当前位置:文档之家› 有限单元法试卷

有限单元法试卷

有限单元法试卷
有限单元法试卷

三、(15分)如图所示刚架,已知所有杆件截面尺寸相同,弹性模量E=20Pa ,截面面积A=0.2m 2,截面惯性矩I z =1/25m 4,荷载q =12kN·m ,F =10kN ,结点4的位移为δ4= [0.78 22.308 5.618],考虑杆件轴向变形,试求局部坐标下单元①的内力。

解: (1)局部坐标系下单元①刚度矩阵:

1

0010

000.150.300.150.300.30.800.30.4=10010000.150.3

00.150.30

0.3

0.4

0.30.8k -??

??-????

-?

?-????

---??

-??

(2)局部坐标系下单元①结点位移列阵:

[]0

00

0.78422.308 5.618f δ=①

(3)局部坐标系下单元①杆端力列阵:

[]0

5505

5

f =---①

F (4)局部坐标下单元①的内力 []T

0.

784 6.6619.4450.784

3.339

2.802

f

=+=----①

①①

F

k F δ

四、(15分)已知图示结构,整体坐标下两杆件的单元刚度矩阵如下,总体坐标系和局部坐标系如图所示,试按照先处理法计算结构的总体刚度矩阵。

20020012

121201201212012120200200

1216012812016120820020012

0121201201212012120200200

12

8

12

1612

8

12

16k k ----????????-????????--==????--??????

??----????--????????

, 解:

2

0200016

01282

014012012014120

8

12

12

32K -????-????=-??--????-??

五、(10分)(1)对图a 所示结构,按照先处理法进行离散(含单元、结点、结点位移编码,忽略结构轴向变形,在图b 上标注);(2)按照先处理法离散后,结构的刚度矩阵K 的大小为( )行( )列(请将结果直接写入括号)。 解:

六、(35分)设有一等厚矩形薄板,边长l =1m ,划分为两个个单元,其边上受如图所示均布载荷=50N q 作用,弹性模量E=100,泊松比μ=0,厚度t =1,已知单元①刚度矩阵,按照图示结构离散后:(1)计算单元①的几何矩阵B ①

;(2)按照先处理法求其整体刚度矩阵K 和等效结点荷载;(3)求解结点位移。

50

500000252525250502575252500252575255002525252500

50

50k

-????--????---=??---????--??-????

解: (1)0.5;A =

1; 1; 0

0; 1; 1

bi bj bm ci cj cm =-====-= ? 10

10000001010

1111

0-????=-????--??

B (2)

750075K ??

=??

??

[]T

250P =

(3)

[]T

T 100.33303??

?==????

m

(a )

(b)

装订线(答题不得超过此线)

有限差分法、有限单元和有限体积法简介

有限差分法、有限单元法和有限体积法的简介 1.有限差分方法 有限差分方法(Finite Difference Method,FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。 对于有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式。从差分的空间形式来考虑,可分为中心格式和逆风格式。考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。 2.有限元方法 有限元方法(Finite Element Method,FEM)的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。采用不同的权函数和插值函数形式,便构成不同的有限元方法。 有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学的数值模拟。在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。 在数值模拟中,常见的有限元计算方法是由变分法和加权余量法发展而来的

有限元法课后习题答案

1、有限元是近似求解一般连续场问题的数值方法 2、有限元法将连续的求解域离散为若干个子域,得到有限个单元,单元和单元之间用节点连接 3、直梁在外力的作用下,横截面的内力有剪力和弯矩两个. 4、平面刚架结构在外力的作用下,横截面上的内力有轴力、剪力、弯矩. 5、进行直梁有限元分析,平面刚架单元上每个节点的节点位移为挠度和转角 6、平面刚架有限元分析,节点位移有轴向位移、横向位移、转角。 7、在弹性和小变形下,节点力和节点位移关系是线性关系。 8、弹性力学问题的方程个数有15个,未知量个数有15个。 9、弹性力学平面问题方程个数有8,未知数8个。 10、几何方程是研究应变和位移之间关系的方程 11、物理方程是描述应力和应变关系的方程 12、平衡方程反映了应力和体力之间关系的 13、把经过物体内任意一点各个截面上的应力状况叫做一点的应力状态 14、9形函数在单元上节点上的值,具有本点为_1_.它点为零的性质,并且在三角形单元的任一节点上,三个行函数之和为_1_ 15、形函数是_三角形_单元内部坐标的_线性_函数,他反映了单元的_位移_状态 16、在进行节点编号时,同一单元的相邻节点的号码差尽量小. 17、三角形单元的位移模式为_线性位移模式_- 18、矩形单元的位移模式为__双线性位移模式_

19、在选择多项式位移模式的阶次时,要求_所选的位移模式应该与局部坐标系的方位无关的性质为几何_各向同性 20、单元刚度矩阵描述了_节点力_和_节点位移之间的关系 21、矩形单元边界上位移是连续变化的 1.诉述有限元法的定义 答: 有限元法是近似求解一般连续场问题的数值方法 2.有限元法的基本思想是什么 答: 首先,将表示结构的连续离散为若干个子域,单元之间通过其边界上的节点连接成组合体。其次,用每个单元内所假设的近似函数分片地表示求解域内待求的未知厂变量。 3.有限元法的分类和基本步骤有哪些 答: 分类: 位移法、力法、混合法;步骤: 结构的离散化,单元分析,单元集成,引入约束条件,求解线性方程组,得出节点位移。 4.有限元法有哪些优缺点 答: 优点:

有限单元法基本思想,原理,数值计算过程

有限单元法学习报告 在对力学问题分析求解过程中,方法可以概括为两种方法,一种为解析法,对具体问题具体分析,通过一定的推导用具体的表达式获得解答,由于实际工程中结构物的复杂性,此方法在处理工程问题是十分困难的;另一种是数值法,有限元法是其中一种方法,其数学逻辑严谨,物理概念清晰,又采用矩阵形式表达基本公式,便于计算机编程,因此在工程问题中获得广泛的应用。 有限元法基本原理是,将复杂的连续体划分为简单的单元体;将无限自由度问题化为有限自由度问题,因为单元体个数是有限的;将偏微分方程求解问题化为有限个代数方程组的求解问题。通常以位移为基本未知量,通过虚功原理和最小势能原理来求解。 基本思想是先化整为零,即离散化整体结构,把整体结构看作是由若干个通过结点相连的单元体组成的整体;再积零为整,通过结点的平衡来建立代数方程组,最后计算出结果。我将采用最简单的三结点三角形为基本单元体,解决弹性力学中的平面问题为例,解释有限单元法的基本原理、演示数值计算过程和一般性应用结论。 一、离散化 解决平面问题时,主要单元类型包括三角形单元(三结点、六结点)和四边形单元(四结点矩形、四结点四边形、八结点四边形)等。选用不同的单元会有不同的精度,划分的单元数越多,精度越高,但计算量也会越大。因此在边界曲折,应力集中处单元的尺寸要小些,但最大与最小单元的尺寸倍数不宜过大。在集中力作用点及分布力突变的点宜选为结点,不同厚度,不同材料不能划分在同一单元中。三角形单元以内角接近60°为最好。充分利用对称性与反对称性。 二、单元分析 将一个单元上的所有未知量用结点位移表示,并将分布在单元上的外力等效到结点上。 1、位移函数选取: 根据有限元法的基本思路,将连续体离散为有限的单元集合后,此时单元体满足连续性、均匀性、各向同性、完全线弹性假设。单元与单元之间通过结点连接并传递力,位移法(应用最广)以结点位移δi=(u i v i)T为基本未知量,以离散位移场代替连续位移场。单元体内的位移变化可以用位移函数(位移模式)来表示,因为有限元分析所得结果是近似结果,为了保证计算精度和收敛性,x位移函数应尽可能反应物体中的真实位移,即满足完备性和连续性的要求:

有限元答案

1.1有限单元法中“离散”的含义是什么?有限单元法是如何将具有无限自由度的连续介质问题转变成有限自由度问题的?位移有限元法的标准化程式是怎样的? (1)离散的含义即将结构离散化,即用假想的线或面将连续体分割成数目有限的单元,并在其上设定有限个节点;用这些单元组成的单元集合体代替原来的连续体,而场函数的节点值将成为问题的基本未知量。 (2)给每个单元选择合适的位移函数或称位移模式来近似地表示单元内位移分布规律,即通过插值以单元节点位移表示单元内任意点的位移。因节点位移个数是有限的,故无限自由度问题被转变成了有限自由度问题。 (3)有限元法的标准化程式:结构或区域离散,单元分析,整体分析,数值求解。 1.3单元刚度矩阵和整体刚度矩阵各有哪些性质?各自的物理意义是什么?两者有何区别? 单元刚度矩阵的性质:对称性、奇异性(单元刚度矩阵的行列式为零)。 整体刚度矩阵的性质:对称性、奇异性、稀疏性。 单元Kij物理意义Kij即单元节点位移向量中第j个自由度发生单位位移而其他位移分量为零时,在第j个自由度方向引起的节点力。 整体刚度矩阵K中每一列元素的物理意义是:要迫使结构的某节点位移自由度发生单位位移,而其他节点位移都保持为零的变形状态,在所有个节点上需要施加的节点荷载。 2.2什么叫应变能?什么叫外力势能?试叙述势能变分原理和最小势能原理,并回答下述问题:势能变分原理代表什么控制方程和边界条件?其中附加了哪些条件? (1)在外力作用下,物体内部将产生应力ζ和应变ε,外力所做的功将以变形能的形式储存起来,这种能量称为应变能。 (2)外力势能就是外力功的负值。 (3)势能变分原理可叙述如下:在所有满足边界条件的协调位移中,那些满足静力平衡条件的位移使物体势能泛函取驻值,即势能的变分为零 δΠp=δUε+δV=0 此即变分方程。对于线性弹性体,势能取最小值,即 δ2ΠP=δ2Uε+δ2V≧0 此时的势能变分原理就是著名的最小势能原理。 势能变分原理代表平衡方程、本构方程和应力边界条件,其中附加了几何方程和位移边界条件。 2.3什么是强形式?什么是弱形式?两者有何区别?建立弱形式的关键步骤是什么? 等效积分形式通过分部积分,称式 ∫ΩC T(v)D(u)dΩ+∫ΓE T(v)F(u)dΓ为微分方程的弱形式,相对而言,定解问题的微分方程称为强形式。 区别:弱形式得不到解析解。 建立弱形式的关键步骤:对场函数要求较低阶的连续性。 2.4为了使计算结果能够收敛于精确解,位移函数需要满足哪些条件?为什么? 只要位移函数满足两个基本要求,即完备性和协调性,计算结果便收敛于精确解。 2.6为什么采用变分法求解通常只能得到近似解?变分法的应用常遇到什么困难?Ritz法收敛的条件是什么? (1)在Ritz 法中,N决定了试探函数的基本形态,待定参数使得场函数具有一定的任意性。如果真实场函数包含在试探函数之内,则变分法得到的解答是精确的;如果试探函数取自完全的函数序列,则当项数不断增加时,近似解将趋近于精确解。然而,通常情况下试探函数不会将真实场函数完全包含在内,实际计算时也不可能取无穷多项。因此,试探函数只能是真实场函数的近似。可见,变分法就是在某个假定的范围内找出最佳解答,近似性就源于此。 (2)采用变分法近似求解,要求在整个求解区域内预先给出满足边界条件的场函数。通常情况下这是不可能的,因而变分法的应用受到了限制。 (3)Ritz 法的收敛条件是要求试探函数具有完备性和连续性,也就是说,如果试探函数满足完备性和连续性的要求,当试探函数的项数趋近于无穷时,则Ritz 法的近似解将趋近于数学微分方程的精确解。 3.1构造单元形函数有哪些基本原则?形函数是定义于单元内坐标的连续函数。单元位移函数通常采用多项式,其中的待定常数应该与单元节点自由度数相等。为满足完备性要求,位移函数中必须包括常函数和一次式,即完全一次多项式。多项式的选取应由低阶到高阶,尽量选择完全多项式以提高单元的精度。若由于项数限制而不能选取完全多项式时,也应使完全多项式具有坐标的对称性,并且一个坐标方向的次数不应超过完全多项式的次数。有时为了使位移函数保持一定阶次的完全多项式,可在单元内部配置节点。然而,这种节点的存在将增加有限元格式和计算上的复杂性,除非不得已才加以采用。形函数应保证用它定义的位移函数满足收敛要求,即满足完备性要求和协调性条件。 3.1构造单元形函数有哪些基本原则?试采用构造单元的几何方法,构造T10 单元的形函数,并对其收敛性进行讨论。 通常单元位移函数采用多项式,其中的待定常数由节点位移参数确定,因此其个数应与单元节点自由度数相等。根据实体结构的几何方程,单元的应变是位移的一次导数。为了反映单元刚体位移和常应变即满足完备性要求,位移函数中必须包含常数项和一次项,即完全一次多项式。 3.3何谓面积坐标?其特点是什么?为什么称其为自然坐标或局部坐标? (1)三角形单元中,任一点P(x,y)与其3个角点相连形成3个子三角形,其位置可以用下述称为面积坐标的三个比值来确定: L1=A1/A L2=A2/A L3=A3/A 其中A1,A2,A3分别为P23,P31,P12的面积。 (2)面积坐标的特点: a T3单元的形函数Ni就是面积坐标Li b面积坐标与三角形在整体坐标系中的位置无关。 c三个节点的面积坐标分别为节点1(1, 0, 0)、节点2(0, 1, 0)、节点3(0, 0, 1),形心的面积坐标为(1/3, 1/3, 1/3)。 d单元边界方程为Li=0(i=1,2,3) e在平行于23边的一条直线上,所有点都有相同的面积坐标L1(L1对应的三角形具有相同的高和底边),而且L1就等于此直线至23边的距离与节点1至23边的距离之比值。

有限单元法第十章

复习题 10.8如何利用一个单元模型对K 非奇异性和s K 奇异性进行估计?为什么说仅是 估计?两种情况下,一个单元的模型有何区别?为什么? 解:由于不可能事先规定单元数和自由度数,常采用如下公式: K 非奇异性b b s s e n d n d N +≥——○1 s K 奇异性s s n d j <或1s s j r n d =>——○2 e N 一个单元仅给予刚体运动约束后的自由度数。 j 在已形成部分网格的基础上再增加一个单元所增加的自由度数。 r 奇异性指标,r 越大表示s K 的奇异性越高。 ○1式不是K 非奇异性的必要条件,也不是充分条件;○2不是s K 奇异性的充分条件,因为具有不同网格和边界约束情况的实际系统的自由度数N 既可能小于, 也肯能大于○ 2式中的自由度数j 推算出的M j ?。 两种情况? 10.9什么是用于Mindlin 板单元的假设剪切应变方法?如何选择它的取样点和插值函数? 如同Timoshenko 梁情况,为避免剪切锁死,可以从分析造成锁死的根源出发,另行假设剪切应变场以代替原泛函中按应变和位移的几何关系得到的剪切应变场。

C型拉格朗日单元的方法构造,8,12 节点Serendipity单元可按Serendipity单元的方法构造。即分别按两个方向一维拉格朗日插值函数相乘的方法和变结点的方法构造。 练习题 10.5 同上题分析的四边固支的方板受均布载荷q 作用。板边长L,厚度t。由于对称取1/4进行分析,网格分别取2×2,4×4,6×6;L/t 分别取100,300,500;对4 节点,8 节点,9 节点的Mindlin 板单元是否发生剪切锁死情况进行检验并对结果进行分析。 解: 10.6 问题同题10.5,只是板的四边改为简支。 解:

有限单元法读书报告

有限单元法读书报告 摘要:有限单元法以变分原理和加权余量法为基础,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。采用不同的权函数和插值函数形式,便构成不同的有限元方法。 关键词:有限单元法;插值函数;网格划分;实例分析 1 有限单元法概述 1.1 有限单元法的简介 有限单元法[1]是应用局部的近似解来建立整个定义域的解的一种方法。先把注意力集中在单个单元上,进行上述所谓的单元分析。基本前提是每一单元要尽可能小,以致其边界值在整个边界上的变化也是小的。这样,边界条件就能取某一在结点间插值的光滑函数来近似,在单元内也容易建立简单的近似解。因此,比起经典的近似法,有限元法具有明显的优越性。比如经典的Ritz法,要求选取一个函数来近似描述整个求解区域中的位移,并同时满足边界条件,这是相当困难的。而有限元法采用分块近似,只需对一个单元选择一个近似位移函数,且不必考虑位移边界条件,只须考虑单元之间位移的连续性即可。对于具有复杂几何形状或材料、荷载有突变的实际结构,不仅处理简单,而且合理适宜。 1.2 有限单元法的基本方法简介 有限单元法,是一种有效解决数学问题的解题方法。在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。在河道数值模拟中[2],常见的有限元计算方法是由变分法和加权余量法发展而来的里兹法和伽辽金法、最小二乘法等。根据所采用的权函数和插值函数的不同,有限元方法也分为多种计算格式。从权函数的选择来说,有配置法、矩量法、最小二乘法和伽辽金法,从计算单元网格的形状来划分,有三角形网格、四边形网格和多边形网格,从插值函数的精度来划分,又分为线性插值函数和高次插值函数等。不同的组合同样构成不同的有限元计算格式。对于权函数,伽辽金(Galerkin)法是将权函数取为逼近函数中的基函数;最小二乘法是令权函

有限单元法部分课后题答案汇编

-----好资料学习有限单元法中“离散”的含义是什么?有限单元法是如何将具有无限自由度的 连续介1.1 质问题转变成有限自由度问题的?位移有限元法的标准化程式是怎样的?)离散的含义即将结构离散化,即用假想的线或面将连续体分割成数目有限的单元,并1(数的节在其上设定有限 个节点;用这些单元组成的单元集合体代替原来的连续体,而场函点值将成为问题的基本未知量。)给每个单元选择合适的位移函数或称位移模式来近似地表示单元内位移分布规律,即2(无限自通过插值以单元节点位移表示单元内任意点的位移。因节点位移个数是有限的,故由度问题被转变成了有限自由度问题。)有限元法的标准化程式:结构或区域离散,单元分析,整体分析,数值求解。(3 ?单元刚度矩阵和整体刚度矩阵各有哪些性质?各自的物理意义是什么?两者有何区别1.3 整体刚度矩阵的性单元刚度矩阵的性质:对称性、奇异性(单元刚度矩阵的行列式为零)。个自 j Kij 即单元节点位移向量中第稀疏性。单元 Kij 物理意义质:对称性、奇异性、整体刚度 j 个自由度方向引起的节点力。由度发生单位位移而其他位移分量为零时,在第中每一列元素的物理意义是:要迫使结构的某节点位移自由度发生单位位移,而其 K 矩阵他节点位移都保持为零的变形状态,在所有个节点上需要施加的节点荷载。什么叫应变能?什么叫外力势能?试叙述势能变分原理和最小势能原理,并回答下述2.2 问题:势能变分原理代表什么控制方程和边界条件?其中附加了哪些条件?,外力所做的功将以变形能的形式储存εσ和应变(1)在外力作用下,物体内部将产生应力起来,这种能量称为应变能。 (2)外力势能就是外力功的负值。势能变分原理可叙述如下:在所有满足边界条件的协调位移中,那些满足静力平衡条件(3) 的位移使物体势能泛函取驻值,即势能的变分为零V=0 +δp=δ Uεδ∏此即变分方程。对于线性弹性体,势能取最小值,即0 2V≥ε+δδ2∏P=δ2U 此时的势能变分原理就是著名的最小势能原理。其中附加了几何方程和位移边界条本构方程和应力边界条件,势能变分原理代表平衡方程、件。什么是强形式?什么是弱形式?两者有何区别?建立弱形式的关键步骤是什么?2.3 等效积分形式通过分部积分,称式ΓΓET(v)F(u)d+∫ΩCT(v)D(u)dΩ∫为微分方程的弱形式,相对而言,定解问题的微分方程称为强形式。建立弱形式的关键步骤:对场函数要求较低阶的连续性。区别:弱形式得不到解析解。 为了使计算结果能够收敛于精确解,位移函数需要满足哪些条件?为什么?2.4 只要位移函数满足两个基本要求,即完备性和协调性,计算结果便收敛于精确解。Ritz 2.6 为什么采用变分法求解通常只能得到近似解?变分法的应用常遇到什么困难?法收敛的条件是 什么?决定了试探函数的基本形态,待定参数使得场函数具有一定的任意法中,N (1)在 Ritz 探函数性。如果真实场函数包含在试探函数之内,则变分法得到的解答是精确的;如果试 然而,通常情况下试近似解将趋近于精确解。取自完全的函数序列,则当项数不断增加时,因此,试探函探函数不会将真实场函数完全包含在内,实际计算时也不可能取无穷多项。近似性变分法就是在某个假定的范围内找出最佳解答,数只能是真实场函数的近似。可见,就源于此。)采用变分法近似求解,要求在整个求解区域内预先给出满足边界条件的场函数。通常2(情况下这是不可能的,因而变分法的应用受到了限制。如果试探函数满法的收敛条件是要求试探函数具有完备性和连续性,也就是说,(3)Ritz 趋近足完备性和连续性的要求,当试探函数的项数趋近于无穷时,则 Ritz 法的近似解将于数学微分方程的精确解。构造单元形函数有哪些基本原则?3.1 其中的待定常数应形函数是定义于单元内坐标的连续函数。单元位移函数通常采用多项式,要求,位移函数中必须包括常函数和一次式,该与单元节点自由度数相等。为满足完备性尽量选择完全多项式以提高单元的精度。即完全一次多项式。多项式的选取应由低阶到高阶,项式时,也应

有限单元法参考答案

有限单元试题参考答案 一、问答题(50分) 1.(5分)有限单元位移法求解弹性力学问题的基本步骤有哪些? 1)选择适当的单元类型将弹性体离散化 2)建立单元体的位移插值函数 3)推导单元刚度矩阵 4)将单元刚度矩阵组装成整体刚度矩阵 5)代入边界条件和求解 2.(5分)有限元法在单元划分的时候应注意哪些问题? 1)集中载荷的作用点、分布载荷的突变点和约束的支撑点都应取为结点 2)在应力变化激烈的区域,单元划分得细一些,其它应力平缓的区域划分得粗一些 3)为了避免在计算中产生过大的误差,单元的长细比最好不要大于2 3.(5分)有限元法中建立位移函数一般有广义坐标法和插值函数法,我们经常用插值函数的哪些性质来直接建立位移函数? 1)形函数与位移插值函数是相同次数的多项式 2)形函数N i 在结点i 处等于1,在其它结点上的值等于0 3)在单元任意一点,三个形函数之和为1 4.(10分)在有限元法中,单元刚度矩阵和整体刚度矩阵具有哪些性质? 1)单元刚度矩阵每一列元素表示一组平衡力系,对于平面问题每列元素之和为零 2)单元刚度矩阵对角线元素总为正 3)单元刚度矩阵为对称矩阵 4)单元刚度矩阵为奇异矩阵 整体刚度矩阵前三条性质和单元刚度矩阵一样。另外: 1) 整体刚度矩阵为奇异矩阵,排除刚体位移后为正定矩阵 2)整体刚度矩阵是带状矩阵 5.(5分)什么是等参数单元?它与三角形单元和矩形单元相比有哪些优势? 1)在建立局部坐标系下的形状规则的标准单元与整体坐标系下形状复杂的实际单元之间的变换时,如果坐标变换函数中的形函数及插值结点与描述单元位移函数的形函数及插值结点完全相同,则这种变换我们成为等参数变换,当中的实际单元单元称为等参数单元。(其它描述意思一样也可) 2)三角形单元和矩形单元不能适应复杂的曲线边界,等参数单元可以。 6.(10分)平面三角形单元与轴对称问题的三角形截面单元的不同之处在哪里?轴对称问题三角形截面单元刚度方程的推导当中,为了简化计算和消除在对称轴上r=0引起的麻烦,可怎样处理? 1)平面三角形单元的三个应力分量xy y x τσσ和三个应变分量

有限单元法

有限单元法 有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。采用不同的权函数和插值函数形式,便构成不同的有限元方法。有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学的数值模拟。在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。在河道数值模拟中,常见的有限元计算方法是由变分法和加权余量法发展而来的里兹法和伽辽金法、最小二乘法等。根据所采用的权函数和插值函数的不同,有限元方法也分为多种计算格式。从权函数的选择来说,有配置法、矩量法、最小二乘法和伽辽金法,从计算单元网格的形状来划分,有三角形网格、四边形网格和多边形网格,从插值函数的精度来划分,又分为线性插值函数和高次插值函数等。不同的组合同样构成不同的有限元计算格式。对于权函数,伽辽金(Galerkin)法是将权函数取为逼近函数中的基函数;最小二乘法是令权函数等于余量本身,而内积的极小值则为对代求系数的平方误差最小;在配置法中,先在计算域内选取N个配置点。令近似解在选定的N个配置点上严格满足微分方程,即在配置点上令方程余量为0。插值函数一般由不同次幂的多项式组成,但也有采用三角函数或指数函数组成的乘积表示,但最常用的多项式插值函数。有限元插值函数分为两大类,一类只要求插值多项式本身在插值点取已知值,称为拉格朗日(Lagrange)多项式插值;另一种不仅要求插值多项式本身,还要求它的导数值在插值点取已知值,称为哈密特(Hermite)多项式插值。单元坐标有笛卡尔直角坐标系和无因次自然坐标,有对称和不对称等。常采用的无因次坐标是一种局部坐标系,它的定义取决于单元的几何形状,一维看作长度比,二维看作面积比,三维看作体积比。在二维有限元中,三角形单元应用的最早,近来四边形等参元的应用也越来越广。对于二维三角形和四边形电源单元,常采用的插值函数为有Lagrange插值直角坐标系中的线性插值函数及二阶或更高阶插值函数、面积坐标系中的线性插值函数、二阶或更高阶插值函数等。 对于有限元方法,其基本思路和解题步骤可归纳为 (1)建立积分方程,根据变分原理或方程余量与权函数正交化原理,建立与微分方程初边值问题等价的积分表达式,这是有限元法的出发点。 (2)区域单元剖分,根据求解区域的形状及实际问题的物理特点,将区域剖分为若干相互连接、不重叠的单元。区域单元划分是采用有限元方法的前期准备工作,这部分工作量比较大,除了给计算单元和节点进行编号和确定相互之间的关系之外,还要表示节点的位置坐标,同时还需要列出自然边界和本质边界的节点序号和相应的边界值。 (3)确定单元基函数,根据单元中节点数目及对近似解精度的要求,选择满足一定插值条件的插值函数作为单元基函数。有限元方法中的基函数是在单元中选取的,由于各单元具有规则的几何形状,在选取基函数时可遵循一定的法则。 (4)单元分析:将各个单元中的求解函数用单元基函数的线性组合表达式进行逼近;再将近似函数代入积分方程,并对单元区域进行积分,可获得含有待定系数(即单元中各节点的参数值)的代数方程组,称为单元有限元方程。 (5)总体合成:在得出单元有限元方程之后,将区域中所有单元有限元方程按一定法则进行累加,形成总体有限元方程。

有限单元法

《有限元法》复习题 一. 单选题 1.平面刚架单元坐标转换矩阵的阶数为( ) A .2?2 B .2?4 C .4?4 D .6?6 2.图示的四根杆组成的平面刚架结构,用杆单元进行有限元分析,单元和节点的划分如图示,则总体刚度矩阵的大小为( ) A.8?8阶矩阵 B.10?10阶矩阵 C.12?12阶矩阵 D.16?16阶矩阵 3.坐标转换矩阵可归类为( ) A.正交矩阵 B.奇异矩阵 C.正定矩阵 D.对称矩阵 4.图示弹簧系统的总体刚度矩阵为( ) A 111123 2224443400 0000k k k k k k k k k k k k k k -????-++-???? -+??-+?? B. 111122224443400 0000k k k k k k k k k k k k k -????-+-???? -+-??-+?? C. 111123 2322443 4 3400 00 k k k k k k k k k k k k k k k k -????-++--???? -+-??--+?? D. 111122322443 4 340 00 k k k k k k k k k k k k k k k -????-+--???? -+??--+?? 5.确定已知三角形单元的局部码为1(e),2(e),3(e),对应总码依次为3,6,4,则其单元的刚度矩阵中的元素k 24应放在总体刚度矩阵的( )。 A.1行2列 B.3行12列 C.6行12列 D.3行6列 6.对一根只受轴向载荷的杆单元,k 12为负号的物理意义可理解为( ) A.当节点2沿轴向产生位移时,在节点1引起的载荷与其方向相同 B.当节点2沿轴向产生位移时,在节点1引起的载荷与其方向相反 C.当节点2沿轴向产生位移时,在节点1引起的位移与其方向相同 D.当节点2沿轴向产生位移时,在节点1引起的位移与其方向相反 7.平面桁架中,节点3处铅直方向位移为已知,若用置大数法引入支承条件,则应将总体刚度矩阵中的( ) A.第3行和第3列上的所有元素换为大数A B.第6行第6列上的对角线元素乘以大数A C.第3行和第3列上的所有元素换为零 D.第6行和第6列上的所有元素换为零 8.在任何一个单元内( ) A.只有节点符合位移模式 B.只有边界点符合位移模式 C.只有边界点和节点符合位移模式 D.单元内任意点均符合位移模式 9.平面应力问题中(Z 轴与该平面垂直),所有非零应力分量均位于( ) A.XY 平面内 B.XZ 平面内 C.YZ 平面内 D.XYZ 空间内 12.刚架杆单元与平面三角形单元( ) A.单元刚度矩阵阶数不同 B.局部坐标系的维数不同 C.无任何不同 D.节点截荷和位移分量数不同 13.图示平面结构的总体刚度矩阵[K]和竖带矩阵[K *]的元素总数分别是( ) A.400和200 B.400和160 C.484和200 D.484和160 14.在有限元分析中,划分单元时,在应力变化大的区域应该( ) A.单元数量应多一些,单元尺寸小一些 B.单元数量应少一些,单元尺寸大一些 C.单元数量应多一些,单元尺寸大一些 D.单元尺寸和数量随便确定 15.在平面应力问题中,沿板厚方向( ) A.应变为零,但应力不为零 B.应力为零,但应变不为零 C.应变、应力都为零 D.应变、应力都不为零 16.若把平面应力问题的单元刚度矩阵改为平面应变问题的单元刚度矩阵只需将( ) A. E 换成E/(1-μ2),μ换成μ/(1-μ2) B. E 换成E/(1-μ2),μ换成μ/(1-μ) C. E 换成E/(1-μ),μ换成μ/(1-μ2) D. E 换成E/(1-μ),μ换成μ/(1-μ) 17.图示三角形单元非节点载荷的节点等效载荷为( ) A.F yi =-100KN F yj =-50KN F yk =0 B. F yi =-80KN F yj =-70KN F yk =0 C. F yi =-70KN F yj =-80KN F yk =0

有限单元法部分课后题答案

1.1 有限单元法中“离散”的含义是什么?有限单元法是如何将具有无限自由度的连续介质问题转变成有限自由度问题的?位移有限元法的标准化程式是怎样的? (1)离散的含义即将结构离散化,即用假想的线或面将连续体分割成数目有限的单元,并在其上设定有限个节点;用这些单元组成的单元集合体代替原来的连续体,而场函数的节点值将成为问题的基本未知量。 (2)给每个单元选择合适的位移函数或称位移模式来近似地表示单元内位移分布规律,即通过插值以单元节点位移表示单元内任意点的位移。因节点位移个数是有限的,故无限自由度问题被转变成了有限自由度问题。 (3)有限元法的标准化程式:结构或区域离散,单元分析,整体分析,数值求解。 1.3 单元刚度矩阵和整体刚度矩阵各有哪些性质?各自的物理意义是什么?两者有何区别?单元刚度矩阵的性质:对称性、奇异性(单元刚度矩阵的行列式为零)。整体刚度矩阵的性质:对称性、奇异性、稀疏性。单元 Kij 物理意义 Kij 即单元节点位移向量中第 j 个自由度发生单位位移而其他位移分量为零时,在第 j 个自由度方向引起的节点力。整体刚度矩阵 K 中每一列元素的物理意义是:要迫使结构的某节点位移自由度发生单位位移,而其他节点位移都保持为零的变形状态,在所有个节点上需要施加的节点荷载。 2.2 什么叫应变能?什么叫外力势能?试叙述势能变分原理和最小势能原理,并回答下述问题:势能变分原理代表什么控制方程和边界条件?其中附加了哪些条件? (1)在外力作用下,物体内部将产生应力σ和应变ε,外力所做的功将以变形能的形式储存起来,这种能量称为应变能。 (2)外力势能就是外力功的负值。 (3)势能变分原理可叙述如下:在所有满足边界条件的协调位移中,那些满足静力平衡条件的位移使物体势能泛函取驻值,即势能的变分为零 δ∏p=δ Uε+δV=0 此即变分方程。对于线性弹性体,势能取最小值,即 δ2∏P=δ2Uε+δ2V≥0 此时的势能变分原理就是著名的最小势能原理。 势能变分原理代表平衡方程、本构方程和应力边界条件,其中附加了几何方程和位移边界条件。 2.3 什么是强形式?什么是弱形式?两者有何区别?建立弱形式的关键步骤是什么? 等效积分形式通过分部积分,称式 ∫ΩCT(v)D(u)dΩ+∫ΓET(v)F(u)dΓ 为微分方程的弱形式,相对而言,定解问题的微分方程称为强形式。 区别:弱形式得不到解析解。建立弱形式的关键步骤:对场函数要求较低阶的连续性。2.4 为了使计算结果能够收敛于精确解,位移函数需要满足哪些条件?为什么? 只要位移函数满足两个基本要求,即完备性和协调性,计算结果便收敛于精确解。 2.6 为什么采用变分法求解通常只能得到近似解?变分法的应用常遇到什么困难?Ritz 法收敛的条件是什么? (1)在 Ritz 法中,N 决定了试探函数的基本形态,待定参数使得场函数具有一定的任意性。如果真实场函数包含在试探函数之内,则变分法得到的解答是精确的;如果试探函数取自完全的函数序列,则当项数不断增加时,近似解将趋近于精确解。然而,通常情况下试探函数不会将真实场函数完全包含在内,实际计算时也不可能取无穷多项。因此,试探函数只能是真实场函数的近似。可见,变分法就是在某个假定的范围内找出最佳解答,近似性就源于此。 (2)采用变分法近似求解,要求在整个求解区域内预先给出满足边界条件的场函数。通常情况下这是不可能的,因而变分法的应用受到了限制。 (3)Ritz 法的收敛条件是要求试探函数具有完备性和连续性,也就是说,如果试探函数满足完备性和连续性的要求,当试探函数的项数趋近于无穷时,则 Ritz 法的近似解将趋近于数学微分方程的精确解。 3.1 构造单元形函数有哪些基本原则? 形函数是定义于单元内坐标的连续函数。单元位移函数通常采用多项式,其中的待定常数应该与单元节点自由度数相等。为满足完备性要求,位移函数中必须包括常函数和一次式,即完全一次多项式。多项式的选取应由低阶到高阶,尽量选择完全多项式以提高单元的精度。若由于项数限制而不能选取完全多项式时,也应使完全多项式具有坐标的对称性,并且一

1有限元法简介

1有限元法简介 1.1有限单法的形成 在工程技术领域内,经常会遇到两类典型的问题。其中的第一类问题,可以归结为有限个已知单元体的组合。例如,材料力学中的连续梁、建筑结构框架和桁架结构。我们把这类问题,称为离散系统。如图1-1所示平面桁架结构,是由6个承受轴向力的“杆单元”组成。尽管离散系统是可解的,但是求解图1-2所示这类复杂的离散系统,要依靠计算机技术。 图1-1 平面桁架系统

图1-2 大型编钟“中华和钟”的振动分析及优化设计(曾攀教授) 第二类问题,通常可以建立它们应遵循的基本方程,即微分方程和相应的边界条件。例如弹性力学问题,热传导问题,电磁场问题等。由于建立基本方程所研究的对象通常是无限小的单元,这类问题称为连续系统。 图1-3 V6引擎的局部 下面是热传导问题的控制方程与换热边界条件: t T c Q z T z y T y x T x ??=+??? ??????+??? ? ??????+??? ??????ρλλλ (1- 1) 初始温度场也可以是不均匀的,但各点温度值是已知的: () 00 x,y,z T T t == (1- 2) 通常的热边界有三种,第三类边界条件如下形式: ()f T-T h n T λ=??- (1- 3) 尽管我们已经建立了连续系统的基本方程,由于边界条件的限制,通常只能得到少数简单问题的精确解答。对于许多实际的工程问题,还无法给出精确的解答,例如,图1-3所示V6引擎在工作中的温度分布。这为解决这个困难,工程师们和数学家们提出了许多近似方法。 在寻找连续系统求解方法的过程中,工程师和数学家从两个不同的路线得到了相同的结果,即有限元法。有限元法的形成可以回顾到二十世纪50年代,来源于固体力学中矩阵结构法的发展和工程师对结构相似性的直觉判断。从固体力学的角度来看,桁架结构等标准离散系统与人为地分割成有限个分区后的连续系统在结构上存在相似性。 1956年M..J.Turner, R.W.Clough, H.C.Martin, L.J.Topp 在纽约举行的航空学会年会上介

有限元法基础试题

有限元法基础试题(A ) 一、填空题(5×2分) 1.1单元刚度矩阵e T k B DBd Ω = Ω? 中,矩阵B 为__________,矩阵D 为___________。 1.2边界条件通常有两类。通常发生在位置完全固定不能转动的情况为_______边界,具体指定有限的非零值位移的情况,如支撑的下沉,称为_______边界。 1.3内部微元体上外力总虚功: ()(),,,,e x x xy y bx xy x y y by d W F u F v dxdy δστδτσδ??=+++++??+(),,,,x x y y xy y x u v u u dxdy σδσδτδδ??+++??的表达式中,第一项为____________________的虚功,第二项为____________________的虚功。 1.4弹簧单元的位移函数1N +2N =_________。 1.5 ij k 数学表达式:令j d =_____,k d =_____,k j ≠,则力i ij F k =。 二、判断题(5×2分) 2.1位移函数的假设合理与否将直接影响到有限元分析的计算精度、效率和可靠性。( ) 2.2变形体虚功原理适用于一切结构(一维杆系、二维板、三位块体)、适用于任何力学行为的材料(线性和非线性),是变形体力学的普遍原理。 ( ) 2.3变形体虚功原理要求力系平衡,要求虚位移协调,是在“平衡、协调”前提下功的恒等关系。 ( ) 2.4常应变三角单元中变形矩阵是x 或y 的函数。 ( ) 2.5 对称单元中变形矩阵是x 或y 的函数。 ( ) 三、简答题(26分) 3.1列举有限元法的优点。(8分) 3.2写出有限单元法的分析过程。(8分) 3.3列出3种普通的有限元单元类型。(6分) 3.4简要阐述变形体虚位移原理。(4分) 四、计算题(54分) 4.1对于下图所示的弹簧组合,单元①的弹簧常数为10000N/m ,单元②的弹簧常数为20000N/m ,单元③的弹簧常数为10000N/m ,确定各节点位移、反力以及单元②的单元力。(10分) 4.2对于如图所示的杆组装,弹性模量E 为10GPa ,杆单元长L 均为2m ,横截面面积A 均为2×10-4m 2,弹簧常数为2000kN/m ,所受荷载如图。采用直接刚度法确定节点位移、作用力和单元②的应力。(10分)

有限单元法原理与应用(第三版)

122123 60 组建 周年60组建 周年 主要完成人:朱伯芳 受奖单位:水电中心/结构材料所 【创新性】 全面系统地阐述了有限单元法的基本原理及其在土木、水利工程问题中的应用,包括弹性力学平面问题和空间问题、薄板、薄壳、厚板、厚壳、弹性稳定、塑性力学、大位移、断裂、动力反应、徐变、岩土力学、极限分析、混凝土和钢筋混凝土、流体力学、渗流分析、热传导、工程反分析、仿真分析、网格自动生成、误差估计及自适应技术等。本书取材实用、由浅入深、先易后难,便于自学;对于实际工程中有用的计算方法力求讲述清楚并给出具体计算公式,便于应用;对有限元法的工程应用,注意工程的物理特性,要求采用的概化假定、计算参数和计算荷载等尽量接近实际,注重计算方法精度的适应性等,并重视有限元计算结果与实际观测资料相验证。【影响力】 我国最早的有限元专著之一,为在我国推广有限元法发挥了重要作用;本书共出版三版,第一版于1976年8月,第二版于1998年10月,第三版于2009 年6月;曾作为多所高校的有限元课程教材使 用;英文版已由清华大学出版社和美国Wiley 出版社联合出版;中国科学技术信息研究所编著的《中国高被引指数分析》(2011版)中,本书列为国内水利工程领域高被引图书第2名。 有限单元法原理与应用(第三版) 著作类成果 【Innovation】 This book expounds, in an all-round and systematic manner, the basic theory of the finite element method and its application to civil engineering and hydraulic engineering , including plane and space problems of elasticity, thin plate, thin shell, thick plate, thick shell, elastic stability, plasticity, large displacement, fracture, dynamic response, creep, rock and soil mechanics, limit analysis, concrete and reinforced concrete, fluid mechanics, seepage analysis, heat conduction, back analysis in engineering, simulated analysis, automatic generation of meshes, error estimation and adaptive technique. This book is learner-friendly because it contains practical content and expounds knowledge step by step and from easy to difficult; and is also easy to use because it strives to clarify the computing methods usable in actual engineering and gives corresponding formulas. Regarding the engineering application of the finite element method, it pays attention to the physical characteristics of projects, requires adopted conceptualized assumption, calculation parameter and calculation load be close enough to reality and accuracy of calculation methods be adaptive, and stresses the verification between the calculation result of the finite element method and actual observational data. 【Influence】 Amongst the earliest finite element books in China, this book plays an important role in generalizing the finite element method in China. It has registered three editions, with the first edition published in August, 1976, the second edition in October, 1998 and the third edition in June, 2009. It served as a finite element textbook of many colleges and universities; and its English version has been published jointly by Tsinghua University Press and the U.S.-based Wiley & Sons, Inc. This book ranks second amongst the highly-cited books of hydraulic engineering in China, according to the Analysis Report of Chinese Highly Cited Paper 2011 of the Institute of Scientific and Technical Information of China (ISTIC) Main Contributor : Zhu Bofang Award-winning Unit : Research Center for Sustainable Hydropower/Department of Structures and Materials THE FINITE ELEMENT METHOD THEORY AND APPLICATIONS(EDITION III)

相关主题
相关文档 最新文档