当前位置:文档之家› 非惯性系下力学问题

非惯性系下力学问题

非惯性系下力学问题
非惯性系下力学问题

渤海大学

本科毕业论文

题目非惯性系下力学问题的研究完成人姓名张亚楠

主修专业物理学教育

所在院(系)数理学院物理系入学年度2008年

完成日期2011年6月1日指导教师丁文波

非惯性系下力学问题的探讨

张亚楠渤海大学物理系

摘要:非惯性参照系就是能够对同一个被观测的单元施加作用力的观测参照框架和附加非线性的坐标系的统称。在经典机械力学中,任何一个使得“伽利略相对性原理”失效的参照系都是所谓的“非惯性参照系”。了解非惯性系下的力学问题很重要。对于非惯性系的研究已经从传统的理论已经从传统的理论教学扩展到实际生活应用领域,从宏观研究深入到微观领域。随着生活领域的不断扩大,对非惯性系下的元器件动力学行为,特别是非线性动力学行为的研究还有很大的空间。在直升机转子等航空发动机转子的动力学研究中,应用的也主要是非惯性系动力学的理论知识。近年来通过研究发现,在非惯性系中两体问题、摩擦力、压强以及浮力问题等都得以解决。本文阐述了惯性系和非惯性系的区别,由惯性力着手,把牛顿第二地定律引入到非惯性系中,分析了牛顿第二定律的适用条件,并对非惯性系下的力学问题进行研究。第一部分对非惯性系和惯性系进行概述。第二部分对非惯性系下摩擦力的研究进行了讲述,摩擦力从动于包括惯性力在内的其它力作用。第三部分通过分析在非惯性系中液体内部浮力和压强的变化,阐述了在不同参考系下液体浮力和压强的变化规律。

关键词:非惯性系;摩擦力;压强;浮力

Mechanics Problems in the non-inertial frame

Zhang Ya-nan Department of Physics,Bohai University Abstract:Collectively referred to as the coordinate system of the observation frame of reference and additional non-linear non-inertial frame of reference is the ability to exert force on the same observation unit. In classical mechanics, no one makes the "failure of the principle of Galilean relativity" frame of reference is the so-called "non-inertial frame of reference. Mechanical problem is very important to understand the non-inertial frame. For non-inertial frames from the traditional theory has been expanded from the traditional teaching of the theory to real-life applications, from a macro research into micro areas. With the continuous expansion of areas of life, the dynamic behavior of non-inertial frame components, especially the study of nonlinear dynamic behavior there is a lot of space. The study of helicopter rotor aero-engine rotor dynamics, the application of theoretical knowledge of non-inertial frame dynamics. In recent years, the study found that two-body problem in the non-inertial, friction, pressure and buoyancy problems are all resolved. This paper describes the difference between inertial frames and non-inertial frames, to proceed by the inertia force, the introduction of Newton's second law of land to the non-inertial reference frame, Newton's Second Law applies to conditions, mechanical problems and non-inertial frame study. The first part an overview of the non-inertial frames and inertial frames. The

second part of the non-inertial friction about the friction follower force, including the inertia force. The third part through the analysis of liquid internal buoyancy and pressure change in the non-inertial reference frame on a different reference liquid buoyancy and pressure variation.

Key words: Non-inertial;Friction;Pressure;Buoyancy

目录

引言 (1)

一、非惯性系概述 (3)

(一)非惯性系和惯性系 (3)

(二)平动非惯性参考系 (5)

1.平动的非惯性系 (5)

2. 非惯性系中牛顿运动定律的应用 (7)

(三)转动非惯性参考系 (11)

1. 转动坐标系中的运动学问题 (11)

2. 转动非惯性系中的动力学问题 (13)

3. 落体偏东——地球自转的动力学效应 (13)

二、非惯性系中摩擦力的研究 (14)

(一)摩擦力的从动性 (14)

(二)非惯性系中的摩擦力 (15)

1.惯性力的具体形式 (15)

2.静摩擦力 (16)

3.滑动摩擦力 (16)

三、非惯性系中液体内部的浮力和压强的讨论 (17)

(一)惯性系中液体内部浮力和压强的表达式 (17)

(二)非惯性系中液体内部浮力和压强的表达式 (18)

结论 (25)

参考文献 (26)

非惯性系下的力学问题的研究

引言

经典理论认为凡是牛顿运动定律适用的参照系为惯性系,牛顿运动定律不成立的参照系为非惯性系[1]。所有相对于惯性系做匀速直线运动的参照系都是惯性系,相对于惯性系做非匀速直线运动的参照系就不是惯性系。在一般精度范围内,地球或静止在地面上的任一物体都可以近似看作惯性系。同样,在地面上做匀速直线运动的物体也可以近似地看作惯性系,但在地面上做变速运动的物体就不能看作惯性系[2,3]。可以看出,经典理论是把匀速直线运动的参照系作为惯性系,非匀速直线运动的参照系作为非惯性系[4,5]。

在研究地面上物体的运动时,为了研究问题的方便,人们通常取地球作为参照系,即惯性参照系,凡相对惯性系作变速运动的参照系就是非惯性参照系。两者惟一的差别就是在非惯性系中存在一个引力场。对参照系作了分类,并提出了参照系的选择原则[6]。从相对性和绝对性对参照系和惯性系及非惯性系作了论述。

研究在惯性参照系下机械运动所遵循的规律的力学被称之为“经典力学”,因此牛顿力学只有在惯性参照系中才能成立[7,8]。在不同参照系中观察同一物体的运动,所得的描述物体运动的结论并不相同。但是,可以通过在非惯性参照系中引进一个假设的力———惯性力,牛顿运动定律在非惯性参照系中便能成立了[9]。对非惯性系的理论研究,其关键点为引入牛顿力的概念,运用牛顿第二定律建立动力学运动微分方程,便可求出各个物理量。运用能量定理及守恒定律解决非

惯性系中的比较特殊的质点运动,尤其是指两质点的相对速度问题,比运用动力学方程简捷和方便得多[10]。对于非惯性系中理想流体的动力学方程问题,在近些年来也有研究。在非惯性系中引入惯性力和等效势能的概念,或是运用非惯性系中流体动力学方程,都可推导出非惯性系中伯努利方程的等效形式,用以解决流体动力学问题[11]。同样,通过研究发现,在惯性系中适用的阿基米德定律,在非惯性系中也可以用来解决流体动力学问题和流体流溢的边界条件问题[12]。

一、非惯性系的概述

(一)非惯性系和惯性系

凡是牛顿第二定律能够适用的参照系称为惯性参照系。

经典力学的相对性原理指出,一切力学规律在相互作匀速运动而无转动的参考系中都是相同的。在一个作匀速直线运动的密封座舱中的观察者,无法通过内部的力学实验来判断座舱相对于恒星是静止的还是在作匀速运动的,他只有朝窗外看才能知道,但仍然无法判断究竟是座舱还是恒星在运动。另一方面,参考系在力学上的这种等效,并非对任意运动的参考系都成立。在颠簸运行的火车里和在作匀速运动的火车里,力学运动并不服从同样的定律。在精确地写相对于地球的运动方程时,必须考虑地球的转动。一个参考系,如果自由质点在其中作非加速运动,就称为惯性参考系或伽利略参考系,所有相互作非加速运动而无转动的参考系都是惯性参考系。

判断一个特定参考系是不是惯性系,取决于能以多大的精确度去测出这个参考系的微小加速度效应。在地面上的一般工程动力学中,由于地球的自转角速度较小,地面上一点的向心加速度很小,可取与地球固连的坐标系作为惯性参考系。在一些必须把地球自转计算在内的问题中,例如研究陀螺仪表的漂移时,可采用地球中心坐标系作为近似的惯性参考系,其原点与地球中心重合,轴指向所认定的恒星。天文学中则采用黄道坐标系或银道坐标系作为惯性参考系。

牛顿第二定律不适用的参照系称为非惯性参照系。

非惯性参考系附加引力场,考虑在高空向地球坠落的小物体,

简化为不考虑空气和地球旋转的影响,那么分别选择地球和小物体为参照系情况有所不同,若以地球为参照系,由于地球近似为惯性系,所以小物体做自由落体运动,到达地面过程中动能不断增加,其动能是由势能转换而来的,能量守恒成立。若以小物体为参照系,小物体是非惯性系,按照广义相对论,其中有一个附加引力场,引力场指向上。地球在附加引力场作用下,沿着附加引力场方向加速运动,附加引力场对地球做功,地球的动能不断增加,直至落到作为参照系的小物体上。

通过动力学实验找到惯性系,从而确定任意一个对象的加速度。牛顿以“水桶实验”来证实其可行性。当一个盛水的水桶带着桶里的水转起来的时候,水面会由平坦变成凹形,如果水桶停止转动而水未停下,水面仍会呈凹形。如果建立一个与水相对静止的转动参照系,那么在这个参照系里水是静止的,但这个参照系里的实验者却会发现,似乎有一个向外的力维持着水面的形状,不让四周的水向中心回流,于是实验者便可以下结论:我所在的系是个非惯性系,其中有惯性力维持着水面的凹形。推而广之,只要在某个参照系里,水静止但水面不平坦,这就可作为非惯性系的判断依据,这个非惯性系中存在着惯性力。牛顿认为,参照系中若发生这种情况,则说明它是一个相对于“绝对空间”有加速运动的参照系,并且通过动力学实验可以测量出绝对的加速度。

然而这充其量只是一个判据,尚不足以说明惯性力究竟是从何而来的,曾经遭受过马赫的强烈批判。后来的狭义相对论虽然否定

了绝对空间,但也并没有解决这个问题。另一方面,爱因斯坦尝试

将万有引力纳入狭义相对论框架时失败了,他后来在马赫原理的启

发下提出了等效原理和广义相对性原理,取消了惯性系的优越地

位,因此不再有必要区分惯性系与非惯性系,后来进一步建立了广

义相对论。

一个物体在非惯性参照系中似乎在力作用下发生了加速运动,可

是却找不到其施力物体。为了迎合牛顿第二定律,人们假设了物体受

到一个力的作用,这个力由物体的质量及其加速度的乘积决定,但是

由于找不到施力物体,人们认为这不是一个真实存在的力,而是一个

虚构的力,把这个力称为“惯性力”。

惯性力是指当物体加速时,惯性会使物体有保持原有运动状态的

倾向,若是以该物体为座标原点,看起来就彷佛有一股方向相反的力

作用在该物体上,因此称之为惯性力。因为惯性力实际上并不存在,

实际存在的只有原本将该物体加速的力,因此惯性力又称为假想力。

“惯性力”大小取决于物体的加速度大小,而物体的加速度大小实际又

取决于非惯性参照系相对于惯性参照系的加速度。

(二)平动非惯性参考系

1.平动的非惯性系

在相对惯性系以加速度A 平动的非惯性系中,如果设想质量为m 的

质点除受到一般的力以外,还受到一个假想的等于)(A m 的力,称为惯

性力,那么在非惯性系中,质点受到的外力和惯性力的合力,等于质量

与加速度的乘积。这个命题叫做非惯性系牛顿第二定律。在惯性系中,

以加速度a

运动的质点满足

a m F =∑

两边同加上)(A m -,则有 )()(A a m A m F -=-+∑

事实上,在惯性系中以加速度a

运动的质点,在相对惯性系以加速

度A 平动的非惯性系中,运动的加速度A a a -=',所以上式可改写为 a m A m F '=-+∑

)( 此式表明,在非惯性系中,质点受到的一般的力和假想的等于)(A m -的

力的合力,等于质量乘以加速度。

惯性力的定义为,在相对惯性系以加速度A 平动的非惯性系中,

假想质量为m 的质点受到一个等于)(A m -的力(这个力没有施力物体,

叫做惯性力。在这种非惯性系中,引入了惯性力概念,就可以应用非

惯性系牛顿第二定律。

比如装有水的桶,质量为M ,放在跟水平面成α角的斜面上,如

图(1-1)所示,水桶和斜面之间的动摩擦因素等于μ。

图(1-1) 图(1-2)

要使水桶沿斜面向下平动时,水桶中的水面和斜面相平行,我们

来计算沿斜面方向作用在水桶上的外力F 的大小。

地面可以认为是惯性系(后面有较为详细的阐述),设水桶沿斜面

向下的加速度,大小为A ,水的质量为m , 那么在固定于水桶的坐标系

中,水受到的惯性力是沿斜面向上的,大小为mA 。 在水桶坐标系中水

处于静止状态, 水受到的重力和惯性力这两个主动力的合力应该垂

直于水面,应该垂直于斜面向下,如图(1-2)所示,mA 应满足

αsin mg mA =,

αsin g A = 。

下面在地面坐标系对水桶(包括其中的水 )应用牛顿第二定律,

MA Mg Mg F =-+αμαcos sin ,

于是αμcos Mg F =。

2.非惯性系中牛顿运动定律的应用

(1)非惯性系中牛顿定律的修正

设物体的质量为m ,作用在物体上的外力为F ,非惯性系(加速

参考系)相对于惯性系的加速度为a ,物体相对于非惯性系的加速度

为a '。

则)(a a m F '+=,

即a m a m F '=-+)(,

或a m f F '=+。

其中a m f '-=为惯性力。

此式就是非惯性系中得质点运动的动力学方程。它表明在非惯性参考

系中,外力与惯性力的合力等于质点的质量与相对加速度的乘积。引

入惯性力后就可在非惯性系中应用牛顿定律来解决力学问题了。

(2)非惯性系中牛顿定律的推广应用

在非惯性系中应用修正后的牛顿第二定律解题的基本步骤如下,

①确定研究对象,分析它受到的作用力。②选取参考系,建立坐标系。

③由惯性力公式计算出惯性力。④应用非惯性系中的牛顿第二定律公

式a m f F '=+进行计算。

在非惯性系中应用修正后的牛顿定律解决问题,可使某些动力学

问题变成静力学问题,使问题得到简化,同时在非惯性参照系中能比

较圆满的解决一些复杂的问题。新课程物理介绍了惯性系和非惯性

系。区分惯性系和非惯性系就在于分清坐标系的加速度是否等于零。

如果某个参考系的加速度为零,则该参考系就是惯性系,在惯性系内,

对研究对象而言,牛顿定律成立;如果某个参考系的加速度不为零,

则该参考系就是非惯性系,在非惯性系内,对研究对象而言,牛顿定

律不成立;而如果我们假设研究对象除了受到其它的力以外,还受到

一个惯性力的作用,则在该非惯性系内,对研究对象就可以用牛顿定

律进行求解了。

下面探讨个问题,如图1-3,一个质量为m 的光滑小球,置于升

降机内倾角为θ的斜面上。另一个垂直于斜面的挡板同小球接触,挡

板和斜面对小球的弹力分别为1N 和2N 。

图1-3

起初,升降机静止,后来,升降机以a 向上加速运动。来求升降机静

止和以a 加速运动这两种情况下,挡板和斜面对小球的弹力分别为多

少。

在惯性系中运用牛顿第二定律,首先对小球进行受力分析。

建立平面直角坐标系,如图1-4。

图1-4

ma mg N N =-+θθcos sin 21

θθsin cos 21N N =

可得到,

θsin )(1a g m N +=

θcos )(2a g m N +=

有另一种分析方法,从另一种角度来说,本题中如果以电梯为参

考系(非惯性参考系),则小球处于静止状态,其受力情况处于平衡

状态。

图1-5

小球的受力情况如图1-5所示,则(其中,*f 为惯性力的大小)

*21cos sin f mg N N +=+θθ,

θθsin cos 21N N =,

ma f =*。

可以得到

θsin )(1a g m N +=,

θcos )(2a g m N +=。

综上所述,可以发现不管是在惯性系中还是在非惯性系中求解物理问题,尽管各种方法的具体的步骤有所区别,但是最后必定要得到相同

的结果。

(三)转动非惯性参考系

为了描述地球表面或其附近质点的运动,选择与地球固连的坐标

系是一个比较好的惯性系。然而,相对于与某一个不动的恒星固连的

惯性系来看,地球则在做包含多种转动的复杂运动,因此而产生多种

加速度。所以,地球也是一个非惯性系,尽管人们处理日常遇到的动

力学问题时,常把它作为惯性系,而且仍能得到满意的结果。但是有

一些现象,却是把地球作为惯性系所不能解释的,地球坐标系的非惯

性本质可引起许多重要效应。

1.转动坐标系中的运动学问题

今设有两套坐标系,其一个坐标系xy O -是“固定”的,或者说

是惯性的(简称为定系S ),另一个坐标系xy O -(简称为动系S ')相

对于惯性系转动。质点相对于定系S 的运动叫做绝对运动,其速度、

加速度叫做绝对速度v 和绝对加速度a ;质点在动系S '中的运动称为相

对运动,其速度r ν、加速度r a 称为相对速度和相对加速度,动系相对

于定系的运动称为牵连运动。

设转动坐标系S '与静止坐标系S 有共同的坐标原点O ,转动坐标

系S '旋转的基向量记为e :),,(321e e e e =,则动点M 的位置矢量可表为

k k e x e x e x e x r =++=332211 )3,2,1(=k (1-1) 考虑到

t d d k k e e ?=ω ,可得动点M 绝对速度为, t r k k k k k k k k v v r e x e x e x e x dt

d dt r d v +=?+=?+===ωω)( (1-2) 其中k k r

e x v =为相对速度,r v t ?=ω为牵连速度。

动点M 绝对加速度为

)()(t r r k k k k k k v v r v e x r dt

d e x e x dt v d a +?+?+?+=?+?+==ωβωωω, 整理可得到

c t r a a a a ++=,

或)()(c t r a a a a -+-+= (1-3)

其中k k r e x a =为相对加速度,t t v r a ?+?=ωβ为牵连加速度,r c v a

?=ω2为科里奥利加速度,简称为“科氏加速度”。

如下情况下科氏加速度c a 均为零:当牵连运动为平动,即0=ω时;

当质点相对静止、作圆周运动,即0=r v 时;当ω 与r v 平行时。

科氏加速度是法国工程师科里奥利研究水轮机时首先发现的,它

产生的原因有二点:一是质点的相对运动使它相对于动参考系的位置

发生改变,从而引起牵连速度大小的改变,于是对绝对速度贡献一个

加速度r v

?ω;二是动参考系的转动(牵连运动)使质点相对速度的方

向发生变化,引起相对速度对绝对速度的贡献发生变化,又产生了一

个加速度r v ?ω;这就是科氏加速度的物理意义。

2.转动非惯性系中的动力学问题

把加速度公式(1-3)代入F a m =,移项整理可得转动非惯性系中的

动力学方程为

)()(c t r a m a m F a m -+-+= (1-4) 其中

*22)(F v m v m a m r r c =?=?-=-ωω (1-5)

称为科里奥利力,它垂直于相对运动速度v ' 和参考系转动角速度ω

个矢量,相似于磁场对运动电荷的洛伦兹力为

B v q F ?= (1-6)

在均匀磁场中,洛伦兹力的作用使得带电粒子作圆周运动;在科里奥

利力的作用下,质点相对于S '系旋转运动。科氏力和洛伦兹力一样,

是对物体不做功的“无功力”。

必须指出,在旋转非惯性系中引入的惯性离心力和科里奥利力,

是由于旋转坐标系中的观察者的看法与平动坐标系中的不一样而产

生的,都只是运动学效应,不存在效应的反作用力。因此,引入惯性

力后,牛顿第一定律、第二定律在非惯性系中依然适用,而第三定律

却不再适用。科里奥利力在微观现象中也有所表现,它使得转动分子

的振动变得复杂了,使得分子的转动和振动能谱之间互相影响。

3.落体偏东——地球自转的动力学效应

取地面上一点O 作为坐标原点,铅直向上为z 轴,以x 轴指向南方,

y 轴指向东方,这种坐标系称为地面坐标系。地面附近的质点P 在地

面坐标系中的运动方程为

)()(0c t r a m a m mg F a m -+-++=

(1-7) 其中F 代表地球以外其它物体的作用,0mg 是地球的万有引力,)

(c a m -为科氏力,在地球匀角速自转的情况下)(t a m

-就是垂直自转轴向外的

惯性离心力。

通常把重力理解为地球对地面上物体的引力(惯性系中观测)。

实际测量只能在有自转的地面上进行,总含有地面参考系(转动非惯

性系)的惯性力。测量相对于地面静止的物体受到的引力,总无法避

免惯性离心力的作用。实际所观察到的重力如下,

k mg a m mg mg t -=-+=)(0 (1-8)

质量为m 的物体静止在纬度为λ处的地面上,物体受到地球引力大小

20R

GM m mg =,受到惯性离心力大小为λωcos 2R m a m e = ,实际测得的重力是这两个力的合力,称为表观重力或视重大小为mg ,视重并不指向

地心,而是垂直于地面,由此可以断定地球呈椭球形。

二、非惯性系中摩擦力的研究

(一)摩擦力的从动性

关于摩擦力问题要分两种情况来分析,一种是物体间无滑动,即

只有相对运动的趋势,没有相对运动,此时的摩擦力为静摩擦力。静

摩擦力可根据物体处于平衡状态判断出摩擦力等于引起相对运动趋

势的外力,F f =静,另一种是物体间有滑动,即物体问有相对运动,

此时的摩擦力为滑动摩擦力,其大小为μN f = ,方向与相对运动方向

相反。

在研究静摩擦力时,摩擦力始终等于或小于最大静摩擦力,设被

研究物体所受摩擦力为f ,则有m ax f f ≤。

在小于最大静摩擦力的范围内,静摩擦力具有随着引起相对运动

趋势的外力的大小和方向的变化而变化的特点,设引起相对运动趋势

的外力为F ,则有F f =。

因此,求解静摩擦力主要是求解物体引起相对运动趋势的外力的

大小和方向。或者说静摩擦力f 在一对平衡力中是从动力,引起相对

运动趋势的外力F 是主动力。从动力随着主动力大小的变化而变化,

方向始终与其相反。

滑动摩擦的大小是不从动于其它力的,但是其方向从动于其它

力。

(二)非惯性系中摩擦力m f

物体在非惯性系中引起相对运动趋势的原因可能是受其它物体

的作用力,也可能是由于非惯性系相对惯性系加速运动使物体受惯性

力作用。受其它物体作用的情况很容易分析清楚,不再描述,只研究

由于惯性力引起的摩擦力的大小和方向。

1. 惯性力的具体介绍

设一质点在惯性系中的位置为k z j y i x r ++=,

在非惯性系s '中的位置为k z j y i x r ''+''+''=',

非惯性系坐标原点在惯性系中的位置为k z j y i x r 0000++=。

r r r '+=0 (2-1)

由上式关系并考虑到非惯性系可能包括转动非惯性系, 在转动非惯性系中0≠dt i d ,而是k dt

i d '?='ω,则 )(20r v r a a a '??+'?+'?+'+=ωωωα (2-2)

式(2-2)中0a 为非惯性系相对惯性系运动的加速度,dt

d ωα =为非惯性系转到的角加速度。对应式(2-2),物体在非惯性系中受到的惯性力

应包括如下几个力,

①01a m F -=,这是非惯性系相对惯性系平动引起的惯性力,方向与0a 方

向相反。

惯性参考系与非惯性参考系

惯性参考系与非惯性参考系 (一)教学目的 1.正确理解惯性参考系的定义 2.正确识别惯性参考系与非惯性参考系 3.正确理解惯性力的概念 4.知道惯性力不是物体间的相互作用 5.会正确运用惯性力计算有关问题 (二)教学过程 ●引入新课 前面我们已经学习了经典力学的基础:牛顿运动定律。请同学们回顾、思考下面几个问题。 问题1:牛顿第一定律的内容是什么? (答:一切物体总保持静止或匀速直线运动状态,直到有外力迫使它改变这种状态为止。) 说明:这条定律正确地说明了力与运动的关系:物体的运动不需要力去维持:力是改变物体运动状态(产生加速度)的原因。 问题2:当你和同伴同时从平台跳下,如各自以自身为参考系,对方做什么运动?(答:对方是静止的。) 问题3:在平直轨道上运动的火车中有一张水平的桌子,桌上有一个小球,如果火车向前加速运动,以火车为参考系,小球做什么运动?(答:小球加速向后运动。) 疑问: 问题2中,既然对方是静止的,按照牛顿第一定律,他不应受到力的作用,然而每个人都的确受到重力的作用。这怎么解释呢? 问题3中,小球加速向后运动,按照牛顿第一定律,小球应受到力的作用,然而小球并没有受到向后的力。这又怎么解释呢? 对这个问题暂时还不能解释,但我们至少能说明一点:并非对一切参考系,牛顿第一定律都成立。 本节课我们就学习关于参考系的知识,板书: § 3.5惯性参考系与非惯性参考系 ●进行新课 我们以牛顿运动定律能否成立来将参考系划分为两类:惯性参考系和非惯性参考系。板书: 一、两种参考系 1.惯性参考系:牛顿运动定律成立的参考系,简称惯性系。 中间空出两行。供后面(1)、(2)两点板书用。 2.非惯性参考系:牛顿运动定律不能成立的参考系。 要判断一个参考系是否为惯性参考系,最根本的方法是根据观察和实验;判断牛顿运动定律在参考系中是否成立。 分析问题2:当你和同伴同时从平台跳下,以地面为参考系,做匀加速运动。由于人受重力作用,所以人做匀加速运动,这是符合牛顿运动定律的。 我们生活在地球上,通常是相对地面参考系来研究物体运动的。伽利略的理想实验以及我们前面做过的研究运动和力的关系的实验,都是以地面作参考系的。在地面上作的许多观察和实验表明:牛顿运动定律对地面参考系是成立的。板书: (1)地面参考系是惯性参考系。 除了地面参考系,牛顿运动定律还对什么参考系成立呢? 分析问题3:如果火车向前作匀速直线运动,以火车为参考系,小球保持静止。小球所受的合外力为零,符合牛顿运动定律。可见:相对于地面作匀速直线运动的参考系,也是惯性参考系。

第10讲 非惯性参照系与惯性力

第10讲 非惯性参照系与惯性力 例1. 在光滑的水平轨道上有两个半径都是r 的小球A 和B ,质量分别为m 和m 2,当两球心的距离大于l 时(l 比r 2大得多)时,两球间无相互作用力,当两球间的距离等于或小于l 时,两球间存在着相互作用的恒定斥力F 。设A 球从远离B 球处以0v 沿两球心连线向原来静止的B 球运动。欲使两球不会发生接触,0v 必须满足什么条件? 例2. 如图所示,质量kg 8=M 的小车放在光滑水平面上,在小车的一端加一水平恒力N 8=F ,当小车向右运动速度达到m/s 5.1时,在小车的前端轻放一大小不计、质量为kg 2=m 的物块,物块与小车的动摩擦因数为2.0,小车足够长,则物块从放上小车开始经过s 5.1=t 通过的位移为多大? 例3. 某人质量kg 60=M ,一重物质量kg 50=m ,分别吊在一个定滑轮的两边。人握住绳子不动,则他落地的时间是t ,人若沿绳子向上攀爬,则他落地时间为t 2。若滑轮、绳子的质量及摩擦可不计,求此人往上爬时相对于绳子的加速度。

例4. 在天花板比地板高出m 2的实验火车的车厢里,悬挂着长为m 1的细线,细线下端连着一个小球,火车缓慢加速且加速度逐渐增大。问: (1)若加速度达到2 m/s 10时,细线恰好被拉断,则细线能承受的最大拉力为小球重力的多少倍? (2)若从细线被拉断的时刻起,火车的加速度保持不变则小球落地点与悬挂点之间的水平距离是多少? 例5. 如图所示,木柜宽l 2,其重心高度为h ,把木柜放于车上,车以加速度a 起动,试分析木柜在车上滑动、翻倒的条件,以防事故的发生。 例6. 如图所示,一质量为m 运动员骑摩托车在水平弯道上以速率v 转弯,车身与地面的夹角为α,其转弯半径为_________=R ,地面对摩托车的静摩擦力___________ =f 。

非惯性系中的功能原理及应用

非惯性系中的功能原理及应用 摘 要: 在理论力学中,关于非惯性参照系中动力学问题,从来未涉及到非惯性系中的功能原理。为此,本文先推证出质点系相对非惯性系的动能定理,再推出质点系相对非惯性系的功能原理及机械能守恒定理,然后再运用此原理解决实际问题。 关键词: 非惯性系;牵连惯性力;科氏惯性力;功能原理;机械能守恒定理 The function of the inertial system principle and application Abstract: In the theory of mechanics,about the dynamics inertia reference in question never involved in noninertial system function and principle.For this reason this paper first inferred, particle system to a relative non-inertial systems of kinetic energy theorem,and then launch the relative particle noninertial system of function and principle, the last to solve practical problems by using the principle. Key words: Noninertial system; Involved the inertial force; Division type inertia force; principle of work and energy; Mechanical energy conservation theorem 0 引言 处理非惯性参考系中的动力学问题有两种方法,一种是在惯性参考系中考虑问题,然后运用相对运动的关系进行两种坐标参考系之间坐标、速度和加速度诸量的转换,化成非惯性系中的结论。另一种方法是研究在非惯性系中适用的动力学基本方程,从而研究非惯性系中的动力学问题。关于关于非惯性系中的动力学问题,在理论力学中只是研究动力学方程。机械能是自然界普遍存在的,在非惯性系中也依然如此。在非惯性系动力学方程的基础上推导出非惯性系中的功能原理及机械能守恒定理。从而,从能量的观点出发去研究非惯性系中的动力学问题。 1 非惯性系的动能定理 平面转动参考系(例如平板)s '以角速度ω 绕垂直与自身的轴转动,在这参考系上取坐标系xy O -它的原点和静止坐标系s 的原点O 重合,并且绕着通过O 并垂直于平板的直线以角速度ω 转动(图1) 。令单位矢量i ,j 固着在平板上的x 轴及y 轴上,并一同 以角速度ω 和平板一起转动。ω 矢量在z 轴上,我们 可以把它写成k ωω=。如果p 为在平板上运动着的 一质点,则p 的位矢为 j y i x r += (1) s ' ω θ η ζ p r k j i y x 图 1

非惯性系和惯性力错误--绝对与相对时空观

非惯性系和惯性力错误--绝对与相对时空观 杨山 (马鞍山传承教育物理组,安徽马鞍山,243000) 摘要:分析物理问题时我们要遵循客观性原则,当我们坐在加速的小车内看挂在天花板上的小球相对车厢静止且没有受力反而发生变化,于是引入了惯性力与非惯性系,其实这是主观意识造成的人为误导。地球之所以能看作惯性系是因为地球质量远大于观测物体,如果换作轮船上研究自行车的动力学问题,则轮船的质量不再像地球一样可以被忽略掉了。本文将遵循牛顿三定律,诠释如何正确运用三定律走出惯性力的教育误区。 关键词:牛顿三大定律;惯性力;非惯性系;力; 引言: 牛顿是一名伟大的物理学家,他在物理学方面的成就犹如中国古神话中的盘古有着开天辟地的意义。牛顿三定律是完美的,当我们误认为其存在缺陷而引入惯性系和非惯性系、惯性力等概念时反而破坏了三定律的完美。力的产生必然是相互作用的两个或几个物体,是一个系统问题,产生的效果也是系统效果,我们不应该孤立的去分析力的问题,三定律的力是物体间或者参考系间的相互作用产生,惯性系和非惯性系的引入从一定程度上起了误导作用,而使我们孤立的去分析力的问题。当然问题要追溯到牛顿本人木桶实验,这位伟大的物理学家没有能给完美的三定律一个更好的归宿。 牛顿经典力学有着一股难以抵抗的诱人之美,但是随着物理学的发展,牛顿力学出现了一些运用上的瑕疵,之后随着惯性系和非惯性系、引力质量与惯性质量、相对论等物理新理论的引入弥补了这一瑕疵,于是人类的时空观也发生了变化,牛顿定律成为了一种不完美的定律,其适用范围也只在惯性系中适用。其实牛顿定律并非如此局限,惯性系与非惯性系的划分[1]似乎对牛顿定律意义不大。正文: 关于惯性系与非惯性系的划分是教育误导,惯性力是不该引入的一种力。 先将牛顿三大定律摘录如下: 1)牛顿第一定律内容:任何物体都保持静止或匀速直线运动的状态,直到受到其它物体的作用力迫使它改变这种状态为止。 2)牛顿第二定律内容:物体在受到合外力的作用会产生加速度,加速度的方向和合外力的方向相同,加速度的大小正比于合外力的大小与物体的质量成反比。 3)牛顿第三定律内容:两个物体之间的作用力和反作用力,在同一条直线上,大小相等,方向相反。 自然界的变化有很多种,我们分别从相对性观点看下面两个变化的例子: ①如有A和B两个气球,B气球漏气变小。我们依据相对性原理选择B为参照系而会认为A相对于B变大了,这是唯心的主观意识,就算没有A做对比我们依旧可以说B变小了,因为B相对于自己的原来状态发生了绝对性变化。 ②如果有A和B两个人静止在地球上,当B做跑步运动时,我们一般认为B发生了运动,但是从相对性原理上我们可以认为A相对于B在发生了运动。但这只是一种相对性是主观错觉,这种观点犹如哲学的万物因我而动的观点。这一

非惯性性系中的真空光速不变性原理

非惯性性系中的真空光速不变性原理真空光速不变包括两层含义,首先在同一参考系中,光速具有各向同性和均匀性;其次,在具有相同的space-time单位的参考系中,光速的数值相同,与参考系相对光源的运动状态无关.描述惯性系的空间是闵可夫斯基空间,其线元形式是dS2=ηab dξa dξb,其中d ξa是闵可夫斯基空间space-time仿射坐标改变元,是全微分量.惯性系之间变换的space-time几何要求是,space-time线元长度在变换中不变,即dS2=ηab dξa dξb=ηab dξ`a dξ`b,其中两惯性系的space-time坐标均是全微分,它体现了两惯性系space-time坐标之间存在1—1映射.对惯性系space-time坐标的物理要求是能描述真空光速不变.在所有惯性系中取相同的space-time单位,即相对静止时的钟和尺是相同的前提下,真空光速不变意味着光速的数值相同,因而惯性系的度规相同,space-time线元的形式完全一样. 现代宇宙学的基础就是广义相对论,所以现代宇宙学的一个基本观念就是真空极限速度只在局部测量是光速,在A测量远处的B点的光速,则完全可以不是A点的光速,这是现代宇宙学的共识.现代宇宙学的另一个共识,就是除了没有物质没有宇宙常数的理论上的假想空间,真实宇宙不存在全局观测者.非惯性系即使有同一的space-time单位,也没有全时间、全空间统一的钟和尺.因此测量光通过非惯性系某space-time点的速度,只能用当地、当时的钟和尺.故测量只能在该点足够小的space-time邻域中进行,否则毫无意义.光速变与不变也只能在这个条件下判断,如果真空光速不变也适用于非惯性系,意味着光传播速度与非惯性系中的space-time点无关,与传播方向无关,与非惯性系相对光源的运动状态无关,而且其数值与惯性系相同.由实验检验真空光速不变原理适用于非惯性系几乎不可能.因为按理论的要求,测量只能在光通过space-time点的无限小的邻域中进行.其次,惯性系运动的状态只有一种,而非惯性系千变万化,即使同一非惯性系的每一个space-time点也不相同,无法通过实验去验证每一种非惯性系的每一个space-time点上的真空光速不变.然而可以依据理论自恰原则给予判断,把真空光速不变原理推广到非惯性系是自然的.详细证明过程请参阅【1】 参考文献: 【1】王仁川著《广义相对论引论》49——57页. 1

大学物理(2.2.2)--常见力非惯性系惯性力

一、几种常见的力 1.万有引力(Law of Gravitation ) 1)文字叙述:在两个相距为r ,质量分别为m 1,m 2的质点间有万有引力,其方向沿着它们的连线,其大小与它们的质量的乘积成正比,与它们之间的距离的平方成反比,即2)数学表示 0221 r r m m G F = ——引力质量Gravitational Mass 其中 211..1067.6--?=kg m N G ——引力常量。 2.重力(Gravity )——本质上归结于万有引力。 1)文字叙述:物体重力就是指忽略地球的自转效 应时,地球表明附近物体所受的地球的引力,即物体与 地球之间的万有引力。其方向指向地心。 2)数学表示 G=mg g=9.8m.s -2——重力加速度。 3)思考题: 赤道的重力加速度大还是两极的重力加速度大?为什么? 3.弹性力(Elastic Force ) 大家知道,两个物体相互接触,彼此将产生形变,使其内部产生反抗力——形变恢复力(弹性力)。形变是产生弹性力的条件之一。例如:板擦和桌子相互接触,彼此有了一定的形变,在各自的接触部分产生弹性力。所以,弹性力是一种与物体的形变有关的接触力。即发生形变的物体,由于要恢复原状,对与它接触的物体会产生力的作用,这种物体因形变而产生欲使其恢复原来形状的力叫做弹性力。常见的弹性力有:1)弹簧中的弹性力:弹簧被拉伸或压缩时产生的弹性力。 胡克定律(Hooke Law ):在弹性限度内,弹性力的大小与弹簧的伸长量成正比,方向指向平 衡位置。 数学表示 f=-kx—— k 为弹簧的劲度系数(Stiffness )。 k 的值决定于弹簧本身的性质。而弹簧弹性力的方向总是指向平衡位置。 2)绳子被拉紧时所产生的张力 绳的张力:即绳内部各段之间的弹 性作用力。下面以AB 段为研究对象,设 其质量为m A 点和B 点的张力:'A A T T -=、'B B T T -=由牛顿第二定律:a m T T B A =+(1)当a =0或者m →0时,F T T B A =-=',绳子上各点张力相同而且拉力相等。 (2)当a ≠0,而且m ≠0 (绳子质量不能忽略时),绳子上各点的张力不F 图2-2 弹簧的弹力 m

惯性系与非惯性系之间的物理规律的有关讨论

目录 摘要 (1) Abstract........................................... 错误!未定义书签。 1 引言 (1) 2 参考系的基本概念透析 (2) 2.1 参考系 (2) 2.2 惯性系和非惯性系 (2) 2.3 非惯性参考系的应用范围 (2) 3 非惯性参考系中的力学研究 (2) 3.1 非惯性参照系与惯性力 (2) 3.2 牛顿水桶实验 (3) 3.3 非惯性参照系与科里奥利惯性力 (4) 3.4 科里奥利加速度的实质 (4) 4 广义相对性原理 (4) 5 非惯性参照系附加引力场 (5) 6 总结 (5) 参考文献 (5)

惯性系与非惯性系之间的物理规律的有关讨论 摘要:汽车开动,人向后仰,刹车时人向前倾,与平稳前进时完全两样,类似的情况还很多。这些现象使人们在动力学中把参照系分为两类:惯性系与非惯性系。在一般问题中,地球可看成是惯性系,匀速直线运动的汽车也是惯性系,正在开动或刹车的汽车是非惯性系。从地球上考察,刹车时人向前倾正符合惯性定律;从汽车上考察,人在水平方向未受力而向前倾,这不符合牛顿定律。为什么牛顿定律不适用于非惯性系?非惯性系中的运动定律是怎样的?本文拟就这些问题做一简单讨论。 关键词:参考系;惯性系;非惯性系;广义相对论 Inertial and non-inertial reference system between the physical laws about discuss Abstract:The car started, people leaned back, when the brake is person to lean forward, and smooth progress completely different, similar case has a lot of. These phenomena so that people in the dynamics in the reference frame is divided into two categories: inertial and non-inertial reference system. In general, the earth can be thought of as the inertial system, uniform linear motion of the car is inertial system, moving or brakes is non inertial system. From the earth expedition, when the brake is in line with the law of inertia people forward; from the car inspection, people in the horizontal direction without force and forward, this does not accord with Newton's laws. Why Newton's law is not applicable to non inertial system? In non-inertial motion law is how? This paper tries to make a simple discussion of these issues. Key words:Reference system; Inertial system; Non inertia system; General relativity 1 引言 对一切运动的描述,都是相对于某个参考系的。参考系选取的不同,对运动的描述,或者说运动方程的形式,也随之不同。人类从经验中发现,总可以找到这样的参考系:其时间是均匀流逝的,空间是均匀和各向同性的;在这样的参考系内,描述运动的方程有着最简单的形式。这样的参考系就是惯性系。而相反的,相对于惯性系(静止或匀速运动的参考系)加速运动的参考系称为非惯性系参考系。地球有自转和公转,我们在地球上所观察到的各种力学现象,实际上是非惯性系中的力学问题,因此,研究惯性系与非惯性系中的各种物理现象、总结其规律对于我们认识世界、改造世界有其重大意义。 2 参考系的基本概念透析

非惯性系中的力学

非惯性系中的力学 牛顿运动定律只适用于惯性系,在非惯性系中,为了能得到形式上与牛顿第二定律一致的动力学方程,就需要引入惯性力的概念. 一.直线加速系中的惯性力 设非惯性参考系的加速度为a 参,物体相对于参考系的加速度为a 相 ,物体实际的加速度为a 绝, 则有: a绝= a参+a相.那么,物体”受到”的惯性力F惯=-m a参,其方向与a参的方向相反. 惯性力是虚构的力,不是真实力,因此,惯性力不是自然界中物体间的相互作用,因此不属于牛顿第 三定律涉及的范围之内,它没有施力物体,不存在与之对应的反作用力. 在非惯性系中,考虑到惯性力后的动力学方程为: 式中, F 合 为物体实际受到的合力. 二,匀速转动系中的惯性力 圆盘以角速度ω绕铅直轴转动,在圆盘上用长为r的轻线将质量为m的小球系于盘心且小不球相对于圆盘静止,即随盘一起作匀速圆周运动.从惯性系观察,小球在线拉力T的作用一下作圆周运动,符合牛顿第二定律.以圆盘为参考系,小球受到拉力T的作用,却保持静止,没有加速度,不符合牛顿第二定律.所以,相对于惯性系作匀速转动的参考系也是非惯性系,要在这种参考系中保持牛顿第二定律 形式不变,在质点静止于此参考系的情况下,应引入惯性力:F 惯 =mω2r.这个力叫做惯性离心力.若质点静止于匀速转动的参考系中,则作用于此物体所有相互作用力与惯性离心力的合力等于零,即: 例1.在火车车厢内有一长l,倾角为的斜面,当车厢以恒定加速度a0从静止开始运动时,物体自倾角为θ的斜面顶部A点由静止开始下滑,已知斜面的静摩因数为μ,求物体滑至斜面底部B点时,物体相对于车厢的速度,并讨论当a0与μ一定时,倾角θ为多大时,物体可静止于A点? 例2.如图所示,定滑轮A的一侧持有m1=5kg的物体,另一侧挂有轻滑轮B,滑轮B两侧挂着民m2=3kg,m3=2kg的物体,求每个物体的加速度。

非惯性力问题

运用非惯性系的观点求解复杂的动力学竞赛题例析 湖北省监利县朱河中学黄尚鹏 摘要:牛顿运动定律只在惯性系中成立。但有时需要考察质点相对非惯性系的运动,如何处理这种问题呢?当然可以先在惯性系中用牛顿运动定律考察质点的运动,然后用相对运动的公式把它变换到非惯性系中,求得质点在非惯性系中的运动。但这样做有时很麻烦,其实只要引进适当的虚拟力即惯性力,就可以在非惯性系中用牛顿运动定律求解质点的运动。 关键词:惯性系非惯性系惯性力速度合成公式加速度合成公式 一、非惯性系与惯性力 牛顿运动定律成立的参照系叫做惯性系。实验表明:地球上的物体相对于地球的运动并不完全遵守牛顿运动定律,所以地球不是惯性系,不过这种偏差一般是比较微小的。因此,我们常常把地球看做近似程度相当好的惯性系。一般情况下,相对地面静止或做匀速运动的参照系都可作为惯性系。 牛顿运动定律不成立的参照系叫做非惯性系,非惯性系相对惯性系必然做加速运动或旋转运动。为了使牛顿运动定律在非惯性系中也能使用,可以人为地引进一个虚拟的惯性力 。如果非惯性系相对惯性系有平动加速度,那么只要认为非惯性系中的所有物体都受 到一个大小为、方向与的方向相反的惯性力,牛顿运动定律即可照用,证明如下: 设非惯性系相对惯性系有平动加速度(牵连加速度),质点相对于系的加速度为(绝对加速度),质点相对于系的加速度为(相对加速度),根据加速度合成公式,有(1) 在惯性系中牛顿运动定律成立,即(2) 是作用在质点上的合外力,是质点的质量。 在非惯性系中,为使牛顿运动定律成立,引入虚拟的惯性力,使(3) 联立(1)(2)(3)知惯性力,证毕。 二、竞赛题例析 例题1.如图1所示,质量为的汽车在水平地面上向左做匀加速直线运动,其重心 离开前轮和后轮的水平距离分别为和(),重心离地面的高度为,假设车轮和地面之间不打滑,求:汽车以多大的加速度前进时其前、后轮对地面的压力相等?

功能原理完整版

0 引 言 在物理学中,如何选择适当的参照系是非常重要的,在力学中通常选用惯性系,但有时也可选用非惯性系。功能原理在惯性系中成立,在非惯性系中作适当处理后也成立,有时用它解题很方便。本文就给出这样的例题。关于非惯性系参照系中,在《理论力学》中只是研究动力学方程,缺少的是非惯性系中的功能原理。本文经过推导得出质点系非惯性系的功能原理。 1 功能原理的研究 1.1 质点系的动能定理 质点系也是实际物体的一种理想模型,它可以当作有限个质点组成的一个系统。设一个质点系有N 个质点组成,其中第i 个质点的质量为m i ,第j 个质点作用在m i 上的力(内力)为f ij ,这N 个质点以外的其他物体作用在m i 上的合力(外力)为f i ,则由牛顿运动定律 ()1 1N i i i ij ij j dv m f f dt ==+-∑δ (1-1) 式中i v 是i m 的速度,而 10ij i j i j =?=? ≠?, 当, 当δ (1-2) 当i m 的位移为i dr 时,以i dr 点乘上式便得 ()( ) 212 1 1N i i ij ij i i i j f dr f dr d m v =+-=∑ δ (1-3) 将上式对所有的N 个质点求和,便得 ()21211111N N N N i i ij ij i i i i i j i f dr f dr d m v ====?? +-= ??? ∑∑∑∑ δ (1-4) 令 1 N i i i dA f dr == ∑ 外, (1-5) ()11 1N N ij ij i i j dA f dr ===-∑∑ 内δ, (1-6) 分别代表外力和内力作的功,则(1-4)可写作: 2121N i i i dA dA d m v =?? += ??? ∑外内。 (1-7) 这就是质点系的动能定理。 1.2质点系统的功能原理 质点系的内力可以分为保守内力和非保守内力。例如,质点系内各质点的万有引力是保守内力; 质点间的摩擦力是非保守内力。因而,质点系内力的功A 内可以写成保守内力的功(用符号A 内保 表

非惯性系下力学问题

渤海大学 本科毕业论文 题目非惯性系下力学问题的研究完成人姓名张亚楠 主修专业物理学教育 所在院(系)数理学院物理系入学年度2008年 完成日期2011年6月1日指导教师丁文波

非惯性系下力学问题的探讨 张亚楠渤海大学物理系 摘要:非惯性参照系就是能够对同一个被观测的单元施加作用力的观测参照框架和附加非线性的坐标系的统称。在经典机械力学中,任何一个使得“伽利略相对性原理”失效的参照系都是所谓的“非惯性参照系”。了解非惯性系下的力学问题很重要。对于非惯性系的研究已经从传统的理论已经从传统的理论教学扩展到实际生活应用领域,从宏观研究深入到微观领域。随着生活领域的不断扩大,对非惯性系下的元器件动力学行为,特别是非线性动力学行为的研究还有很大的空间。在直升机转子等航空发动机转子的动力学研究中,应用的也主要是非惯性系动力学的理论知识。近年来通过研究发现,在非惯性系中两体问题、摩擦力、压强以及浮力问题等都得以解决。本文阐述了惯性系和非惯性系的区别,由惯性力着手,把牛顿第二地定律引入到非惯性系中,分析了牛顿第二定律的适用条件,并对非惯性系下的力学问题进行研究。第一部分对非惯性系和惯性系进行概述。第二部分对非惯性系下摩擦力的研究进行了讲述,摩擦力从动于包括惯性力在内的其它力作用。第三部分通过分析在非惯性系中液体内部浮力和压强的变化,阐述了在不同参考系下液体浮力和压强的变化规律。 关键词:非惯性系;摩擦力;压强;浮力

Mechanics Problems in the non-inertial frame Zhang Ya-nan Department of Physics,Bohai University Abstract:Collectively referred to as the coordinate system of the observation frame of reference and additional non-linear non-inertial frame of reference is the ability to exert force on the same observation unit. In classical mechanics, no one makes the "failure of the principle of Galilean relativity" frame of reference is the so-called "non-inertial frame of reference. Mechanical problem is very important to understand the non-inertial frame. For non-inertial frames from the traditional theory has been expanded from the traditional teaching of the theory to real-life applications, from a macro research into micro areas. With the continuous expansion of areas of life, the dynamic behavior of non-inertial frame components, especially the study of nonlinear dynamic behavior there is a lot of space. The study of helicopter rotor aero-engine rotor dynamics, the application of theoretical knowledge of non-inertial frame dynamics. In recent years, the study found that two-body problem in the non-inertial, friction, pressure and buoyancy problems are all resolved. This paper describes the difference between inertial frames and non-inertial frames, to proceed by the inertia force, the introduction of Newton's second law of land to the non-inertial reference frame, Newton's Second Law applies to conditions, mechanical problems and non-inertial frame study. The first part an overview of the non-inertial frames and inertial frames. The

怎样在非惯性系中运用牛顿第二定律求解物理问题

怎样在非惯性系中运用牛顿第二定律求解物理问题 新课程物理必修1-1在74页给同学们介绍了惯性系和非惯性系。区分惯性系和非惯性系就在于分清坐标系的加速度是否等于零。如果某个参考系的加速度为零,则该参考系就是惯性系,在惯性系内,对研究对象而言,牛顿定律成立;如果某个参考系的加速度不为零,则该参考系就是非惯性系,在非惯性系内,对研究对象而言,牛顿定律不成立;而如果我们假设研究对象除了受到其它的力以外,还受到一个惯性力()的作用,则在该非惯性系内,对研究对象就可以用牛顿定律进行求解了。下面我们举一个例题进行具体分析。 如图1,一个质量为m 的光滑小球,置于升降机内倾角为θ的斜面上。另一个垂直于斜 面的挡板同小球接触,挡板和斜面对小球的弹力分别为1 N 和2N 。起初,升降机静止,后来,升降机以a 向上加速运 动。试求: 升降机静止和以a 加速运动这两种情况下,挡板和斜 面对小球的弹力分别为多少? 解:方法一:在惯性系中运用牛顿第二定律, 我们首先对小球进行受力分析,如图2,得到: 建立平面直角坐标系,如图2,得到: ma mg N N =-+θθcos sin 21 θθsin cos 21N N = 解,得到: θsin )(1a g m N += θcos )(2a g m N += 方法二: 从另一种角度来说,本题中如果以电梯为参考 系(非惯性参考系),则小球处于静止状态,其受力情况处于 平衡状态。小球的受力情况如图3所示,则(其中,* f 为惯 性力的大小): *21cos sin f mg N N +=+θθ θθsin cos 21N N = ma f =* 解,得到: θsin )(1a g m N +=

惯性坐标系与非惯性坐标系

惯性坐标系与非惯性坐标系 相对于惯性系作加速运动的参考系就是非惯性系。在非惯性系中,牛顿运动定律不能适用的。惯性系:相对于地球静止或作匀速直线运动的物体。 非惯性系:相对地面惯性系做加速运动的物体。 平动加速系:相对于惯性系作变速直线运动,但是本身没有转动的物体。例如:在平直轨道上加速运动的火车。 转动参考系:相对惯性系转动的物体。例如:转盘在水平面匀速转动。 关于牛顿力学有关惯性系的概念,爱因斯坦有这样的批评:“古典力学想要说明一个物体不受外力,必须证明它是惯性的,想要说明一个物体是惯性的,有必须证明它不受外力。”从而犯了逻辑循环的错误。 上面讲话的意思是,古典力学要想知道一个物体的受力状态,就要预先知道它的运动状态,而要想知道一个物体的运动状态,就必须预先知道其受力状态,但由于古典力学无法预先确定两者中的任何一个,另一个也就同样无法确定。 不过,这个批评很明显地不符合事实,因为这段话的前半部分虽然还看不出有什么错误,牛顿正是由于行星绕太阳的非惯性运动,才判定各行星受到力的作用的,但后半段则是完全不顾事实的,在谈论这个问题时应以事实为根据。科学的历史告诉我们,在牛顿力学问世以前,人类早已对太阳系内各大天体的运动状态有了基本了解,并建立了哥白尼系统的宇宙图形。人们取得如此的成就依靠的并不是力学定律和力学实验,而是长期的天文观测数据。人们是在对太阳系内各天体的运动状态已有了基本了解后才找到牛顿的力学定律的。所以“古典力学对天体运动状态的了解要取决于对天体受力状态的了解”这个论断是完全违背事实的。 当然,牛顿力学的建立使人们对天体的运动规律有比较以前更为深刻的理解,但无论如何,天文观测的数据总是第一位的,而不是开普勒三定律和牛顿定律创造了这些数据。牛顿力学问世后,曾有人利用力学计算的方法预计了海王星的存在,似乎是先知道力学定律,然后才知道星体运动的。但是不能忘记,这些计算方法所依据的原理是从已知星体运动归路总结出来的,所以总的来说,人们是先知道天体的受力状态的。牛顿力学问世后,人们有时也利用力学实验的办法作为研究天体运动的一种补充手段,例如用在地球表面上的柯氏力的办法来证地球存在自转,但这只是地球自转的许多证据的一种,它不能给出地球轨道要数的全部数据,至于其它行星如何运行,就更不能采用这个方法了。 太阳系内各行星的轨道要数是老早确定了的,人们不仅已经了解了这些行星的瞬时速度,而且了解它们的瞬时加速度,所以并不存在辨别这些行星是不是惯性系的困难,人们老早就知道它们是非惯性系,知道它们的经向和横向加速度,甚至水星近日点每100年约43"的额外进动量也已精确地测出。 因此,牛顿力学并不存在判断天体是否惯性系的困难或犯了逻辑循环的错误。 相对论者一再强调古典力学无法了解天体运动状态,目的显然是为了否定绝对时空观念及其有力支柱哥白尼系统。但他本人却又常提起哥白尼系统,应用哥白尼系统来解决实际问题,岂非自相矛盾。 也许相对论者会提出疑问,既然太阳也绕银河系中心转动,而银河系也不是不动的,难道仅仅根据太阳系内各天体的运动状态就可以判断其惯性的好坏? 前文已经说明,运动的绝对性是有相对运动的不等价性来体现的。太阳系的质心(采用严格性差一点的习惯用语,可以简单点说太阳)和各行星运动状态的差别是:太阳只有绕银心转动的牵连加速度,而各行星不仅有简练加速度,而且有相对太阳运动的相对加速度,所以考虑太阳在银河系内的运动,太阳依然惯性最好。

惯性力与非惯性系

惯性力与非惯性系 摘要 惯性力是非惯性系中的非真实力,本文证明了在非惯性系中将惯性力视为真实力计入后,惯性系下的所有力学规律在非惯性系下都能成立。当惯性力做功与路径无关时,可以引入惯性力势能,引入惯性力势能并计入系统总机械能后,机械能守恒体系中的条件与结论也仍然成立。 关键字:非惯性系; 惯性力; 惯性力势能 ABSTRACT Inertia force is unreal power in non-inertia system. It proves in this article that when inertia force is added as real power in non-inertia system, all the mechanical laws which apply in inertia system also do in non-inertial system. When inertia force’s doing work has nothing to do with path, potential energy can be brought in. The conditions and conclusions still apply in the system of conservation of mechanical energy when it adds potential energy to the total mechanical energy. Keywords:Non-inertial; Inertia; Inertial force potential energy 1非惯性系与惯性力 我们在描绘物体的运动状态时,称选作参照场的物体或物体群,为参照系。又因为牛顿第一定律又称为惯性定律。所以凡适用用牛顿定律的参照系都可以称作惯性参

第三章第八节惯性系和非惯性系 教案

第三章第八节惯性系和非惯性系教案 第三章第八节惯性系和非惯性系教案教学重点:惯性系和非惯性系、惯性力教学难点:惯性力示例:一、惯性系和非惯性系1、发现问题:举例1:如图1所示,小车静止,小球静止于小车内光滑的水平桌面上.当小车相对于地面以加速度做直线运动时,从地面上观察,小球如何运动?从小车上观察,小球如何运动?分析:从地面上观察,小球相对于地面保持静止.从小车上观察,小球将逆着小车的运动方向运动,最后从桌子上掉下来.因为小球在水平方向上不受外力作用,所以小球相对于小车的运动不符合牛顿第一定律.举例2:如图2所示,用弹簧将小球固定于小车内的光滑水平桌面上,当小车恒定加速度做直线运动时,从地面上观察,小球如何运动?从小车上观察,小球如何运动?弹簧处于什么状态?分析:从地面上观察,小球将做与小车同向的加速运动.小车上观察,小球将相对于小车静止.弹簧处于伸长状态.因为小球在水平方向上受弹力作用,所以小球相对于小车的静止不符合牛顿第二定律. 2、分析问题:提出想法:当实验和理论发生矛盾时,可能是实验现象观察有误;可能是理论错误或理论存在一定的适用条件.分析问题:实验现象观察正确.理论在很多的实际应用中被证明是正确的.因而可能是理论存在一定的适用条件.矛盾的症结出在:相对于谁来观察现象,即参考系是谁.阅读书P65伽利略在《关于两种世界体系的`对话》中的一段话. 3、引入惯性系和非惯性系(1)惯性系:牛顿运动定律成立的参考系.研究地面上物体运动,地面通常可认为是惯性系,相对于地面作匀速直线运动的参考系也是惯性系.研究行星公转时,太阳可认为是惯性系.(2)非惯性系:牛顿运动定律不成立的参考系.例如:前面例子中提到的小车,它相对于地面存在加速度,是非惯性系.二、非惯性系和惯性力解决问题:在直线加速的非惯性系中引入一个力,使物体的受力满足牛顿运动定律,这个力就是惯性力.例如在上述例1中,若设想由一个力作用在小球上,其方向与小车相对于地面的加速度的方向相反,其大小等于(是小车质量),则小球相对于小车的运动与其受力情况相符.同理可以分析例题2,这里不再赘述. 1、惯性力:在做直线加速运动的非惯性系中,质点受到的与非惯性系的加速度方向相反,且大小等于质点质量与非惯性系加速度大小的乘积的力,称为惯性力. 2、注意:惯性力不是物体间的相互作用力,不存在施力物,也不存

非惯性系中的机械能守恒定律

非惯性系中的机械能守恒定律 专业:物理学 姓名:魏清坤 指导老师:韩峰 【摘要】推导非惯性系中的机械能守恒定理。指出机械能守恒定律在某些非惯性系中仍然适应,在非惯性系中应用机械能守恒定律可以简便地解决一些力学问题。 【关键词】非惯性系;惯性力;惯性力势能;机械能守恒定律 引言 机械能守恒定律是从牛顿运动定律中推导出来的。由于牛顿定律仅适应于惯性系,而在一些非惯性系中机械能守恒也适应,而且选取非惯性系可以使问题简单化。在非惯性系中引入惯性力,牛顿定律可以沿用,那么机械能守恒定律是否也可以沿用,用表达式又如何表示?本文将导出非惯性系中的机械能定理,引入惯性势能概念,给出非惯性系中机械能守恒定律的表达形式。 1材料与方法 非惯性系中的机械能定理 1.1非惯性系中的单一质点的动能定理 牛顿定理是在惯性系中适应的,在非惯性系中不适应。为了方便解决一些力学问题,我们扩大了牛顿定律的适应范围,使之在非惯性系中也适应,这就引入了惯性力的概念,我们认为在非惯性系中除了有真实的相互作用的力F 外,还受到惯性力惯F 的作用。一非惯性系相对于某一惯性系的加速度为0a ,则惯性力为: 惯F =- m 0a (1) 其中的m 为物体的质量,符号表示方向,与0a 的方向相反。这时牛顿第二定律在非惯性系中就可以表示为: F +惯F =- m a (2) 上式中的F 为质点所受的合力,a 为质点相对于非惯性系的加速度。设质点在F 和惯F 的作用下,相对于惯性系有一位移元d r =v dt,其中v 是质点相对于非惯性

系的速度,dt 是产生这一位移所需的时间。用d r 点乘(2)式的两边得: (F +惯F )?d r = m a ?d r = m t d v d ?d r = m v ?d v = d(2 1m 2v ) 即 dA + dA 惯= d(2 1m 2v ) (3) 其中dA=F ?d r ,dA 惯=惯F ?d r 分别是合外力F 和惯性力惯F 对质点作的元功。 对(3)式两边积分得: A + A 惯= 21mV 21- 2 1mV 22= E k - E 0k (4) (4)式即为非惯性系中单一质点的动能定理,这表明在非惯性系中动能定理只是比惯性系多了一项惯性力所做的功。 1.2非惯性系中的质点组的动能定理 质点组就是由相互作用的质点组成的系统。设质点组有n 个质点组成,在某一运动过程中,作用在各个质点的合力的功和惯性力的功记为A i 和A i 惯(i=1,2,3...n), 根据(4)式,每个质点的动能定理: A i + A i 惯 = E ki - E 0ki (i=1,2,3...n) (5) (5)式求和得: ∑=n i A 1i +∑=n i A 1惯i =ki n i E ∑=1-0 1ki n i E ∑==E k -E 0k (6) (6)式为非惯性系中质点组的动能定理。与惯性系中质点组的动能定理相比仅多了惯性力的功。 1.3非惯性系中的机械能守恒 在惯性系中,质点组的机械能守恒定理为: ∑外i A +∑非保内A =(E k +p E )-)(00p k E E + (7) 当∑外i A 和∑非保内A 为零时,E k 和p E 的和为恒量 对于非惯性系,如果∑外i A 和∑非保内A 为零,则可得:

相关主题
文本预览
相关文档 最新文档