对电池进行化成;BS-V高电压大电流动力电池检测设备(广州产)进行倍率测试;BS-VR3内阻测试仪(广州产)检测内阻。 1.3 电极及电池设计 以额定容量为1100mAh的063465型液态软包装锂离子电池为研究对象。采用真空热封机封口,经过防短路处理、干燥,然后注入电解液,经化成分容后,测试电池的性能。 实验电池的参数见表1。 2结果与讨论 2.1 电池结构的影响 电池技术 < 2008年9月73

锂离子电池内部的构造和形状分类

锂离子电池内部的构造和形状分类 锂离子电池的制造工艺技术非常严格,复杂,锂离子电池制造工艺流程中的几个主要工序如下: 1、制浆用专门的溶剂和粘接剂分别与粉末状的正负极活性物质混合,经高速搅拌均匀后,制成浆状的正负极物质。 2、涂膜将制成的浆料均匀地涂覆在金属箔的表面,烘干,分别制成正、负极极片。 3、装配按正极片一隔膜一负极片一隔膜自上而下的顺序放好,经卷绕制成电池芯,再经注入电解液、封口等工艺过程,即完成电池的装配过程,制成成品电池。 4、化成用专用的电池充放电设备对成品电池进行充放电测试,对每一只电池都进行检测,筛选出合格的成品电池,待出厂。 电池的结构锂离子电池的形状主要有圆柱形锂电池和方型锂电池两种,此外还有扣式锂离子电池。1998年,锂离子电池产量2.80亿只(60%为圆柱形电池,40%为方形电池),其中40%用于笔记本电脑,40%用于手机,20%用于摄像机等。无论是何种锂离子电池,锂离子电池的基本结构为:正极片、负极片、正负极集流体、隔膜纸、外壳及密封圈、盖板等。 (1)正极目前使用的有LCo()2,LiNi02,LiMmO,等,从电性能及其他综合性能来看,普遍采用LiCoQ制作正极,即将LiCo()2与粘结剂(P丁FE)混合,然后碾压在正极集流体(铝箔)上制成正极片。 (2)负极将石墨和粘结剂混合碾压在负极集流体(铜箔)上。 (3)电解液较好的是LiPF6,但价格昂贵;其他有LiAsF6,但有很大的毒性;LiClQ,具有强氧化性;有机溶剂有DEC,DMC,DME等。 (4)隔膜纸采用微孔聚丙烯薄膜或特殊处理的低密度聚乙烯膜。此外,外壳、盖帽、密封圈等,根据电池的外形变化而有所改变。还要考虑安全装置。 方型和圆柱形锂离子电池一样,盖子上也有一种特殊加工的破裂阀,以防止电池内压过高而可能出现的安全问题。这种阀一旦打开,电池即失效。同样,锂离子电池的极片也是卷绕起来的,它完全不同于方形MH—Ni或Cd-Ni电池的叠片结构。方型与圆柱形电池不同,方形电池的正极柱是一种金属—陶瓷或金属—玻璃绝缘子,它实现了正极与壳体之间的绝缘。扣式锂离子电池结构为了满足计算机、摄像机、笔记本电脑对高比能量和薄型化的要求,许多公司纷纷开发扣式锂离子电池。 文章摘自电池论坛:https://www.doczj.com/doc/5510217381.html,/thread-210352-1-1.html 电池论坛https://www.doczj.com/doc/5510217381.html,

锂离子电池容量损失分析

锂离子电池容量损失分析  锂离子电池是继镍镉、镍氢电池之后发展最快的二次电池。由于其具有比能量高、工作电压高、自放电率低、循环寿命长、环境污染小等独特优势,现已用作高速发展的小型电子产品的电源,也很有希望用作大型动力电池的电源。锂离子电池的应用很大程度上取决于其充放电循环的稳定性,与其他二次电池一样,锂离子电池在循环过程中容量衰减是难以避免的。由于锂离子电池在充放电过程中过充电或过放电、电解液分解、SEI 膜的形成、活性物质的溶解及其他因素会导致电池容量损失,因此分析锂离子电池容量衰减的原因,对我们进行研究开发及生产应用有着重要的作用,也有利于提高我们产品的品质。 一、锂离子电池工作原理 锂离子电池是指分别用两种能可逆嵌入与脱嵌锂离子的层间化合物作正负极活性物质而构成的二次电池,目前生产中普遍采用高嵌脱锂电位的LiCoO2 类材料为正极,低嵌脱锂电位的碳类材料为负极。锂离子电池在最初的充电循环中,在碳负极材料会出现化学/电化学反映过程,分别对应有机电解液的分解和锂离子的嵌入,伴随形成SEI 膜。目前常用的有机溶剂有碳酸丙烯酯(PC)、碳酸乙烯酯(EC)、碳酸二乙酯(DEC)、碳酸二甲酯(DMC)和碳酸甲基乙基酯(EMC)等,电解质一般用锂盐有LiBF6、LiPF4、LiAsF6 和LiCIO4 等。隔膜用PP 微孔薄膜或PE 微孔薄膜。电极反应如下: 正极:LiCoO2充电→← 放电Li1 - xCoO2+xLi++xe-20 负极: 6C + xLi + + xe -充电→← 放电 LixC6 总的反应为: 6C + LiCoO2充电→← 放电 Li1-xCoO2+LixC6 充电时,锂离子从LiCoO2 中立方紧密堆积氧层中八面体位置发生脱嵌,释放一个电子给Co3+,其氧化为Co4+;放电时,锂离子嵌入到八面体位置得到一个电子,Co4+还原为Co3+。负极中当锂离子插入到石墨层中后石墨结构与此同时从外电路得到一个电子使得负极电荷平衡。与其它二次电池一样,锂离子经充放电循环后存在容量损失问题,导致这些问题的原因有很多,有材料方面也有制造工艺方面的因素。 二、容量损失原因分析 1.过充电 所谓过充电就是超过规定的充电终止电压(一般为4.2V)而继续充电

锂电池的正确充电方法

锂电池的正确充电方法 随意充电对锂离子电池没有任何坏处,而经常把电放光才是对电池的损害。下面是调研到锂电池充电方法的一些观点供大家参考: 1. 锂电池无论用不用,”保质期”为3年,三年后衰减很快。还有一个就是full charge cycle,大约400-500次后衰减很快。就是看你先用到3年还是先充到次数。如何为新电池充电:在使用锂电池中应注意的是,电池放置一段时间后则进入休眠状态,此时容量低于正常值,使用时间亦随之缩短。但锂电池很容易激活,只要经过3—5次正常的充放电循环就可激活电池,恢复正常容量。 2. 锂电池除了怕低电量,还怕的一点就是过热,尤其是充电的时候。如果你的套套散热很差,充电时发热,最好在充电时把套拿下。锂电池(或iphone)长期不用的保存方法是充电至40%后放冰箱里,但切记不要冷冻。 3 . 不要总等到电耗光再充电,这会加快它的损耗。锂电池处于低电量时损耗比较大,长期处于40%-60%电量可以使它最长寿,但是对于经常使用的设备,这是不可能的,不过你可以让它总处于100%,也就是经常充电,冲完了不拔。它不会过充,而且这时使用的是电源的电,电池不会浪费charge cycle,所以有利于延长寿命。你只需每月满充满放一次,这是为了校准电池标尺。当出现电池电量过低提示时,应该尽量及时开始充电。 4. 充电时可以使用,有人说充电时使用会导致充电慢,是不是电池在一边放电一边充电啊?其实不是,手机里有两个电路,一个给电池充电,一个直接通过ac给机器供电。充电慢是因为一部分电流供机器使用了,所以充电的电流就小了,usb充电时尤其明显,因为其电流本身很小。不过值得注意的是,小电流慢充电反而是锂电池喜欢的充电方式,这样产生的热量小,更有利于它的寿命。另外,不要在充电时玩游戏或者其他大负荷使用!原因不是耗电大,而是同2,会产生大的热量,从而减少电池寿命。一般上上网,发发信息没问题,长时间握在手里打电话也不好,建议用耳机。 5. 充完电后接在电源上使用不会对电池造成任何伤害,因为它是通过电源直接供电的,这样减少了充电次数反而还有利于延长电池寿命。很多人会反驳说,我的笔记本一直插电源,结果一年后电池就完蛋了。笔记本跟手机不同,这种情况往往是由于热量导致的,散热不好的笔记本,电池寿命下降很快,即使你不用它。如果你总是接着电源玩游戏,可能会因为电源供电产生热量高而导致手机过热,这样也不好,总之只要不过热,就不会有问题,你完全可以在出门之前一直插着电源。 6. 总是在电池高于90%但低于100%时接电源充电也不好,即总是“topping off”。thinkpad的笔记本有个机制,可以让电池在90%以上时不充电。如果iphone 也有一个充电开关就好了,我们就可以放心的长期使用外电了。电池在80%-20%时连续充电到满都是完全没有问题的。 7. 通宵充电完全没有坏处,因为你没有在用它,它不会产生热量。不过iphone待机做的非常好,我越狱后装了很多系统软件的3gs一晚上待机只消耗1%-2%,所以不插电也不会有太多电池损耗;但充电器插一晚上倒是会热点。 警惕所谓的:“涓流充电” 1. 电量在20%左右的时候即可开始充电,不要故意强制把电池的电放完。

影响锂离子电池高倍率充放电性能的因素

影响锂离子电池高倍率充放电性能的因素 由技术编辑archive1 于星期四, 2014-10-16 13:51 发表 影响锂离子电池高倍率充放性能的因素很多,包括电池设计、电极组装、电极材料的结构、尺寸、电极表面电阻以及电解质的传导能力和稳定性等。为了探究其原因和机理,本文主要从正极、负极和电解质材料三方面对它们在高倍率充放电时各自的影响因素进行了综述和分析,并讨论了利于高倍率充放的电极和电解质材料的发展方向。 锂离子电池具有工作电压高、比能量大、无记忆效应且对环境友好等优点,广泛应用于手机、相机、笔记本电脑等小 型电器的同时,在电动车、卫星、战斗机等大型电动设备方面的应用也备受青睐[1-2]。美国Lawrence LiVermore 国家实验室早在1993 年就对日本SONY 公司的20500 型锂离子电池进行了全面的技术分析,考察其用于卫星的可能 性[3];我国中科院物理所也早在1994 年承担福特基金项目时就开始了动力型锂离子电池的研发[4];国内外一些知名企业进行了动力型锂离子电池的研制和生产,如德国瓦尔塔公司研发的方型锂离子电池,容量为60 Ah,比能量为115 Wh/kg,日本索尼公司生产的高功率型锂离子电池80%DOD 的比功率高达800 W/kg [5],国内深圳的比亚迪、雷天、天津力神、河南金龙、湖南晶鑫等公司也研制生产出容量在10 Ah 以上的动力型锂离子电池。 尽管在全世界科技和工业界的共同努力下,动力型锂离子电池的研发和生产已取得了长足进展,并逐步走上了实用的轨道,但其价格较高,而且循环性能、安全性能及其高倍率充放电性能都有待于进一步提高(如目前锂离子电池用于电动车时,其动力仍不能与传统燃油机的动力相比,这影响着电动车的行程、最高时速、加速性能及爬坡性能等)。为了动力型锂离子电池更快的发展,有必要对其高倍率性能的影响因素进行系统研究和分析,找出根本原因。

锂离子电池基本知识

一.电池常规知识 目录 1.什么是电池? 2.一次电池和二次电池有什么区别? 3、充电电池是怎样实现它的能量转换? 4、什么是Li-ion电池? 5、Li-ion电池的工作原理? 6、Li-ion电池的主要结构。 7、Li-ion电池的优缺点。 8、Li-ion电池安全特性是如何实现的? 9、什么是充电限制电压?额定容量?额定电压?终止电压? 10、Li-ion铝壳和钢壳电池比较它的区别有哪些? 11、目前常见的各种可充电电池之间有什么区别? 1、什么是电池? 电池是一种能源。当它正负极连接在用电器上时,因为正负极之间存在电势之差,电流从正极流向负极,储存在电池中的化学能直接转化成电能释放出来,一只电池必然由两种不同电化学活性的物质组成正负两极,正负极活性物质之间的电动势差形成电池的电压,根据其电化学系统的不同,各种类型的电池

电压各有不同。 2、一次电池和充电电池有什么区别? ?电池内部的电化学设计决定了该类型的电池是否可充。根据它 们的电化学成分和电极的结构可知,可充电电池的内部结构之 间所发生的反应是可逆的。 ?理论上,这种可逆性是不会受循环次数的影响,既然充放电会 在电极的体积和结构上引起可逆的变化,那么可充电电池的内 部设计就支持这种变化。而一次电池在给定的电池环境中两个 电极之间的电化学反应是不可逆的,因此,不可以将一次电池 拿来充电,这种做法很危险也很不经济。如果需要反复使用, 应选择真正的循环次数在1000次左右的充电电池,这种电池又 称为二次电池。 ?另一明显的区别就是它们具有较高的比能量和负载能力,以及 自放电率。一次电池能量密度远比一次电池高。然而他们的负 载能力相对要小。 ?二次电池具有相对较高的负载能力,可充电电池Li-ion,随着 近几年的发展,具有高能量容量。 ?不管何种一次电池的电化学系统属于哪种,所有的一次电池的 自放电率都很小。 3、充电电池是怎样实现它的能量转换? ?每种电池都具有电化学转换的能力,即将储存的化学能直接转 换成电能。就二次电池而言(另一术语也称可充电便携式电池),

高压锂离子电池组的四种充电方式

高压锂离子电池组的四种充电方式 高压锂离子电池组的四种充电方式 摘要:本文介绍了高电压锂离子电池组的四种充电方法,并进行了优缺点的比较。 锂离子电池由于工作电压高、体积小、质量轻、无记忆效应、无污染、自放电小、循环寿命长,是一种理想电源。在实际使用中,为了获得更高的放电电压, 一般将至少两只单体锂离子电池串联组成锂离子电池组使用。目前,锂离子电池组已经广泛应用于笔记本电脑、电动自行车和备用电源等多种领域。 因此如何在充电时将锂离子电池组使用好显得尤为关键,现将锂离子电池组常用的几种充电方法以及本人认为的最适合的充电方法试述如下: 1 普通的串联充电 目前锂离子电池组的充电一般都采用串联充电,这主要是因为串联充电方法结构简单、成本低、较容易实现。但由于单体锂离子电池之间在容量、内阻、 衰减特性、自放电等性能方面的差异,在对锂离子电池组串联充电时,电池组中容量最小的那只单体锂离子电池将最先充满电,而此时,其他电池还没有充满电,如 果继续串联充电,则已充满电的单体锂离子电池就可能会被过充电。 而锂离子电池过充电会严重损害电池的性能,甚至可能会导致爆炸造成人员伤害,因此,为了防止出现单体锂离子电池过充电,锂离子电池组使用时一般 配有电池管理系统(Battery Management System,简称BMS),通过电池管理系统对每一只单体锂离子电池进行过充电等保护。串联充电时,如果有一只单体锂离子电池的电压达到过充保护电压, 电池管理系统会将整个串联充电电路切断,停止充电,以防止这只单体电池被过充电,而这样会造成其他锂离子电池无法充满电。 经过多年的发展,磷酸铁锂动力电池由于具有较高的安全性、很好的循环性能等优势,已经基本能满足电动车特别是纯电动轿车的要求,工艺上也基本具 备了大规模生产的条件。然而,磷酸铁锂电池的性能与其他锂离子电池存在着一定的差异,特别是其电压特征与锰酸锂电池、钴酸锂电池等不同。以下是磷酸铁锂与 锰酸锂两种锂离子电池的充电曲线与锂离子脱嵌对应关系的比较:

大容量高功率锂离子电池研究进展_毕道治

收稿日期:2007-05-20 作者简介:毕道治(1926-),男,河北省人,教授级高工。 Biography:BIDao-zhi(1926-),male,professor. 大容量高功率锂离子电池研究进展 毕道治 (天津电源研究所,天津300381) 摘要:发展电动车是解决能源危机和环境污染的有效手段之一。大容量高功率锂离子蓄电池是电动车的理想储能电源,因为它具有单体电压高、循环及使用寿命长、比能量高和良好的功率输出性能等优点。介绍了国内外大容量高功率锂离子蓄电池的研究进展,包括关键材料、技术性能和安全问题,并以作者的观点提出了大容量高功率锂离子蓄电池的发展前景和近期研究内容。关键词:锂离子蓄电池;电极活性材料;电解液;电动车;混合电动车中图分类号:TM912.9 文献标志码:A 文章编号:1008-7923(2008)02-0114-06 Researchprogressofhighcapacityandhighpower Li-ionbatteries BIDao-zhi (TianjinPowerSourceInstitute,Tianjin300381,China) Abstract:Developmentofelectricvehicleisoneoftheeffectivemeanstoovercomeproblemsofenvironmentpollutionandenergycrisis.HighcapacityandhighpowerLi-ionstoragebatteryisanappropriatepowersourceforelectricvehicleduetoitshighcellvoltage,longercyclelife,higherenergydensityandhighpowercharacteristics.ThedevelopmentstatusofhighcapacityandhighpowerLi-ionstoragebatteries,includingkeymaterials,technicalperformanceandsafetyproblemsarereviewedinthispaper.ThetechnicalissuesandthefutureofhighcapacityandhighpowerLi-ionbatteriesarefinalllydescribedinwriter'spointofview. Keywords:Li-ionstoragebattery;electrodeactivematerial;electrolyte;EV;HEV 环境污染和能源危机是目前人类面临的两大课题,而燃油汽车的大量普及则是造成上述问题的主要原因之一。发展电动车是有效解决上述问题的重要手段,因为电动车具有能源多样化、污染排放少和能源利用效率高的优点。发展电动车的技术瓶颈问题是迄今为止还没有哪种电池使电动车的性价比能与燃油汽车相比。通过比较各类动力电池的典型性 能,可以看出锂离子电池具有单体电压高、比能量大和自放电小的优点,但也存在安全性差、 成本高和长期循环和贮存后性能下降的问题。为了充分利用并发挥锂离子电池的优势,克服其存在的缺点,世界各主要国家的政府、汽车制造商和相关科技人员都对大容量、高功率动力用锂离子蓄电池的研究非常重视。纷纷制定发展计划、投入大量人力、物力、财力积极进行研制。文章对大容量、高功率锂离子蓄电池的关键材料、性能水平和安全性等方面的研究进展进行综合评述,并探讨了今后的研发方向。

锂电池充电电路详解

锂电池充电电路图 锂电池是继镍镉、镍氢电池之后,可充电电池家族中的佼佼者.锂离子电池以其优良的特性,被广泛应用于: 手机、摄录像机、笔记本电脑、无绳电话、电动工具、遥控或电动玩具、照相机等便携式电子设备中。 一、锂电池与镍镉、镍氢可充电池: 锂离子电池的负极为石墨晶体,正极通常为二氧化锂。充电时锂离子由正极向负极运动而嵌入石墨层中。放电时,锂离子从石墨晶体内负极表面脱离移向正极。所以,在该电池充放电过程中锂总是以锂离子形态出现,而不是以金属锂的形态出现。因而这种电池叫做锂离子电池,简称锂电池。 锂电池具有:体积小、容量大、重量轻、无污染、单节电压高、自放电率低、电池循环次数多等优点,但价格较贵。镍镉电池因容量低,自放电严重,且对环境有污染,正逐步被淘汰。镍氢电池具有较高的性能价格比,且不污染环境,但单体电压只有1.2V,因而在使用范围上受到限制。 二、锂电池的特点: 1、具有更高的重量能量比、体积能量比; 2、电压高,单节锂电池电压为3.6V,等于3只镍镉或镍氢充电电池的串联电压; 3、自放电小可长时间存放,这是该电池最突出的优越性; 4、无记忆效应。锂电池不存在镍镉电池的所谓记忆效应,所以锂电池充电前无需放电; 5、寿命长。正常工作条件下,锂电池充/放电循环次数远大于500次; 6、可以快速充电。锂电池通常可以采用0.5~1倍容量的电流充电,使充电时间缩短至1~2小时; 7、可以随意并联使用; 8、由于电池中不含镉、铅、汞等重金属元素,对环境无污染,是当代最先进的绿色电池; 9、成本高。与其它可充电池相比,锂电池价格较贵。 三、锂电池的内部结构: 锂电池通常有两种外型:圆柱型和长方型。 电池内部采用螺旋绕制结构,用一种非常精细而渗透性很强的聚乙烯薄膜隔离材料在正、负极间间隔而成。正极包括由锂和二氧化钴组成的锂离子收集极及由铝薄膜组成的电流收集极。负极由片状碳材料组成的锂离子收集极和铜薄膜组成的电流收集极组成。电池内充有有机电解质溶液。另外还装有安全阀和PTC元件,以便电池在不正常状态及输出短路时保护电池不受损坏。 单节锂电池的电压为3.6V,容量也不可能无限大,因此,常常将单节锂电池进行串、并联处理,以满足不同场合的要求。字串5 四、锂电池的充放电要求; 1、锂电池的充电:根据锂电池的结构特性,最高充电终止电压应为4.2V,不能过充,否则会因正极的锂离子拿走太多,而使电池报废。其充放电要求较高,可采用专用的恒流、恒压充电器进行充电。通常恒流充电至4.2V/节后转入恒压充电,当恒压充电电流降至100mA 以内时,应停止充电。 充电电流(mA)=0.1~1.5倍电池容量(如1350mAh的电池,其充电电流可控制在135~2025mA之间)。常规充电电流可选择在0.5倍电池容量左右,充电时间约为2~3小时。 2、锂电池的放电:因锂电池的内部结构所致,放电时锂离子不能全部移向正极,必须保留一部分锂离子在负极,以保证在下次充电时锂离子能够畅通地嵌入通道。否则,电池寿命就相应缩短。为了保证石墨层中放电后留有部分锂离子,就要严格限制放电终止最低电压,也就是说锂电池不能过放电。放电终止电压通常为3.0V/节,最低不能低于2.5V/节。电池放

锂离子电池开题报告

武汉理工大学 本科毕业论文(设计) 开题报告 题目锂离子电池正极材料Li2MnO3的掺杂改性院、系材料科学与工程研究院 专业无机非金属材料科学与工程 10级 学生姓名马娟 学号 0121001040227 指导教师郝华

1、研究背景 锂离子电池是20世纪70年代以后发展起来的一种新型储能电池。由于其具有高能量、寿命长、低能耗、无公害、无记忆效应以及自放电小、内阻小、性价比高、污染少等优点,锂离子电池在逐步应用中显示出巨大的优势,广泛应用于移动电话、笔记本电脑、摄像机、数码相机、电动汽车、储能、航天等领域。特别是新能源汽车的开发与应用,要求具有高比能量的锂离子电池,而传统的正极材料难以满足能量密度的需要,因此迫切需要开发新型高比容量的锂离子电池正极材料。 高比容量,绿色环保,以及价格便宜都将是锂离子电池必不可少的因素。正极材料作为整个电池的重要组成部分,直接影响电池的使用性能和制造成本。近年来锂离子电池电极材料的研究和开发一直受到社会的广泛关注,其中正极材料的研究是对锂离子蓄电池研究和开发有着重要的价值。目前使用的正极材料主要有 Li2CoO2,LiNi0.9Co0.lO2。由于钴价格较锰将近贵到40倍,若将资源丰富、价格便宜、对环境污染小的锰用于阳极材料取代现在的钴,将会带来很大的经济效益。层状结构Li2Mn03基正极材料以其理论容量高,环境友好以及原料价格便宜等优势得到广泛关注。但该材料体系电导率低,制约了它的进一步应用。 制备正极材料的方法很多,而溶胶凝胶法由于其特有的优点备受关注。溶胶凝胶法在配位化合物、纳米材料、金属簇合物的合成中已经得到了广泛的应用。一般的合成方法中均采用两种或者两种以上的配合剂,将采用配合物低分子基团柠檬酸,且该物质对人体无害,目的在于减少有机物用量和环境污染,同时具有溶胶凝胶法合成材料的优点。

锂离子电池工作原理

锂离子电池工作原理 正极反应:放电时锂离子嵌入,充电时锂离子脱嵌。 负极反应:放电时锂离子脱插,充电时锂离子插入。 电池总反应 以炭材料为负极,以含锂的化合物作正极的锂电池,在充放电过程中,没有金属锂存在,只有锂离子,这就是锂离子电池。当对电池进行充电时,电池的正极上有锂离子生成,生成的锂离子经过电解液运动到负极。而作为负极的碳呈层状结构,它有很多微孔,达到负极的锂离子就嵌入到碳层的微孔中,嵌入的锂离子越多,充电容量越高。同样,当对电池进行放电时(即我们使用电池的过程),嵌在负极碳层中的锂离子脱出,又运动回正极。回正极的锂离子越多,放电容量越高。我们通常所说的电池容量指的就是放电容量。在Li-ion的充放电过程中,锂离子处于从正极→负极→正极的运动状态。Li-ion Batteries就像一把摇椅,摇椅的两端为电池的两极,而锂离子就象运动员一样在摇椅来回奔跑。所以Li-ion Batteries又叫摇椅式电池。 一般锂电池充电电流设定在0.2C至1C之间,电流越大,充电越快,同时电池发热也越大。而且,过大的电流充电,容量不够满,因为电池内部的电化学反应需要时间。就跟倒啤酒一样,倒太快的话会产生泡沫,反而不满。 正极 正极材料:可选正极材料很多,目前主流产品多采用锂铁磷酸盐。 正极反应:放电时锂离子嵌入,充电时锂离子脱嵌。 充电时:LiFePO?→ Li1-xFePO? + xLi + xe

放电时:Li1-xFePO?+ xLi + xe →LiFePO? 负极 负极材料:多采用石墨。新的研究发现钛酸盐可能是更好的材料。 负极反应:放电时锂离子脱插,充电时锂离子插入。 充电时:xLi + xe + 6C →LixC6 放电时:LixC6 → xLi + xe + 6C 锂离子电池是一种二次电池(充电电池),它主要依靠锂离子在正极和负极之间移动来工作。在充放电过程中,Li+ 在两个电极之间往返嵌入和脱嵌:充电池时,Li+从正极脱嵌,经过电解质嵌入负极,负极处于富锂状态;放电时则相反。电池一般采用含有锂元素的材料作为电极,是现代高性能电池的代表。 组成部分 钢壳/铝壳/圆柱/软包装系列: (1)正极——活性物质一般为锰酸锂或者钴酸锂,镍钴锰酸锂材料,电动自行车则普遍用镍钴锰酸锂(俗称三元)或者三元+少量锰酸锂,纯的锰酸锂和磷酸铁锂则由于体积大、性能不好或成本高而逐渐淡出。导电集流体使用厚度10--20微米的电解铝箔。 (2)隔膜——一种经特殊成型的高分子薄膜,薄膜有微孔结构,可以让锂离子自由通过,而电子不能通过。 (3)负极——活性物质为石墨,或近似石墨结构的碳,导电集流体使用厚度7-15微米的电解铜箔。

锂离子电池的过充电和过放电产生的问题讲课稿

针对锂离子电池过充电、过放电问题 过充电:锂离子电池过充时,电池电压随极化增大而迅速上升,会引起正极活性物质结构的不可逆变化及电解液的分解,产生大量气体,放出大量的热,使电池温度和内压急剧增加,存在爆炸、燃烧等隐患。 过放电:电池放完内部储存的电量,电压达到一定值后,继续放电就会造成过放电,电池过放电可能会给电池带来灾难性的后果,特别是大电流过放,或反复过放对电池影响更大。一般而言,过放电会使电池内压升高,正负极活性物质可逆性受到破坏,电解液分解,负极锂沉积,电阻增大,即使充电也只能部分恢复,容量也会有明显衰减。 解决措施: 1、改变正极材料:目前钴酸锂正极活性材料在小电芯方面是很成熟 的体系,但是充满电后,仍旧有大量的锂离子留在正极,当过充时,残留在正极的锂离子将会涌向负极,在负极上形成枝晶(使其晶面的半高宽变大,导致某一方向的晶粒尺寸变小,晶体结构的改变导致碳材料出现裂纹,进而破坏负极表面的 SEI 膜并促进 SEI 膜的修复,SEI 膜的过度生长消耗活性锂,因此造成了电池的不可逆容量衰减。如图1所示)这是采用钴酸锂材料的电池过充时必然的结果。甚至在正常充放电过程中,也有可能会有的产生多余的锂离子游离到负极形成枝晶(由于石墨的嵌脱锂电位较低,接近锂的还原电位,因此在某些条件下负极容易出现锂沉积,锂沉积会消耗活性锂,产生不可逆容量损失)。因此寻求高能量密度、高安全、环保和价格便宜的电极材料是动力电池发展的关键。目前国家选择的安全正极材料有锰酸锂、磷酸铁锂等。 分子结构上面可以保证在满电状态,正极的锂离子已经完(锰酸锂LiMnO 4 全嵌入到负极炭孔中,从根本上避免了枝晶的产生。同时锰酸锂稳固的结构使其氧化性能远远低于钻酸锂,分解温度超过钴酸锂10O℃,即使由于外力发生内部短路、外部短路、过充电时,也完全能够避免了由于析出金属锂引发燃烧、爆炸

锂离子电池充电原理详细解析

锂离子电池充电原理详细解析.txt48微笑,是春天里的一丝新绿,是骄阳下的饿一抹浓荫,是初秋的一缕清风,是严冬的一堆篝火。微笑着去面对吧,你会感到人生是那样温馨。本文由605760805贡献 doc文档可能在WAP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机查看。 锂离子电池原理 所谓锂离子电池是指分别用二个能可逆地嵌入与脱嵌锂离子的化合物作为正负极构成的二次电池。人们将这种靠锂离子在正负极之间的转移来完成电池充放电工作的独特机理的锂离子电池形象地称为“摇椅式电池”,俗称“锂电”。锂离子电池的内部结构如下图所示: 电池由正极锂化合物、中间的电解质膜及负极碳组成。◎当电池充电时,锂离子从正极中脱嵌,在负极中嵌入,放电时反之。一般采用嵌锂过渡金属氧化物做正极,如 LiCoO2、LiNiO2、LiMn2O4。◎做为负极的材料则选择电位尽可能接近锂电位的可嵌入锂化合物,如各种碳材料包括天然石墨、合成石墨、碳纤维、中间相小球碳素等和金属氧化物,包括 SnO、SnO2、锡复合氧化物 SnBxPyOz 等。◎电解质采用 LiPF6 的乙烯碳酸脂(EC)丙烯碳酸脂、(PC)和低粘度二乙基碳酸脂(DEC)等烷基碳酸脂搭配的高分子材料。◎隔膜采用聚烯微多孔膜如 PE、PP 或它们复合膜,采用 PP/PE/PP 三层隔膜优点是熔点较低,具有较高的抗穿刺强度,起到了过热保险作用。◎外壳采用钢或铝材料,具有防爆的功能。锂离子电池的额定电压为 3.6V。电池充满时的电压(称为终止充电电压)一般为 4.2V;锂离子电池终止放电电压为 2.5V。如果锂离子电池在使用过程中电压已降到 2.5V 后还继续使用,则称为过放电,对电池有损害。 锂电池充电原理:锂电池充电原理: 锂离子电池充电原理图: 其中:Iconst:恒流充电电流; Ipre:预充电电流; Ifull:充满判断电流; Vconst:恒压充电电压; Vmin:预充结束电压及短路判断电压图一锂离子电池比较骄贵。如果不满足其充电及使用要求,很容易出现爆炸,寿命下降的现象。因为锂离子电池对温度、过压过流及过放电很敏感,所以所有的电池内部均集成了热敏电阻(监控充电温度)及防过压过流过放电保护电路。图一为标准锂离子电池充电原理曲线,锂离子电池的充电过程分三个阶段:预充电阶段;恒流充电阶段;恒压充电阶段。预充电阶段是在电池电压低于 3V 时,电池不能承受大电流的充电。这时有必要以小电流对电池进行浮充;当电池电压达到 3V 时,电池可以承受大电流的充电了。这时应以恒定的大电流充电。以使锂离子快速均匀转移,这个电流值越大,对电池的充满及寿命越有利;当电池电压达到 4.2V 时,达到了电池承受电压的极限。这时应以 4.2V 的电压恒压充电。这时充电电流逐渐降低。当充电电流小于30mA 时,电池即充满了。这时要停止充电。否则,电池因过充而降低寿命。恒压充电阶段要求电压控制精度为 1%,即电压要控制在 4.158V~4.242V 之间。 依国家标准,锂离子电池要能在 1C 的充电电流下,可以循环充放电 500 次以上。依一般的电池使用三天一充。这样电池的寿命应在 4 年。但用户在使用电池的时候往往发现,原装电池在使用 1 年,甚到半年左右的时间就报废了,这是因为劣质万能充惹得祸。下面将以万能充的充电原理及内部拆解分析一下为什么会对锂电池有损害:图二图二为现在市场上的万能充的充电原理图。由图看出,万能充是简单的恒压充电方式。这种充电方式对锂电池是有损害的。 1.当没电的电池插在万能充上时,充电器即以最大的电流为电池充电。如果在锂离子电池最虚弱的低压时就以大电流冲击,将会损害电池的寿命。 2.这种万能充没有温度控制功能。而且,万能充内部电路直接由 220V 转化为 5V 的直流,其转换效率低下,电路本身产生大量的热量,附加在了电池上。无形中造成了电池内部温度过高。电池的温度过高会对电池内部的化学转化造成不可逆转的影响。

锂离子电池的现状及发展趋势

锂离子电池的现状与发展趋势 新能源技术被公认为21 世纪的高新技术,电池行业作为新能源领域的重要组成部分,已成为全球经济发展的一个新热点。目前锂离子电池已经作为一种重要的能量源被人们大范围的使用,无论是在电子通讯领域,还是在交通运输领域等,它都担当着极为重要的角色,有着广泛的应用前景。 锂离子电池是一种二次电池,是在锂电池的基础上发展起来的一种新型电池,它主要依靠锂离子在正极和负极之间移动来工作。自20世纪70年代以来,以金属锂为负极的各种高比能量锂原电池分别问世,并得以广泛应用。 锂离子电池工作电压高、比能量高、容量大、自放电小、循环性好、使用寿命长、重量轻、体积小,是现代高性能电池的代表,是移动电话、笔记本电脑等便携式电子设备的理想电源,并有望成为未来电动汽车、无绳电动工具等的主要动力来源之一。 我国锂离子电池产业发展历史不长,但发展很快,2012年我国锂离子电池的总产量达41.8亿只。在国际锂离子电池市场上,中国、日本和韩国形成了三足鼎立的态势,但总体而言,我国锂离子电池产业在技术先进程度和市场竞争力方面和日本、韩国还有较大差距。我国锂离子电池产业的技术发展是从模仿国外成熟技术开始的,在此过程中,工艺创新是我国锂离子电池产业早期发展的主要成绩,最近几年,随着技术创新投入不断加大,我国锂离子电池产业在技术创新方面发展很快,并形成了基本的产业核心竞争力,在某些领域积累了一定的技术优势。 锂离子电池材料的研究现状及发展趋势 锂离子电池的主要构造有正极、负极、能传导锂离子的电解质以及把正负极隔开的隔离膜。锂离子电池的电化学性能主要取决于所用电极材料和电介质材料的结构与性能,尤其是电极材料的选择和质量直接决定着锂离子电池的特性和价格。 目前锂离子电池正极材料的研究主要集中于钴酸锂、镍酸锂等,同时,一些新型正极材料(如Li-Mn-O系材料、导电高聚物)的兴起也为锂离子电池正极材料的发展注入了新的活力,寻找开发具有高电压、高比容量和良好循环性能的锂离子二次电池正极材料新体系是该领域的重要研究内容。目前,锂离子电池的正极材料仍为LiCoO2、LiNiO2、LiMn2O4等过渡金属氧化物及其复合材料,2005-2010年,高能量密度的聚合物正极材料和有机硫化物、无机硫化物成为锂离子电池的新一代正极材料。锂离子电池的负极材料主要有碳材料、锂金属合金、金属氧化物、金属氮化物、纳米硅等,其中碳材料是目前商业应用的主要负极材料,而锂金属合金、纳米硅已成为研发热点。锂离子电池的电解质材料目前主要是用液态电解其溶剂为无水有机物,多数采用混合溶剂,如EC-DMC和PC-DMC 等,LiPF6是应用最为普遍的导电盐。 就锂离子电池正极材料来说,钴酸锂正极材料在今后仍然具有强劲的生命力,在目前商品化应用的锂离子电池体系中,钴酸锂电池凭借其高充电截止电压和高压实密度双重优势,仍是目前高档3C产品类电池首选电池体系;而层状LiNixCo1–x–yMnyO2正极材料不仅具有较高的能量密度,而且材料的安全性、循环稳定性、高低温性能、制备成本等性能均比较优异,在全球正极材料使用量比重逐年增加,不仅逐步替代了钴酸锂材料的部分应用,而且在新能源汽车动力

最经典的锂离子电池容量衰减原因分析

本质原因 锂离子电池在两个电极间发生嵌入反应时具有不同的嵌入能量,而为了得到电池的最佳性能,两个宿主电极的容量比应该保持一个平衡值。在锂离子电池中,容量平衡表示成为正极对负极的质量比,即: γ=m+/m-=ΔxC-/ΔyC+ 式中C指电极的理论库仑容量,Δx、Δy分别指嵌入负极及正极的锂离子的化学计量数。 从上式可以瞧出,两极所需要的质量比依赖于两极相应的库仑容量及其各自可逆锂离子的数目。一般说来,较小的质量比导致负极材料的不完全利用;较大的质量比则可能由于负极被过充电而存在安全隐患。总之在最优化的质量比处,电池性能最佳。 对于理想的Li-ion电池系统,在其循环周期内容量平衡不发生改变,每次循环中的初始容量为一定值,然而实际上情况却复杂得多。任何能够产生或消耗锂离子或电子的副反应都可能导致电池容量平衡的改变,一旦电池的容量平衡状态发生改变,这种改变就就是不可逆的,并且可以通过多次循环进行累积,对电池性能产生严重影响。 在锂离子电池中,除了锂离子脱嵌时发生的氧化还原反应外,还存在着大量的副反应,如电解液分解、活性物质溶解、金属锂沉积等,如图1所示。Arora等[3]将这些容量衰减的过程与半电池的放电曲线对照起来,使得我们可以清楚地瞧出电池工作时发生容量衰减的可能性及其原因,如图2所示。 一、过充电1?、石墨负极的过充反应: 电池在过充时,锂离子容易还原沉积在负极表面:Li++e→Li(s),沉积的锂包覆在负极表面,阻塞了锂的嵌入。导致放电效率降低与容量损失,原因有:①可循环锂量减少; ②沉积的金属锂与溶剂或支持电解质反应形成Li2CO3,LiF 或其她产物; ③金属锂通常形成于负极与隔膜之间,可能阻塞隔膜的孔隙增大电池内阻。④由于锂的性质很活泼,易与电解液反应而消耗电解液.从而导致放电效率降低与容量的损失。?快速充电,电流密度过大,负极严重极化,锂的沉积会更加明显。这种情况容易发生在正极活性物相对于负极活性物过量的场合,但就是,在高充电率的情况下,即使正负极活性物的比例正常,也可能发生金属锂的沉积。?2、正极过充反应 当正极活性物相对于负极活性物比例过低时,容易发生正极过充电。?正极过充导致容量损失主要就是由于电化学惰性物质(如Co3O4,Mn2O3 等)的产生,破坏了电极间的容量平衡,其容量损失就是不可逆的。 (1)LiyCoO2 LiyCoO2→(1-y)/3[Co3O4+O2(g)]+yLiCoO2 y<0、4 同时正极材料在密封的锂离子电池中分解产生的氧气由于不存在再化合反应(如生成H2O)与电解液分解产生的可燃性气体同时积累,后果将不堪设想。 (2)λ-MnO2?锂锰反应发生在锂锰氧化物完全脱锂的状态下: λ-MnO2→Mn2O3+O2(g) 3?、电解液在过充时氧化反应 当压高于4、5V 时电解液就会氧化生成不溶物(如Li2Co3)与气体,这些不溶物会堵塞在电极的微孔里面阻碍锂离子的迁移而造成循环过程中容量损失。 影响氧化速率因素: 正极材料表面积大小 集电体材料 所添加的导电剂(炭黑等)?炭黑的种类及表面积大小 在目前较常用电解液中,EC/DMC被认为就是具有最高的耐氧化能力。?溶液的电化学氧化过程一般表示为:溶液→氧化产物(气体、溶液及固体物质)+ne- 任何溶剂的氧化都会使电解质浓度升高,电解液稳定性下降,最终影响电池的容量。假设每次充电时都消耗一小部分电解液,那么在电池装配时就需要更多的电解液。对于恒定的容器来说,这就意味着装入更少量的活性物质,这样会造成初始容量的下降。此外,若产生固体产物,则会在电极表面形成钝化膜,这将引起电池极化增大而降低电池的输出电压。?二、电解液分解(还原)?I 在电极上分解 1、电解质在正极上分解:?电解液由溶剂与支持电解质组成,在正极分解后通常形成不溶性产物Li2Co3 与LiF等,通过阻塞电极的孔隙而降低电池容量,电解液还原反应对电池的容量与循环寿命会产生不良影响,并且由于还原产生了气体会使电池内压升高,从而导致安全问题。?正极分解电压通常大于4、5V(相对于Li/Li+),所以,它们在正极上不易分解。相反,电解质在负极较易分解。2?、电解质在负极上分解:?电解液在石墨与其它嵌锂碳负极上稳定性不高,容易反应产生不可逆容量。初次充放电时电解液

相关主题
文本预览
相关文档 最新文档