当前位置:文档之家› 5000吨年大豆浓缩蛋白工艺设计

5000吨年大豆浓缩蛋白工艺设计

5000吨年大豆浓缩蛋白工艺设计
5000吨年大豆浓缩蛋白工艺设计

前言

浓缩蛋白质的生产主要是以低温脱脂豆粕为原料,通过不同的加工方法,除去低温粕中的可溶性糖分、灰分以及其他可溶性的微量成分,从而使蛋白质的含量从45%-50%提高到70%左右。所采用的乙醇洗涤法工艺原理是:一定浓度的乙醇溶液,可使大豆蛋白质变性,失去可溶性。根据这一特性,利用含水乙醇对豆粕中的非蛋白质可溶性物质进行浸出、洗涤,剩下的不溶物经脱溶、干燥即可获得浓缩蛋白。醇法大豆浓缩蛋白的特点在于产品的风味、色泽好,蛋白质得率高,生产过程中无污水排放,避免了环境污染,且更有利于对产品进行综合利用。

目次

1. 工艺设计说明 (1)

1.1 国内外现状及发展趋势 (1)

1.2 课题意义 (2)

1.3 设计说明 (3)

2. 工艺设计计算 (6)

2.1 物料衡算 (6)

2.2 热量衡算 (8)

3. 设备选型及明细

致谢.......................................................................................................................... 参考文献..........................................................................................................................

1.工艺设计说明

1.1 国内外现状及发展趋势

大豆蛋白加工是最近10多年来我国大豆加工利用的新方向。其加工工艺和传统大豆加工工艺的区别在于大豆经过浸出法提取油脂后, 豆粕在低温条件下脱除溶剂, 大豆蛋白质基本不变性。利用此低温脱溶豆粕(俗称白豆片)可以进一步生产出大豆蛋白粉、大豆组织蛋白、大豆浓缩蛋白、大豆分离蛋白等大豆蛋白产品。我国现今已有30 余家生产大豆蛋白的企业, 可以生产大豆组织蛋白、大豆浓缩蛋白、大豆分离蛋白。由于美国是大豆的主要产地, 所以其大豆加工业也是规模最大的。根据网上数据统计, 目前在美国就有381家企业涉及大豆的加工。世界上加工大豆蛋白的一些企业如ADM、DuPont Protein Technologist (即以前的保利来蛋白公司, 现被DuPont 公司收购, 该公司已经在我国收购多家企业并开始生产分离蛋白)、Central Soya、International ProteinCorporation 等,其大豆蛋白生产品种基本覆盖了已经成功开发的所有品种, 最为重要的是有些公司的产品已经形成序列化、专一化, 有不同类型的蛋白质产品来满足不同的食品加工需要。据不完全统计, 仅ADM和DuPont公司的蛋白产品就达几十种, 产品的应用范围几乎覆盖所有的日常加工食品, 同时一些产品的针对性强, 有自己的特定使用对象, 而这个问题正是我国大豆蛋白加工所存在的问题。从蛋白质产品生产厂商数目上看, 大豆蛋白的生产以豆奶类、脱脂豆粉、浓缩蛋白、分离蛋白、组织化蛋白的生产较多, 而对水解蛋白的生产较少。它的营养价值与牛乳接近, 并且还存在以下几个优势: 无乳糖、无胆固醇、富含不饱和脂肪酸、富含异黄酮、含纤维素。在注重健康的今天得到美国消费者逐步认可,消费观念发生了改变所致。

在对脱脂豆粉进行加工处理时, 产品的风味质量得到改善, 特有的豆腥味被去, 大豆中含有的所谓“胀气因子”——大豆低聚糖也同时被除去, 产品中蛋白质的含量与原料脱脂豆粉相比明显提高(一般不低于70% ) , 通常1吨脱脂豆粉可以生产出750kg的浓缩蛋白。蛋白产品的性状与处理方法有关。脱脂豆粉热变性后水浸提处理, 产品的溶解性能低、色泽也较深; 醇浸提法生产出的产品溶解度虽然低(NSI为10%~15% ) , 但可以保留大豆蛋白的一些功能性质, 如粘度、

乳化能力等; 酸浸提法可以通过后来中和物料中的酸而提高浓缩蛋白的溶解性能。不同方法生产出的浓缩蛋白均可以形成粉状、粒状的产品形式, 均可以最终用于生产组织化大豆蛋白。用乙醇生产的大豆蛋白蛋白质含量高,色泽好,容易干燥,风味好;现在正越来越多的被生产厂家所接受。

1.2 课题意义

蛋白质是生命的基础,生命的本质在于以蛋白质为中心不断的新陈代谢,若人体长期蛋白质营养不良,必然损害健康,甚至导致疾病。合理营养是身体健康的先决条件,而在诸多营养成分中以蛋白质最为重要,它在蛋白质、脂肪、葡萄糖、维生素人体四大营养要素中列于首位。但根据1997年国务院颁发的《中国营养改善行动计划》,我国人均热能日摄入量目前为974kJ,其中蛋白质为68g,到2000年我国人均热能日供给量应达到10886kJ,蛋白质摄取量应达到72g。按此计算,我国人均日缺少蛋白质4g,全国日缺少蛋白质4800t,年缺少蛋白质175.2万吨。要在短时间内弥补上蛋白质的供应缺口,仅靠动物蛋白质来提供不现实,且不经济合理,开发植物蛋白更为经济合理。另外植物蛋白还有自身特殊的优点,如不会引起心脑血管、肥胖等疾病。在主要的蛋白质资源中,大豆是数量最大的食用和饲用蛋白资源。所以大豆分离蛋白、浓缩蛋白、组织蛋白的生产越来越引起人们的关注。

大豆蛋白制品主要包括大豆粉、大豆浓缩蛋白和大豆分离蛋白。前者价格较低,但功能性较差,使用范围和使用量都受到限制;后者具有较强功能特性和良好感官性能,但价格较贵。大豆浓缩蛋白是一种价格介于大豆粉和大豆分离蛋白之间的大豆制品,大豆浓缩蛋白相对另外两种有自身特点:蛋白质含量大于70%,成本仅是分离蛋白的一半,并且得率高,平均1-6吨白豆片就能生产出1吨浓缩蛋白,并且营养价值仅次于分离蛋白,但要高于组织蛋白等其它大豆蛋白产品。然而由于大豆浓缩蛋白溶解度或分散性较低,导致它的某些功能不如大豆分离蛋白。醇浸出法大豆浓缩蛋白生产过程中几乎无污水排放,避免环境污染,有利于副产品进一步利用,提取液的浓缩物可进一步加工成大豆低聚糖、异黄酮、皂甙等产品。另外醇法SPC 的蛋白质含量为70%,且为优质蛋白,碳水化合物含量为21%,其中90%为不溶性多糖,10%为可溶性糖。过敏原、抗营养因子以及蛋白酶抑制因子等成分在醇浸出时被去除。

目前大豆浓缩蛋白的生产工艺一般有三种,即湿热浸提法、稀酸浸提法和含水乙醇浸提法。此外,国外开始探求用超滤法生产大豆浓缩蛋白。湿热浸提法目前已基本被淘汰,原因是产品风味、色泽和功能性质都极差。稀酸浸提法制得的大豆浓缩蛋白虽然具有较好的功能特性,但蛋白质的得率较低,污水排放造成的环境污染较为严重,经济效益差。超滤法制备的产品功能特性好,蛋白质的率较高,不足之处在于产品无法干燥处理。醇法大豆浓缩蛋白的特点在于产品的风味、色泽好,蛋白质得率高,生产过程中无污水排放,避免了环境污染,且更有利于对产品进行综合利用。

1.3 设计说明

1.3.1 设计原则

a)尽可能采纳当今国内成熟的基本流程和部分规范。

b)国内外先进工艺的应用须通过必需的实验后才能推广。

c)工艺过程连续化属基本要求,同时进可能应用成熟可靠的自动控制仪表,但也不排出必要的简易可行的半连续或间歇式设备的利用。

d)先进性和实用性结合

1.3.2 工艺设计原理

大豆浓缩蛋白是从脱脂豆粉中除去低分子可溶性非蛋白成分,主要可溶性糖、灰分和各种气味成分等,制得的大豆蛋白制品。目前大豆浓缩蛋白的生产工艺一般有三种,即湿热浸提法、稀酸浸提法和含水乙醇浸提法。此外开始探求用超滤法生产大豆浓缩蛋白。湿热浸提法目前已基本被淘汰,原因是产品风味、色泽和功能性质都极差。稀酸浸提法制得的大豆浓缩蛋白虽然具有较好的功能特性,但蛋白质的得率较低,污水排放造成的环境污染较为严重,综合效益差。超滤法制备的产品功能特性好,蛋白质得率较高,不足之处在于产品无法干燥处理。醇法大豆浓缩蛋白的特点在于:产品的风味、色泽好、蛋白质得率高;生产过程中无污水排放,避免了环境污染;且更有利于对产品进行综合利用。但醇法大豆浓缩蛋白由于使用了60 %左右的乙醇溶液,蛋白质变性较为剧烈,功能性较差,且目前醇法大豆浓缩蛋白乙醇消耗高达200 kg/ t —300 kg/ t浓缩蛋白(国际上一般为40 kg/ t浓缩蛋白) 。

以低变性脱脂大豆粕为原料,国内生产醇法大豆浓缩蛋白的工厂常采用间歇式浸出,不仅生产量低,而且原料和乙醇水溶液比之大, 每吨醇法大豆浓缩蛋白的乙醇消耗量高达300 kg ,且需蒸馏回收的乙醇量也很大、能耗高。因此,生产成本高、效益差。若采用连续式工艺则可以大幅度降低乙醇消耗量,改善大豆浓缩蛋白的功能性质,降低生产成本。在浸提工序中,影响蛋白质溶出率和蛋白质分散指数的因素,除了乙醇浓度和浸提温度外,还有原料的粒度、固液比、浸提时间、pH值以及搅拌强度等。

浸提时间主要影响蛋白质的溶出率,但在两个指标中均处最后一位,在一定条件下,浸提时间越长,蛋白溶出率越高,蛋白质分散指数也有增加的趋势,但两个指标增加的幅度均很小。较长的浸提时间,在较高的乙醇浓度下,会导致蛋白质的变性程度发生变化,这种变化可能直接影响到大豆浓缩蛋白的蛋白质分散指数,且当达到一定时间后,蛋白质的溶出率也趋于恒定。因此,综合两项指标,浸提时间以30 min为宜。固液比在两个指标中均处于第三位,低浓度溶剂浸出时1∶7 的固液比有利于大豆浓缩蛋白PDI 的提高。高浓度乙醇溶液浸出时1:4的固液比既可以浸出除去豆粕中与蛋白质结合的脂类物质、风味前体及色素类,又经济适用。

浸提温度提高,有利于蛋白质溶出率的增加,但当温度提高时,在较高的乙醇浓度下,蛋白质的变性程度增加,从而使大豆浓缩蛋白的PDI 降低,影响产品的工艺性能。另外高温浸提耗能较多,因而浸提温度建议采用30 ℃。

乙醇浓度在四个因素中处于首位,属主要因素。从目前的实验结果来看,提高乙醇浓度不利于豆粕中小分子有机物如低聚糖、皂甙等的浸出,从而使大豆浓缩蛋白中的蛋白含量降低。如使用95 %的乙醇时,蒸馏回收乙醇几乎不产生泡沫,说明皂甙基本上没有被浸出,仍留在大豆浓缩蛋白中。但乙醇浓度的提高,可除去豆粕中与蛋白质结合的脂类物质、风味前体及色素类,使其在醇法大豆浓缩蛋白中的含量明显降低(因为此类物质可溶于乙醇) ,因而醇洗豆粕可去除异味及其色泽变浅,却是很明显的。另外研究发现,乙醇使蛋白质变性的机理不同于热变性,热变性使蛋白质松散、无序,而醇变性则使蛋白质分子重新构造,形成了比天然大豆蛋白更加有序的结构,在熵变驱动下伴随自聚集循环形成了蛋白聚集微粒,蛋白聚集微粒的刚性较大、构象力大、构象更紧密,维持这种紧密构象的作用力是键能较低的次级键。综合实践和理论分析,我们提出稀浓乙醇两次浸出方案:首先

用60 %的乙醇溶液浸提,然后用90 %的乙醇溶液二次浸提(工作时间30 min ,温度50 ℃,固液比分别为1∶7,1:4) ,从而得到具有较好的气味、色泽、蛋白质分散指数和蛋白含量的大豆浓缩蛋白。

1.3.3 工艺流程图

1.3.3.1蛋白工艺流程示意图如下:

1.3.4 操作说明

大豆浓缩蛋白的加工是从脱溶豆粕开始的,首先把豆粕用刮板输送机送到暂存箱里,箱体的大小应该合理,保证生产过程的连续性。料是通过绞龙送入浸出器。由于溶剂的易挥发性,绞龙要严格封闭。料有绞龙送入以后,环形浸出器内开始浸出,浸出时料是静止的,溶剂通过循环泵来连续浸出。浸出器上半段用60﹪的乙醇溶液浸出,固液比为1:7,豆粕大部分中小分子有机物如低聚糖、皂甙等被浸出,为了保证两次进出的浓度梯度,必须在上半段进行沥干,沥干液打入暂存罐,然后由暂存罐打入一效蒸发器,上半段沥干以后进入下半段用90﹪的乙醇溶液提取,固液比为1:4,提取以后用高压泵将混合物料打入胶体磨,胶体磨打磨以后由于其的大的冲力需设一个暂存罐缓冲。然后进入离心分离机分离,分离以后的溶液打入暂存罐,暂存罐里进行调配,调配成60﹪的乙醇溶液再循环利用。分离以后的物料通过输送机进入真空干燥机干燥。干燥以后的物料进入粉碎机粉碎,最后集料包装。环形浸出器上半段的沥出溶剂从暂存罐打入一效蒸发器,通过一效加热分离,二效加热分离,进入冷凝器中冷凝,冷凝以后进入稀乙醇罐,用泵再打入精馏塔,精馏冷却以后打入浓乙醇暂存罐。

1.3.5 设备布置说明

厂房使用的为钢筋混凝土结构,总共4层,其中一、二、三楼长度为30m。一,二、三楼宽度为12米,四楼的宽度约为9米。

根据工艺流程设计的所确定的全部设备,按着工艺生产的要求合理的进行平面布置,以保证生产的顺利进行。

冷凝罐所接管路较复杂且所接管路相同,所以集中摆放。暂存罐大都放在一楼,分离机放在二楼,冷凝器大部分放在二楼,精馏塔冷凝器放在顶楼,胶体磨放在二楼,真空干燥机集中摆放,都放在一楼。

2.工艺设计计算

2.1 物料衡算

2.1.1基本数据

年产5000吨大豆浓缩蛋白,折合小时处理豆粕量:36*1000/24=1500kg/h 。

2原料中各组分的含量(单位,kg/h )

2.1.2一次醇洗

一次醇洗用60%乙醇浸出洗涤时,按5%蛋白、10%灰分、10%脂肪、5%粗纤维、5%寡聚糖、90%低聚糖转移到蛋白液中,则有:

乙醇糖浆干物质量 B=5%*840+10%*15+75*5%+90*10%+180*5%+180*90% =42+1.5+3.75+9+9+162

=227.6kg/h

乙醇水溶液浸泡后沥干,蛋白含溶70%,且60%乙醇水溶液按1:7加入,则蛋白含乙醇的量为x ,则有:

%70%100*6

.2271500=-+x x , x=2987kg/h

进入蒸发器的液体量:C=7*1500-2987=7513kg/h

2.13二次醇洗及离心分离

90%乙醇水溶液按1:4加入,则进入胶体磨的量设为D ;

90%浸出洗涤时,按1%蛋白,5%灰分,10%的脂肪,5%的粗纤维,5%的寡聚糖,5%低聚糖转移到蛋白液中,则有:

二次糖浆干物量 A=1%*42+10%*1.5+5%*3.75+5%*9+5%*9+5%*162 =0.42+0.0015+1.7+.0.45+0.45+8.1

大豆分离蛋白的主要工艺流程

1 大豆分离蛋白的主要技术性能指标 水份:≤6% 干基粗蛋白:≥90% 水溶氮指数:≥60% TPC:≤10000个 大肠杆菌:0个 色泽:浅黄/乳白 气滋味:具有分离蛋白特有的气滋味 PH值:6.8~7.2 密度:过200目筛95%,过270目筛 90% 产品的功能特性将根据不同应用领域来确认 乳化型:通过1(蛋白):4(水):4(脂肪)的测试,肠体光亮、有弹性,无油、水渗出。 高凝胶型:通过1(蛋白):5(水):2(脂肪)的测试,肠体光洁度好,有弹性,无油、水渗出。 高分散(注射)型:1:10(蛋白:水)试验:稍搅拌溶解,静置三分钟无分层,0.5mm注射针头完全通过。 2 大豆分离蛋白工艺流程 低温豆粕——萃取——分离——酸沉——分离——水洗——分离——中和——杀菌——闪蒸——干燥——超细粉碎——混合造粒——喷涂——筛选——金属检测——包装 3 工艺简要描述: 萃取:将大豆低温豆粕置入萃取罐中按1:9的比例加入9倍的水,水温控制为40C0,加入碱使溶液在PH为9的条件下低温豆粕豆粕中的蛋白溶解于水中。 分离:将低温豆粕溶液送入高速分离机,将混合溶液中的粗纤维

(豆渣)与含有蛋白的水(混合豆乳)分离开。豆渣排到室外准备作饲料销售。混合豆乳回收置入酸沉罐中。 酸沉:利用大豆蛋白等电点为4.2的原理,加入酸调整酸沉罐中混合豆乳的PH到4.2左右。使蛋白在这个条件下产生沉淀。 分离:将酸沉后的混合豆乳送入分离机进行分离,使沉淀的蛋白颗粒与水分离。水(豆清水)排入废水处理场治理后达标排放。回收蛋白液(凝乳)到暂存罐。 水洗:按1(凝乳):4的比例加水入暂存罐中搅拌。使凝乳中的盐份和灰份溶解于水中。 分离:将暂存罐中的凝乳液送入离心机进行分离。水排入废水处理场治理达标排放,凝乳回收入中和罐。 中和:加入碱入中和罐,使凝乳的PH调整到7。 杀菌:将中和后的凝乳利用140C0的高温进行瞬时杀菌 干燥:将杀菌后的溶解送入干燥塔,在干燥温度为180C0的条件下将溶解干燥。 筛选:对干燥的大豆分离蛋白进行初步筛选。使98%通过100目标准筛。 超微粉碎:用特殊超微粉碎机对产品进行粉碎,使90%通过200目标准筛造粒:产品随后进行造粒设备进行造粒,使产品粒度均匀。 筛选:对产品进行进一步筛选。 喷涂:在产品表面喷涂表面活性剂,提高产品乳化稳定效果。 金属检测:对产品进行金属检测。 包装:检测后的产品进行自动包装系统,按规定的重量进行包装。

大豆分离蛋白在肉制品中的应用教学资料

大豆分离蛋白在肉制品中的应用

大豆分离蛋白在肉制品中的应用 1、大豆蛋白在肉制品中重要作用 由于大豆蛋白具有蛋白质的功能特性,因此在食品加工中得到广泛的应用。近年来,随着社会生产力的发展,人民的生活水平得到了提高,肉制品的消费量也达到了前所未有的高度,各种各样的肉制品也随着消费者的需要而走向了市场。大豆蛋白以其重要的功能特性在肉制品加工中所起的重要作用也越来越受到肉制品加工业的关注,在肉制品加工中主要利用大豆蛋白以下方面的特性。 1 )强化营养的高性价比蛋白源 大豆蛋白以其低廉的价格、良好的蛋白质量在肉制品中得到了广泛的应用,在灌肠、火腿等产品中添加大豆蛋白,不仅能提高蛋白质的含量,而且能改善蛋白质的配比,使蛋白质的营养更全面、更合理。 2)在肉制品中的调味作用 大豆蛋白含有少量的脂肪酸和碳水化合物,在加热之后会产生独特的豆香气,而肉制品;中有时原料肉(如鱼肉)或辅料所具有的以及由于加工工艺 (如杀菌)所产生的一些不愉快气味,可能会引起消费者的反感,大豆蛋白的独特香气对以上气味产生掩蔽作用,因而大豆蛋白对肉制品具有一定的调味作用。 3)大豆蛋白能改善肉制品的结构 大豆蛋白有良好的凝胶特性和粘结特性,在肉制品加工中利用这一特性加入大豆蛋白后可有效的改善产品的结构、增强产品的弹性、硬度,使产品的结构致密、口感更好,肉感更强。 4 )利用大豆蛋白的乳化性,解决肉制品的出水、出油问题 出水、出油是肉制品加工生产、存放过程中最常出现的问题之一,利用大豆蛋白同时具有亲水基团和亲油基团的特性,对水和油脂具有良好的亲和能力,能吸附水和油脂形成较为稳定网络结构,从而使肉制品中的水和油脂不游离出来,在加工和存放的过程中不发生出水、出油现象。 大豆分离蛋白在肉制品的应用已相当广泛,虽我国分离蛋白生产能力发展很快,但生产技术仍无明显提高,产品质量停滞不前,尚未形成多品种、多功能、系列化,致使大豆蛋白的高营养、高附加值的产品特性没有充分体现出来,市场价格一直处于低迷状态,而且国内的分离蛋白品种单一,功能性区别不大,产品质量不能满足客户的要求。国外大豆分离蛋白产品可生产出数百种,广泛应用于各个工业领域,国外产品由于品种多、质量好,虽然价格高出国产品很多,但仍占国内约 l/3市场。 国外大豆分离蛋白生产工艺、技术发展很快,由萃取方法、到改性方法,已形成多系列的配方技术。按照产品的应用领域、产品性能不同,其萃取方式、改性方法均不同。由此生产出的产品广泛适于肉类、乳品类、轻化工类等领域的不同需求,真正体现大豆蛋白 的高营养、高附加值特性。 1、大豆蛋白在肉制品中的重要作用:强化营养的高性价比蛋白源;在肉制品中的调味作用;大豆蛋白能改善肉制品的结构;利用大豆蛋白的乳化性,解决肉制品的出水、出油问 题。 2、大豆分离蛋白在肉制品中应用的一些性能指标

大豆分离蛋白项目可行性计划

大豆分离蛋白项目 可行性计划 规划设计/投资分析/实施方案

大豆分离蛋白项目可行性计划说明 我国大豆蛋白细分产品包括脱脂大豆蛋白粉、大豆浓缩蛋白和大豆分离蛋白等,其中大豆分离蛋白(SPI)是利用脱皮脱脂冷榨豆饼或低温脱溶豆粕为原料,经稀碱萃取、酸沉淀、离心分离、喷雾干燥等工序加工而成的食用大豆蛋白产品。国内外应用较为成熟的大豆分离蛋白生产工艺为碱提酸沉工艺。 该大豆分离蛋白项目计划总投资9209.90万元,其中:固定资产投资6701.68万元,占项目总投资的72.77%;流动资金2508.22万元,占项目总投资的27.23%。 达产年营业收入20882.00万元,总成本费用16056.35万元,税金及附加187.29万元,利润总额4825.65万元,利税总额5678.55万元,税后净利润3619.24万元,达产年纳税总额2059.31万元;达产年投资利润率52.40%,投资利税率61.66%,投资回报率39.30%,全部投资回收期4.04年,提供就业职位372个。 报告针对项目的特点,分析投资项目能源消费情况,计算能源消费量并提出节能措施;分析项目的环境污染、安全卫生情况,提出建设与运营过程中拟采取的环境保护和安全防护措施。 ......

报告主要内容:基本信息、建设必要性分析、市场研究分析、项目建 设内容分析、选址科学性分析、土建工程、工艺技术说明、环境保护说明、项目安全卫生、项目风险情况、项目节能评价、项目实施安排方案、投资 方案说明、项目经济效益分析、项目综合评价等。

第一章基本信息 一、项目概况 (一)项目名称 大豆分离蛋白项目 我国大豆蛋白细分产品包括脱脂大豆蛋白粉、大豆浓缩蛋白和大豆分离蛋白等,其中大豆分离蛋白(SPI)是利用脱皮脱脂冷榨豆饼或低温脱溶豆粕为原料,经稀碱萃取、酸沉淀、离心分离、喷雾干燥等工序加工而成的食用大豆蛋白产品。国内外应用较为成熟的大豆分离蛋白生产工艺为碱提酸沉工艺。 (二)项目选址 xxx产业园区 (三)项目用地规模 项目总用地面积26853.42平方米(折合约40.26亩)。 (四)项目用地控制指标 该工程规划建筑系数51.86%,建筑容积率1.08,建设区域绿化覆盖率7.91%,固定资产投资强度166.46万元/亩。 (五)土建工程指标

MBR污水处理工艺设计方案设计

MBR污水处理工艺设计 一、课程设计题目 度假村污水处理工程设计 二、课程设计的原始资料 1、污水水量、水质 (1)设计规模 某度假村管理人员共有200人,另有大量外来人员和游客,由于旅游区污水水量季节性变化大,初步统计高峰期水量约为300m3/d,旅游淡季水量低于70m3/d,常年水量为100—150m3/d,自行确定设计水量。 (2)进水水质 处理的对象为餐饮废水和居民区生活污水。进水水质: 项目COD BOD5SS pH NH3-N TP 含量/(mg/L) 150-250 90-150 200-240 7.0-7.5 35-55 4-5 2、污水处理要求 污水处理后水质应优于《城市污水再生利用景观环境用水水质》(GB18921-2002) 项目BOD5SS pH NH3-N TP 含量/(mg/L) 6 10 6.0-9.0 5 0.5 3、处理工艺 污水拟采用MBR工艺处理 4、气象资料 常年主导风向为西南风 5、污水排水接纳河流资料 该污水处理设施的出水需要回用于度假村内景观湖泊,最高水位为103米,常年水位为100米,枯水位为98米 6、厂址及场地现状 进入该污水处理设施污水管端点的地面标高为109米

三、工艺流程图 图1 工艺流程图 四、参考资料 1.《水污染控制工程》教材 2. 《城市污水再生利用景观环境用水水质》(GB18921-2002) 3.《给排水设计手册》 4、《给水排水快速设计手册》 5.《给水排水工程结构设计规范》(GB50069-2002) 6.《MBR设计手册》 7.《膜生物反应器——在污水处理中的研究和应用》顾国维、何义亮编著8.《简明管道工手册》第2版 五、细格栅的工艺设计 1.细格栅设计参数 (1)栅前水深h=0.1m; (2)过栅流速v=0.6m/s; (3)格栅间隙b 细=0.005m; (4)栅条宽度s=0.01m; (5)格栅安装倾角α=60?。 2.细格栅的设计计算 本设计选用两细格栅,一用一备 1)栅条间隙数:

实验7大豆分离蛋白的制备

综合实验7大豆分离蛋白的制备 1. 实验目的 蛋白质是人们日常生活中必需的重要营养物质,通常可以从动物的乳汁或天然植物(如花生、大豆等)中提取。大豆(黄豆)是目前植物中蛋白质含量最为丰富的一种,蛋白质含量高达40 %以上,大豆蛋白含有人体必需的8种氨基酸,还含有丰富的不饱和脂肪酸、钙、磷、铁、膳食纤维等,不含胆固醇,具有很高的营养价值。蛋白的提取方法有许多种,例如: 碱提酸沉、酶提酸沉、超声酸沉、酶解提取、膜分离法等。 本实验采用超声波辅助碱提酸沉法提取大豆蛋白,通过粉碎、正己烷低温浸提脱脂、纤维素酶酶解增溶等预处理方法,采用超声波辅助“碱提酸沉法”使蛋白质在等电点状态下析出。通过本实验,掌握超声波、酶解、离心分离、浸提、等电点析出等蛋白质分离手段,了解植物蛋白制备的常用技术。 2. 材料、仪器与设备 2.1实验材料 黄豆,1mol/LNaOH、10%HCl、正己烷、纤维素酶 2.2实验仪器 恒温水浴锅、粉碎机、高速离心机、超声波仪、pH计、烘箱、电子天平、250mL 三角瓶、平皿、大烧杯、玻棒、药匙 3. 实验内容与步骤 3.1实验流程 黄豆粉碎→正己烷低温浸提(脱脂)30min→离心分离→收集沉淀→烘干20min →纤维素酶酶解→离心分离→收集沉淀→碱溶(调pH11)→超声波处理20min→离心分离→收集上清→等电点酸沉析出(调pH4.5)→离心分离→收集沉淀→烘干30min称重→计算蛋白质粗提回收率 3.2实验步骤 (1)黄豆预处理 选择果粒饱满,色泽明亮的黄豆为原料,称取黄豆250g用小型粉碎机粉碎,破碎粉末用60目的不锈钢网筛过筛,去除夹杂物,备用。 (2)溶剂低温浸出法制取脱脂豆粕粉 取250mL三角瓶,加入粉碎后的豆粉20g,100mL正己烷,瓶口用平皿覆盖,恒温水浴60℃浸提30min使大豆中的油脂溶出,5000rpm离心15min后去上清液,将沉淀收集后放烘箱内50℃,20min烘干,得脱脂豆粕粉样品。 莁膇袇蚁蚄蒇蒈以下周四完成 (3)纤维素酶酶解辅助提高大豆蛋白溶出率

污水处理厂各构筑物的设计计算

山东理工大学 《水污染控制工程》课程设计题目:孤岛新镇污水处理厂设计 学院:资环学院 专业班级:环本0803班 姓名:李聪聪 序号:27号 指导教师:尚贞晓 课程设计时间:2011年12月12日~2011年12月30号共3周

第一章设计任务及资料 1.1设计任务 孤岛新镇6.46万吨/日污水处理厂工艺设计。 1.2设计目的及意义 1.2.1设计目的 孤岛新镇位于山东省黄河入海口的原黄泛区内。东径118050'~118053',北纬37064'~37057',向北15公里为渤海湾。向东10公里临莱州,向南20公里为现黄河入海口,距东营市(胜利油田指挥部)约60公里,该镇地处黄河下游三角洲河道改流摆动地区内。 该镇附近区域为胜利油田所属的孤岛油田和两桩油田。地下蕴藏着丰富的石油资源。为了开发这些油田并考虑黄河下游三角洲的长远发展。胜利油田指挥部决定兴建孤岛新镇,使之成为孤岛油田和两桩油田的生活居住中心和生产指挥与科研中心,成为一个新型的社会主义现代化的综合石油城。根据该镇总体规划,该镇具有完备的社会基础和工程基础设施。有完备的城市交通、给水排水、供电、供暖、电信等设施,并考虑今后的发展与扩建的需要。 因此,为保护环境,防治水污染问题,建设城市污水治理工程势在必行。 1.2.2设计意义 设计是实现高等工科院校培养目标所不可缺少的教学环节,是教学计划中的一个有机组成部分,是培养学生综合运用所学的基础理论、基础知识以及分析解决实际问题能力的重要一环。它与其他教学环节紧密配合,相辅相成,在某种程度上是前面各个环节的继续、深化和发展。 我国城市污水处理相对于国外发达国家、起步较晚。近200年来,城市污水处理已从原始的自然处理、简单的一级处理发展到利用各种先进技术、深度处理污水,并回用。处理工艺也从传统活性污泥法、氧化沟工艺发展到A/O、A2/O、AB、SBR、 CASS等多种工艺,以达到不同的出水要求。虽然如此,我国的污水处理还是落后于许多国家。在我们大力引进国外先进技术、设备和经验的同时,必须结合我国发展,尤其是当地实际情况,探索适合我国实际的城市污水处理系统。 其次,做本设计可以使我得到很大的提高,可在不同程度上提高调查研究,查阅文献,收集资料和正确熟练使用工具书的能力,提高理论分析、制定设计

大豆分离蛋白项目建议书

大豆分离蛋白项目 建议书 规划设计/投资分析/实施方案

大豆分离蛋白项目建议书 我国大豆蛋白细分产品包括脱脂大豆蛋白粉、大豆浓缩蛋白和大豆分离蛋白等,其中大豆分离蛋白(SPI)是利用脱皮脱脂冷榨豆饼或低温脱溶豆粕为原料,经稀碱萃取、酸沉淀、离心分离、喷雾干燥等工序加工而成的食用大豆蛋白产品。国内外应用较为成熟的大豆分离蛋白生产工艺为碱提酸沉工艺。 该大豆分离蛋白项目计划总投资13835.50万元,其中:固定资产投资9633.41万元,占项目总投资的69.63%;流动资金4202.09万元,占项目总投资的30.37%。 达产年营业收入28400.00万元,总成本费用21925.29万元,税金及附加246.04万元,利润总额6474.71万元,利税总额7613.81万元,税后净利润4856.03万元,达产年纳税总额2757.78万元;达产年投资利润率46.80%,投资利税率55.03%,投资回报率35.10%,全部投资回收期4.35年,提供就业职位438个。 报告根据项目实际情况,提出项目组织、建设管理、竣工验收、经营管理等初步方案;结合项目特点提出合理的总体及分年度实施进度计划。 ......

大豆分离蛋白项目建议书目录 第一章申报单位及项目概况 一、项目申报单位概况 二、项目概况 第二章发展规划、产业政策和行业准入分析 一、发展规划分析 二、产业政策分析 三、行业准入分析 第三章资源开发及综合利用分析 一、资源开发方案。 二、资源利用方案 三、资源节约措施 第四章节能方案分析 一、用能标准和节能规范。 二、能耗状况和能耗指标分析 三、节能措施和节能效果分析 第五章建设用地、征地拆迁及移民安置分析 一、项目选址及用地方案

大豆分离蛋白工艺设计

大豆分离蛋白工艺 摘要:作为一种食品添加剂,大豆分离蛋白广泛应用于各种各样的食品体系中。大豆分离蛋白的成功应用在于它具有多种样的功能性质,功能性质是大豆分离蛋白最为重要的理化性质,如凝胶性、乳化性、起护色注、粘度等。本文主要大豆分蛋白的一种制取工艺。 关键字:大豆分离蛋白、分离工艺、影响因素、设备 前言 大豆分离蛋白是重要的植物蛋白产品, 除了营养价值外,它还具有许多重要的功能性质, 这些功能性质对于大豆蛋白在食品中的应用具有重要的价值。大豆蛋白的功能性质可归为三类一是蛋白质的水合性质( 取决于蛋白质-水相互作用),二是与蛋白质-蛋白质相互作用有关的性质,三是表面性质[1]。水合性质包括:水吸收及保留能力、湿润性、肿胀性、粘着性、分散性、溶解度和粘度。而蛋白分子间的相互作用在大豆蛋白发生沉淀作用、凝胶作用和形成各种其它结构(例如面筋) 时才有实际的意义。表面性质主要是指乳化性能和起泡性能[2]。 1.功能特性 1.1乳化性 乳化性是指将油和水混合在一起形成乳状液的性能。大豆分离蛋白是表面活性剂, 它既能降低水和油的表面力,又能降低水和空气的表面力。易于形成稳定的乳状液。乳化的油滴被聚集在油滴表面的蛋白质所稳定,形成一种保护层。这个保护层可以防止油滴聚集和乳化状态的破坏, 促使乳化性能稳定。在烤制食品、冷冻食品及汤类食品的制作中, 加入大豆分离蛋白作乳化剂可使制品状态稳定。

1.2水合性 大豆分离蛋白沿着它的肽链骨架,含有很多极性基,所以具有吸水性、保水性和膨胀性。 1.2. 1吸水性 一般是指蛋白质对水分的吸附能力,它与即水份活度、pH、深度、蛋白质的颗粒大小、颗粒结构、颗粒表面活性等都是密切相关的。随水份活度的增强,其吸水性发生快——慢——快的变化。 1.2. 2保水性 除了对水的吸附作用外,大豆蛋白质在加工时还有保持水份的能力,其保水性与粘度、pH、电离强度和温度有关。盐类能增强蛋白质吸水性却削弱分离蛋白的保水性。最高水分保持能力在pH= 7,温度35~55℃时,为14g水/g蛋白质。 1.2. 3膨胀性 膨胀性即蛋白质的扩作用,是指蛋白质吸收水分后会膨胀起来。它受温度、pH 和盐类的影响显著,加热处理增加大豆蛋白的膨胀性,80℃时为最好,70~100℃之间膨胀基本接近[3]。 1.3吸油性 1.3. 1促进脂肪吸收作用 分离蛋白吸收脂肪的作用是另一种形式的乳化作用。分离蛋白加入肉制品中,能形成乳状液和凝胶基质,防止脂肪向表面移动,因而起着促进脂肪吸收或脂肪结合的作用,可以减少肉制品加工过程中脂肪和汁液的损失,有助于维持外形的稳定。吸油性随蛋白质含量增加而增加,随pH增大而减少。 1.3. 2控制脂肪吸收作用

大豆蛋白的分离提纯与药用前景

大豆蛋白的分离提纯及药用前景

目录 第一章绪论 第二章大豆分离蛋白的提取方法 (2) 2.1 碱提酸沉法 (2) 2.2 膜分离方法 (3) 2.3 起泡法 (3) 第三章分离蛋白产品在医药领域的作用及前景 (5) 3.1 大豆肽 (5) 3.2 大豆卵磷脂 (6) 第四章结论 (8) 参考文献 (9)

大豆蛋白的分离提纯及药用前景 摘要 大豆的蛋白含量较高而且营养丰富,一般含蛋白30%—50%。大豆蛋白含有8 种人体必需氨基酸,且比例比较合理,只是赖氨酸相对稍高,而蛋氨酸和半胱氨酸含量较低。目前大豆蛋白已成为一种重要的蛋白资源,特别是大豆分离蛋白含蛋白质90%以上,是 一种优良的食品原料。 大豆分离蛋白主要由11S球蛋白(Glycinin )和7S球蛋白(B -con-glycinin )组成,大约占整个大豆籽粒贮存蛋白的70%。这两种球蛋白的组成、结构和构象不同,大豆分离蛋白的功能特性也不同。大豆分离蛋白在提取、加工和贮运过程中会发生物理和化学变化,这些适当的改变可以提高大豆蛋白在食品、药品中应用的功能特性。 本文综述了大豆分离蛋白的提取和改性方法,以及大豆分离蛋白在食品生物特别是医药领域的应用前景。 关键词:大豆蛋白,分离方法,应用前景

第一章绪论 大豆营养价值高,资源丰富, 原料成本低。食品工业的飞速发展迫切需要具有功能特性和营养特性的蛋白质, 作为食品的原料成分或添加基料。除了提供人体所必需的氨基酸外,还具有一定的加工特性和生理活性。为此,加强或改善大豆的功能特性和生物活性, 开发新的功能食品, 成为食品及医疗保健业亟待解决的问题。在食品、医疗等领域, 大豆的研究与应用备受国外的关注。 大豆经清洗、破碎、脱皮、压片和正已烷浸出后,可得到脱脂大豆片,即白豆片。由于白豆片的NSI (水溶性氮指数)值高,为提取分离蛋白提供了可靠的保证。所谓分离蛋白,就是从白豆片里除去非蛋白质成分得到含蛋白90%以上的蛋白粉。大豆分离蛋白是理想的植物蛋白,其中含有人体必需的8 种氨基酸(亮氨酸、异亮氨酸、赖氨酸、蛋氨酸、氨酸、色氨酸、苯丙氨酸和缬氨酸)大豆分离蛋白不仅具有很高的营养性,而且具有乳化性、吸水性、吸油性、凝胶性、粘结性和分散性等众多的功能性。在食品加工业中,它广泛应用于肉制品、面制品和饮料等加工上。大豆分离蛋白生产中的副产品还可以进一步加工成纤维素和低聚糖。它们都是有利于人体健康的功能性物质。 从大豆中分离蛋白是一种提取的植物蛋白质,主要用于食品、化工、生物工程等领域。在食品工业中,可以作为肉食品、冷饮、烘烤食品、乳制品等的添加剂,还可以利用分离蛋白生产出很多的高附加值的产品。其实,在这些产品中,有很多具有预防、治疗疾病的功效,所以如果能将其应用在医药中间体,药品辅料或直接作为某些药品的主要原料进行研发生产,会有非常广阔的应用空间。我国从国外引进了很多的生产技术和设备,进而逐步实现了技术和设备的国产化。国对分离蛋白的提取和性能方面也进行了大量的研究。目前国的生产技术和设备逐步成熟,分离蛋白的许多指标基本上能满足实际生产需要。为了进一步的提高生产和科研水平,我们对分离蛋白的提取进行的系统的研究。

城市生活污水处理厂工艺设计

XXXX学院XXXXX 级 综合课程(2014)设计说明书 系别: XXXXXX 专业班级: XXXX 指导老师: XX 设计题目:城市生活污水处理 学生姓名: XX 学号: XXXXX 学期: 20XXXX XXX 2014年12月XX日

目录 设计任务书 (5) 一、设计题目 (5) 二、设计资料 (5) 1.废水资料 (5) 2.气象与水文资料 (5) 三、设计内容 (5) 第一章污水处理工艺方案选择 (6) 一、工艺方案分析与确定 (6) 二、工艺流程确定: (7) 第二章处理构筑物设计 (8) 一、流量计算 (8) 1.1.水量的确定: (8) 1.2.水质的确定: (8) 二、集水井 (8)

三、粗格栅 (9) 1.设计参数 (9) 2 设计计算 (9) 四、污水提升泵房 (11) 1. 流量确定 (11) 2 集水池容积 (11) 3 泵站扬程计算 (11) 4 设备选用 (11) 五、细格栅 (12) 1.设计参数 (12) 2 设计计算 (12) 六、配水井设计 (14) 七、曝气沉砂池 (14) 1 曝气沉砂池的设计参数: (14) 2 曝气沉砂池的设计与计算 (15) 八、氧化沟 (18) 1设计参数: (18) 2确定采用的有关参数: (18) 3泥龄的确定: (18) 4设计计算: (19)

5曝气量计算 (19) 6沟型尺寸设计及曝气设备选型 (20) 7其它附属构筑物的设计 (20) 九、配水井设计 (20) 十、辐流式二沉池 (21) 1 设计计算 (21) 2 进水系统计算: (22) 3出水部分计算: (22) 4 排泥部分设计 (23) 十一、接触池(消毒池)和加药系统 (24) 1 主要设计参数 (24) 2工艺尺寸 (24) 3加氯机 (25) 十二、污泥处理系统设计计算 (26) 1泵房设计计算 (26) 2污泥浓缩池的计算: (27) 3贮泥池设计计算 (30) 4污泥脱水 (30) 参考文献: (31)

大豆分离蛋白项目规划方案

大豆分离蛋白项目规划方案 规划设计/投资分析/产业运营

摘要 该大豆分离蛋白项目计划总投资9720.39万元,其中:固定资产投资6761.83万元,占项目总投资的69.56%;流动资金2958.56万元,占项目总投资的30.44%。 达产年营业收入20783.00万元,总成本费用15797.80万元,税金及附加193.90万元,利润总额4985.20万元,利税总额5866.71万元,税后净利润3738.90万元,达产年纳税总额2127.81万元;达产年投资利润率51.29%,投资利税率60.35%,投资回报率38.46%,全部投资回收期4.10年,提供就业职位323个。 报告根据项目的经营特点,对项目进行定量的财务分析,测算项目投产期、达产年营业收入和综合总成本费用,计算项目财务效益指标,结合融资方案进行偿债能力分析,并开展项目不确定性分析等。 我国大豆蛋白细分产品包括脱脂大豆蛋白粉、大豆浓缩蛋白和大豆分离蛋白等,其中大豆分离蛋白(SPI)是利用脱皮脱脂冷榨豆饼或低温脱溶豆粕为原料,经稀碱萃取、酸沉淀、离心分离、喷雾干燥等工序加工而成的食用大豆蛋白产品。国内外应用较为成熟的大豆分离蛋白生产工艺为碱提酸沉工艺。 报告主要内容:基本情况、建设背景及必要性、产业研究、项目规划分析、选址方案、土建工程方案、项目工艺技术、环境保护可行性、企业

卫生、项目风险情况、节能说明、进度方案、投资方案、项目经济收益分析、项目总结、建议等。

大豆分离蛋白项目规划方案目录 第一章基本情况 第二章建设背景及必要性 第三章项目规划分析 第四章选址方案 第五章土建工程方案 第六章项目工艺技术 第七章环境保护可行性 第八章企业卫生 第九章项目风险情况 第十章节能说明 第十一章进度方案 第十二章投资方案 第十三章项目经济收益分析 第十四章项目招投标方案 第十五章项目总结、建议

014大豆分离蛋白的组成与功能性质[1]

2000年12月第15卷第6期 中国粮油学报 Journal of the Chinese Cereals and Oils Ass ociation Vol.15,No.6 Dec.2000大豆分离蛋白的组成与功能性质 谢 良 王 璋 蔡宝玉 (无锡轻工大学食品学院,无锡 214036) 摘 要 本文对国产和进口的两种大豆分离蛋白进行了分析,比较了它们的化学组成与功能性质。与进口的大豆分离蛋白相比,国产的大豆分离蛋白灰分较高,乳化能力较高,热变性时热焓较小,分子量较小;两种蛋白质水合能力和凝胶性质相近;国产大豆分离蛋白的溶解性好于进口产品,但分散性却低于进口产品;研究结果表明:国产大豆蛋白在加工过程中解聚和降解较多,且粉末未经工艺处理。 关键词 大豆分离蛋白 成分 功能性质 0 前言 大豆分离蛋白是重要的植物蛋白产品,除了营养价值外,它还具有许多重要的功能性质,这些功能性质对于大豆蛋白在食品中的应用具有重要的价值〔1〕。 大豆蛋白的功能性质可归为三类〔1〕,一是蛋白质的水合性质(取决于蛋白质-水相互作用),二是与蛋白质-蛋白质相互作用有关的性质,三是表面性质。水合性质包括:水吸收及保留能力、湿润性、肿胀性、粘着性、分散性、溶解度和粘度。而蛋白分子间的相互作用在大豆蛋白发生沉淀作用、凝胶作用和形成各种其它结构(例如面筋)时才有实际的意义。表面性质主要是指乳化性能和起泡性能。 国外对于大豆分离蛋白的研究可追溯到本世纪30年代,近年来在大豆分离蛋白的结构与功能性质的关系方面做了很多工作,找到了一些规律〔2~5〕。然而,迄今为止,大豆分离蛋白的功能性质的物理化学基础还没有完全搞清楚,至于将大豆分离蛋白添加到某种食品中去之后它们所表现出来的功能性质,由于涉及到大豆分离蛋白产品中的各种蛋白质组分与食品组分之间的相互作用,情况就更复杂了。 影响大豆分离蛋白功能性质的因素非常复杂〔5〕,首先是大豆蛋白产品中蛋白质的含量,各个蛋白质组分的聚集和解聚状态,蛋白质的变性程度和蛋白产品中非蛋白质部分的组成。除了上述这些内 收稿日期:1999-07-08 谢良:男,1964年生,博士,副教授,食品科学与工程专业在因素外,许多外部因素也影响着大豆分离蛋白产品的功能性质,例如,pH、离子强度和温度。因此不同的大豆分离蛋白生产工艺会影响大豆蛋白产品中蛋白质的组成与分子结构,从而影响到产品的功能性质。 本文分析和测定了市售国产的大豆分离蛋白和从美国进口的一种型号的大豆分离蛋白产品的成份和功能性质。 1 试验材料与方法 1.1 材料 国产大豆分离蛋白:市售,食品级 进口大豆分离蛋白:美国,火腿生产用的大豆分离蛋白 1.2 方法 1.2.1 水分测定〔6〕:真空干燥法(680mm汞柱 70℃) 1.2.2 灰分测定〔7〕:高温炉600℃灰化 1.2.3 钾、钠和钙含量(ppm或μg/g)测定〔8〕:原子吸收分光光度法 1.2.4 磷酸盐含量(以PO43-计,mg/g)测定〔9〕:钼蓝比色法 1.2.5 蛋白质含量(N×6.25)测定〔10〕:凯氏定氮法1.2.6 脂肪含量测定〔11〕:索氏抽提法 1.2.7 纤维含量测定〔12〕:酸性洗涤剂法 1.2.8 碳水化合物含量测定〔13〕:费林氏容量法(以转化糖计)

国内大豆分离蛋白生产的现状

国内大豆分离蛋白生产的现状、差距及建议 1、现状 大豆分离蛋白(SoyProteinIsolate, 简称SPI) 是以大豆为原料, 采用先进的加工技术制取的一种蛋白质含量高达90% 以上的功能性食品的添加剂由于它具有良好的溶解性,乳化性、起泡性、持水性和粘弹性等特性, 又兼有蛋白质含量高的 营养性,所以被广泛地应用于肉制品(例如西式火腿、火腿肠午餐肉,三文治、灌肠、香肠及肉馅等), 冷饮制品(例如冰淇淋、 奶油、雪糕、布丁等), 烘焙食品(例如面包、糕点等)。目前世界大豆分离蛋白的年产量约40~50 万t,增长势头十分强劲。 早在50 年代初, 美国已研究开发出大豆分离蛋白, 但是由于技术难度大, 直到70 年代其生产技术才趋于完善和成熟。目前,国际上居垄断地位的大豆分离蛋白生产厂商主要有美国,日本、巴西生产的大豆分离蛋白在国际市场上也占有一定 份额。 我国80 年代初开始生产大豆分离蛋白,迄今为止, 已建、自建、合资和独资的大豆分离蛋白生产厂已有10 多家, 年生产能力约 3 万t,主要在黑龙江、吉林,在哈尔滨,开封,山东、河南等地已建和正在筹建的生产厂。我国大豆分离蛋白的 生产与发展是和食品工业,尤其是肉食品(例如西式火腿)等的迅速发展,需求量大增密切相关。由于国内生产的大豆分离蛋白 的质量与国外相比有较大差距,所以每年大约进口大豆分离蛋白达 2 万t 左右,给国内大豆分离蛋白市场造成严重冲击,给企业 带来很大压力。当前,如何提高大豆分离蛋白的功能特性, 使之达到国际上同类产品的质量指标要求,乃是急待解决的任务。 2 、大豆分离蛋白的功能特性 大豆籽粒中约含蛋白质38%~42%, 碳水化合物(包括粗纤维)25%~27%, 脂肪16%~20%, 水分10%~12%, 灰分3%~5% 。可将大豆籽粒加工成大豆蛋白粉(含蛋白质50%), 浓缩蛋白( 含蛋白质70%), 分离蛋白(含蛋白质90%) 以及组织蛋白,纤维蛋白等产品。大豆蛋白经修饰!改性制取的高纯度大豆分离蛋白具有良好的溶解性、乳化性、起泡性、持水性和粘弹性等功能性乃是大豆分离蛋白非常重要的性质, 而大豆蛋白的组成和结构是决定大豆分离蛋白功能特性的重要因素。 大豆蛋白质是由一系列氨基酸通过肽键结合而成的高分子有机聚合物,它主要由清蛋白和球蛋白组成,其中清蛋白约占5%, 球蛋白约占90% 。由于大豆球蛋白是椭园球形, 故此命名。球蛋白溶于水或碱溶液,加酸调pH 值的等电点4、5, 则沉淀析出,故又称酸沉蛋白, 而清蛋白无此特性, 故又称为非酸沉蛋白。球蛋白中主要为11S 和7S 蛋白,约占总蛋白的70%, 其余为2S 和15S 等,11S 球蛋白的分子量 为17~35 万, 为疏水性聚合体。7S 球蛋白的分子量为14~17 万,为疏水性聚合体。7S 和11S 球蛋白对大豆蛋白的功能特性起着十分重要 的主导作用。国外对7S 和11S 球蛋白的分子结构!功能特性,蛋白质修饰技术以及高品质多功能系列大豆分离蛋白产品的生产工艺进行了 大量深入细致的研究,并取得了重大成果,属于绝密高科技。球蛋白和清蛋白均属于贮藏蛋白,它与大豆加工性能关系密切,而大豆生物活性蛋白,例如胰蛋白酶抑制剂、血球凝集素,脂肪氧化酶等,在总蛋白中所占比例虽然很少,但对大豆制品的质量却关系重大。 3 、大豆分离蛋白的生产工艺

SBR工艺污水处理厂设计计算

课程设计 题目33000m3/d生活污水处理厂设计学院资源与环境工程学院 专业环境工程 班级环工2012 姓名覃练 指导教师方继敏、李柏林 2015 年 6 月21 日

课程设计任务书(环境工程1202班,学号10)设计(论文)题目:33000m3/d生活污水处理厂工艺设计 设计(论文)主要内容及技术参数 1.污水类别为城市污水,设计流量33000m3/d; 2.要求完成污水处理厂主要工艺设计与计算说明书的编写; 3.绘制两张单元构筑物的图纸。 要求完成的主要任务及达到的技术经济指标 1.按照指导书的深度进行设计与计算说明书的编写; 2.绘制两个单元构筑物的图纸(两张1号) 3.个人加上自己的进水和出水水质 工作进度要求 课程设计为期一周,时间安排如下: 1.课程设计的讲授1天,设计准备(设计资料、手册、绘图工具准备)1天 2.课程设计的计算部分3天 3.课程设计的图纸绘制部分2天 指导教师(签名)____________系(教研室)主任(签名)____________ 年月日

课程设计指导教师意见书 评定成绩_____________ 指导教师(签名)______________ 年月日

摘要: 本设计是33000m3/d城市污水处理厂工艺设计,处理工艺采用了SBR工艺。SBR是一种按间歇曝气方式来运行的活性污泥污水处理技术,又称序批式活性污泥法。本工艺的主要构筑物包括格栅、污水泵房、沉淀池、SBR、接触消毒池、浓缩池、污泥脱水机房等。污水进入污水处理厂经过粗格栅后经污水泵房进入到细格栅,再进入平流沉砂池沉砂,再进入SBR池反应,然后进入接触消毒池消毒,污水达到水质要求,经过计量槽后排出污水。SBR的剩余污泥含水量减少再进入贮泥池,随后进入污泥脱水车间进行脱水,脱水后的污泥外运。 SBR的主要工艺特征是在运行商的有序和间歇操作,SBR工艺的核心是SBR 反应池,该池集均化、初沉、生物降解、二沉等功能与一池,无污泥回流系统。经过该废水处理工艺的废水可达到设计要求,可以直接排放。产生的污泥经过浓缩,压滤等处理后,进行堆肥产生一定的经济效益。 本设计书的主要内容为设计资料、污水污泥处理工艺的选择。污水污泥的计算等。 关键词:城市污水处理;SBR工艺;脱氮除磷;污泥

大豆蛋白分离系统工艺流程及技术

大豆蛋白分离系统工艺流程 及技术 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

大豆蛋白分离系统工艺流程及技术 大豆分离蛋白具有蛋白含量高,几乎不含胆固醇等特点,具有良好的乳化性、凝胶性、溶解性、起泡性、吸油性和持水性等性能,是其它动物蛋白所不能替代的。大豆分离蛋白是一种与人体的必需氨基酸组成比例最接近、更易被人体吸收的天然植物蛋白源,属于全价优质蛋白。 在生产大豆分离蛋白工艺方面,酸沉法工艺应用是最完善的,其主要工艺是粉碎、萃取、分离渣乳、酸沉、凝乳分离、中和老化、杀菌干燥,检验包装等工序。整个进料、分离、出料均是自动、连续、封闭的状态下完成。 一、大豆蛋白质分离纯化工艺 用于生产食用蛋白食品的大豆经过预处理后,浸出油料,提取脱脂豆粕和豆粉,然后在碱性溶液中将大豆蛋白质从豆粉中溶解出来,最后加酸使蛋白质凝集沉淀分离出来。 其中渣液分离是最关键的生产工序,目前普遍采用高转速卧螺离心机,来提高蛋白回收率,萃取后的溶液经卧螺离心机后可直接分离出豆渣和豆浆,根据工序条件又分为一次分离和二次分离。 凝乳分离的目的是将凝乳混合料液中的乳清、碳水化合物、盐类等可溶性部分分离去除,来提纯蛋白的质量,最后再进入水洗工序。 二、其他大豆蛋白生产工艺: 1、传统湿热浸提工艺是由于回收不了可溶于水的大豆蛋白,使得蛋白质得率极低,目前已基本被淘汰。 2、乙醇浸提工艺是醇法制备的大豆浓缩蛋白是一种高蛋白的大豆制品,其氨基酸组成合理,产品的风味清淡、色泽较浅,蛋白损失较小。然而由于醇溶液的变性、沉淀作用,使得产品中的蛋白质发生变性,功能差,使用范围受到限制。由于生产中采用的回液比大,需蒸馏回收乙醇的量较大,因此生产中能源消耗也较高。 3、稀盐酸浸提工艺是产出量虽比前1、2种工艺较大,但工艺复杂,投资较大,工时较多,同时在生产过程中需耗用大量的酸和碱溶液,排出的废水较难处理 三、蛋白质分离纯化工艺优点: 1、产品得率高,百分百回收。 2、不加任何添加剂,绿色环保。 3、不需加热即可浓缩、工艺简单、工时短,能耗低。 4、产品质量好、无变色,变味。 5、可用同一条线生产浓缩蛋白和分离蛋白,不需增加设备。

大豆分离蛋白的提取实验讲义

实验一大豆分离蛋白的提取 1.实验目的 学习掌握大豆分离蛋白的碱提酸沉法。 2.分离原理: 大豆分离蛋白的制取方法,按工艺特点主要有三种:第一种是碱提酸沉法;第二种是离子交换法;第三种是超滤法。 碱提酸沉法生产大豆分离蛋白的原理,是将脱脂大豆内的蛋白质溶解在稀碱溶液中,分离除去豆粕中的不溶物,然后用酸将大豆蛋白质提取液的pH值调至大豆蛋白的等电点,使大豆蛋白质沉淀析出,再经分离清洗,回调pH,得到粉状大豆分离蛋白。 3. 试剂材料:豆粕,5%NaOH,2N HCl(17ml浓盐酸,缓慢用水稀释至100ml)。 4. 提取方法: 将2g大豆磨碎,得到可通过80目筛的豆粕。用重量10倍于豆粕的蒸馏水与脱脂豆粉混合,用5%NaOH 水溶液将豆粉悬浮液的pH调节到8.5,室温或40℃搅拌1.5h。然后将提取液离心除渣4000rpm×15min,得上清液。用2N的HCl将上清液的pH值调到4.5,同时轻度搅拌均匀,可见开始出现沉淀,室温静置30min,然后以4000rpm×15min离心,用蒸馏水清洗沉淀2次,将蛋白沉淀物溶于20 ml水中,并调节pH到7.0,考马斯亮蓝结合法测定蛋白质浓度,计算蛋白提取率。 5. 产品测定指标: (1)可溶性蛋白质的浓度:采用考马斯亮蓝法。 (2)蛋白质的提取率计算公式: 可溶蛋白质的浓度(ug/ml) ×稀释度×体积(ml) 提取率(%)=×100% 原料质量(g) ×106 (附)考马斯亮蓝结合法测定蛋白质浓度 一、实验目的 掌握考马斯亮蓝结合法测定蛋白质浓度的原理和方法,掌握离心机和移液器的正确使用方法。 二、实验原理 考马斯亮蓝G-250是一种甲基取代的三苯基甲烷,在465nm处有最大吸收值。考马斯亮蓝G-250能与蛋白质通过范得华相互作用形成蛋白质-考马斯亮蓝复合物蓝色溶液,引起该染料的最大吸收λmax的位置发生转移,在595nm处有最大吸收值。在一定范围内(蛋白质浓度范围为0~1000μg/mL),蛋白质-考马斯亮蓝复合物溶液颜色的深浅与蛋白质的浓度成正比。 该法是1976年Bradford建立,试剂配制简单,操作简便快捷,反应非常灵敏,灵敏度比Lowry法还 高4倍,可测定微克级蛋白质含量,是一种常用的微量蛋白质快速测定方法。 三、实验试剂 1.标准蛋白液:准确称取100mg牛血清白蛋白,用蒸馏水溶解并定容至1000ml,制成100μg /ml 的原液。 2.考马斯亮蓝G250试剂:准确称取100mg考马斯亮蓝G250,溶于50ml 90%~95%乙醇中,再加入85%磷酸(m/v)100ml,用蒸馏水定容至1000ml。常温下可放置1个月。 四、操作步骤 1.标准曲线的制备 取7支具塞试管,按下表进行编号并加入试剂。以第1管为空白,于波长595nm处比色,读取吸光度,以吸光度为纵坐标,各标准液浓度(μg/mL)作为横坐标作图得标准曲线。

大豆分离蛋白在肉制品中的应用

大豆分离蛋白在肉制品中的应用 1、大豆蛋白在肉制品中重要作用 由于大豆蛋白具有蛋白质的功能特性,因此在食品加工中得到广泛的应用。近年来,随着社会生产力的发展,人民的生活水平得到了提高,肉制品的消费量也达到了前所未有的高度,各种各样的肉制品也随着消费者的需要而走向了市场。大豆蛋白以其重要的功能特性在肉制品加工中所起的重要作用也越来越受到肉制品加工业的关注,在肉制品加工中主要利用大豆蛋白以下方面的特性。 1 )强化营养的高性价比蛋白源 大豆蛋白以其低廉的价格、良好的蛋白质量在肉制品中得到了广泛的应用,在灌肠、火腿等产品中添加大豆蛋白,不仅能提高蛋白质的含量,而且能改善蛋白质的配比,使蛋白质的营养更全面、更合理。 2)在肉制品中的调味作用 大豆蛋白含有少量的脂肪酸和碳水化合物,在加热之后会产生独特的豆香气,而肉制品;中有时原料肉(如鱼肉)或辅料所具有的以及由于加工工艺(如杀菌)所产生的一些不愉快气味,可能会引起消费者的反感,大豆蛋白的独特香气对以上气味产生掩蔽作用,因而大豆蛋白对肉制品具有一定的调味作用。 3)大豆蛋白能改善肉制品的结构 大豆蛋白有良好的凝胶特性和粘结特性,在肉制品加工中利用这一特性加入大豆蛋白后可有效的改善产品的结构、增强产品的弹性、硬度,使产品的结构致密、口感更好,肉感更强。 4 )利用大豆蛋白的乳化性,解决肉制品的出水、出油问题 出水、出油是肉制品加工生产、存放过程中最常出现的问题之一,利用大豆蛋白同时具有亲水基团和亲油基团的特性,对水和油脂具有良好的亲和能力,能吸附水和油脂形成较为稳定网络结构,从而使肉制品中的水和油脂不游离出来,在加工和存放的过程中不发生出水、出油现象。 大豆分离蛋白在肉制品的应用已相当广泛,虽我国分离蛋白生产能力发展很快,但生产技术仍无明显提高,产品质量停滞不前,尚未形成多品种、多功能、系列化,致使大豆蛋白的高营养、高附加值的产品特性没有充分体现出来,市场价格一直处于低迷状态,而且国内的分离蛋白品种单一,功能性区别不大,产品质量不能满足客户的要求。国外大豆分离蛋白产品可生产出数百种,广泛应用于各个工业领域,国外产品由于品种多、质量好,虽然价格高出 国产品很多,但仍占国内约l/3市场。 国外大豆分离蛋白生产工艺、技术发展很快,由萃取方法、到改性方法,已形成多系列的配方技术。按照产品的应用领域、产品性能不同,其萃取方式、改性方法均不同。由此生产出的产品广泛适于肉类、乳品类、轻化工类等领域的不同需求,真正体现大豆蛋白的高营 养、高附加值特性。 1、大豆蛋白在肉制品中的重要作用:强化营养的高性价比蛋白源;在肉制品中的调味作用;大豆蛋白能改善肉制品的结构;利用大豆蛋白的乳化性,解决肉制品的出水、出油问题。 2、大豆分离蛋白在肉制品中应用的一些性能指标 1)保水性

污水处理厂CASS工艺设计计算书

污水处理厂设计计算书 1.污水处理厂处理规模 1.1处理规模 污水厂的设计处理规模为城市生活污水平均日流量与工业废水的总和:近期1.0万m3/d,远期2.0万m3/d。 1.2污水处理厂处理规模 污水厂在设计构筑物时,部分构筑物需要用到最高日设计水量。最高日水量为生活污水最高日设计水量和工业废水的总和。 Q设= Q1+Q2 = 5000+5000 = 10000 m3/d 总变化系数:K Z=K h×K d=1.6×1=1.6 2.城市污水处理工艺流程 污水处理厂CASS工艺流程图 3.污水处理构筑物的设计 3.1泵房、格栅与沉砂池的计算 3.1.1 泵前中格栅 格栅是由一组平行的的金属栅条制成的框架,斜置在污水流经的渠道上,或泵站集水井的井口处,用以截阻大块的呈悬浮或漂浮状态的污物。在污水处理流程中,格栅是一种对后续处理构筑物或泵站机组具有保护作用的处理设备。 3.1.1.1 设计参数:

(1)栅前水深0.4m ,过栅流速0.6~1.0m/s ,取v=0.8m/s ,栅前流速0.4~0.9 m/s ; (2)栅条净间隙,粗格栅b= 10 ~ 40 mm, 取b=21mm ; (3)栅条宽度s=0.01m ; (4)格栅倾角45°~75°,取α=65° ,渐宽部分展开角α1=20°; (5)栅前槽宽B 1=0.82m ,此时栅槽内流速为0.55m/s ; (6)单位栅渣量:W 1 =0.05 m 3栅渣/103m 3污水; 3.1.1.2 格栅设计计算公式 (1)栅条的间隙数n ,个 max Q n bhv = 式中, max Q -最大设计流量,3/m s ; α-格栅倾角,(°); b -栅条间隙,m ; h -栅前水深,m ; v -过栅流速,m/s ; (2)栅槽宽度B ,m 取栅条宽度s=0.01m B=S (n -1)+bn (3)进水渠道渐宽部分的长度L 1,m 式中,B 1-进水渠宽,m ; α1-渐宽部分展开角度,(°); (4)栅槽与出水渠道连接处的渐窄部分长度L 2,m (5)通过格栅的水头损失h 1,m 式中:ε—ε=β(s/b )4/3; h 0 — 计算水头损失,m ; k — 系数,格栅受污物堵塞后,水头损失增加倍数,取k=3; 1 112tga B B L -= 1 25.0L L =αε sin 22 01g v k kh h ==

相关主题
文本预览
相关文档 最新文档