当前位置:文档之家› 影响锂离子电池高倍率充放电性能的因素

影响锂离子电池高倍率充放电性能的因素

影响锂离子电池高倍率充放电性能的因素
影响锂离子电池高倍率充放电性能的因素

影响锂离子电池高倍率充放电性能的因素

由技术编辑archive1 于星期四, 2014-10-16 13:51 发表

影响锂离子电池高倍率充放性能的因素很多,包括电池设计、电极组装、电极材料的结构、尺寸、电极表面电阻以及电解质的传导能力和稳定性等。为了探究其原因和机理,本文主要从正极、负极和电解质材料三方面对它们在高倍率充放电时各自的影响因素进行了综述和分析,并讨论了利于高倍率充放的电极和电解质材料的发展方向。

锂离子电池具有工作电压高、比能量大、无记忆效应且对环境友好等优点,广泛应用于手机、相机、笔记本电脑等小

型电器的同时,在电动车、卫星、战斗机等大型电动设备方面的应用也备受青睐[1-2]。美国Lawrence LiVermore 国家实验室早在1993 年就对日本SONY 公司的20500 型锂离子电池进行了全面的技术分析,考察其用于卫星的可能

性[3];我国中科院物理所也早在1994 年承担福特基金项目时就开始了动力型锂离子电池的研发[4];国内外一些知名企业进行了动力型锂离子电池的研制和生产,如德国瓦尔塔公司研发的方型锂离子电池,容量为60 Ah,比能量为115 Wh/kg,日本索尼公司生产的高功率型锂离子电池80%DOD 的比功率高达800 W/kg [5],国内深圳的比亚迪、雷天、天津力神、河南金龙、湖南晶鑫等公司也研制生产出容量在10 Ah 以上的动力型锂离子电池。

尽管在全世界科技和工业界的共同努力下,动力型锂离子电池的研发和生产已取得了长足进展,并逐步走上了实用的轨道,但其价格较高,而且循环性能、安全性能及其高倍率充放电性能都有待于进一步提高(如目前锂离子电池用于电动车时,其动力仍不能与传统燃油机的动力相比,这影响着电动车的行程、最高时速、加速性能及爬坡性能等)。为了动力型锂离子电池更快的发展,有必要对其高倍率性能的影响因素进行系统研究和分析,找出根本原因。

锂离子电池的高倍率充放性能与锂离子在电极、电解质以及它们界面处的迁移能力息息相关,一切影响锂离子迁移速度的因素都必将影响电池高倍率充放性能。因此,本文主要从正极、负极、电解质材料等方面综述影响锂离子电池高

倍率充放电的因素,并深入分析产生这种影响的原因,指出适于高倍率充放电的电极、电解质材料的进一步发展方向。

1 负极高倍率充放性能的影响因素

容量保持能力差是锂离子电池负极在高倍率充放过程中的最大问题,这主要与电极材料的结构、颗粒大小、电极导电性和电极表面SEI 膜的稳定性等因素有关。

1.1 材料结构

炭材料是最早研究用于锂离子电池的负极材料,具有各种各样的结构,这对其高倍率性能产生很大的影响。如石墨化中间相沥青炭微球的球形片层结构利于锂离子从球的各个方向嵌入和脱出[6],减小了锂离子在固相中的扩散电阻,从

而提高电极的高倍率性能,在1 C 充放电时容量可达到230 mAh/g[7-8];与此相似,具有辐射状结构的碳纤维也被认为是有利于锂离子扩散的负极材料[9];而二维片层结构的天然石墨具有比较差的高倍率性能,如Zaghib 等[10]研究的天然石墨NG 40 在C /4 放电时容量只有55.8mAh/g(LixC6中的x =0.15)。1.2 材料尺寸

锂离子电池负极材料的尺寸直接关系着锂离子在其中扩散路径的长短,对电极高倍率性能产生很大的影响。当电极材料尺寸较小时,比表面积一般较大,一方面,可以使电极的电流密度降低,减少电极的极化作用;另一方面可以提供更多的锂离子迁移通道,缩短迁移路径,降低扩散阻抗,从而提高电极的高倍率性能。因此,粒径较小的颗粒和纳米结构的材料(纳米球、纳米线、纳米棒、纳米管和纳米膜等) 作为锂离子电池负极材料时通常表现出较好的倍率性能[11-17]。

如小颗粒石墨(约6μm)以C /2 充放电时,其容量可以达到C /24 充放电容量的80%;而大颗粒石墨(约44μm)在相同的充放电制度下仅具有C/24 充放电容量的20%[18]。此外,Chan 等[18]采用气-液- 固(VLS)法在不锈钢基体上制备的Si纳米线电极在1 C 充放电时,其可逆容量高达2 100 mAh/g。Takamura 等[19]利用真空蒸发在镍箔上制得的硅膜,在0.5~30 C 的充放电倍率范围内进行研究,发现在10 C 充放电制度下工作1 000 个循环以上,比容量仍保持2 000mAh/g,但随着硅膜加厚比容量呈现下降趋势。与之相似,Graetz[20]等用气相沉积法在镍箔的表面制得一层60~250nm 厚的Ge 金属膜(粒径在12 nm 左右),用其作为电极在0.5~1 000 C 范围内进行研究,发现当用1 C 充电、1 000 C放电的充放电制度时,可以放出0.1 C充放电容量的70%。

1.3 电极表面电阻

锂离子在嵌入负极的过程中,首先要扩散到固体电解质相界面膜(SEI 膜)与负极材料的界面处,因此电极表面电阻相当于锂离子扩散过程中的一道门槛,影响着锂离子的嵌入和脱出,尤其在高倍率充放电时更加明显。

Avery 等[21]的研究表明,电极内阻随锂离子电池充放电过程的进行不断发生变化,尤其放电时内阻增加较多,他们认为内阻的增加是由于负极表面SEI 膜在循环过程中脱落产生的一些碎片进入电解质并在电压作用下发生了电泳现

象,特别在大电流放电时这些碎片会沉积在电极表面使电阻增加,从而影响着锂离子的脱出。Ning 等[22]在研究锂离子电池的高倍率充放性能时,也发现电池内阻在充放电过程中增加很多,并认为内阻的增加主要来源于负极,而负极电阻的增加又是由于SEI 膜的变厚引起的,他们还模拟了负极在高倍率下SEI 膜变厚的过程,如图1 所示。

1.4 电极导电性

锂离子在嵌入负极的同时,伴随着电子的转移过程,电极的导电性也必然会对电极的电化学性能产生影响。如Shim 等[23]在考察不同电极密度对高倍率(3 C)充放电容量的影响时发现,随着电极密度的增加电极的容量先增加后减小,在0.9 g/cm3 时,高倍率容量达到最大值,可以达到低倍率容量(C /5)的90%以上。这是因为随着电极密度的增加,电极的孔隙率和表面积都会减少,不利于锂离子的扩散,会使极化内阻加大,但电导率会增加,欧姆内阻减少,这个抛物线现象就是这两种效应平衡的结果。Ahn[7]用MCMB 做负极材料,在0.1 C 充电、2C 倍率放电的充放制度下研究添加导电剂对电极高倍率容量的影响,发现添加不锈钢纤维导电剂的电极可以放出165mAh/g 的容量,而没有添加导电剂的电极仅放出100 mAh/g。Liu 等[24]发现在人造石墨表面化学镀Cu 后,石墨材料的可逆容量、库仑效率和大电流性能都得到一定的提高。可见电极的导电性对其高倍率性能起着很大的影响作用。

虽然很多因素影响负极高倍率充放电的性能,如材料的结构、尺寸、电极厚度、表面电阻大小等,但这些因素对负极产生影响的原因可以概括为以下两个方面:①从材料结构、尺寸和电极厚度对高倍率性能的影响可知锂离子在材料或电极中扩散路径的长短,即引起锂离子在电极中浓度差是影响电极高倍率性能的原因,即:浓差极化内阻的大小是影响负极高倍率性能的一个方面;②从电极表面电阻和电极导电性对负极高倍率性能的影响可以概括出欧姆内阻的大小是影响负极高倍率性能的另一个方面。可见,这两种内阻的大小是影响负极高倍率性能的原因,因为内阻(极化内阻与欧姆内阻之和) 的大小直接影响着负极高倍率充放电时的极化程度。

此外,极化内阻和欧姆内阻在对负极高倍率性能的影响上还存在一定的联系:浓差极化内阻的大小除了决定着负极高倍率充放电进行的程度外,还对电极的温度变化产生影响,即影响着电解质的分解量,从而影响着电极的欧姆内

阻,欧姆内阻的增加是最终导致电极失效的原因。因此,浓差极化内阻的大小是影响负极高倍率充放电性能的根本原因,而欧姆内阻的增加则是造成负极高倍率充放电性能差的直接原因。

1.5 负极高倍率充放的控制因素

锂离子在负极嵌入和脱嵌过程中要经历一个多步串联的过程[25-26](以嵌入负极为例),如图2 所示,它包括:ⅰ锂离子在电解质中的扩散,ⅱ锂离子在SEI 膜中的迁移,ⅲ在膜和负极材料界面上发生的电荷转移反应过程,ⅳ锂离子在负极材料中的固相扩散。

在这些过程中,人们一般认为锂离子的固相扩散系数(见表1)比液相扩散系数(约10-6 cm2/s[27])小得多,锂离子的固相扩散是充放电过程中的动力学控制因素[28]。因此人们把大量的精力放在测量扩散系数上,采用多种方法(GITT、PITT、EIS 等) 对多种电极材料(MCMB、天然石墨、碳纤维等)的扩散系数进行了研究(如表1 所示),发现所得结果随着测量方法、材料的种类、表面粗糙程度、荷电状态的变化而变化[26,29-37],并不能很好地确认锂离子在负极材料中的扩散就是充放电过程中的动力学控制因素,在高倍率充放电时更是如此。因为在高倍率充放电时,锂离子要快速地从电解质溶液迁移到负极材料中,影响因素变得更加复杂,动力学控制因素也难以定论。如Wang[38]在研究聚合物锂离子电池在高倍率(1 C)和低倍率(0.2 C)两种制度下充放电时体积

的变化时,发现体积的变化除随着充电电流大小和充电状态的不同发生变化外,还在开路状态下有一定变化,他们把这种现象归因于锂离子在电极活性物质中扩散慢和电极颗粒的外层结构变化慢上,认为扩散是锂离子电池高倍率充放的控制因素,并提出了高倍率充放电时电极颗粒外层的结构变化和锂离子扩散的模型(如图3 所示)。

而Sawai 等[39]在采用交流阻抗和电位阶跃对不同空隙率石墨材料的高倍率性能研究后提出了不同的看法,认为决定石墨负极快速充放的因素并不是锂离子在固体中的扩散系数,而是石墨电极中的空余体积,即石墨的孔隙率,他们还认为石墨电极的倍率容量受到锂盐在电极中所含电解质溶液传输的限制。因此,电解质和石墨孔隙率的适当选择可以改变石墨的大电流充放电行为。

虽然目前人们对锂离子电池负极的控制因素还存在一定争议,但锂离子在固体中的扩散系数、材料的结构和孔隙率等对锂离子的扩散速度产生影响,从而对负极的高倍率性能产生很大的影响则是不争的事实。

2 正极高倍率充放性能的影响因素

Wu 等[40]在容量为750 mAh 的锂离子电池中加入锂带作为参比电极来分别研究负极和正极在不同倍率充放电过程

中容量的变化,结果表明:在小于1 C 放电制度下容量基本可以达到750 mAh,但在4 C 放电时电池容量只能达到0.2C 放电时的52%,进一步研究发现正极相对于Li+/Li 的电极电位下降很快,这是由于锂离子从电极内部扩散到表面的延迟造成的,即锂离子在电极内部的扩散是影响锂离子电池正极高倍率充放电性能的一个重要因素。最近,Kang 等[41]在研究LiFePO4的高倍率性能时认为锂离子在材料的表面扩散速率是影响高倍率性能的另一个重要因素。因此,与负极材料相似,一切影响锂离子扩散的因素,如正极材料的结构、尺寸、比表面积和电极的膜厚、导电性、空隙率应该对锂离子电池正极的高倍率性能同样产生很大的影响。

正极材料的结构:锂离子电池正极材料一般选用过渡型金属氧化物,常见的有LiCoO2、LiNiO2、LiMnO2、LiMn2O2、LiFePO4和V2O5等。其中LiCoO2、LiNiO2和LiMnO2都是具有二维通道的层状结构,一般认为锂离子在其中的扩散系数比较小,是高倍率充放电的控制因素,而LiMn2O2是立方晶系结构,具有三维通道,有利于锂离子在其中的快速迁移,被认为是适合高倍率充放的电极材料,已经成为高倍率正极材料的研究热点。因此,开发新型有利于锂离子迁移的电极材料是今后锂离子电池高倍率性能提高的关键。

正极材料的颗粒大小和电极膜厚:Liang 等[42]研究了平均粒径在200 nm 的LiCoO2作为锂离子电池正极材料时的电化学性能,发现它在30 C 充放电制度下经过30 次循环可逆容量仍保持在97mAh/g。Chen 等[43]制备出了粒径更小的LiCoO2(小于100 nm),并研究了它在不同倍率下的充放电性能,得到这种材料在50 C 充放时可逆容量是100 mAh/g,10 C 充放时可逆容量是130 mAh/g。Zhang 等[44] 制备了小于40 nm 的Li-(Ni1/3Co1/3Mn1/3)O2,在50 C 和100 C 充放电时容量仍高于100 mAh/g。Patrissi[45]在研究纳米V2O5颗粒的电化学性能时也得出大电流充放时电极的容量和性能与电极活性物质颗粒的大小有很大关系。Dudney[46]用射频磁控溅射法制备出厚度在50 nm 到

4μm 的LiCoO2膜,用其作为电极进行研究,发现无论放电容量还是大电流的循环性能都与电极膜的厚度有一定的关系:电极膜越厚,在大电流下表现出来的比容量越小;越薄,大电流下的循环性能越好。其原因和负极相似。电极的薄膜化虽然提高了锂离子电池的高倍率充放电性能,但其制备条件苛刻、成本较高,目前仍难以实现工业化。

电极的导电性:由于LiCoO2、LiMn2O4和LiFePO4等具有较低的电导率,在制备工作电极时通常需要加入导电剂(炭黑、乙炔黑)来提高其导电性。在高倍率充放电时,导电剂对正极材料性能的影响尤为突出。如Liu 等[47]研究了

导电碳添加剂对LiCoO2和LiMn2O4电化学性能的影响,发现含碳量为2%和5%的复合材料在2 mA/cm2 充电时容量

衰减明显大于含碳量为10%的复合材料。他们采用交流阻抗技术研究了这些复合材料电极在不同荷电状态时阻抗谱图的变化,发现含碳量为10%的复合材料电极的高频区半圆随着含碳量的降低而增加,这表明电极的接触电阻随着含碳量的降低而增加。即:含碳量为10%的复合材料中氧化物和碳材料具有良好的接触而含碳量为2%的复合材料则不然。实验表明:在高的充电倍率(2 mA/cm2)下,含碳量为5%~10%的LiCoO2和含碳量为2%~5%的LiMn2O4具有较好的能量保持能力。Hibino 等[48]制备了无定形LiTiO2和乙炔黑的复合材料,在10A/g 电流密度下容量可以保持在120mAh/g。刘素琴等[49]制备的LiFePO4/C 复合材料在1 C 下经过30 次循环,容量仍保持在119 mAh/g,衰

减仅为1.65%。他们把好的高倍率性能归结于过量碳均匀分布在活性物质颗粒之间,能有效降低接触电阻。

通过上文可以看出,具有良好高倍率性能的正极材料既要具有良好的导电性又要具有短的锂离子扩散路径。基于以上两点,Kawaoka 等[50]选用多孔碳做为锰氧化物的载体来制备复合材料并研究其高倍率性能。当电流密度为1 A/g 和10 A/g 时,该复合材料的起始放电容量分别为126 mAh/g 和99.9 mAh/g。他们把好的高倍率性能归结于这样多孔的复合材料可以增加活性物质/C 和

活性物质/ 电解质界面,从而减小了锂离子的扩散路径。

3 电解质的影响因素

在充放电过程中,电池内阻的大小不仅决定着电池过电位的大小,还影响整个电池温度的升高。对于锂离子电池而言,当温度升高到一定程度,不仅会使电解质发生分解,还会破坏电极表面SEI膜的结构,影响密闭锂离子电池的循环和安全性能。目前,锂离子电池所用的电解质都是有机电解质,无论在传导能力方面还是在稳定性方面都与氢镍、镉镍电池所用的水溶液电解质有一定差距,成为阻碍锂离子电池在大型电动设备上使用的一个重要因素。3.1 传导能力

目前锂离子电池所用有机电解质,不管是液体电解质还是固体电解质,电导率都比较低(液体电解质的电导率一般在10-2~10-3 S/cm,固体电解质则在10-3~10-4 S/cm,而氢镍、镉镍电池所用的6 mol/L KOH 水溶液电解质的电导率为0.5 S/cm,铅酸电池用的5% H2SO4电解质的电导率为0.8 S/cm),电解质的电阻成为整个电池电阻的重要组成部分,对锂离子电池高倍率性能的影响不容忽视。如Wang[51]研究了EC+DMC/1 mol/LLiTFSI、AN/1 mol/L LiTFSI 和MPN/1mol/L LiTFSI 三种电解质对Li4Ti5O12-Li-CoO2锂离子电池高倍率性能的影响,发现在1 C 充放时电池的比容量都在155mAh/g 左右,电解质的影响不大;但在大于1 C 充放时,影响效果则非常明显:在EC+DMC/1 mol/L LiTFSI 体系中,10 C充放时,电池的容量下降为1 C 充放容量的一半,而在AN/1 mol/L LiTFSI 和MPN/1 mol/L LiTFSI 体系中,20 C 充放时,容量仍保持1 C 充放容量的70%以上,其原因主要在于后两种电解质的电荷传递电阻较低。AN/1 mol/L LiTFSI 比EC+DMC/1 mol/L LiTFSI 电解质的传导能力高是因为AN 比

EC+DMC 溶剂的黏度低;而EC+DMC 和MPN 溶剂的黏度相似,MPN/1 mol/L LiTFSI 比EC+DMC/1 mol/L LiTFSI 电解质的传导能力高则是因为在MPN/1

mol/L LiTFSI中锂离子去溶剂化过程比较快。研发具有高传导能力的电解质已成为提高锂离子电池高倍率性能不可缺少的环节。

3.2 稳定性

锂离子电池在充放电过程中,电解质在电极表面的化学稳定性以及本身的热稳定性对其循环性能和安全性能产生重大影响。

化学稳定性:电解质的化学稳定性在正极上表现得比较突出,因为部分电解质会在正极表面被氧化分解,如Jang等[52] 研究了不同电解质在正极材料LixMn2O4上的稳定性,得出含有碳酸烷基酯类的溶剂(如EC、PC、DEC 等) 和含

有LiPF6、LiBF6、LiAsF6的电解质对正极较稳定,而溶剂THF 和DME 则易氧化,并且含有锂盐LiClO4和LiCF3SO3

时氧化趋于严重。与之相似,Guyomard 等[53]也得出在55 ℃时,电解质DMC+EC+LiPF6对Li1+xMn2O4正极具有较高的稳定性,抗氧化电压达5 V。由

于锂离子电池在高倍率充放电时,更容易过充过放,选择在较宽电化学窗口中具有较高化学稳定性的电解质已成为高功率锂离子电池用电解质的一个基本要求。

热稳定性:电解质的热稳定性对锂离子电池的安全和循环性能影响比较大,因为电解质热分解时产生很多气体,一方面对其安全构成隐患,另一方面有些气体对负极表面的SEI 膜产生破坏作用,影响其循环性能。如Lee[54]等用交流阻抗和DSC 等手段研究了在含有不同锂盐的电解液(LiPF6/EC+DEC 和

Li-ClO4/EC+DEC) 中SFG44 石墨表面所形成SEI 膜的热稳定性,发现

Li-ClO4/EC+DEC 中形成的SEI 膜具有比LiPF6/EC +DECSEI 膜更高的稳定性,原因在于含LiPF6的电解液在70 ℃分解时所形成的PF6气体对SEI 膜有破坏作用。

因此,选择具有较高的传导能力、化学稳定性和热稳定性且与电极匹配的电解质是今后开发高功率锂离子电池用电解质的发展方向。

4 结论

锂离子电池作为新型化学电源的一种,具有比传统电源更多的优点,被广泛研究用于大型电动设备,但当高倍率充放时,容量衰减较快,安全性能较差。影响其高倍率充放电性能的因素主要来源于电极和电解质。电极材料的结构、尺寸、电极表面电阻等是影响电极高倍率性能的重要因素,因为它们直接或间接地影响着电极的电阻,影响着电极的充放电程度;传导能力和稳定性是影响电解质的主要因素,因为它们影响着锂离子电池的嵌锂程度、循环性能和安全性

能。因此,开发利于锂离子快速扩散的新型电极材料和具有高传导能力与稳定性的电解质是今后提高锂离子电池高倍率性能的关键。

软包装锂离子电池的高倍率放电性能

软包装锂离子电池的高倍率放电性能 ■<1.河南师范大学化学与环境科学学院常照荣吕豪杰 ■<2.新乡学院化学与环境工程学院付小宁 ■<3.河南新飞科隆电源有限公司尹正中 摘 要:以额定容量为1100mAh的063465型软包装锂离子电池为研究对象,研究了电池结构,正极活性物质与导电剂、粘结剂的配比,极板的面密度、压实密度等因素对锂离子电池高倍率放电性能的影响。制备的实验电池以15C大电流放电,电压平台为3.5V,循环220次(15C放电),容量保持率为87.0%。 关键词:软包装; 锂离子电池; 高倍率放电 锂离子电池具有能量密度高、循环寿命长、开路电压高及污染小等优点[1],已用于小电流放电的移动通讯、笔记本和数码相机等领域,但高倍率放电性能有待提高[2-4]。程建聪等[5]通过提高导电剂含量,采用薄正极和中间相炭微球(MCMB),并使用功能电解液,改善了电池的大电流性能;V.Subramanian 等[6]以气相法烧制的纳米纤维碳为负极制备的锂离子电池,可进行10C放电;M.Okuho等[7]通过水热法制备纳米级(17 nm)的LiCoO2,l00C放电容量达到1C时的65%,可满足电动汽车等大功率放电要求,但是制备工艺苛刻。 本文作者采用工业化的正负极材料,通过优化电池结构,调整配比参数,制备软包装电池,并测试了相关性能。 1 实验 1.1 极板制备 将正极活性物质LiCoO2(北京产,≥99.4%)、导电炭黑SP(Timcal公司产,≥99.75%)和导电石墨KS6(Timcal公司产,≥99.4%)按不同的比例混合后,以PVDF(美国产,≥99.9%)作为粘结剂,配制成浆料;将负极活性材料人工石墨(深圳产,≥99.9%)、导电炭黑SP、分散剂SBR(河南产,≥99.0%)和粘结剂CMC(德国产,≥99.9%)按质量比90.5:1.5:4:4混合后,配制成浆料。用涂布机将正极浆料均匀涂覆于铝箔(江苏产,≥99.8%)上,负极浆料均匀涂覆于铜箔(湖南产,≥99.8%)上,在80℃下真空(-0.1 MPa)干燥12h后,辊压,制成正、负极片。电解液为1mol/L LiPF6/ DMC+EMC+EC(体积比1:1:1,张家港产),隔膜为0.025 mm厚的聚丙烯微孔膜(日本产)。 1.2 测试仪器 采用BS-8802二次电池检测装置(广州产)对电池进行化成;BS-V高电压大电流动力电池检测设备(广州产)进行倍率测试;BS-VR3内阻测试仪(广州产)检测内阻。 1.3 电极及电池设计 以额定容量为1100mAh的063465型液态软包装锂离子电池为研究对象。采用真空热封机封口,经过防短路处理、干燥,然后注入电解液,经化成分容后,测试电池的性能。 实验电池的参数见表1。 2结果与讨论 2.1 电池结构的影响 电池技术 < 2008年9月73

高容量、高倍率充放电铁基负极材料2

动力用高容量、高功率铁基负极材料制备和研发 项目介绍 为了解决新能源汽车在续航里程和快速充电上的问题,动力电池的能量密度和高倍率充电性能必须得到提高,而作为动力电池重要组成部分负极材料的能量密度和高倍率充放电性能也必须要满足要求。现在市场常用的负极材料主要有碳类材料、钛酸锂和硅碳材料,碳类材料又分为石墨类负极材料、软碳、硬碳。碳类负极材料中的石墨类负极材料受理论容量(375 mAh/g),和快速充放电过程产生锂枝晶的问题也限制了它在动力电池方面的应用。软碳和硬碳相对石墨类负极材料虽然在能量密度和快充方面都有一定的优势,但是一方面制备工艺复杂,成本高,另一方面在高倍率充电性能方面仍不能满足动力电池的需求(20C下充电容量为140 mAh/g)。钛酸锂负极材料具有快充、安全和长寿命有点,但是能量密度低(理论容量只有175 mAh/g),价格高,且在充放电循环过程中易产生胀气问题,使其在动力电池上的应用受到了极大地限制。作为以高容量(0.1C下,600 mAh/g左右)为特色的硅碳负极材料由于体积效应(膨胀率约为300%)的影响,导致硅负极材料低的可逆容量、差的循环稳定性和倍率性能。所以我们需要迫切开发一种低成本、高能量密度、可快速充电的负极材料来满足新能源汽车动力电池的需求。 本课题现在开发出一种铁基负极材料,制备的原材料丰富,过程工艺成本低,能量密度和高倍率充放电比现在市场已有的负极材料都要高。通过简单的液相法制备前驱体,把前驱体在较低温度下进行烧结。该工艺过程简单,易于实现工业化生产。原材料上我们选择资源比较丰富铁盐和镍盐,有机溶剂也是现在锂电行业常用的有机溶剂,所需的原料均不需要自己二次加工且原材料生产厂家选择多。所需要的生产设备和生产工艺均可参考和使用三元极材料的生产。 项目已有工作 已完成实验室的小批量的制备工艺和申请一项发明专利。该铁基负极材料在纽扣半电池测试中,0.2C下,首次放电比容量达到730 mAh/g,首次充电比容量达到573 mAh/g,首次库伦效率78.4%,在24 C倍率下,其充电克容量和放电克容量分别为164 mAh/g和171.3 mAh/g。该比容量和高倍率性能在都要优于市场已有的负极材料。 图1、铁基负极材料制备实验流程图

锂电池充电保护方案计划

方案一:BP2971 电源管理芯片 特点 ·输入电压区间(Pack+):Vss-0.3V~12V ·FET 驱动 CHG和DSG FET驱动输出 ·监测项 过充监测 过放监测 充电过流监测 放电过流监测 短路监测 ·零充电电压,当无电池插入 ·工作温度区间:Ta= -40~85℃ ·封装形式: 6引脚DSE(1.50mm 1.50mm 0.75mm) 应用 ·笔记本电脑 ·手机 ·便携式设备 绝对最大额定值 ·输入电源电压:-4.5V~7V

·最大工作放电电流:7A ·最大充电电流:4.5A ·过充保护电压(OVP):4.275V ·过充压延迟:1.2s ·过充保护电压(释放值):4.175V ·过放保护电压(UVP):2.8V ·过放压延迟:150ms ·过放保护电压(释放值):2.9V ·充电过流电压(OCC):-70mV ·充电过流延迟:9ms ·放电过流电压(OCD):100mV ·放电过流延迟:18ms ·负载短路电压:500mV ·负载短路监测延迟:250us ·负载短路电压(释放值):1V 典型应用及原理图

图1:BP2971应用原理图 引脚功能 NC(引脚1):无用引脚。 COUT(引脚2):充电FET驱动。此引脚从高电平变为低电平,当过充电压被V-引脚所监测到 DOUT(引脚3):放电FET驱动。此引脚从高电平变为低电平,当过放电压被V-引脚所监测到 VSS (引脚4):负电池链接端。此引脚用于电池负极的接地参考电压 BAT(引脚5):正电池连接端。将电池的正端连接到此管脚。并用0.1uF的输入电容接地。 V-(引脚6):电压监测点。此引脚用于监测故障电压,例如过冲,过放,过流

影响锂离子电池高倍率充放电性能的因素

影响锂离子电池高倍率充放电性能的因素 由技术编辑archive1 于星期四, 2014-10-16 13:51 发表 影响锂离子电池高倍率充放性能的因素很多,包括电池设计、电极组装、电极材料的结构、尺寸、电极表面电阻以及电解质的传导能力和稳定性等。为了探究其原因和机理,本文主要从正极、负极和电解质材料三方面对它们在高倍率充放电时各自的影响因素进行了综述和分析,并讨论了利于高倍率充放的电极和电解质材料的发展方向。 锂离子电池具有工作电压高、比能量大、无记忆效应且对环境友好等优点,广泛应用于手机、相机、笔记本电脑等小 型电器的同时,在电动车、卫星、战斗机等大型电动设备方面的应用也备受青睐[1-2]。美国Lawrence LiVermore 国家实验室早在1993 年就对日本SONY 公司的20500 型锂离子电池进行了全面的技术分析,考察其用于卫星的可能 性[3];我国中科院物理所也早在1994 年承担福特基金项目时就开始了动力型锂离子电池的研发[4];国内外一些知名企业进行了动力型锂离子电池的研制和生产,如德国瓦尔塔公司研发的方型锂离子电池,容量为60 Ah,比能量为115 Wh/kg,日本索尼公司生产的高功率型锂离子电池80%DOD 的比功率高达800 W/kg [5],国内深圳的比亚迪、雷天、天津力神、河南金龙、湖南晶鑫等公司也研制生产出容量在10 Ah 以上的动力型锂离子电池。 尽管在全世界科技和工业界的共同努力下,动力型锂离子电池的研发和生产已取得了长足进展,并逐步走上了实用的轨道,但其价格较高,而且循环性能、安全性能及其高倍率充放电性能都有待于进一步提高(如目前锂离子电池用于电动车时,其动力仍不能与传统燃油机的动力相比,这影响着电动车的行程、最高时速、加速性能及爬坡性能等)。为了动力型锂离子电池更快的发展,有必要对其高倍率性能的影响因素进行系统研究和分析,找出根本原因。

锂离子电池工作原理

锂离子电池工作原理 正极反应:放电时锂离子嵌入,充电时锂离子脱嵌。 负极反应:放电时锂离子脱插,充电时锂离子插入。 电池总反应 以炭材料为负极,以含锂的化合物作正极的锂电池,在充放电过程中,没有金属锂存在,只有锂离子,这就是锂离子电池。当对电池进行充电时,电池的正极上有锂离子生成,生成的锂离子经过电解液运动到负极。而作为负极的碳呈层状结构,它有很多微孔,达到负极的锂离子就嵌入到碳层的微孔中,嵌入的锂离子越多,充电容量越高。同样,当对电池进行放电时(即我们使用电池的过程),嵌在负极碳层中的锂离子脱出,又运动回正极。回正极的锂离子越多,放电容量越高。我们通常所说的电池容量指的就是放电容量。在Li-ion的充放电过程中,锂离子处于从正极→负极→正极的运动状态。Li-ion Batteries就像一把摇椅,摇椅的两端为电池的两极,而锂离子就象运动员一样在摇椅来回奔跑。所以Li-ion Batteries又叫摇椅式电池。 一般锂电池充电电流设定在0.2C至1C之间,电流越大,充电越快,同时电池发热也越大。而且,过大的电流充电,容量不够满,因为电池内部的电化学反应需要时间。就跟倒啤酒一样,倒太快的话会产生泡沫,反而不满。 正极 正极材料:可选正极材料很多,目前主流产品多采用锂铁磷酸盐。 正极反应:放电时锂离子嵌入,充电时锂离子脱嵌。 充电时:LiFePO?→ Li1-xFePO? + xLi + xe

放电时:Li1-xFePO?+ xLi + xe →LiFePO? 负极 负极材料:多采用石墨。新的研究发现钛酸盐可能是更好的材料。 负极反应:放电时锂离子脱插,充电时锂离子插入。 充电时:xLi + xe + 6C →LixC6 放电时:LixC6 → xLi + xe + 6C 锂离子电池是一种二次电池(充电电池),它主要依靠锂离子在正极和负极之间移动来工作。在充放电过程中,Li+ 在两个电极之间往返嵌入和脱嵌:充电池时,Li+从正极脱嵌,经过电解质嵌入负极,负极处于富锂状态;放电时则相反。电池一般采用含有锂元素的材料作为电极,是现代高性能电池的代表。 组成部分 钢壳/铝壳/圆柱/软包装系列: (1)正极——活性物质一般为锰酸锂或者钴酸锂,镍钴锰酸锂材料,电动自行车则普遍用镍钴锰酸锂(俗称三元)或者三元+少量锰酸锂,纯的锰酸锂和磷酸铁锂则由于体积大、性能不好或成本高而逐渐淡出。导电集流体使用厚度10--20微米的电解铝箔。 (2)隔膜——一种经特殊成型的高分子薄膜,薄膜有微孔结构,可以让锂离子自由通过,而电子不能通过。 (3)负极——活性物质为石墨,或近似石墨结构的碳,导电集流体使用厚度7-15微米的电解铜箔。

锂电池的充放电系统

本科毕业论文(设计、创作) 题目:锂电池的充放电系统 学生姓名:学号:1002149 所在院系:专业:电气工程及其自动化入学时间:2010 年9 月导师姓名:职称/学位:副教授/硕士导师所在单位: 完成时间:2014 年 5 月安徽三联学院教务处制

锂电池的充放电系统 摘要:随着时代的发展,便携化设备应用的越来越广泛,而锂电池则成为便携化设备的主要的电源支持。锂电池与其他二次电池不同的是更需更安全高效的充电控制要求,因为这些特点让锂电池在实际的使用中有很多不便。因此,基于特征的锂离子电池的充电和放电特性,锂离子电池充电的充电过程和控制单元的的发展趋势,本文设计出了一款智能充放电系统。本文设计的控制单元大部分是由基于MAX1898的充电电路和AT89C51的控制单元构造而成。以LM7805 为MAX1898与AT89C51提供电源支持。本文还提供了用于锂离子电池的充电和放电控制系统的程序框图和功能。 锂离子充电电池和锂离子电池,微控制器,发电,转换和电压隔离光耦部分,放电特性充电芯片,锂离子电池充电电路设计,锂离子电池的程序设计充电作为主要内容本文。 关键词:单片机、MAX1898、AT89C51

Li-ion battery charge and discharge system Abstract:With the progress of the times, portable device applications more widely, and lithium battery becomes more portable equipment's main power supply support. Lithium secondary batteries with other difference is safer and more efficient charging needs control requirements , because these features make lithium batteries have a lot of inconvenience in actual use . Therefore, The body on the characteristics of lithium ion rechargeable electric discharge pool,the development trend of lithium-ion battery charging process and control unit , the paper designed an intelligent charging and discharging system . This design of the control unit is constructed from long MAX1898 -based charging circuit and a control unit from AT89C51 . Provide power supply support for LM7805 MAX1898 with AT89C51. This article also provides a block diagram and function for lithium-ion battery charge and discharge control system. Lithium- ion battery characteristics , charge and discharge characteristics of lithium -ion batteries , the introduction of lithium-ion battery charging circuit design, rechargeable lithium-ion battery is designed to generate part of the program the microcontroller parts, power supply , voltage conversion and opto-isolated part of the charging chip , etc. as the main content of the paper . Key words: SCM,STC89c51, MAX1898

锂电池保护电路设计方案

锂电池保护电路设计方案 锂电池材料构成及性能探析 首先我们来了解一下锂电池的材料构成,锂离子电池的性能主要取决于所用电池内部材料的结构和性能。这些电池内部材料包括负极材料、电解质、隔膜和正极材料等。其中正、负极材料的选择和质量直接决定锂离子电池的性能与价格。因此廉价、高性能的正、负极材料的研究一直是锂离子电池行业发展的重点。 负极材料一般选用碳材料,目前的发展比较成熟。而正极材料的开发已经成为制约锂离子电池性能进一步提高、价格进一步降低的重要因素。在目前的商业化生产的锂离子电池中,正极材料的成本大约占整个电池成本的40%左右,正极材料价格的降低直接决定着锂离子电池价 格的降低。对锂离子动力电池尤其如此。比如一块手机用的小型锂离子电池大约只需要5克左右的正极材料,而驱动一辆公共汽车用的锂离子动力电池可能需要高达500千克的正极材料。 尽管从理论上能够用作锂离子电池正极材料种类很多,常见的正极材料主要成分为LiCoO2,充电时,加在电池两极的电势迫使正极的化合物释出锂离子,嵌入负极分子排列呈片层结构的碳中。放电时,锂离子则从片层结构的碳中析出,重新和正极的化合物结合。锂离子的移动产生了电流。这就是锂电池工作的原理。 锂电池充放电管理设计 锂电池充电时,加在电池两极的电势迫使正极的化合物释出锂离子,嵌入负极分子排列呈片层结构的碳中。放电时,锂离子则从片层结构的碳中析出,重新和正极的化合物结合。锂离子的移动产生了电流。原理虽然很简单,然而在实际的工业生产中,需要考虑的实际问题要多得多:正极的材料需要添加剂来保持多次充放的活性,负极的材料需要在分子结构级去设计以容纳更多的锂离子;填充在正负极之间的电解液,除了保持稳定,还需要具有良好导电性,减 小电池内阻。 虽然锂离子电池有以上所说的种种优点,但它对保护电路的要求比较高,在使用过程中应严格避免出现过充电、过放电现象,放电电流也不宜过大,一般而言,放电速率不应大于0.2C。锂电池的充电过程如图所示。在一个充电周期内,锂离子电池在充电开始之前需要检测电池的电压和温度,判断是否可充。如果电池电压或温度超出制造商允许的范围,则禁止充电。允许充电的电压范围是:每节电池2.5V~4.2V。

锂离子电池工作原理

锂离子电池工作原理

正极反应:放电时锂离子嵌入,充电时锂离子脱嵌。 负极反应:放电时锂离子脱插,充电时锂离子插入。 电池总反应 以炭材料为负极,以含锂的化合物作正极的锂电池,在充放电过程中,没有金属锂存在,只有锂离子,这就是锂离子电池。当对电池进行充电时,电池的正极上有锂离子生成,生成的锂离子经过电解液运动到负极。而作为负极的碳呈层状结构,它有很多微孔,达到负极的锂离子就嵌入到碳层的微孔中,嵌入的锂离子越多,充电容量越高。同样,当对电池进行放电时(即我们使用电池的过程),嵌在负极碳层中的锂离子脱出,又运动回正极。回正极的锂离子越多,放电容量越高。我们通常所说的电池容量指的就是放电容量。在Li-ion的充放电过程中,锂离子处于从正极→负极→正极的运动状态。Li-ion Batteries就像一把摇椅,摇椅的两端为电池的两极,而锂离子就象运动员一样在摇椅来回奔跑。所以Li-ion Batteries又叫摇椅式电池。 一般锂电池充电电流设定在0.2C至1C之间,电流越大,充电越

快,同时电池发热也越大。而且,过大的电流充电,容量不够满,因为电池内部的电化学反应需要时间。就跟倒啤酒一样,倒太快的话会产生泡沫,反而不满。 正极 正极材料:可选正极材料很多,目前主流产品多采用锂铁磷酸盐。 正极反应:放电时锂离子嵌入,充电时锂离子脱嵌。 充电时:LiFePO?→ Li1-xFePO? + xLi + xe 放电时:Li1-xFePO?+ xLi + xe →LiFePO? 负极 负极材料:多采用石墨。新的研究发现钛酸盐可能是更好的材料。 负极反应:放电时锂离子脱插,充电时锂离子插入。 充电时:xLi + xe + 6C →LixC6 放电时:LixC6 → xLi + xe + 6C

锂离子电池性能测试

华南师范大学实验报告 学生姓名:蓝中舜学号:20120010027 专业:新能源材料与器件勷勤创新班年级、班级:12新能源 课程名称:化学电源实验 实验项目:锂离子电池性能测试 实验类型:验证设计综合实验时间:2014年5月5日-17日 实验指导老师:马国正组员:黄日权郭金海 一、实验目的 1.熟悉、掌握锂离子电池的结构及充放电原理。 2.熟悉、掌握锂离子正极材料的制备过程及工艺。 3.熟悉、掌握锂离子电池的封装工艺及模拟电池测试方法。 二、实验原理 锂离子电池是指正负极为Li+嵌入化合物的二次电池。正极通常采用锂过渡金属氧化物 Li x CoO2,Li x NiO2或Li x Mn2O4,负极采用锂-碳层间化合物Li x C6。电解质为溶有锂盐LiPF6,LiAsF6,LiClO4等的有机溶液。溶剂主要有碳酸乙烯酯(EC)、碳酸丙烯酯(PC)、碳酸二甲酯(DMC)和氯碳酸酯(CIMC)等。在充放电过程中,Li+在两极间往返嵌入和脱出,被形象的称之为“摇椅电池”。 锂离子电池充放电原理和结构示意图如下。 锂离子电池的化学表达式为: -)Cn|LiPF6-EC+DMC|LiM x O y(+ 其电池反应为: LiM x O y+nC Li1-x M x O y+Li x C n 本实验以高温固相法制备的尖晶石型LiMn2O4为正极材料,纯锂片为负极,制备扣式锂离子模拟电池,并对制备的扣式半电池进行充放电测试。 三、仪器与试剂 电化学工作站,蓝点测试系统、手套箱、电子天平、真空干燥箱、切片机、对辊机、鼓风干燥机 LiMn2O4、乙炔黑、PVDF、无水乙醇、电解液(1M LiPF6溶与体积比EC:DEC:EMC=1:1:1

锂离子电池高倍率放电性能研究

图1 双极耳电池电极片示意图 Fig.1Schematicdiagramofelectrodepatch 收稿日期:2005-08-21 作者简介:唐致远(1946—),男,安徽省人,教授,博士生导师,主要研究方向为应用电化学。 Biography:TANGZhi-yuan(1946—),male,professor. 锂离子电池高倍率放电性能研究 唐致远1,谭才渊1,陈玉红1,崔燕1,薛建军2 (1.天津大学化工学院应用化学系,天津300072;2.广州鹏辉电池有限公司,广东广州511483) 摘要:对锂离子电池高倍率放电性能进行了研究。发现电池设计对锂离子电池放电性能具有较大的影响,设计了一种新型的锂离子电池的电极。研究了电极活性物质与导电剂、粘结剂的配比,电极片的面密度、压实密度对锂离子电池高倍率放电性能的影响,通过实验研究得到了一种高倍率放电性能良好的锂离子电池,该电池放电容量高,放电平台平滑,平台电压较高,循环性能较好,且电池放电时表面温度不高。分析锂离子电池高倍率放电循环曲线时发现了放电容量变化的一个规律,给出了针对锂离子电池高倍率放电的一种充、放电制度。关键词:锂离子电池;高倍率;放电;极耳中图分类号: TM912.9文献标识码:A 文章编号:1002-087X(2006)05-05 Researchonhighratedischargeforlithiumionbattery TANGZhi-yuan1,TANCai-yuan1,CHENYu-hong1,CUIYan1,XUEJian-jun2 (1.DepartmentofAppliedChemistry,SchoolofChemicalEngineeringandTechnologyTianjinUniversity,Tianjin300072,China; 2.GreatPowerBatteryCo.Ltd,GuangzhouGuangdong511483,China) Abstract:Thispaperresearchedonhighratedischargeperformanceinlithiumionbattery.Batterydesigninfluencedon thehighratedischargeperformancesincerely,thenanewdesignaboutlithiumionbatterycameforth.Theelectrodematerialingredient,surfacedensityandthicknessofelectrodewereresearched.Thispaperfoundafavorablehighratedischargeperformancelithi-umionbattery,whichhadhighdischargecapacity,flatvoltage,preferablecycleperformanceandlowtemperaturewhendis-charging.Aruleondischargecapacitywasfound,andachargeanddischargesystemforhighratedischargelithiumionbatterywasrecommended. Keywords:lithiumionbattery;highrate;discharge;lead 当前,锂离子电池行业发展迅速,随着电子产品的发展,对锂离子电池也提出了更高的要求。电动汽车市场展现出蓬勃的发展势头[1 ̄4],需要放电电流较大、功率较高的锂离子电池,许多小型电器也要求能够高倍率放电,小电流放电锂离子电池已不能完全满足市场的需求。虽然,氢镍电池高倍率放电研究发展较早,但是其电压较低,质量比容量及体积比容量与锂离子电池相比均较低,因此,在一些对电池电压、质量、体积等要求严格的电器中,都对锂离子电池寄予厚望。 1实验 1.1电极制备 正极活性物质LiCoO2,与鳞片石墨、碳黑、乙炔黑混合,以 聚偏氟乙烯(PVDF)作为粘结剂配制成浆料。负极活性材料为石墨,添加乙炔黑,以羧甲基纤维素钠(CMC)为粘结剂,混合制成浆料。将正、负极浆料分别涂布于铝箔、铜箔上,然后干燥辊压制成正、负极片。电解液为1.0mol/LLiPF6/碳酸乙烯酯(EC)-碳酸二甲酯(DMC)(1∶1)(广州市天赐高新材料科技有限公司),隔膜为聚丙烯微孔膜(Celgard2400),厚度为0.025mm。 1.2电极及电池设计 以063465软包装液态锂离子电池为研究对象,制作两类电池:(1)正、负极片分别焊接一个极耳(本文称为单极耳电池)。(2)正、负极片分别焊接两个极耳(本文称为双极耳电池)。(如图1所示)。单极耳和双极耳电池的封口处侧视图如图2所示。 a.极耳;b.极耳胶 A.极耳胶1;a.极耳1; B.极耳胶2;b.极耳2 图2两种设计电池封口处侧视图 Fig.2Sideviewofbatteryseal

锂电池组保护板均衡充电基本工作原理

成组锂电池串联充电时,应保证每节电池均衡充电,否则使用过程中会影响整组电池的性能和寿命。常用的均衡充电技术有恒定分流电阻均衡充电、通断分流电阻均衡充电、平均电池电压均衡充电、开关电容均衡充电、降压型变换器均衡充电、电感均衡充电等。而现有的单节锂电池保护芯片均不含均衡充电控制功能;多节锂电池保护芯片均衡充电控制功能需要外接CPU,通过和保护芯片的串行通讯(如I2C总线)来实现,加大了保护电路的复杂程度和设计难度、降低了系统的效率和可靠性、增加了功耗。 本文针对动力锂电池成组使用,各节锂电池均要求充电过电压、放电欠电压、过流、短路的保护,充电过程中要实现整组电池均衡充电的问题,设计了采用单节锂电池保护芯片对任意串联数的成组锂电池进行保护的含均衡充电功能的电池组保护板。仿真结果和工业生产应用证明,该保护板保护功能完善,工作稳定,性价比高,均衡充电误差小于50mV。 锂电池组保护板均衡充电基本工作原理 采用单节锂电池保护芯片设计的具备均衡充电能力的锂电池组保护板示意图如图1所示。其中:1为单节锂离子电池;2为充电过电压分流放电支路电阻;3为分流放电支路控制用开关器件;4为过流检测保护电阻;5为省略的锂电池保护芯片及电路连接部分;6为单节锂电池保护芯片(一般包括充电控制引脚CO,放电控制引脚DO,放电过电流及短路检测引脚VM,电池正端VDD,电池负端VSS等);7为充电过电压保护信号经光耦隔离后形成并联关系驱动主电路中充电控制用MOS管栅极;8为放电欠电压、过流、短路保护信号经光耦隔离后形成串联关系驱动主电路中放电控制用MOS管栅极;9为充电控制开关器件;10为放电控制开关器件;11为控制电路;12为主电路;13为分流放电支路。单节锂电池保护芯片数目依据锂电池组电池数目确定,串联使用,分别对所对应单节锂电池的充放电、过流、短路状态进行保护。该系统在充电保护的同时,通过保护芯片控制分流放电支路开关器件的通断实现均衡充电,该方案有别于传统的在充电器端实现均衡充电的做法,降低了锂电池组充电器设计应用的成本。

锂离子电池充放电安全检测设计

锂离子电池充放电安全检测设计 手机的锂离子电池充电安全性日益受到消费者重视,因此充电器制造商在设计产品时,须掌握锂离子电池的相关规格和特性,并使用具备完善电池检测及保护功能的充电芯片,以降低过电流、过电压或过温等状况所造成的危险。 随着科技进步、生活质量提升,电子产品的踪迹到处可见,其中又以手机为人类生活中不可或缺的必需品。不论是早期黑金刚手机或现今功能强大的智能手机,皆需要电源才能运作。 早期手机的电池主要有二种,一是镍氢、镍镉电池,二是锂离子电池,但现在使用镍氢、镍镉电池来做为电源的手机,已经是非常的少见,绝大部分都是使用锂离子电池,尤其消费者希望手机待机时间更长,且体积要更小,所以镍氢、镍镉电池已经慢慢不能符合消费者的期望而被淘汰。虽然镍氢、镍镉电池在价格以及替代电池取得的便利性优于锂离子电池,在其他电子产品上仍旧可看到镍氢、镍镉电池的踪迹;但是,在体积、重量及容量方面,镍氢、镍镉电池皆不如锂离子电池,所以现今标榜着轻薄短小的电子产品,几乎都是使用锂离子电池。 智能型手机因其功能强大、屏幕耗电量大,更是需要电池容量大及电力更耐久的锂离子电池。当手机电池电量不足时,使用者通常会以充电器或搭配一组移动电源随时对电池进行充电。 体积/容量兼具锂离子电池为电子产品首选 充电电池依其材质的不同可分为四类:铅酸电池、镍镉电池、镍氢电池和锂离子电池。

表1 充电电池比较表 由表1优缺点看来,镍镉、镍氢及锂离子电池较适合使用在电子产品上;而锂离子电池无论是在体积、重量及容量(电子产品的使用时间)较优于镍镉、镍氢电池,也无记忆效应的问题,所以锂离子电池在电子产品使用上似乎方便许多。 延长使用寿命锂离子电池充/放电压成关键 一般来说,锂离子电池会有电性安全的范围限制。由于锂离子电池的特性,当电池电压在充电时上升到最高设定电压后,要立即停止充电,避免电池因过充电造成电池损毁而产生危险;电池供电(放电)时,电池电压如果降至最低设定电压以下便要停止放电,避免因过放电而降低使用寿命。 此外,为确保电池使用上的安全,锂离子电池还必须要加装短路保护,以避免发生危险;即使大多数的锂离子电池都有加装保护电路,然而在选择优质的充电器或移动电源时,这仍然是一项重要的考量因素。

磷酸铁锂电池地放电特性及寿命

磷酸铁锂电池(以下简称锂铁电池)作为铁电池的一种,一直受到业界朋友的广泛关注(也有人说锂铁电池其实就是锂离子电池的一种)。就铁电池而言,它可以分为高铁电池和锂铁电池,今天我们以型号为STL18650的锂铁电池为例,来具体说明一下锂铁的电池的放电特性及寿命。 STL18650的锂铁电池(容量为1100mAh)在不同的放电率时其放电特性如图2所示。最小的放电率为0.5C,最大的放电率为10C,五种不同的放电率形成一组放电曲线。由图1中可看出,不管哪一种放电率,其放电过程中电压是很平坦的(即放电电压平稳,基本保持不变),只有快到终止放电电压时,曲线才向下弯曲(放电量达到800mAh以后才出现向下弯曲)。在0.5~10C的放电率范围内,输出电压大部分在2.7~3.2V范围内变化。这说明该电池有很好的放电特性。 图1 STL18650的放电特性 容量为1000mAh的STL18650在不同的温度条件下(从-20~+40℃)的放电曲线如图2所示。如果在23℃时放电容量为100%,则在0℃时的放电容量降为78%,而在-20℃时降到65%,在+40℃放电时其放电容量略大于100%。 从图3中可看出,STL18650锂铁电池可以在-20℃下工作,但输出能量要降低35%左右。 图2 STL18650在多温度条件下的放电曲线 STL18650的充放电循环寿命曲线如图4所示。其充放电循环的条件是:以1C充电率充电,以2C放电率放电,历经570次充放电循环。从图3的特性曲线可看出,在经过570次充放电循环,其放电容量未变,说明该电池有很高的寿命。

图3 STL18650的充放电循环寿命曲线 过放电到零电压试验 采用STL18650(1100mAh)的锂铁动力电池做过放电到零电压试验。试验条件:用0.5C充电率将1100mAh的STL18650电池充满,然后用1.0C放电率放电到电池电压为0C。再将放到0V的电池分两组:一组存放7天,另一组存放30天;存放到期后再用0.5C充电率充满,然后用1.0C放电。最后比较两种零电压存放期不同的差别。 试验的结果是,零电压存放7天后电池无泄漏,性能良好,容量为100%;存放30天后,无泄漏、性能良好,容量为98%;存放30天后的电池再做3次充放电循环,容量又恢复到100%。 这试验说明该电池即使出现过放电(甚至到0V),并存放一定时间,电池也不泄漏、损坏。这是其他种类锂离子电池不具有的特性。

如何提高锂离子电池的倍 率性能

如何提高锂离子电池的倍率性能 1. 磷酸铁锂是最近炙手的热门,有做好倍率的没?不说A123,只说国内的。怎么样才能提高其倍率性能呢?电池制造厂家,不考虑材料的改善,材料本身需要较高的粘结剂,再加入较多导电剂的话,势必影响大大的容量,除了增加导电剂含量外,还有哪些能改善其倍率性能呢? 2. 你1C放电下来的曲线是斜下来的,倍率肯定不行的了,,,理想的话最后的尾巴应该是倾向于一个垂直90度下来的 3. 我认为是碳包覆不好所造成的,大倍率放电使得LFP核体温升急剧,包覆的碳温升跟不上,造成碳包覆不牢固,电阻加大。碳包覆的方法解决LFP导电率的方法很难将倍率做的很高。 4. 还不错的曲线嘛!高倍率循环不好在于正极材料和电解液方面来改善,其它方面一般不会出现大的异常 5. 我们年前,拿了点威泰的材料,测试了下,容量不行,但是曲线特别平!!!人家倍率肯定好了,哎。。。 6. 26650,2800容量,属于高容量高倍率电池 7. 我觉得与正极材料关系比较大,不同厂家倍率性能不相同。我目前测试了两家,一家的也是10C循环性能不好。 8. 材料很重要,不同厂家的性能差别很大。说到加工工艺的话,涂布还是有点技术含量的,国内不可能做到国外二次涂布和增加添加剂的技术的 9. 我去年做过一批美国能源部得项目,磷酸铁力,1000次循环80%,这个工艺非常重要,粘结性不只于其PVDF有关。我们的电池比日本和在美国一起做的都要好。10. 控制压实密度,加入AC 11. 粒度再降也不是办法,因为1um的颗粒和10um的颗粒在倍率性能上其实是差不多的,当然10um的和20um的可能就有区别了如果做到粒度再小,比表面积可能会增大,匀浆就会出现问题,很可能会出现团聚不能打散,浆料相应会起球和颗粒最有效的方法应该是降低电极厚度。同时,在配比上优化配方,控制好导电剂,然后选择空隙较大的隔膜和电导系数较高的电解液。12. 极片做薄点,隔膜空隙大点,电解液粘度低点,极耳大点,可以多试试13. 倍率性能提高,要开发新的匀浆配方。用粒度小的正极材料。14. 是从材料到工艺的全方面实验了。我们早在做30C的汽车启动电池了。多试一下,就会得到你想要的。15. 1. 不管正或负极活性材都会有膨胀收缩的问题,一般负极碳材有20%膨胀收缩率,而像LFP正极材料有6%膨胀收收率。当多次充放电中,其正、负活性材颗粒与颗粒之间接触少、间隙加大,甚至有些脱离集电极,导致电子与离子传输路径断续不连续相,成为死的活性材,不再参与电极反应。因此循环使用寿命下降。VGCF碳管有很大的长径比,即使正、负活性材膨胀收缩后,其活性材颗粒间之间隙,可藉由VGCF碳管架桥连接,电子与离子传输不会间断。 2. 由于VGCF碳管微结构是中空多管壁,可以让正、负电极吸纳更多的电解液,使得锂离子可以顺利快速嵌入或脱嵌,因此,有利于高倍率充放电。 3. VGCF是高强度纤维状长径比大之材料,可增加电极板的可挠性,正极或负极活性材颗粒间之黏接力或与极板间之黏接力更强,不会因挠曲而龟裂掉粉。 4. VGCF本质是高导电高导热特性,正极活性材其导电性都不好,添加VGCF 以提高正极活性材的导电性,也提高正极或负极的导热系数,利于散热。17. 我认为电池的结构设计影响也很大,条件允许情况下,尽可能将极片做薄,正负极对面积做大,减小高倍下的真实放电电流密度,另外,集流体的设计也很重要,尽可能减小极化,相应电池发热降低,温升小,电池在高倍率下的寿命相应会得到提高的。18. 负极材料选MCMB对倍率放电有利。正极要控制好粒度和比表面积的大小。电解液可以考虑选用粘度少,电导率高的。隔膜可以考虑挺孔隙率大一点的,稍厚一点,安全性好。导电剂方面可以考虑使用混合导电剂,控制含量,分散均匀!粘结剂方面也可考虑用水性胶。相对而言,水性胶在倍率放电方面比油性胶有优势。在电池设

高倍率电池

高倍率电池 高倍率电池一般指的是锂电池,锂离子电池是一种充电高倍率电池,它主要依赖锂离子在正极和负极之间移动来工作。在充放电过程中,Li+ 在两个电极之间来回嵌入和脱嵌:充电池时,Li+从正极脱嵌,经由电解质嵌入负极,负极处于富锂状态;放电时则相反。一般采用含有锂元素的材料作为电极的电池。是现代高机能电池的代表。 锂电池分为高倍率电池和锂离子电池。目前手机和笔记本电脑使用的都是锂离子电池,通常人们俗称其为高倍率电池,而真正的高倍率电池因为危险性大,很少应用于日常电子产品。 工作状态和效率 锂离子电池能量密度大,均匀输出电压高。自放电小,好的电池,每月在2%以下(可恢复)。没有记忆效应。工作温度范围宽为-20℃~60℃。轮回机能优胜、可快速充放电、充电效率高达100%,而且输出功率大。使用寿命长。不含有毒有害物质,被称为绿色电池。 充电 是电池重复使用的重要步骤,锂离子电池的充电过程分为两个阶段:恒流快充阶段和恒压电流递减阶段。恒流快充阶段,电池电压逐步升高到电池的尺度电压,随后在控制芯片下转入恒压阶段,电压不再升高以确保不会过充,电流则跟着电池电量的上升逐步减弱到设定的值,而终极完成充电。电量统计芯片通过记实放电曲线可以抽样计算出电池的电量。锂离子电池在多次使用后,放电曲线会发生改变,锂离子电池固然不存在记忆效应,但是充、放电不当会严峻影响电池机能。 留意事项 锂离子电池过度充放电会对正负极造成永久性损坏。过度放电导致负极碳片层结构泛起塌陷,而塌陷会造成充电过程中锂离子无法插入;过度充电使过多的锂离子嵌入负极碳结构,而造成其中部门锂离子再也无法开释出来。充电量即是充电电流乘以充电时间,在充电控制电压一定的情况下,充电电流越大(充电速度越快),充电电量越小。电池充电速渡过快和终止电压控制点不当,同样会造成电池容量不足,实际是电池的部门电极活性物质没有得到充分反应就休止充电,这种充电不足的现象跟着轮回次数的增加而加剧。 放电

锂电池充放电系统的设计毕业设计

题目:锂电池充放电系统的设计 所在院系:信息与通信技术系专业:电气工程及其自动化

摘要 随着电子技术的快速发展使得各种各样的电子产品都朝着便携化和小型轻量化的方向发展,也使得更多的电气化产品采用基于电池的供电系统。目前为止,较多使用的电池有镍镉、镍氢、铅蓄电池和锂电池。由于不同类型电池的充电特性不同,通常对不同类型,甚至不同电压、容量等级的电池使用不同的充电器,但这在实际使用中有很多不便。 本设计是一种基于单片机的锂离子电池充电器,在设计上,选择了简洁、高效的硬件,设计稳定可靠的软件,说明了系统的硬件组成,包括单片机电路、充电控制电路、电压转换及光耦隔离电路,并对充电器的核心器件MAX1898充电芯片、AT89C2051单片机进行了较详细的介绍。阐述了系统的软硬件设计。以C 语言为开发工具,进行了设计和编码。保证了系统的可靠性、稳定性、安全性和经济性。 该充电器具有检测锂离子电池的状态;自动切换充电模式以满足充电电池的充电需求;充电器短路保护功能;充电状态显示的功能。在生活中更好的维护了充电电池,使电池更好被运用到生活中。 关键词:单片机、MAX1898、AT89C51

Abstract Electronic technology's fast development causes various electronic products develops toward portable and the small lightweight direction, It also causes the more electrification products to use based on battery's power supply system. At present, the many use's batteries have the nickel cadmium, the nickel hydrogen, the lead accumulator and the lithium battery. Their respective characteristic had decided they will coexist in a long time develop. Because the different type battery's charge characteristic is different, usually to different type, even different voltage, capacity rank battery use different battery charger, but this has many inconveniences in the actual use. This topic design is one kind lithium ion battery charger which is based on Single Chip, in the design, it has chosen succinctly, the highly effective hardware, the design stable reliable software, explained in detail system's hardware composition, including the monolithic integrated circuit electric circuit, the charge control electric circuit, the voltage transformation and the light pair isolating circuit, and to this battery charger's core component - MAX1898 charge chip, at89C2051 monolithic integrated circuit has carried on the detailed introduction. Elaborated system's software and hardware design. Take the C language as the development kit, has carried on the detailed design and the code. Has realized system's reliability, the stability, the security and the efficiency. The intelligence battery charger has the examination lithium ion battery's condition; The automatic cut over charge pattern meets when rechargeable battery's charge needs; Battery charger has short circuit protection function; The charge condition demonstration's function. The battery charger has made the better maintenance rechargeable battery in the life,and lengthened the rechargeable battery’s service life. Key words: SCM,STC89c51, MAX1898

相关主题
文本预览
相关文档 最新文档