当前位置:文档之家› 高等数学(函数与极限)完全归纳笔记

高等数学(函数与极限)完全归纳笔记

高等数学(函数与极限)完全归纳笔记
高等数学(函数与极限)完全归纳笔记

目录:

函数与极限 (1)

1、集合的概念 (1)

2、常量与变量 (2)

2、函数 (3)

3、函数的简单性态 (4)

4、反函数 (4)

5、复合函数 (5)

6、初等函数 (6)

7、双曲函数及反双曲函数 (7)

8、数列的极限 (8)

9、函数的极限 (9)

10、函数极限的运算规则 (11)

一、函数与极限

1、集合的概念

一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。比如“身材较高的人”不能构成集合,因为它的元素不是确定的。

我们通常用大字拉丁字母A、B、C、……表示集合,用小写拉丁字母a、b、c……表示集合中的元素。如果a是集合A中的元素,就说a属于A,记作:a∈A,否则就说a不属于A,记作:a A。

⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。记作N

⑵、所有正整数组成的集合叫做正整数集。记作N+或N+。

⑶、全体整数组成的集合叫做整数集。记作Z。

⑷、全体有理数组成的集合叫做有理数集。记作Q。

⑸、全体实数组成的集合叫做实数集。记作R。

集合的表示方法

⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合

⑵、描述法:用集合所有元素的共同特征来表示集合。

集合间的基本关系

⑴、子集:一般地,对于两个集合A、B,如果集合A中的任意一个元素都是集合B的元素,我们就说A、B有包含关系,称集合A为集合B的子集,记作A B(或B A)。。

⑵相等:如何集合A是集合B的子集,且集合B是集合A的子集,此时集合A中的元素与集合B中的元素完全一样,因此集合A与集合B相等,记作A=B。

⑶、真子集:如何集合A是集合B的子集,但存在一个元素属于B但不属于A,我们称集合A是集合B的真子集。

⑷、空集:我们把不含任何元素的集合叫做空集。记作,并规定,空集是任何集合的子集。

⑸、由上述集合之间的基本关系,可以得到下面的结论:

①、任何一个集合是它本身的子集。即A A

②、对于集合A、B、C,如果A是B的子集,B是C的子集,则A是C的子集。

③、我们可以把相等的集合叫做“等集”,这样的话子集包括“真子集”和“等集”。

集合的基本运算

⑴、并集:一般地,由所有属于集合A或属于集合B的元素组成的集合称为A与B的并集。记作A ∪B。(在求并集时,它们的公共元素在并集中只能出现一次。)

即A∪B={x|x∈A,或x∈B}。

⑵、交集:一般地,由所有属于集合A且属于集合B的元素组成的集合称为A与B的交集。记作A ∩B。

即A∩B={x|x∈A,且x∈B}。

⑶、补集:

①全集:一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集。通常记作U。

②补集:对于一个集合A,由全集U中不属于集合A的所有元素组成的集合称为集合A相对于全集U 的补集。简称为集合A的补集,记作C U A。

即C U A={x|x∈U,且x A}。

集合中元素的个数

⑴、有限集:我们把含有有限个元素的集合叫做有限集,含有无限个元素的集合叫做无限集。

⑵、用card来表示有限集中元素的个数。例如A={a,b,c},则card(A)=3。

⑶、一般地,对任意两个集合A、B,有

card(A)+card(B)=card(A∪B)+card(A∩B)

我的问题:

1、学校里开运动会,设A={x|x是参加一百米跑的同学},B={x|x是参加二百米跑的同学},C ={x|x是参加四百米跑的同学}。学校规定,每个参加上述比赛的同学最多只能参加两项,请你用集合的运算说明这项规定,并解释以下集合运算的含义。⑴、A∪B;⑵、A∩B。

2、在平面直角坐标系中,集合C={(x,y)|y=x}表示直线y=x,从这个角度看,集合D={(x,y)|方程组:2x-y=1,x+4y=5}表示什么?集合C、D之间有什么关系?请分别用集合语言和几何语言说明这种关系。

3、已知集合A={x|1≤x≤3},B={x|(x-1)(x-a)=0}。试判断B是不是A的子集?是否存在实数a使A =B成立?

4、对于有限集合A、B、C,能不能找出这三个集合中元素个数与交集、并集元素个数之间的关系呢?

5、无限集合A={1,2,3,4,…,n,…},B={2,4,6,8,…,2n,…},你能设计一种比较这两个集合中元素个数多少的方法吗?

2、常量与变量

⑴、变量的定义:我们在观察某一现象的过程时,常常会遇到各种不同的量,其中有的量在过程中不起变化,我们把其称之为常量;有的量在过程中是变化的,也就是可以取不同的数值,我们则把其称之为变量。注:在过程中还有一种量,它虽然是变化的,但是它的变化相对于所研究的对象是极其微小的,我

们则把它看作常量。

⑵、变量的表示:如果变量的变化是连续的,则常用区间来表示其变化范围。在数轴上来说,区间是指介于某两点之间的线段上点的全体。

区间的名称区间的满足的不等式区间的记号区间在数轴上的表示闭区间a≤x≤b[a,b]

开区间a<x<b (a,b)

半开区间a<x≤b或a≤x<b (a,b]或[a,b)

以上我们所述的都是有限区间,除此之外,还有无限区间:

[a,+∞):表示不小于a的实数的全体,也可记为:a≤x<+∞;

(-∞,b):表示小于b的实数的全体,也可记为:-∞<x<b;

(-∞,+∞):表示全体实数,也可记为:-∞<x<+∞

注:其中-∞和+∞,分别读作"负无穷大"和"正无穷大",它们不是数,仅仅是记号。

⑶、邻域:设α与δ是两个实数,且δ>0.满足不等式│x-α│<δ的实数x的全体称为点α的δ邻域,点α称为此邻域的中心,δ称为此邻域的半径。

2、函数

⑴、函数的定义:如果当变量x在其变化范围内任意取定一个数值时,量y按照一定的法则f总有确定的数值与它对应,则称y是x的函数。变量x的变化范围叫做这个函数的定义域。通常x叫做自变量,y 叫做函数值(或因变量),变量y的变化范围叫做这个函数的值域。注:为了表明y是x的函数,我们用记号y=f(x)、y=F(x)等等来表示。这里的字母"f"、"F"表示y与x之间的对应法则即函数关系,它们是可以任意采用不同的字母来表示的。如果自变量在定义域内任取一个确定的值时,函数只有一个确定的值和它对应,这种函数叫做单值函数,否则叫做多值函数。这里我们只讨论单值函数。

⑵、函数相等

由函数的定义可知,一个函数的构成要素为:定义域、对应关系和值域。由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,我们就称两个函数相等。

⑶、域函数的表示方法

a):解析法:用数学式子表示自变量和因变量之间的对应关系的方法即是解析法。例:直角坐标系中,半径为r、圆心在原点的圆的方程是:x2+y2=r2

b):表格法:将一系列的自变量值与对应的函数值列成表来表示函数关系的方法即是表格法。例:在实际应用中,我们经常会用到的平方表,三角函数表等都是用表格法表示的函数。

c):图示法:用坐标平面上曲线来表示函数的方法即是图示法。一般用横坐标表示自变量,纵坐标表示因变量。例:直角坐标系中,半径为r、圆心在原点的圆用图示法表示为:

3、函数的简单性态

⑴、函数的有界性:如果对属于某一区间I的所有x值总有│f(x)│≤M成立,其中M是一个与x无关的常数,那么我们就称f(x)在区间I有界,否则便称无界。

注:一个函数,如果在其整个定义域内有界,则称为有界函数

例题:函数cosx在(-∞,+∞)内是有界的.

⑵、函数的单调性:如果函数在区间(a,b)内随着x增大而增大,即:对于(a,b)内任意两点x1及x2,当x1<x2时,有,则称函数在区间(a,b)内是单调增加的。如果函数

在区间(a,b)内随着x增大而减小,即:对于(a,b)内任意两点x1及x2,当x1<x2时,有,则称函数在区间(a,b)内是单调减小的。

例题:函数=x2在区间(-∞,0)上是单调减小的,在区间(0,+∞)上是单调增加的。

⑶、函数的奇偶性

如果函数对于定义域内的任意x都满足=,则叫做偶函数;如果函数

对于定义域内的任意x都满足=-,则叫做奇函数。

注:偶函数的图形关于y轴对称,奇函数的图形关于原点对称。

⑷、函数的周期性

对于函数,若存在一个不为零的数l,使得关系式对于定义域内任何x值都

成立,则叫做周期函数,l是的周期。

注:我们说的周期函数的周期是指最小正周期。

例题:函数是以2π为周期的周期函数;函数tgx是以π为周期的周期函数。

4、反函数

⑴、反函数的定义:设有函数,若变量y在函数的值域内任取一值y0时,变量x在函数的定义域内必有一值x0与之对应,即,那末变量x是变量y的函数.这个函数用来表示,称为函数的反函数.

注:由此定义可知,函数也是函数的反函数。

⑵、反函数的存在定理:若在(a,b)上严格增(减),其值域为R,则它的反函数必然在R 上确定,且严格增(减).

注:严格增(减)即是单调增(减)

例题:y=x2,其定义域为(-∞,+∞),值域为[0,+∞).对于y取定的非负值,可求得x=±.若我们不加条件,由y的值就不能唯一确定x的值,也就是在区间(-∞,+∞)上,函数不是严格增(减),故其没有反

函数。如果我们加上条件,要求x≥0,则对y≥0、x=就是y=x2在要求x≥0时的反函数。即是:函数在此要求下严格增(减).

⑶、反函数的性质:在同一坐标平面内,与的图形是关于直线y=x对称的。

例题:函数与函数互为反函数,则它们的图形在同一直角坐标系中是关于直线y=x对称的。如右图所示:

5、复合函数

复合函数的定义:若y是u的函数:,而u又是x的函数:,且的函数值的全部或部分在的定义域内,那末,y通过u的联系也是x的函数,我们称后一个函数是由函数

及复合而成的函数,简称复合函数,记作,其中u叫做中间变量。

注:并不是任意两个函数就能复合;复合函数还可以由更多函数构成。

例题:函数与函数是不能复合成一个函数的。

因为对于的定义域(-∞,+∞)中的任何x值所对应的u值(都大于或等于2),使

都没有定义。

6、初等函数

⑴、基本初等函数:我们最常用的有五种基本初等函数,分别是:指数函数、对数函数、幂函数、三角函数及反三角函数。下面我们用表格来把它们总结一下:

函数的记号函数的图形函数的性质

数函数a):不论x为何值,y总为正数;

b):当x=0时,y=1.

对数函数

a):其图形总位于y轴右侧,并过(1,0)点

b):当a>1时,在区间(0,1)的值为负;在区间(-,+∞)的值为正;在定义域内单调增.

a为任意实数

这里只画出部分函数图形的一

部分。

令a=m/n

a):当m为偶数n为奇数时,y是偶函

数;

b):当m,n都是奇数时,y是奇函数;

c):当m奇n偶时,y在(-∞,0)无意

义.

角函数

(正弦函数)

这里只写出了正弦函数

a):正弦函数是以2π为周期的周期

函数

b):正弦函数是奇函数且

反三

(反正弦函数)

这里只写出了反正弦函数

a):由于此函数为多值函数,因此我

们此函数值限制在[-π/2,π/2]上,

并称其为反正弦函数的主值.

⑵、初等函数:由基本初等函数与常数经过有限次的有理运算及有限次的函数复合所产生并且能用一个解析式表出的函数称为初等函数.

例题:是初等函数。

7、双曲函数及反双曲函数

⑴、双曲函数:在应用中我们经常遇到的双曲函数是:(用表格来描述)

函数的

名称

函数的表达式函数的图形函数的性质

双曲正

a):其定义域为:(-∞,+∞);

b):是奇函数;

c):在定义域内是单调增

双曲余

a):其定义域为:(-∞,+∞);

b):是偶函数;

c):其图像过点(0,1);

双曲正

a):其定义域为:(-∞,+∞);

b):是奇函数;

c):其图形夹在水平直线y=1及

y=-1之间;在定域内单调增;

我们再来看一下双曲函数与三角函数的区别:

双曲函数的性质三角函数的性质

shx与thx是奇函数,chx是偶函数sinx与tanx是奇函数,cosx是偶函数

它们都不是周期函数都是周期函数双曲函数也有和差公式:

⑵、反双曲函数:双曲函数的反函数称为反双曲函数.

a):反双曲正弦函数其定义域为:(-∞,+∞);

b):反双曲余弦函数其定义域为:[1,+∞);

c):反双曲正切函数其定义域为:(-1,+1);

8、数列的极限

我们先来回忆一下初等数学中学习的数列的概念。

⑴、数列:若按照一定的法则,有第一个数a1,第二个数a2,…,依次排列下去,使得任何一个正整数n对应着一个确定的数a n,那末,我们称这列有次序的数a1,a2,…,a n,…为数列.数列中的每一个数叫做数列的项。第n项a n叫做数列的一般项或通项.

注:我们也可以把数列a n看作自变量为正整数n的函数,即:a n=,它的定义域是全体正整数

⑵、极限:极限的概念是求实际问题的精确解答而产生的。

例:我们可通过作圆的内接正多边形,近似求出圆的面积。

设有一圆,首先作圆内接正六边形,把它的面积记为A1;再作圆的内接正十二边形,其面积记为A2;再作圆的内接正二十四边形,其面积记为A3;依次循下去(一般把内接正6×2n-1边形的面积记为A n)可得一系列内接正多边形的面积:A1,A2,A3,…,An,…,它们就构成一列有序数列。我们可以发现,当内接正多边形的边数无限增加时,An也无限接近某一确定的数值(圆的面积),这个确定的数值在数学上被称为数列A1,A2,A3,…,An,…当n→∞(读作n趋近于无穷大)的极限。

注:上面这个例子就是我国古代数学家刘徽(公元三世纪)的割圆术。

⑶、数列的极限:一般地,对于数列来说,若存在任意给定的正数ε(不论其多么小),总存在正整数N,使得对于n>N时的一切不等式都成立,那末就称常数a是数列

的极限,或者称数列收敛于a .

记作:或

注:此定义中的正数ε只有任意给定,不等式才能表达出与a无限接近的意思。且定义中的正整数N与任意给定的正数ε是有关的,它是随着ε的给定而选定的。

⑷、数列的极限的几何解释:在此我们可能不易理解这个概念,下面我们再给出它的一个几何解释,以使我们能理解它。数列极限为a的一个几何解释:将常数a及数列在数轴上用它们的对应点表示出来,再在数轴上作点a的ε邻域即开区间(a-ε,a+ε),如下图所示:

因不等式与不等式等价,故当n>N时,所有的点都落在开区间(a-ε,a+ε)内,而只有有限个(至多只有N个)在此区间以外。

注:至于如何求数列的极限,我们在以后会学习到,这里我们不作讨论。

⑸、数列的有界性:对于数列,若存在着正数M,使得一切都满足不等式││≤M,则称数列是有界的,若正数M不存在,则可说数列是无界的。

定理:若数列收敛,那末数列一定有界。

注:有界的数列不一定收敛,即:数列有界是数列收敛的必要条件,但不是充分条件。例:数列 1,-1,1,-1,…,(-1)n+1,…是有界的,但它是发散的。

9、函数的极限

前面我们学习了数列的极限,已经知道数列可看作一类特殊的函数,即自变量取1→∞内的正整数,若自变量不再限于正整数的顺序,而是连续变化的,就成了函数。下面我们来学习函数的极限.

函数的极值有两种情况:a):自变量无限增大;b):自变量无限接近某一定点x0,如果在这时,函数值无限接近于某一常数A,就叫做函数存在极值。我们已知道函数的极值的情况,那么函数的极限如何呢?

下面我们结合着数列的极限来学习一下函数极限的概念!

⑴、函数的极限(分两种情况)

a):自变量趋向无穷大时函数的极限

定义:设函数,若对于任意给定的正数ε(不论其多么小),总存在着正数X,使得对于适合不等式的一切x ,所对应的函数值都满足不等式

那末常数A 就叫做函数当x→∞时的极限,记作:

下面我们用表格把函数的极限与数列的极限对比一下:

数列的极限的定义函数的极限的定义

存在数列与常数A,任给一正数ε>0,

总可找到一正整数N,对于n>N的所有都满足

<ε则称数列,当x→∞时收敛于A记:

存在函数与常数A,任给一正数

ε>0,总可找到一正数X,对于适合的

一切x,都满足,函数

当x→∞时的极限为A,记:

从上表我们发现了什么??试思考之

b):自变量趋向有限值时函数的极限。我们先来看一个例子.

例:函数,当x→1时函数值的变化趋势如何?函数在x=1处无定义.我们知道对实数来讲,在数轴上任何一个有限的范围内,都有无穷多个点,为此我们把x→1时函数值的变化趋势用表列出,如下图:

从中我们可以看出x→1时,→2.而且只要x与1有多接近,就与2有多接近.或说:只要与2只差一个微量ε,就一定可以找到一个δ,当<δ时满足<δ定义:设

函数在某点x0的某个去心邻域内有定义,且存在数A,如果对任意给定的ε(不论其多么小),总存在正数δ,当0<<δ时,<ε则称函数当x→x0时存在极限,且极限为A,

记:。

注:在定义中为什么是在去心邻域内呢?这是因为我们只讨论x→x0的过程,与x=x0出的情况无关。此定义的核心问题是:对给出的ε,是否存在正数δ,使其在去心邻域内的x均满足不等式。

有些时候,我们要用此极限的定义来证明函数的极限为 A,其证明方法是怎样的呢?

a):先任取ε>0;

b):写出不等式<ε;

c):解不等式能否得出去心邻域0<<δ,若能;

d):则对于任给的ε>0,总能找出δ,当0<<δ时,<ε成立,因此

10、函数极限的运算规则

前面已经学习了数列极限的运算规则,我们知道数列可作为一类特殊的函数,故函数极限的运算规则与数列极限的运算规则相似。

⑴、函数极限的运算规则

若已知x→x0(或x→∞)时,.

则:

推论:

在求函数的极限时,利用上述规则就可把一个复杂的函数化为若干个简单的函数来求极限。

例题:求

解答:

例题:求

此题如果像上题那样求解,则会发现此函数的极限不存在.我们通过观察可以发现此分式的分子和分母都没有极限,像这种情况怎么办呢?下面我们把它解出来。

解答:

注:通过此例题我们可以发现:当分式的分子和分母都没有极限时就不能运用商的极限的运算规则了,应先把分式的分子分母转化为存在极限的情形,然后运用规则求之。

函数极限的存在准则

学习函数极限的存在准则之前,我们先来学习一下左、右的概念。

我们先来看一个例子:

例:符号函数为

对于这个分段函数,x从左趋于0和从右趋于0时函数极限是不相同的.为此我们定义了左、右极限的概念。

定义:如果x仅从左侧(x<x0)趋近x0时,函数与常量A无限接近,则称A为函数当

时的左极限.记:

如果x仅从右侧(x>x0)趋近x0时,函数与常量A无限接近,则称A为函数当时的右极限.记:

注:只有当x→x0时,函数的左、右极限存在且相等,方称在x→x0时有极限

函数极限的存在准则

准则一:对于点x0的某一邻域内的一切x,x0点本身可以除外(或绝对值大于某一正数的一切x)有≤≤,且,

那末存在,且等于A

注:此准则也就是夹逼准则.

准则二:单调有界的函数必有极限.

注:有极限的函数不一定单调有界

两个重要的极限

一:

注:其中e为无理数,它的值为:e=2.718281828459045...

二:

注:在此我们对这两个重要极限不加以证明.

注:我们要牢记这两个重要极限,在今后的解题中会经常用到它们.

例题:求

解答:令,则x=-2t,因为x→∞,故t→∞,

注:解此类型的题时,一定要注意代换后的变量的趋向情况,象x→∞时,若用t代换1/x,则t→0.

无穷大量和无穷小量

无穷大量

我们先来看一个例子:

已知函数,当x→0时,可知,我们把这种情况称为趋向无穷大。为

此我们可定义如下:设有函数y=,在x=x0的去心邻域内有定义,对于任意给定的正数N(一个任意大的数),总可找到正数δ,当

时,成立,则称函数当时为无穷大量。

记为:(表示为无穷大量,实际它是没有极限的)

同样我们可以给出当x→∞时,无限趋大的定义:设有函数y=,当x充分大时有定义,

对于任意给定的正数N(一个任意大的数),总可以找到正数M,当时,成立,则称函

数当x→∞时是无穷大量,记为:

无穷小量

以零为极限的变量称为无穷小量。

定义:设有函数,对于任意给定的正数ε(不论它多么小),总存在正数δ(或正数M),使得对于适合不等式(或)的一切x,所对应的函数值满足不等式,则称函数当(或x→∞)时为无穷小量.

记作:(或)

注意:无穷大量与无穷小量都是一个变化不定的量,不是常量,只有0可作为无穷小量的唯一常量。无穷大量与无穷小量的区别是:前者无界,后者有界,前者发散,后者收敛于0.无穷大量与无穷小量是互为倒数关系的.

关于无穷小量的两个定理

定理一:如果函数在(或x→∞)时有极限A,则差是当(或x→∞)时的无穷小量,反之亦成立。

定理二:无穷小量的有利运算定理

a):有限个无穷小量的代数和仍是无穷小量; b):有限个无穷小量的积仍是无穷小量;c):常数与无穷小量的积也是无穷小量.

无穷小量的比较

通过前面的学习我们已经知道,两个无穷小量的和、差及乘积仍旧是无穷小.那么两个无穷小量的商会是怎样的呢?好!接下来我们就来解决这个问题,这就是我们要学的两个无穷小量的比较。

定义:设α,β都是时的无穷小量,且β在x0的去心领域内不为零,

a):如果,则称α是β的高阶无穷小或β是α的低阶无穷小;

b):如果,则称α和β是同阶无穷小;

c):如果,则称α和β是等价无穷小,记作:α∽β(α与β等价)

例:因为,所以当x→0时,x与3x是同阶无穷小;

因为,所以当x→0时,x2是3x的高阶无穷小;

因为,所以当x→0时,sinx与x是等价无穷小。

等价无穷小的性质

设,且存在,则.

注:这个性质表明:求两个无穷小之比的极限时,分子及分母都可用等价无穷小来代替,因此我们可以利用这个性质来简化求极限问题。

例题:1.求

解答:当x→0时,sin ax∽ax,tan bx∽bx,故:

例题: 2.求

解答:

注:

注:从这个例题中我们可以发现,作无穷小变换时,要代换式中的某一项,不能只代换某个因子。

函数的一重要性质——连续性

在自然界中有许多现象,如气温的变化,植物的生长等都是连续地变化着的.这种现象在函数关系上的反映,就是函数的连续性

在定义函数的连续性之前我们先来学习一个概念——增量

设变量x从它的一个初值x1变到终值x2,终值与初值的差x2-x1就叫做变量x的增量,记为:△x即:△x=x2-x1增量△x可正可负.

我们再来看一个例子:函数在点x0的邻域内有定义,当自变量x在领域内从x0变到x0+△x时,函数y 相应地从变到,其对应的增量为:

这个关系式的几何解释如下图:

现在我们可对连续性的概念这样描述:如果当△x趋向于零时,函数y对应的增量△y也趋向于零,即:,那末就称函数在点x0处连续。

函数连续性的定义:

设函数在点x0的某个邻域内有定义,如果有称函数在点x0处连续,且称x0为函数的的连续点.

下面我们结合着函数左、右极限的概念再来学习一下函数左、右连续的概念:设函数在区间(a,b]内有定义,如果左极限存在且等于,即:=,那末我们就称函数在点b左连续.设函数在区间[a,b)内有定义,如果右极限存在且等于,即:=,那末我们就称函数在点a右连续.

一个函数在开区间(a,b)内每点连续,则为在(a,b)连续,若又在a点右连续,b点左连续,则在闭区间[a,b]连续,如果在整个定义域内连续,则称为连续函数。

注:一个函数若在定义域内某一点左、右都连续,则称函数在此点连续,否则在此点不连续.

注:连续函数图形是一条连续而不间断的曲线。

通过上面的学习我们已经知道函数的连续性了,同时我们可以想到若函数在某一点要是不连续会出现什么情形呢?接着我们就来学习这个问题:函数的间断点

函数的间断点

定义:我们把不满足函数连续性的点称之为间断点.

它包括三种情形:a):在x0无定义;

b):在x→x0时无极限;

c):在x→x0时有极限但不等于;

下面我们通过例题来学习一下间断点的类型:

例1:正切函数在处没有定义,所以点是函数的间断点,因,我们就称为函数的无穷间断点;

例2:函数在点x=0处没有定义;故当x→0时,函数值在-1与+1之间变动无限多次,我们就称点x=0叫做函数的振荡间断点;

例3:函数当x→0时,左极限,右极限,从这我们可以看出函数左、右极限虽然都存在,但不相等,故

函数在点x=0是不存在极限。我们还可以发现在点x=0时,函数值产生跳跃现象,为此我们把这种间断点称为跳跃间断点;我们把上述三种间断点用几何图形表示出来如下:

间断点的分类

我们通常把间断点分成两类:如果x0是函数的间断点,且其左、右极限都存在,我们把x0称为函数的第一类间断点;不是第一类间断点的任何间断点,称为第二类间断点.

可去间断点

若x0是函数的间断点,但极限存在,那末x0是函数的第一类间断点。此时函数不连续原因是:不存在或者是存在但≠。我们令,则可使函数在点x0处连续,故这种间断点x0称为可去间断点。

连续函数的性质及初等函数的连续性

连续函数的性质

函数的和、积、商的连续性

我们通过函数在某点连续的定义和极限的四则运算法则,可得出以下结论:

a):有限个在某点连续的函数的和是一个在该点连续的函数;

b):有限个在某点连续的函数的乘积是一个在该点连续的函数;

c):两个在某点连续的函数的商是一个在该点连续的函数(分母在该点不为零);

反函数的连续性

若函数在某区间上单调增(或单调减)且连续,那末它的反函数也在对应的区间上单调增(单调减)且连续

例:函数在闭区间上单调增且连续,故它的反函数在闭区间[-1,1]上也是单调增且连续的。

复合函数的连续性

设函数当x→x0时的极限存在且等于a,即:.而函数在点u=a连续,那末复合函数当x→x0时的极限也存在且等于.即:

例题:求

解答:

注:函数可看作与复合而成,且函数在点u=e连续,因此可得出上述结论。

设函数在点x=x0连续,且,而函数在点u=u0连续,那末复合函数在点x=x0也是连续的

初等函数的连续性

通过前面我们所学的概念和性质,我们可得出以下结论:基本初等函数在它们的定义域内都是连续的;一切初等函数在其定义域内也都是连续的.

闭区间上连续函数的性质

闭区间上的连续函数则是在其连续区间的左端点右连续,右端点左连续.对于闭区间上的连续函数有几条重要的性质,下面我们来学习一下:

最大值最小值定理:在闭区间上连续的函数一定有最大值和最小值。(在此不作证明)

例:函数y=sinx在闭区间[0,2π]上连续,则在点x=π/2处,它的函数值为1,且大于闭区间[0,2π]

上其它各点出的函数值;则在点x=3π/2处,它的函数值为-1,且小于闭区间[0,2π]上其它各点出的函数值。

介值定理在闭区间上连续的函数一定取得介于区间两端点的函数值间的任何值。即:,μ在α、β之间,则在[a,b]间一定有一个ξ,使

推论:在闭区间连续的函数必取得介于最大值最小值之间的任何值。

二、导数与微分

导数的概念

在学习到数的概念之前,我们先来讨论一下物理学中变速直线运动的瞬时速度的问题。例:设一质点沿x轴运动时,其位置x是时间t的函数,,求质点在t0的瞬时速度?我们知道时间从t0有增量△t时,质点的位置有增量,这就是质点在时间段△t的位移。因此,在此

段时间内质点的平均速度为:.若质点是匀速运动的则这就是在t0的瞬时速度,若质点是非匀速直线运动,则这还不是质点在t0时的瞬时速度。我们认为当时间段△t无限地接近于0时,此平均速度会无限地接近于质点t0时的瞬时速度,即:质点在t0时的瞬时速度

=为此就产生了导数的定义,如下:

导数的定义:设函数在点x0的某一邻域内有定义,当自变量x在x0处有增量△x(x+△x也在该邻域内)时,相应地函数有增量,若△y与△x之比当△x→0时极限存在,则称这个极限值为在x0处的导数。记为:还可记为:,函数在点x0处存在导数简称函数在点x0处可导,否则不可导。若函数在区间(a,b)内每一点都可导,就称函数在区间(a,b)内可导。这时函数对于区间(a,b)内的每一个确

定的x值,都对应着一个确定的导数,这就构成一个新的函数,我们就称这个函数为原来函数的导函数。

注:导数也就是差商的极限

左、右导数

前面我们有了左、右极限的概念,导数是差商的极限,因此我们可以给出左、右导数的概念。若极限

存在,我们就称它为函数在x=x0处的左导数。若极限存在,我们就称它为函数在x=x0处的右导数。

注:函数在x0处的左右导数存在且相等是函数在x0处的可导的充分必要条件函数的和、差求导法则

函数的和差求导法则

法则:两个可导函数的和(差)的导数等于这两个函数的导数的和(差).用公式可写为:。其中u、v为可导函数。

例题:已知,求

解答:

例题:已知,求

解答:

函数的积商求导法则

常数与函数的积的求导法则

法则:在求一个常数与一个可导函数的乘积的导数时,常数因子可以提到求导记号外面去。用公式可写成:

例题:已知,求

解答:

函数的积的求导法则

法则:两个可导函数乘积的导数等于第一个因子的导数乘第二个因子,加上第一个因子乘第二个因子的导数。用公式可写成:

例题:已知,求

解答:

注:若是三个函数相乘,则先把其中的两个看成一项。

函数的商的求导法则

法则:两个可导函数之商的导数等于分子的导数与分母导数乘积减去分母导数与分子导数的乘积,在

除以分母导数的平方。用公式可写成:

例题:已知,求

解答:

复合函数的求导法则

在学习此法则之前我们先来看一个例子!

例题:求=?

解答:由于,故这个解答正确吗?

这个解答是错误的,正确的解答应该如下:

我们发生错误的原因是是对自变量x求导,而不是对2x求导。

下面我们给出复合函数的求导法则

复合函数的求导规则

规则:两个可导函数复合而成的复合函数的导数等于函数对中间变量的导数乘上中间变量对自变量的导数。用公式表示为:

,其中u为中间变量

例题:已知,求

解答:设,则可分解为,因此

注:在以后解题中,我们可以中间步骤省去。

例题:已知,求

解答:

反函数求导法则

根据反函数的定义,函数为单调连续函数,则它的反函数,它也是单调连续的.为此我们可给出反函数的求导法则,如下(我们以定理的形式给出):

定理:若是单调连续的,且,则它的反函数在点x可导,且有:

注:通过此定理我们可以发现:反函数的导数等于原函数导数的倒数。注:这里的反函数是以y为自变量的,我们没有对它作记号变换。

即:是对y求导,是对x求导

例题:求的导数.

解答:此函数的反函数为,故则:

例题:求的导数.

解答:此函数的反函数为,故则:

高阶导数

我们知道,在物理学上变速直线运动的速度v(t)是位置函数s(t)对时间t的导数,即:,

高等数学函数的极限与连续习题及答案

1、函数 ()12 ++=x x x f 与函数()11 3--=x x x g 相同. 错误 ∵当两个函数的定义域和函数关系相同时,则这两个函数是相同的。 ∴ ()12 ++=x x x f 与()113--=x x x g 函数关系相同,但定义域不同,所以()x f 与() x g 是不同的函数。 2、如果()M x f >(M 为一个常数),则()x f 为无穷大. 错误 根据无穷大的定义,此题是错误的。 3、如果数列有界,则极限存在. 错误 如:数列()n n x 1-=是有界数列,但极限不存在 4、a a n n =∞ →lim ,a a n n =∞ →lim . 错误 如:数列()n n a 1-=,1) 1(lim =-∞ →n n ,但n n )1(lim -∞ →不存在。 5、如果()A x f x =∞ →lim ,则()α+=A x f (当∞→x 时,α为无穷小). 正确 根据函数、极限值、无穷小量的关系,此题是正确的。 6、如果α~β,则()α=β-αo . 正确 ∵1lim =α β ,是 ∴01lim lim =?? ? ??-=-αβαβα,即βα-是α的高阶无穷小量。 7、当0→x 时,x cos 1-与2 x 是同阶无穷小. 正确 ∵2122sin 412lim 2sin 2lim cos 1lim 2 02 2020=????? ? ????==-→→→x x x x x x x x x 8、 01 sin lim lim 1sin lim 000=?=→→→x x x x x x x . 错误 ∵x x 1 sin lim 0→不存在,∴不可利用两个函数乘积求极限的法则计算。 9、 e x x x =?? ? ??+→11lim 0 . 错误 ∵e x x x =?? ? ??+∞ →11lim 10、点0=x 是函数x x y =的无穷间断点. 错误 =-→x x x 00lim 1lim 00-=--→x x x ,=+→x x x 00lim 1lim 00=+→x x x ∴点0=x 是函数x x y =的第一类间断点. 11、函数()x f x 1 =必在闭区间[]b a ,内取得最大值、最小值.

高等数学笔记

第1章函数 §1 函数的概念 一、区间、邻域 自然数集N整数集Z有理数集Q实数集R 建立数轴后: 建立某一实数集A与数轴上某一区间对应 区间:设有数a,b,a0),则称实数集{x|a?δ

a称为N(a,δ)的中心,δ>0称为邻域N(a,δ)的半径。 去心邻域:把N(a,δ)的中心点a去掉,称为点a的去心邻域,记为N(a^,δ)={x|0<|x?a|<δ}=N(a,δ)?{a} 注:其中,?{a}表示去掉由a这一个数组成的数集。 二、函数概念 例1. 设圆的半径为x(x>0),它的面积A=πx2,当x在(0,+∞)内任取一个数值(记为?x∈(0,+∞))时,由关系式A=πx2就可以确定A的对应数值。 文章来源:https://www.doczj.com/doc/546491387.html,/ 例2. 设有半径为r的圆,作圆的内接正n边形,每一边对应的圆心角α=2πn,周长S n=n?2r sinπn,当边数n在自然数 集N(n≥3)任取一个数,通过关系式S n=2nr sinπn就有一个S n对应确定数值。 函数定义:设有数集X,Y,f是一个确定的对应法则,对?x∈X,通过对应法则f都有唯一的y∈Y与x对应,记为x→f y,或f(x)=y,则称f为定义在X上的函数。 其中X称为f的定义域,常记为D f。 X——自变量,Y——因变量。 当X遍取X中的一切数时,那么与之对应的y值构成一个数集V f={y|y=f(x),x∈X},称V f为函数f的值域。 文章来源:https://www.doczj.com/doc/546491387.html,/ 注意: (1)一个函数是由x,y的对应法则f与x的取值范围X所确定的。把“对应法则f”、“定义域”称为函数定义的两个要素。 例如,y=arcsin(x2+2)这个式子,由于x2+2>2,而只有当|x2+2|≤1时,arcsin才有意义,因此这个式子不构成函数关系。又例如,y=ln x2与y=2ln x不是同一个函数,因为定义域不同。而y=ln x2与y=2ln|x|是同一个函数,因为定义域相同。(2)函数的值域是定义域和对应法则共同确定的。 (3)确定函数定义域时,注意:若函数有实际意义,需依据实际问题是否有意义来确定。 若函数不表示某实际问题,则定义域为自变量所能取得的使函数y=f(x)成立的一切实数所组成的数值。 函数的几何意义:设函数y=f(x)定义域为D f,?x∈D f,对应函数值y=f(x)在XOY平面上得到点(x,y),当x遍取D f中一切实数时,就得到点集P={(x,y)|y=f(x),x∈D f}。点集P称为函数y=f(x)的图形。 文章来源:https://www.doczj.com/doc/546491387.html,/ 三、函数的几个简单性质 1. 函数的有界性 若?M>0,s.t.|f(x)|≤M,x∈I,则称y=f(x)在区间I上有界。否则称f(x)在I上无界。 注:s.t.是“使得,满足于”的意思,I表示某个区间。

高等数学学习笔记

第一章 代数运算与自然数 主要内容: 1、集合与映射的概念 2、映射及其运算 3、代数系统 4、自然数及其他相关定义 5、归纳法原理与反归纳法的运用 重点掌握 1、由A →B 的单映射σ的定义为:设2121,,,:a a A a A a B A ≠∈∈→若由σ,就推出)()21a a σσ≠(,则称σ为从A 到B 的单映射。 2、由A →B 的满映射σ的定义为:设B ran B A =→)(,:σσ若,则称σ为从A 到B 的满映射。 3、给出一个由整数集合Z 到自然数集合N 的双射:可考虑分段映射,即将定义域分为小于0、等于0、大于0的整数三部分分别给出其象 4、若集合|A|=n ,则集合A →A 的映射共有n n 种。 5、皮阿罗公理中没有前元的元素为1。 6、自然数a 与b 加法的定义中两个条件为①:'1a a =+②:)'('b a b a +=+. 7、自然数a 与b 相乘的定义中两个条件为: ①:a a =?1;②:a b a b a +?=?' 8、自然数a>b 的定义为:如果给定的两个自然数a 与b 存在一个数k,使得a=b+k ,则称a 大于b,b 小于a,记为a>b 或b

12、若A 是有限集合,则A →A 的不同映射个数为:||||A A 。 13、从整数集合Z 到自然数集合N 存在一个单映射。 14、若A 是有限集合,则不存在A 到其真子集合的单映射。 15、若A 为无限集合,则存在A 的真子集合B 使其与A 等价。 16、存在从自然数集合N 到整数集合Z 的一个满映射,但不是单映射。 可考虑将定义域分成奇数、偶数两部分,定义一个与n )1(-有关的映射 17、存在从自然数N 到整数集合Z 的双射。 可考虑分段映射 18、代数系统(+R ,?)与代数系统(R,+)是同构的,其中+R 表示正实数集合,R 表示实数集合,?与+就是通常的实数乘法与加法。 根据同构定义,只需找到一个从(+R ,?)到(R,+)的一一映射,例如lgx 就可以证明上述论述。 19、令+Q 为正有理数集合,若规定 2 b a b a +=⊕,ab b a =? 则: (1){+Q ,⊕}构成代数体系,但不满足结合律。 (2){+Q ,?}不构成代数体系,但满足结合律。 根据代数体系和结合律的定义可得上述论述成立。 20、若在实数集合中规定b a ⊕=a+b-a ×b ,其中+与×是通常的加法与乘法,则⊕满足结合律。 只需证明等式(b a ⊕)⊕c=)(c b a ⊕⊕成立 21、分别利用归纳法与反归纳法可以证明n 个数的算术平均值大于等于这n 个数的几何平均值。 归纳法根据定义易证,在运用反归纳法证明时可先证n=2,4,…,n 2都成立,假设命题对n=k 成立,令,...21k a a a S k k +++= 1 ...1211-+++=--k a a a S k k ,利用12111...---≥k k k a a a S 证之成立

高等数学函数极限练习题

设 f ( x ) 2 x , 求 f ( x ) 的 定 义 域 及 值 域 。 1 x 设 f ( x) 对一切实数 x 1, x 2 成立 f ( x 1 x 2 ) f ( x 1 ) f ( x 2 ),且 f (0 ) 0, f (1) a , 求 f (0 )及 f ( n).(n 为正整数 ) 定 义 函 数 I ( x) 表 示 不 超 过 x 的 最 大 整 数 叫 做 x 的 取 整 函 数 ,若 f ( x) 表 示 将 x 之 值 保 留 二 位小数,小数第 3 位起以后所有数全部舍去,试用 表 示 f ( x) 。 I ( x) 定 义 函 数 I ( x) 表 示 不 超 过 x 的 最 大 整 数 叫 做 x 的 取 整 函 数 ,若 g ( x) 表 示 将 x 依 4 舍 5 入 法 则 保 留 2 位 小 数 , 试 用 I ( x) 表 示 g ( x) 。 在某零售报摊上每份报纸的进价为 0.25 元,而零售价为 0.40 元,并且如果报纸当天未售 出 不 能 退 给 报 社 ,只 好 亏 本 。若 每 天 进 报 纸 t 份 ,而 销 售 量 为 x 份 ,试 将 报 摊 的 利 润 y 表 示 为 x 的函数。 定义函数 I ( x)表示不超过 x 的最大整数叫做 x 的取整函数,试判定 ( x) x I ( x )的周期性。 判定函数 x x ln( 1 x x )的奇偶性。 f ( x ) ( e 1) 设 f ( x ) e x sin x , 问 在 0 , 上 f ( x ) 是 否 有 界 ? 函 数 y f ( x ) 的 图 形 是 图 中 所 示 的 折 线 O BA , 写 出 y f ( x) 的 表 达 式 。 x 2 , 0 x ; x , x ; 设 f ( x) 2 ( x) 0 4 求 f ( x ) 及f ( x ) . x x 4 x x , . , . 2 2 2 4 6 设 f ( x ) 1, x 0 ; ( x ) 2 x 1, 求 f ( x ) 及 f ( x) . 1 , x 0 . e x , x ; 0 , x 0 ; 设 f ( x ) 求 f ( x )的反函数 g ( x ) 及 f ( x ) . x x ( x) x 2, x 0 , . . 1 x ) , ( x ) x , x 0 ; 求 f ( x ) . 设 f ( x )( x x 2 , x 2 0 . 2 x , x 0 ; 求 f f ( x ) 设 f ( x ) x 0. . 2 , 0 , x ; x , x ; ( x ) 求 f ( x) ( x ). 设 f ( x ) x , x 0 . x , x . 1

高等数学(同济五版)第一章 函数与极限知识点

第一章函数与极限 一、对于函数概念要注意以下几点: (1) 函数概念的本质特征是确定函数的两个要素:定义域和对应法则。定义域是自变量和因变量能相互联系构成函数关系的条件,无此条件,函数就没意义。对应法则是正确理解函数概念的关键。函数关系不同于一般的依赖关系,“y是x的函数”并不意味着y随x的变化而变化。函数关系也不同于因果关系。例如一昼夜的气温变化与时间变化是函数关系,但时间变化并不是气温变化的实际原因。y=f(x)中的“f”表示从x到y的对应法则,“f”是一个记号,不是一个数,不能把f(x)看作f乘以x。如果函数是用公式给出的,则“f”表示公式里的全部运算。 (2) 函数与函数表达式不同。函数表达式是表示函数的一种形式,表示函数还可以用其他的形式,不要以为函数就是式子。 (3) f(x)与f(a)是有区别的。f(x)是函数的记号,f(a)是函数值的记号,是f(x)当x=a时的函数值。 (4)两个函数,当其定义域相同,对应法则一样时,此二函数才是相同的。 二、函数的有界性、单调性、周期性和奇偶性: 对函数的有界性、单调性、周期性和奇偶性的学习应注意以下几点: (1) 并不是函数都具有这些特性,而是在研究函数时,常要研究函数是否具有这些特性。 (2) 函数是否“有界”或“单调”,与所论区间有关系。 (3) 具有奇、偶性的函数,其定义域是关于原点对称的。如果f(x)是奇函数,则f(0)=0。存在着既是奇函数,又是偶函数的函数,例f(x)=0。f(x)+f(-x)=0是判别f(x)是否为奇函数的有效方法。 (4) 周期函数的周期通常是指其最小正周期,但不是任何周期函数都有最小周期。

《高等数学》读书笔记

类型课程学习名称:高等数学 1 时间:2006.7.7 体裁:说明文 知识内容与结构备注一.课程目录 1函数 2极限和连续 3一元函数的导数和微分 4微分中值定理和导数的应用 5一元函数积分学 6多元函数微积分 二.知识层次分解2.3说明: 函数 1.预备知识 1)集合及其运算 1>概念 集合: 元素 2>绝对值及其基本性质

>区间和邻域 2.函数 3.基本特性 4.反函数 5.复合函数 6.初等数学 7.简单函数关系的建立 极限和连续 1数列极限 2数列级数的基本概念 3函数的极限 4极限的运算法则 5无穷小(量)和无穷大(量)6两个重要的极限 7函数的连续性和连续函数 8函数的间断点 一元函数的导数和微分 1导数的概念 2求导法则

基本求导公式 4高阶导数 5函数的微分 6导数和微分在经济学中的简单应用 微分中值定理和导数的应用 1微分中值定理 2洛必达法则 3 函数的单调性 4 曲线的凹凸性和拐点 5函数的极值与最值 一元函数积分学 1原函数和不定积分的概念 2基本积分公式 3换元积分法 4分部积分法 5微分方程初步 6定积分的概念及其基本性质 7 微积分基本公式 8 定积分的换元积分法和分部积分法 9 无穷限反常积分 10 定积分的应用

1空间解析几何 2多元函数的基本概念 3偏导数 4全微分 5多元复合函数的求导法则 6隐函数及其求导法则 7二元函数的极值 8二重积分 注: 1标识符:红色已领会理解橙色已弄懂粉色已记住绿色已会用蓝色已掌握 黑色增删修内容 2 说明:凡属课程都属说明文。要掌握其整体结构和层次内容和最后一层次 的说明内容的意思 3 步骤:1 填写结构 2 对照课程阅读,理解弄懂

高等数学1.3-函数的极限

第三节 函数的极限(一) 教学目的:(1)理解函数极限和左、右极限的概念; (2)理解无穷小概念,掌握其性质 教学重点:函数极限的概念,无穷小概念 教学难点:函数极限的概念的理解与应用 教学方法:讲授法 教学时数:2课时 本节我们将数列极限的概念推广到一元实值函数,然后研究函数极限的性质及其运算法则. 一、函数极限的概念 1.自变量x 趋于无穷大时函数的极限 1)+∞→x 时的极限: +∞→x 读作“x 趋于正无穷大”,表示x 无限增加,0x > . 例:对于x x f 1)(= ,当自变量+∞→x 时,x x f 1 )(=与常数0无限接近 . 复习数列极限的定义:数列{}n x 以a 为极限即a x n n =∞ →lim ? 0>?ε,N ?,N n >时,ε<-a x n . 令()n f x n =,则()?=∞ →a n f n lim 0>?ε,N ?,当N n >时,()ε<-a n f .将n 换成连续变量x ,将a 改记为A ,就可以得到x →+∞时,()A x f →的极限的定义及其数学上的精确描述 . 定义3.1:设函数)(x f 在),(+∞a 内有定义,,A ∈若0>?ε,0X ?>,当x X >时,有()ε<-A x f ,则称数A 为函数()x f 当x →+∞时的极限,记作()lim x f x A →+∞ =, 或()A x f →,(x →+∞) . 几何意义:对任意给定的0ε>,在轴上存在一点X ,使得函数的图象 {(,)|(),(,)}x y y f x x a =∈+∞在X 右边的部分位于平面带形),(),(εε+-?+∞A A X 内 . 2)x →-∞时的极限: x →-∞读作“x 趋于负无穷大”,表示x 无限增加,0x < . 定义:设函数)(x f 在),(a -∞内有定义,,A ∈若0>?ε,0X ?>,当x X <-时,有()ε<-A x f ,则称数A 为函数()x f 当x →-∞时的极限,记作()lim x f x A →-∞ =

考研高等数学145分高手整理完整经典笔记(考研必备免费下载)

最新下载(https://www.doczj.com/doc/546491387.html,) 中国最大、最专业的学习资料下载站转载请保留本信息 数学重点、难点归纳辅导 第一部分 第一章集合与映射 §1.集合 §2.映射与函数 本章教学要求:理解集合的概念与映射的概念,掌握实数集合的表示法,函数的表示法与函数的一些基本性质。 第二章数列极限 §1.实数系的连续性 §2.数列极限 §3.无穷大量 §4.收敛准则 本章教学要求:掌握数列极限的概念与定义,掌握并会应用数列的收敛准则,理解实数系具有连续性的分析意义,并掌握实数系的一系列基本定理。 第三章函数极限与连续函数 §1.函数极限 §2.连续函数 §3.无穷小量与无穷大量的阶 §4.闭区间上的连续函数 本章教学要求:掌握函数极限的概念,函数极限与数列极限的关系,无穷小量与无穷大量阶的估计,闭区间上连续函数的基本性质。 第四章微分 §1.微分和导数 §2.导数的意义和性质 §3.导数四则运算和反函数求导法则 §4.复合函数求导法则及其应用 §5.高阶导数和高阶微分 本章教学要求:理解微分,导数,高阶微分与高阶导数的概念,性质及相互关系,熟练掌握求导与求微分的方法。 第五章微分中值定理及其应用 §1.微分中值定理 §2.L'Hospital法则 §3.插值多项式和Taylor公式 §4.函数的Taylor公式及其应用 §5.应用举例

§6.函数方程的近似求解 本章教学要求:掌握微分中值定理与函数的Taylor公式,并应用于函数性质的研究,熟练运用L'Hospital法则计算极限,熟练应用微分于求解函数的极值问题与函数作图问题。 第六章不定积分 §1.不定积分的概念和运算法则 §2.换元积分法和分部积分法 §3.有理函数的不定积分及其应用 本章教学要求:掌握不定积分的概念与运算法则,熟练应用换元法和分部积分法求解不定积分,掌握求有理函数与部分无理函数不定积分的方法。 第七章定积分(§1 —§3) §1.定积分的概念和可积条件 §2.定积分的基本性质 §3.微积分基本定理 第七章定积分(§4 —§6) §4.定积分在几何中的应用 §5.微积分实际应用举例 §6.定积分的数值计算 本章教学要求:理解定积分的概念,牢固掌握微积分基本定理:牛顿—莱布尼兹公式,熟练定积分的计算,熟练运用微元法解决几何,物理与实际应用中的问题,初步掌握定积分的数值计算。 第八章反常积分 §1.反常积分的概念和计算 §2.反常积分的收敛判别法 本章教学要求:掌握反常积分的概念,熟练掌握反常积分的收敛判别法与反常积分的计算。 第九章数项级数 §1.数项级数的收敛性 §2.上级限与下极限 §3.正项级数 §4.任意项级数 §5.无穷乘积 本章教学要求:掌握数项级数敛散性的概念,理解数列上级限与下极限的概念,熟练运用各种判别法判别正项级数,任意项级数与无穷乘积的敛散性。 第十章函数项级数 §1.函数项级数的一致收敛性 §2.一致收敛级数的判别与性质 §3.幂级数

考研数学高数公式:函数与极限解读

考研数学高数公式:函数与极限 第一章:函数与极限 第一节:函数 函数属于初等数学的预备知识,在高数的学习中起到铺垫作用,直接考察的内容比较少,但是如果这章节有所缺陷对以后的学习都会有所影响。 基础阶段: 1.理解函数的概念,能在实际问题的背景下建立函数关系; 2.掌握并会计算函数的定义域、值域和解析式; 3.了解并会判断函数的有界性、单调性、周期性、奇偶性等性质; 4.理解复合函数和反函数的概念,并会应用它们解决相关的问题; 强化阶段: 1.了解函数的不同表现形式:显式表示,隐式表示,参数式,分段表示; 2.掌握基本初等函数的性质及其图形,了解初等函数的概念。 冲刺阶段: 1.综合应用函数解决相关的问题; 2.掌握特殊形式的函数(含极限的函数,导函数,变上限积分,并会讨论它们的相关性质。 第二节:极限

极限可以说是高等数学的基础,极限的计算也是高等数学中最基本的运算。在考试大纲中明确要求考生熟练掌握的基本技能之一。虽在考试中站的分值不大。但是在其他的试题中得到广泛应用。因此这部分学习直接营销到整个学科的复习结果 基础阶段 1.了解极限的概念及其主要的性质。 2.会计算一些简单的极限。 3.了解无穷大量与无穷小量的关系,了解无穷小量的比较方法,记住常见的等价无穷小量。 强化阶段: 1.理解极限的概念,理解函数左右极限的概念及其与极限的关系(数一数二/了解数列 极限和函数极限的概念(数三; ▲2.掌握计算极限的常用方法及理论(极限的性质,极限的四则运算法则,极限存在的两个准则,两个重要极限,等价无穷小替换,洛必达法则,泰勒公式; 3.会解决与极限的计算相关的问题(确定极限中的参数; 4.理解无穷大量和无穷小量的概念及相互关系,会进行无穷小量的比较,记住常见的等价无穷小量并能在计算极限时加以应用(数一数二/理解无穷小量的概念,会进行无穷小量的比较,记住常见的等价无穷小量并能在计算极限时加以应用,了解无穷大量的概念及其与无穷小量的关系(数三。 冲刺阶段: 深入理解极限理论在微积分中的中心地位,理解高等数学中其它运算(求导,求积分与极限之间的关系,建立完整的理论体系。

高数读书笔记

高等数学读书笔记

——定积分与不定积分 马燕妮 四川农业大学 经济学院 经济学 中国成都 611130 【摘要】本文首先介绍了不定积分与定积分的基本定义,而后主要探究几种比较重要的积分法。定积分是微积分学中的主要概念之一,它是从各种各样的积累中抽象出来的数学概念,它是函数的一种特定结构和式的极限。不定积分又与定积分进行对比记忆,对不定积分的计算进行系统整理。 【关键字】定积分;不定积分;面积;凑微分法;分部积分法;换元积分法;有理函数不定积分 【Abstract 】 This paper first introduces the basic definition of indefinite integral and defin ite integral, and then explores several of the more important integral method. D efinite integral is one of the major concepts of calculus, it comes from the a ccumulation of various of abstracting mathematical concept, it is the function of the limit of a particular structure with type. Comparing the indefinite integra l and definite integral memory, calculation of indefinite integral system. 【Key words 】Definite integral ;Indefinite integral ;Area ;differentiation division integral method ;Integral method in yuan ;The indefinite integral rational function 一、不定积分与定积分的定义 (一)、定积分的定义: 设f 是定义在[a,b]上的一个函数,对于[a,b]的一个分割T={ 1,? 2?……n ?},任

高等数学函数极限练习试题

设x x x f += 12)(,求)(x f 的定义域及值域。 ,,,且成立,对一切实数设a f f x f x f x x f x x x f =≠=+)1(0)0()()()()(212121)()()0(为正整数.及求n n f f 定义函数)(x I 表示不超过x 的最大整数叫做x 的取整函数,若)(x f 表示将x 之值保留二位小数,小数第3位起以后所有数全部舍去,试用)(x I 表示)(x f 。 定义函数)(x I 表示不超过x 的最大整数叫做x 的取整函数,若)(x g 表示将x 依4舍5入法则保留2位小数,试用)(x I 表示)(x g 。 在某零售报摊上每份报纸的进价为0.25元,而零售价为0.40元,并且如果报纸当天未售出不能退给报社,只好亏本。若每天进报纸t 份,而销售量为x 份,试将报摊的利润y 表示为x 的函数。 的取整函数,试判定的最大整数叫做表示不超过定义函数x x x I )(的周期性。)()(x I x x -=? 的奇偶性。 判定函数)1ln()1()(x x e x f x x -+?-=+ [ )设,问在,上是否有界?f x e x f x x ()sin ()=+∞0 函数的图形是图中所示的折线,写出的表达式。y f x OBA y f x ==()() ???≤≤-<≤=????≤≤+<≤=., ; ,.,;, 设64240)(42220)(2 x x x x x x x x x x f [][].及求)()(x f x f ?? [][]设,; ,. ,求及.f x x x x x f x f x ()()()()=-≤>???=-101021??? ???>-≤=????>≤-=. ,; ,., ;,设000)(00)(2 x x x x x x x e x f x [].及的反函数求)()()(x f x g x f ? []设,,;,.求.f x x x x x x x x f x ()()()()=+=<≥???1 2002?? []设,; , .求.f x x x x f f x ()()=+<≥???2020 .求.,; ,.,;,设)()( 111)(000)(x x f x x x x x x x x x f ?+? ??≥<+=????≥<=

高等数学(张宇)_-_笔记_PDF

目录 第一讲极限 一极限定义 (3) 二极限性质 (4) 三函数极限基本计算 (8) 四综合计算 (11) 五数列极限计算 (14) 六函数连续与间断 (16) 第二讲一元函数微积分 一概念 (17) 1. 导数 (18) 2. 微分 (20) 3. 不定积分 (21) 4. 定积分 (23) 5. 变限积分 (28) 6. 反常积分 (29) 二计算 (29) 1. 求导 (29) 2. 求积 (33) 三应用 (40) 1. 微分应用 (40) 2. 积分应用 (43) 四逻辑推理 (43) 1. 中值定理 (49) 2. 等式证明 (50) 3. 不等式证明 (51) 第三讲多元函数的微分学(公共部分) 一概念 (51) 1. 极限的存在性 (51) 2. 极限的连续性 (52) 3. 偏导数的存在性 (52) 4. 可微性 (53) 5. 偏导数的连续性 (54) 二计算 (54) 三应用 (56) 第四讲二重积分(公共部分)

一概念与性质 (59) 二计算 (60) 1. 基础题 (60) 2. 技术题 (61) 三综合计算 (62) 第五讲微分方程 一概念及其应用 (63) 二一阶方程的求解 (64) 三高阶方程的求解 (66) 第六讲无穷级数 一数项级数的判敛 (67) 二幂级数求收敛域 (69) 三展开与求和 (69) 四傅里叶级数 (71) 第七讲多元函数微分学 一基础知识 (73) 二应用 (75) 第八讲多元函数积分学 一三重积分 (76) 二第一型曲线、曲面积分 (78) 1. 一线 (78) 2. 一面 (79) 三第二型曲线、曲面积分 (80) 1. 二线 (81) 2. 二面 (83)

高等数学函数与极限试的题目

高等数学第一章函数与极限试题 一. 选择题 1.设F(x)是连续函数f(x)的一个原函数,""N M ?表示“M 的充分必要条件是N ”,则必有 (A ) F(x)是偶函数?f(x)是奇函数. (B ) F(x)是奇函数?f(x)是偶函数. (C ) F(x)是周期函数?f(x)是周期函数. (D ) F(x)是单调函数?f(x)是单调函数 2.设函数,1 1)(1 -= -x x e x f 则 (A ) x=0,x=1都是f(x)的第一类间断点. (B ) x=0,x=1都是f(x)的第二类间断点 (C ) x=0是f(x)的第一类间断点,x=1是f(x)的第二类间断点. (D ) x=0是f(x)的第二类间断点,x=1是f(x)的第一类间断点. 3.设f (x)=x x 1 -,x ≠0,1,则f [)(1 x f ]= ( ) A ) 1-x B ) x -11 C ) X 1 D ) x 4.下列各式正确的是 ( ) A ) lim + →x )x 1 +1(x =1 B ) lim + →x )x 1 +1(x =e C ) lim ∞ →x )x 1 1-(x =-e D ) lim ∞ →x )x 1 +1(x -=e 5.已知9)( lim =-+∞→x x a x a x ,则=a ( )。 A.1; B.∞; C.3ln ; D.3ln 2。 6.极限:=+-∞→x x x x )1 1( lim ( ) A.1; B.∞; C.2 -e ; D.2 e 7.极限:∞ →x lim 3 32x x +=( ) A.1; B.∞; C.0; D.2. 8.极限:x x x 11lim 0-+→=( ) A.0; B.∞; C 2 1; D.2.

大学高等数学函数极限和连续

第一章 函数、极限和连续 §1.1 函数 一、 主要内容 ㈠ 函数的概念 1. 函数的定义: y=f(x), x ∈D 定义域: D(f), 值域: Z(f). 2.分段函数: ?? ?∈∈=21)()(D x x g D x x f y 3.隐函数: F(x,y)= 0 4.反函数: y=f(x) → x=φ(y)=f -1(y) y=f -1 (x) 定理:如果函数: y=f(x), D(f)=X, Z(f)=Y 是严格单调增加(或减少)的; 则它必定存在反函数: y=f -1(x), D(f -1)=Y, Z(f -1)=X 且也是严格单调增加(或减少)的。 ㈡ 函数的几何特性 1.函数的单调性: y=f(x),x ∈D,x 1、x 2∈D 当x 1<x 2时,若f(x 1)≤f(x 2), 则称f(x)在D 内单调增加( ); 若f(x 1)≥f(x 2), 则称f(x)在D 内单调减少( ); 若f(x 1)<f(x 2),

则称f(x)在D 内严格单调增加( ); 若f(x 1)>f(x 2), 则称f(x)在D 内严格单调减少( )。 2.函数的奇偶性:D(f)关于原点对称 偶函数:f(-x)=f(x) 奇函数:f(-x)=-f(x) 3.函数的周期性: 周期函数:f(x+T)=f(x), x ∈(-∞,+∞) 周期:T ——最小的正数 4.函数的有界性: |f(x)|≤M , x ∈(a,b) ㈢ 基本初等函数 1.常数函数: y=c , (c 为常数) 2.幂函数: y=x n , (n 为实数) 3.指数函数: y=a x , (a >0、a ≠1) 4.对数函数: y=log a x ,(a >0、a ≠1) 5.三角函数: y=sin x , y=con x y=tan x , y=cot x y=sec x , y=csc x 6.反三角函数:y=arcsin x, y=arccon x y=arctan x, y=arccot x ㈣ 复合函数和初等函数 1.复合函数: y=f(u) , u=φ(x) y=f[φ(x)] , x ∈X 2.初等函数:

高数笔记大全

第一章 函数、极限和连续 §1.1 函数 一、 主要内容 ㈠ 函数的概念 1. 函数的定义: y=f(x), x ∈D 定义域: D(f), 值域: Z(f). 2.分段函数: ?? ?∈∈=2 1) ()(D x x g D x x f y 3.隐函数: F(x,y)= 0 4.反函数: y=f(x) → x=φ(y)=f -1 (y) y=f -1 (x) 定理:如果函数: y=f(x), D(f)=X, Z(f)=Y 是严格单调增加(或减少)的; 则它必定存在反函数: y=f -1 (x), D(f -1 )=Y, Z(f -1 )=X 且也是严格单调增加(或减少)的。 ㈡ 函数的几何特性 1.函数的单调性: y=f(x),x ∈D,x 1、x 2∈D 当x 1<x 2时,若f(x 1)≤f(x 2), 则称f(x)在D 内单调增加( ); 若f(x 1)≥f(x 2), 则称f(x)在D 内单调减少( ); 若f(x 1)<f(x 2), 则称f(x)在D 内严格单调增加( ); 若f(x 1)>f(x 2), 则称f(x)在D 内严格单调减少( )。 2.函数的奇偶性:D(f)关于原点对称 偶函数:f(-x)=f(x) 奇函数:f(-x)=-f(x) 3.函数的周期性: 周期函数:f(x+T)=f(x), x ∈(-∞,+∞) 周期:T ——最小的正数 4.函数的有界性: |f(x)|≤M , x ∈(a,b) ㈢ 基本初等函数 1.常数函数: y=c , (c 为常数) 2.幂函数: y=x n , (n 为实数) 3.指数函数: y=a x , (a >0、a ≠1) 4.对数函数: y=log a x ,(a >0、a ≠1) 5.三角函数: y=sin x , y=con x y=tan x , y=cot x y=sec x , y=csc x

大一高数笔记

导数与极限 (一)极限 1. 概念 (1)自变量趋向于有限值的函数极限定义(δε-定义) A x f a x =→)(lim ?0>?ε,0>?δ,当δ<-<||0a x 时,有ε<-|)(|A x f 。 (2)单侧极限 左极限: =-)0(a f A x f a x =-→)(lim ?0>?ε,0>?δ,当δ<-?ε,0>?δ,当δ<-?>?X ε,当 X x >,成立()ε<-A x f ,则称常数A 为函数()x f 在x 趋于无穷时的 极限,记为()A x f x =∞ →lim 。 A y =为曲线()x f y =的水平渐近线。 定义2:00>?>?X ,ε,当X x >时,成立()ε<-A x f ,则有()A x f x =+∞→lim 。 定义3:00>?>?X ,ε,当X x -<时,成立()ε<-A x f ,则有()A x f x =-∞→lim 。 运算法则: 1) 1)若()A x f =lim ,()∞=x g lim ,则()()[]∞=+x g x f lim 。 2) 2)若()()∞≠=但可为,0lim A x f ,()∞=x g lim ,则()()∞=?x g x f lim 。 3) 3)若()∞=x f lim ,则 ()01 lim =x f 。 注:上述记号lim 是指同一变化过程。 (4)无穷小的定义 ~ 0>?ε,0>?δ,当δ<-<||0a x 时,有ε<|)(|x f ,则称函数)(x f 在a x →时的无穷小(量),即 0 )(lim =→x f a x 。 (5)无穷大的定义 0>?M ,0>?δ,当δ<-<||0a x 时,有M x f >|)(|,则称函数)(x f 在a x →时的无穷大(量),记为 ∞ =→)(lim x f a x 。 直线a x =为曲线()x f y =的垂直渐近线。 2.无穷小的性质 定理1 有限多个无穷小的和仍是无穷小。 定理2 有界函数与无穷小的乘积仍是无穷小。 推论1 常数与无穷小的乘积是无穷小。 推论2 有限个无穷小的乘积是无穷小。 ! 无穷小与无穷大的关系 若∞=→)(lim x f a x ,且)(x f 不取零值,则)(1 x f 是a x →时的无穷小。 3.极限存在的判别法 (1)A x f a x =→)(lim ?A a f a f =+=-)0()0(。

高等数学(同济第七版)上册-知识点总结

高等数学(同济第七版)上册-知识点总结 第一章 函数与极限 一. 函数的概念 1.两个无穷小的比较 设0)(lim ,0)(lim ==x g x f 且l x g x f =) () (lim (1)l = 0,称f (x)是比g(x)高阶的无穷小,记以f (x) = 0[)(x g ],称g(x)是比f(x)低阶的无穷小。 (2)l ≠ 0,称f (x)与g(x)是同阶无穷小。 (3)l = 1,称f (x)与g(x)是等价无穷小,记以f (x) ~ g(x) 2.常见的等价无穷小 当x →0时 sin x ~ x ,tan x ~ x ,x arcsin ~ x ,x arccos ~ x , 1? cos x ~ 2/2^x , x e ?1 ~ x ,)1ln(x + ~ x ,1)1(-+αx ~ x α 二.求极限的方法 1.两个准则 准则 1. 单调有界数列极限一定存在 准则 2.(夹逼定理)设g (x ) ≤ f (x ) ≤ h (x ) 若A x h A x g ==)(lim ,)(lim ,则A x f =)(lim 2.两个重要公式 公式11sin lim 0=→x x x 公式2e x x x =+→/10 )1(lim 3.用无穷小重要性质和等价无穷小代换 4.用泰勒公式 当x 0→时,有以下公式,可当做等价无穷小更深层次 ) ()! 12()1(...!5!3sin ) (! ...!3!2112125332++++-+++-=++++++=n n n n n x x o n x x x x x x o n x x x x e )(! 2)1(...!4!21cos 2242n n n x o n x x x x +-+++-= )()1(...32)1ln(132n n n x o n x x x x x +-++-=++ )(! ))1()...(1(...!2)1(1)1(2n n x o x n n x x x +---++-++=+ααααααα )(1 2)1(...53arctan 121 2153+++++-+-+-=n n n x o n x x x x x 5.洛必达法则

同济大学(高等数学)_第一章_函数极限

第一篇 函数、极限与连续 第一章 函数、极限与连续 高等数学的主要内容是微积分,微积分是以变量为研究对象,以极限方法为基本研究手段的数学学科.本章首先复习函数相关内容,继而介绍极限的概念、性质、运算等知识,最后通过函数的极限引入函数的连续性概念,这些内容是学习高等数学课程极其重要的基础知识. 第1节 集合与函数 1.1 集合 1.1.1 集合 讨论函数离不开集合的概念.一般地,我们把具有某种特定性质的事物或对象的总体称为集合,组成集合的事物或对象称为该集合的元素. 通常用大写字母A 、B 、C 、 表示集合,用小写字母a 、b 、c 、 表示集合的元素. 如果a 是集合A 的元素,则表示为A a ∈,读作“a 属于A ”;如果a 不是集合A 的元素,则表示为A a ?,读作“a 不属于A ”. 一个集合,如果它含有有限个元素,则称为有限集;如果它含有无限个元素,则称为无限集;如果它不含任何元素,则称为空集,记作Φ. 集合的表示方法通常有两种:一种是列举法,即把集合的元素一一列举出来,并用“{}”括起来表示集合.例如,有1,2,3,4,5组成的集合A ,可表示成 A ={1,2,3,4,5}; 第二种是描述法,即设集合M 所有元素x 的共同特征为P ,则集合M 可表示为 {}P x x M 具有性质|=. 例如,集合A 是不等式022<--x x 的解集,就可以表示为 {} 02|2<--=x x x A . 由实数组成的集合,称为数集,初等数学中常见的数集有: (1)全体非负整数组成的集合称为非负整数集(或自然数集),记作N ,即 {} ,,,3,2,1,0n N =; (2)所有正整数组成的集合称为正整数集,记作+ N ,即 {} ,,,3,2,1n N =+; (3)全体整数组成的集合称为整数集,记作Z ,即 {} ,,,3,2,1,0,1,2,3,,,n n Z ----=;

高等数学归纳笔记(全)

一、函数与极限 (2) 1、集合的概念 (2) 2、常量与变量 (3) 2、函数 (4) 3、函数的简单性态 (4) 4、反函数 (5) 5、复合函数 (6) 6、初等函数 (6) 7、双曲函数及反双曲函数 (7) 8、数列的极限 (9) 9、函数的极限 (10) 10、函数极限的运算规则 (12)

一、函数与极限 1、集合的概念 一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。比如“身材较高的人”不能构成集合,因为它的元素不是确定的。 我们通常用大字拉丁字母A、B、C、……表示集合,用小写拉丁字母a、b、c……表示集合中的元素。如果a是集合A中的元素,就说a属于A,记作:a∈A,否则就说a不属于A,记作:a A。 ⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。记作N ⑵、所有正整数组成的集合叫做正整数集。记作N+或N+。 ⑶、全体整数组成的集合叫做整数集。记作Z。 ⑷、全体有理数组成的集合叫做有理数集。记作Q。 ⑸、全体实数组成的集合叫做实数集。记作R。 集合的表示方法 ⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合 ⑵、描述法:用集合所有元素的共同特征来表示集合。 集合间的基本关系 ⑴、子集:一般地,对于两个集合A、B,如果集合A中的任意一个元素都是集合B的元素,我们就说A、B有包含关系,称集合A为集合B的子集,记作A B(或B A)。。 ⑵相等:如何集合A是集合B的子集,且集合B是集合A的子集,此时集合A中的元素与集合B中的元素完全一样,因此集合A与集合B相等,记作A=B。 ⑶、真子集:如何集合A是集合B的子集,但存在一个元素属于B但不属于A,我们称集合A是集合B的真子集。 ⑷、空集:我们把不含任何元素的集合叫做空集。记作,并规定,空集是任何集合的子集。 ⑸、由上述集合之间的基本关系,可以得到下面的结论: ①、任何一个集合是它本身的子集。即A A ②、对于集合A、B、C,如果A是B的子集,B是C的子集,则A是C的子集。 ③、我们可以把相等的集合叫做“等集”,这样的话子集包括“真子集”和“等集”。 集合的基本运算 ⑴、并集:一般地,由所有属于集合A或属于集合B的元素组成的集合称为A与B的并集。记作A ∪B。(在求并集时,它们的公共元素在并集中只能出现一次。) 即A∪B={x|x∈A,或x∈B}。 ⑵、交集:一般地,由所有属于集合A且属于集合B的元素组成的集合称为A与B的交集。记作A ∩B。 即A∩B={x|x∈A,且x∈B}。 ⑶、补集: ①全集:一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集。通常记作U。

相关主题
文本预览
相关文档 最新文档