当前位置:文档之家› 基坑的几种失稳形态

基坑的几种失稳形态

基坑的几种失稳形态
基坑的几种失稳形态

基坑的几种失稳形态

基坑工程的设计计算一般包括三方面的内容,即稳定性验算、支护结构强度设计和基坑变形计算。

稳定性验算是指分析基坑周围土体或土体与围护体系一起保持稳定性的能力。

支护结构强度设计是指分析计算支护结构的内力使其满足构件强度设计的要求。

变形计算的目的是为了控制基坑开挖对周边环境的影响,保证周边相邻建筑物、构筑物和地下管线等的安全。

基坑边坡的坡度太陡,围护结构的插入深度太浅,或支撑力不够,都有可能导致基坑丧失稳定性而破坏。基坑的失稳破坏可能缓慢发展,也有可能突然发生。有的有明显的触发原因,如振动、暴雨、超载或其他人为因素,有的却没有明显的触发原因,这主要由于土的强度逐渐降低引起安全度不足造成的。

基坑破坏模式根据时间可分为长期稳定和短期稳定。根据基坑的形式又可分为有支护基坑和无支护基坑破坏。其中有支护基坑围护形式又可分为刚性围护、无支撑柔性围护和带支撑柔性围护。各种基坑围护形式因为作用机理不同,因而具有不同的破坏模式。

基坑可能的破坏模式在一定程度上揭示了基坑的失稳形态和破坏机理,是基坑稳定性分析的基础。《建筑地基基础设计规范》(GB50007)将基坑的失稳形态归纳为两类:一、因基坑土体强度不足、地下水渗流作用而造成基坑失稳,包括基坑内外侧土体整体滑动失稳;基坑底土隆起;地层因承压水作用,管涌、渗漏等等。

二、因支护结构(包括桩、墙、支撑系统等)的强度、刚度或稳定性不足引起支护系统破坏而造成基坑倒塌、破坏。

1、根据围护形式不同,基坑的第一类失稳形态主要表现为如下一些模式。

(1)放坡开挖基坑

由于设计不合理坡度太陡,或雨水、管道渗漏等原因造成边坡渗水导致土体抗剪强度降低,引起基坑边土体整体滑坡。

(2)刚性挡土墙基坑

刚性挡土墙是水泥土搅拌桩、旋喷桩等加固土组成的宽度较大的一种重力式基坑围护结构,其破坏形式有如下几种:

a.由于墙体的入土深度不足,或由于墙底存在软弱土层,土体抗剪强度不够等原因,导致墙体随附近土体整体滑移破坏。

b. 由于基坑外挤土施工如坑外施工挤土桩或者坑外超载作用如基坑边堆载、重型施工机械行走等引起墙后土体压力增加,导致墙体向坑内倾覆。

c. 当坑内土体强度较低或坑外超载时,导致墙底变形过大或整体刚性移动。

基坑稳定性验算

第4章基坑的稳定性验算 4.1概述 在基坑开挖时,由于坑内土体挖出后,使地基的应力场和变形场发生变化,可能导致地基的失稳,例如地基的滑坡、坑底隆起及涌砂等。所以在进行支护设计时,需要验算基坑稳定性,必要时应采取适当的加强防范措施,使地基的稳定性具有一定的安全度。 4.2 验算内容 对有支护的基坑全面地进行基坑稳定性分析和验算,是基坑工程设计的重要环节之一。目前,对基坑稳定性验算主要有如下内容: ①基坑整体稳定性验算 ②基坑的抗隆起稳定验算 ③基坑底抗渗流稳定性验算 4.3 验算方法及计算过程 4.3.1基坑的整体抗滑稳定性验算 根据《简明深基坑工程设计施工手册》采用圆弧滑动面验算板式支护结构和地基的整体稳定抗滑动稳定性时,应注意支护结构一般有内支撑或外拉锚杆结构、墙面垂直的特点。不同于边坡稳定验算的圆弧滑动,滑动面的圆心一般在挡墙上方,基坑内侧附近。通过试算确定最危险的滑动面和最小安全系数。考虑内支撑或者锚拉力的作用时,通常不会发生整体稳定破坏,因此,对支护结构,当设置外拉锚杆时可不做基坑的整体抗滑移稳定性验算。 4.3.3基坑抗隆起稳定性验算

图4.1 基坑抗隆起稳定性验算计算简图 采用同时考虑c 、φ的计算方法验算抗隆起稳定性。 ()q D H cN DN K c q s +++=12γγ 式中 D —— 墙体插入深度; H —— 基坑开挖深度; q —— 地面超载; 1γ—— 坑外地表至墙底,各土层天然重度的加强平均值; 2γ—— 坑内开挖面以下至墙底,各土层天然重度的加强平均值; q N 、c N —— 地基极限承载力的计算系数; c 、?—— 为墙体底端的土体参数值; 用普郎特尔公式,q N 、c N 分别为: ?π?tan 2245tan e N q ??? ? ?+=? ()? tan 11-=q c N N 其中 D=2.22m q=10kpa H=7m ?= 240 4.1879.29.1821.181.2181=?+?+?= γ 5.181 7.03.183.09.182=?+?=γ 6.9)22445(tan 24tan 14.302=+ =?e Nq 32.1924 tan 1)16.9(tan 1)1(0=-=-=?Nq Nc 则 Ks=(18.5×2.22×9.6+10×19.32)/18.4(7+2.22)+10=3.27>1.2 符合要求 4.3.4抗渗流(或管涌)稳定性验算 (1)概述

基坑放坡稳定性验算

基坑放坡稳定性验算 根据施工组织安排,10-03地块各楼栋基坑采用分块开挖,临时放坡的施工方案,我司对基坑临时放坡后的坑边坡顶堆载及车载道路进行边坡稳定性验算,验算过程如下: 参数信息: 条分方法:瑞典条分法; 考虑地下水位影响; 基坑外侧水位到坑顶的距离(m):1.50; 基坑内侧水位到坑顶的距离(m):8.00; 放坡参数: 序号放坡高度(m) 放坡宽度(m) 平台宽度(m) 条分块数 1 2.50 3.80 2.00 0.00 2 3.00 4.50 2.00 0.00 计算原理: 根据土坡极限平衡稳定进行计算。自然界匀质土坡失去稳定,滑动面呈曲面,通常滑动面接近圆弧,可将滑裂面近似成圆弧计算。将土坡的土体沿竖直方向分成若干个土条,从土条中任意取出第i条,不考虑其侧面上的作用力时,该土条上存在着: 1、土条自重 2、作用于土条弧面上的法向反力 3、作用于土条圆弧面上的切向阻力 将抗剪强度引起的极限抗滑力矩和滑动力矩的比值作为安全系数,考虑安全储备的大小,按照《规范》要求,安全系数要满足>=1.3的要求。

将抗剪强度引起的极限抗滑力矩和滑动力矩的比值作为安全系数,考虑安全储备的大小,按照《规范》要求,安全系数要满足>=1.3的要求。 计算公式: 式子中: --土坡稳定安全系数; F s c --土层的粘聚力; --第i条土条的圆弧长度; l i γ --土层的计算重度; θi --第i条土到滑动圆弧圆心与竖直方向的夹角; φ --土层的内摩擦角; --第i条土的宽度; b i --第i条土的平均高度; h i ――第i条土水位以上的高度; h 1i ――第i条土水位以下的高度; h 2i γ' ――第i条土的平均重度的浮重度;

浅析地下水对基坑稳定性的影响

浅析地下水对基坑稳定性的影响 摘要:地下水对基坑的稳定性有着极大的影响,为了控制好基坑的稳定性,就必然要了解地下水与基坑稳定性的相互关系,从而采取相应的措施来控制好基坑的稳定性。 关键词:基坑;稳定性;地下水;水土作用;强度参数 0引言 随着我国经济的快速发展,城市建设也达到了前所未有的发展,从20年前仅北京、上海等大城市才有高层和超高层建筑到现在一般的中小城市都已建有30层以上的高层建筑,而随之地下开挖深度也逐渐变深,二层、三层地下室成为很常见的事。地下开挖深度的加大对基坑支护结构的稳定性可靠性要求也越来越高,而影响基坑边坡稳定的因素有很多,比如基坑挖深、侧壁土质、周围环境、地下水分布、护类型等,其中地下水对基坑边坡的稳定性影响尤其突出,需特别加以重视。从以往的一些工程案例中可以看出,由于地下水没有控制好而引起基坑事故占有绝大多数,因此分析地下水对基坑边坡稳定性影响是非常具有工程意义。 1地下水的基本特征 与深基坑工程有关的地下水按其埋藏条件一般可分为包气带的上层滞水,饱和带的潜水和承压水三类。上层滞水分布于浅部松散填土中,无统一水面,水位随季节变化,不同场地不同季节水位各不相同,水量较小,与区域地下水无水力联系,与邻近地表水体可能有联系,但联通性差,其埋藏较浅,可针对性隔断、引渗、设泄水孔等降水措施,治水效果好。潜水分布于松散地层,基岩裂隙破碎带及岩溶等地区,具有统一自由水面,水位受气象因素影响变化明显,同一场地的水位在一定区域内基本相同或变化具有规律性,水量变化较大,地下水补给一般以降雨为主,同时接受场地外同层地下水的径流补给,可采用井点降水和管井降水,或设帷幕隔断或降水辅以回灌等进行处理。承压水分布于松散地层两个相对隔水层之间,具有一定水头压力,一般不受当地气候因素的影响,水头保持稳定,由于承压水埋深大,有一定的水头压力,水量大等,对地基稳定性的潜在危害最大。 2地下水对土体的作用 地下水是一种重要的地质营力,它与土体的相互作用改变着土体的物理性质、化学性质和力学性质,也改变着地下水本身的一些物理、化学和力学性质。按其作用来分为物理作用、化学作用和力学作用。物理作用有润滑作用、软化作用、泥化作用和结合水强化作用,化学作用有离子交换、溶解、水解、溶蚀作用,力学作用包括孔隙水动压力和静压力。地下水与岩土体的相互作用影响着岩土体的变形和强度,主要体现在三方面:l)通过物理、化学作用改变土体的值的大小。

基坑开挖及边坡稳定施工技术

基坑施工包括基坑降排水、主体基坑开挖、临时支撑架设等工作。 基坑施工段包括U型槽K0+280~+K0+395、K1+081~K1+190,明挖隧道段K0+395~K0+520、K0+565~K0+636、K0+666~K0+760、K0+825~K0+880、K0+900~K1+081。 一、基坑边坡加固措施 施工便道靠坡顶一侧设置纵向排水沟,防止地表水冲刷边坡,引起边坡失稳,同时边坡底也设置纵向排水沟,防止地面积水流入基坑。边坡坡面采取土钉结合挂网、喷砼的方法,土钉采用Φ25钢筋(L=2m),间距1m , 梅花形布置。钢筋网格采用?6钢筋绑扎而成,网格尺寸20×20cm,喷射C20砼5~10cm。 边坡防护完成后,在后续基坑施工中,派专人对边坡的稳定情况进行检查,出现砼剥皮、开裂现象及时修补,确保边坡持久稳定。 二、基坑开挖 采用“由上而下,竖向分层,纵向分段,横向分块,随挖随撑”的方法开挖土方。为加快出土进度,明挖隧道段采取轨行龙门吊车垂直提升和自卸车出土,U型槽浅层段利用线路斜坡道由自卸车出土。 1、施工准备 (一)所有材料、设备、运输作业机械、水、电等必须进场到位。 (二)弃土地点必须落实,弃土线路畅通。 (三)降、排水系统正常运转。 (四)管线支吊保护全部完成或落实好开挖过程中加固保护措施。 2、开挖段、层划分 考虑基坑开挖的时空效应,根据基坑面积的大小、围护结构形式、开挖高度、和工程环境等因素,基坑开挖采用分段、分层方式进行。分段长度根据横支撑的间距及施工结构时节段的划分考虑,每段不大于20m,竖向分层高度结合土层条件、钢管横支撑设置及机械设备综合考虑,每层高度为1.5~2.5m,在靠近钢管横支撑架设的那一层厚度稍小,一般不大于2m,以便及时安装钢管横支撑。 3、基坑开挖施工顺序及施工方法 明挖隧道段共分四次开挖,第一次为地面以下1.5m采用反铲挖掘机从地面直接开挖,在夜间用15t卸式汽车直接从施工围挡内运至弃土场。第二次为地面以下1.5~6.75m的土方,采用人工配合PC100-5型反铲式挖掘机开挖,小型自卸汽车直接运至地面的临时弃碴场。第三次为地面以下6.75~11.25m的土方,同样采用人工配合PC100-5型反铲挖掘机开挖,小型自卸汽车外运,第四次为地面以下11.25m至基底,采用人工配合PC100-5型反铲式挖掘机开挖,小型自卸式汽车运于临时弃碴场,所有临时弃碴安排在夜间通过ZL40型侧卸式装载机装碴,15t自卸汽车外运。 (一)开挖施工顺序及工艺流程 主体土方分层开挖过程中,先横向分层开挖中部沟槽至中线,然后转入中线沟槽纵向开挖,在非钢管横支撑架设或底层时,沟槽两侧土方落后于沟槽开挖掌子面10~12m左右。在钢管横支撑架设层或底层,土方由中间向两端开挖,再转入横向开挖,同样先开挖中线沟槽,沟槽两侧土方落后于沟槽开挖掌子面,以便尽早施作钢管横支撑或主体结构,基坑开挖施工工艺流程见下图

深基坑边坡稳定性计算书

... . . 土坡稳定性计算书 本计算书参照《建筑施工计算手册》江正荣编著中国建筑工业、《实用土木工程手册》第三版文渊编著人民教同、《地基与基础》第三版中国建筑工业、《土力学》等相关文献进行编制。 计算土坡稳定性采用圆弧条分法进行分析计算,由于该计算过程是大量的重复计算,故本计算书只列出相应的计算公式和计算结果,省略了重复计算过程。 本计算书采用瑞典条分法进行分析计算,假定滑动面为圆柱面及滑动土体为不变形刚体,还假定不考虑土条两侧上的作用力。 一、参数信息: 条分方法:瑞典条分法; 考虑地下水位影响; 基坑外侧水位到坑顶的距离(m):1.56; 基坑侧水位到坑顶的距离(m):14.000; 放坡参数: 序号放坡高度(m) 放坡宽度(m) 平台宽度(m) 条分块数 0 3.50 3.50 2.00 0.00 1 4.50 4.50 3.00 0.00 2 6.20 6.20 3.00 0.00 荷载参数: 土层参数:

序号土名称 土厚 度 (m) 坑壁土的重 度γ(kN/m3) 坑壁土的摩 擦角φ(°) 粘聚力 (kPa) 饱容重 (kN/m3) 1 粉质粘土15 20.5 10 10 20.5 二、计算原理: 根据土坡极限平衡稳定进行计算。自然界匀质土坡失去稳定,滑动面呈曲面,通常滑动面接近圆弧,可将滑裂面近似成圆弧计算。将土坡的土体沿竖直方向分成若干个土条,从土条中任意取出第i条,不考虑其侧面上的作用力时,该土条上存在着: 1、土条自重, 2、作用于土条弧面上的法向反力, 3、作用于土条圆弧面上的切向阻力。 将抗剪强度引起的极限抗滑力矩和滑动力矩的比值作为安全系数,考虑安全储备的大小,按照《规》要求,安全系数要满足>=1.3的要求。 将抗剪强度引起的极限抗滑力矩和滑动力矩的比值作为安全系数,考虑安全储备的大小,按照《规》要求,安全系数要满足>=1.3的要求。 三、计算公式:

深基坑边坡稳定性计算书

土坡稳定性计算书 本计算书参照《建筑施工计算手册》江正荣编著中国建筑工业出版社、《实用土木工程手册》第三版杨文渊编著人民教同出版社、《地基与基础》第三版中国建筑工业出版社、《土力学》等相关文献进行编制。 计算土坡稳定性采用圆弧条分法进行分析计算,由于该计算过程是大量的重复计算,故本计算书只列出相应的计算公式和计算结果,省略了重复计算过程。 本计算书采用瑞典条分法进行分析计算,假定滑动面为圆柱面及滑动土体为不变形刚体,还假定不考虑土条两侧上的作用力。 一、参数信息: 条分方法:瑞典条分法; 考虑地下水位影响; 基坑外侧水位到坑顶的距离(m): 1.56 ; 基坑内侧水位到坑顶的距离(m): 14.000 ; 放坡参数: 序号放坡高度(m) 放坡宽度(m) 平台宽度(m)条分块数 0 3.50 3.50 2.00 0.00 1 4.50 4.50 3.00 0.00 2 6.20 6.20 3.00 0.00 荷载参数:

土层参数: 二、计算原理 根据土坡极限平衡稳定进行计算。自然界匀质土坡失去稳定,滑动面呈曲面,通常滑动面接近圆弧,可将滑裂面近似成圆弧计算。将土坡的土体沿竖直方向分成若干个土条,从土条中任意取出第 i条,不考虑其侧面上的作用力时,该土条上存在着: 1、土条自重, 2、作用于土条弧面上的法向反力, 3、作用于土条圆弧面上的切向阻力。 将抗剪强度引起的极限抗滑力矩和滑动力矩的比值作为安全系数,考虑安全储备的大小,按照《规范》要求,安全系数要满足 >=1.3的要求。 将抗剪强度引起的极限抗滑力矩和滑动力矩的比值作为安全系数,考虑安全储备的大小,按照《规范》要求,安全系数要满足>=1.3的要求。

基坑的几种失稳形态

基坑的几种失稳形态 基坑工程的设计计算一般包括三方面的内容,即稳定性验算、支护结构强度设计和基坑变形计算。 稳定性验算是指分析基坑周围土体或土体与围护体系一起保持稳定性的能力。 支护结构强度设计是指分析计算支护结构的内力使其满足构件强度设计的要求。 变形计算的目的是为了控制基坑开挖对周边环境的影响,保证周边相邻建筑物、构筑物和地下管线等的安全。 基坑边坡的坡度太陡,围护结构的插入深度太浅,或支撑力不够,都有可能导致基坑丧失稳定性而破坏。基坑的失稳破坏可能缓慢发展,也有可能突然发生。有的有明显的触发原因,如振动、暴雨、超载或其他人为因素,有的却没有明显的触发原因,这主要由于土的强度逐渐降低引起安全度不足造成的。 基坑破坏模式根据时间可分为长期稳定和短期稳定。根据基坑的形式又可分为有支护基坑和无支护基坑破坏。其中有支护基坑围护形式又可分为刚性围护、无支撑柔性围护和带支撑柔性围护。各种基坑围护形式因为作用机理不同,因而具有不同的破坏模式。 基坑可能的破坏模式在一定程度上揭示了基坑的失稳形态和破坏机理,是基坑稳定性分析的基础。《建筑地基基础设计规范》(GB50007)将基坑的失稳形态归纳为两类:一、因基坑土体强度不足、地下水渗流作用而造成基坑失稳,包括基坑内外侧土体整体滑动失稳;基坑底土隆起;地层因承压水作用,管涌、渗漏等等。 二、因支护结构(包括桩、墙、支撑系统等)的强度、刚度或稳定性不足引起支护系统破坏而造成基坑倒塌、破坏。 1、根据围护形式不同,基坑的第一类失稳形态主要表现为如下一些模式。 (1)放坡开挖基坑 由于设计不合理坡度太陡,或雨水、管道渗漏等原因造成边坡渗水导致土体抗剪强度降低,引起基坑边土体整体滑坡。 (2)刚性挡土墙基坑 刚性挡土墙是水泥土搅拌桩、旋喷桩等加固土组成的宽度较大的一种重力式基坑围护结构,其破坏形式有如下几种: a.由于墙体的入土深度不足,或由于墙底存在软弱土层,土体抗剪强度不够等原因,导致墙体随附近土体整体滑移破坏。 b. 由于基坑外挤土施工如坑外施工挤土桩或者坑外超载作用如基坑边堆载、重型施工机械行走等引起墙后土体压力增加,导致墙体向坑内倾覆。 c. 当坑内土体强度较低或坑外超载时,导致墙底变形过大或整体刚性移动。

基坑边坡失稳及其防止措施

基坑边坡失稳及其防止措施 摘要:土木工程施工中首先要解决的就是”三通一平”问题,其中的”一平”即施工场地的平整,事实上这就是土方工程的工序环节之一。城市地下工程施工中,常见的土方工程施工有如下几种形式:场地平整、基坑与沟槽的挖方与填方、地坪与路基填筑等。本文对基坑边坡失稳及其防止措施进行简要的分析。 关键词:基坑, 边坡失稳, 防止,措施 Abstract: the civil engineering construction, first to solve is “SanTongYiPing” p roblem, one of the “a flat.” that is, construction site of level off, in fact, this is one of the working procedure of the earthwork link. Urban underground engineering construction, the common earthwork construction has the following several kinds of forms: field leveling, foundation pit excavation and fill with grooves, ground level ground and subgrade filling. In this paper, the foundation pit slope instability and measures to prevent the brief analysis. Keywords: foundation pit, slope instability, prevent, measures 土木工程施工中首先要解决的就是”三通一平”问题,其中的”一平”即施工场地的平整,事实上这就是土方工程的工序环节之一。城市地下工程施工中,常见的土方工程施工有如下几种形式:场地平整、基坑与沟槽的挖方与填方、地坪与路基填筑等。以下将对土方施工过程中的土方开挖方面内容进行介绍。需要指出的是,本文所介绍土方开挖仅指开挖深度较浅的放坡开挖,即通常所谓的大开挖基坑工程。 1.大开挖土方工程的边坡稳定 大开挖土方工程是指不采用支撑形式而采用直立或放坡施工方法进行开挖的基坑工程,有时又称放坡基坑开挖。对于基坑挖深较浅、施工场地开阔、周围建筑物和地下管线及其它市政设施距离基坑较远的情况,一般都采用大开挖,因为这是最为经济合理的施工方法。 大开挖土方工程可以为地下结构的施工创造最大限度的工作面,方便施工布置,因此,在场地允许的情况下,应优先选择大开挖法进行基坑施工。 基坑大开挖边坡施工过程中,由于开挖等施工活动导致土体原始应力场的平衡状态遭到破坏,当土体抗剪强度下降或附加应力超过极限值时,便会出现土体的快速或渐进位移,即发生边坡失稳。基坑进行大开挖的边坡设计必须保证基坑边坡具有足够的稳定性安全系数,边坡稳定性安全系数一般定义为沿假定滑裂面

基坑边坡防护施工方案

基坑边坡防护施工方案 一、工程概况: 南宁市琅东污水处理厂二期工程地处南宁市滨湖路80号,位于竹排冲南岸,紧邻规划河道。目前氧化沟、沉淀池基坑已开挖及回填完毕,两基坑连成一体,平面形状呈T字型,氧化沟基坑三面为人工边坡,另一面与沉淀池基坑相连,与滨湖路平行的两向的人工边坡垂直高度为8 ~ 9.2m左右;长度125m左右,靠竹排冲人工边坡垂直高度3.76m左右,长度78m左右;三面人工边坡坡顶面基本平整;但坡面经雨水冲刷已形成严重的裂谷形状,坡体塌滑、下沉很严重,坡面张性裂缝较宽;沉淀池靠北向人工边坡垂直高度8.5m左右,与氧化沟相接处左右两段长度分别为81m和31m,坡体经雨水冲刷塌滑、下沉很严重,坡面形成严重的裂谷形状,坡面张性裂缝较宽。坡体向基坑内滑移最大值1.5m,最大下沉值0.95 m,整体滑移面最严重处长度达85 m,纵向深度达11 m。按照北京市市政工程设计研究院《南宁市琅东污水处理厂二期工程厂区土方及地基处理工程施工图补充设计》说明3:“由于现况场地回填完成已经一年有余,经雨水冲刷已形成较严重的裂缝坡体塌滑、下沉等现象,而目前又正处在雨季……,为保证基坑边坡稳定需采取边坡支护措施。” 二、基坑防护方案 考虑到本工程边坡损坏,滑移、塌陷现象很严重,造成边坡处理难度增大,且从被冲刷成深沟和裂谷处的断面土质来看,填料多为土夹石,并杂夹较多碎砖块、砼块、建筑灰渣、生活废料、污泥质土、食品袋等,分层碾压不够,松散、整体性差,导致坡体稳定性很差,为提高坡体抗塌滑能力和稳定性,保证脱水机房、变电室、鼓风机房的基底整体性不受到破坏。首先将已发生滑塌、下沉、开裂的坡体土方全部清除掉,然后按照设计对“边坡控制坡度值1:1的要求,并采用土钉挂钢筋网锚喷砼护坡方案”。

土方边坡与基坑支护

项目三土方边坡与基坑支护 【职业能力目标】 基坑是建筑工程的一部分,尤其是对深基坑开挖与支护问题,引起了各方面的广泛重视。由于影响其工程质量的因素复杂,因此,在基坑工程施工中,处理不当时可能会出现一些意外的情况,给工程造成一定的经济损失。通过本项目的学习,应了解土压力的类型,熟悉其影响因素,土方边坡的稳定分析,基坑支护结构的类型及选型原则,基坑支护结构的破坏形式与现场监测。 (中英文)主动土压力Active earth Pressure;静止土压力Earth pressure 【关键词】 at rest ;被动土压力Passive earth Pressure;边坡Side slope 任务一土压力的类型与影响因素 在建筑工程地基与基础施工中,为了防止土坡发生滑动和坍塌,需用各种类型的挡土结构物加以支挡。支挡结构物的典型代表就是挡土墙,它是用来支撑天然或人工斜坡不致坍塌以保持土体稳定性,或使部分侧向荷载传递分散到填土上的支挡结构物。要想解决好基坑支护问题,需要我们学习相关的一些理论知识。 一、土压力的类型 土压力是指由于土体自重、土上荷载或结构物的侧向挤压作用,挡土结构物所承受的来自墙后填土的侧向压力。土压力的确定是挡土支护施工设计的重要依据。 1、土压力试验 在实验室里通过挡土墙的模型试验,可以测得当挡土墙产生不同方向的位移时,将产生三种不同性质的土压力。 在一个长方形的模型槽中部插上一块 刚性挡板,在板的一侧安装压力盒,填上 土;板的另一侧临空。在挡板静止不动时, 测得板上的土压力为E0 ;如果将挡板向离 开土体的临空方向移动或转动时,则土压 力逐渐减小,当墙后土体发生滑动时达到 最小值,测得板上的土压力为E a ;反之, 将挡板推向填土方向则土压力逐渐增大,图6-2 墙身位移与土压力的关系 当墙后土体发生滑动时达到最大值,测得板上的土压力为Ep。土压力随挡板移动

浅析影响土方边坡稳定的因素及安全防护措施

摘要:根据影响边坡稳定的因素,做好前期的安全防护是避免边坡坍塌的关键。本文作者结合多年来的工作经验,对影响土方边坡稳定的因素及安全防护措施进行了研究,具有重要的参考意义。 关键词:边坡稳定;因素;安全防护措施 中图分类号:TU714 文献标识码:A 中图分类号:TD2文献标识码:A 1.边坡稳定的概括理解 边坡一般是倾斜坡面的土体或岩体边坡,由于坡面倾斜,在坡体本身重力及其他外力作用下,整个坡体有从高处向低处滑动的趋势,同时,由于坡体土(岩)自身具有一定的强度和人力的工程措施,它会产生阻止坡体下滑的抵抗力。一般来说,如果边坡土(岩)体内部某一个面上的滑动力超过了(岩)体抵抗滑动的能力,边坡将产生滑动,即失去稳定;如果滑动力小于抵抗力,则认为边坡是稳定的。 2.边坡稳定分析方法概述 边坡方面的工程问题不断地出现,这些问题有时会影响人类的工程活动;与此同时,人们也很注重由于边坡失稳造成的灾难,因此研究边坡稳定性是相当重要的。评价边坡稳定性的方法很多,有定性分析方法、定量评价方法等。 2.1定性分析方法 此方法从影响边坡稳定性的内部和外部因素着手,根据失稳的形式研究失稳的力学机理,同时结合工程的综合功能以及边坡的成因和演化过程等诸多因素,来综合评价边坡稳定性情况,并可以对此后一

段时间里可能的发展趋势进行预测。常用的分析方法有:工程地质类比法、图解法和历史成因分析法等。 2.2定量分析方法 此方法可以通过确定的数值来评价边坡的稳定性。在定性分析的基础上,人为地对得出的数值进行判断,进一步得到边坡的稳定性情况。常见的数值定量分析方法有极限平衡法、有限元法、塑性极限分析法、可靠度法、人工智能法等。在工程实际中,分析土坡稳定性大多采用极限平衡法。极限平衡法包括瑞典条分法、Bishop法、Janbu 法等。由于极限平衡法比较直观,又简单,计算结果能够满足大多数边坡工程的要求,在工程中应用较多。 条分法是将滑动土体竖直分成若干条,把土体当成刚体,对作用于各土条上的力进行力与力矩的平衡分析,求出在极限平衡状态下土体稳定的安全系数,并通过一定数量的试算,找出最危险滑裂面位置及相应的(最低的)安全系数。 3.影响边坡稳定的因素 基坑开挖后,其边坡失稳坍塌的实质是边坡土体中的剪应力大于土的抗剪强度。而土体的抗剪强度又来源于土体的内摩阻力和内聚力。因此,凡是能够影响土体中剪应力、内摩阻力和内聚力的,都能影响边坡的稳定。 3.1土类别的影响 不同类别的土,土的颗粒矿物组成,颗粒形状、尺寸,颗粒级配,空隙比、干容重及土中的含水量皆不同,其土体的内摩阻力和内聚力不同。

深基坑边坡计算(完整资料).doc

【最新整理,下载后即可编辑】 xx项目污水处理装置 生活、生产污水(废水)收集池格栅渠 (460AB) 基坑边坡稳定性验算书 (放坡开挖施工) 编制: 审核:

日期:二〇一二年九月十九日

目录 1.基坑简介 (1) 1.1基坑概况 (1) 1.2场地土质情况 (1) 2.计算依据 (1) 3.力学验算法的基本假定 (2) 4.判定标准 (2) 5.验算过程(泰勒图表法) (2) 5.1 公式及字母意义 (2) 5.2验算理论及方法 (3) 5.3验算计算过程(H=7.8m) (4) 5.4验算计算过程(H=3.2m) (5) 6.结论 (6)

1.基坑简介 1.1基坑概况 污水处理装置460AB(生活污水收集池格栅渠、生产废水收集池格栅渠)水池池体长度18.60米,宽度18.00米。基坑底部开挖尺寸长度27.7米,宽度24.14米。基坑有效工作深度-8.30米(绝对标高378.90m),上部3.2m放坡比1:0.5,下部4.6m放坡比1:0.9。基坑上部开挖尺寸长度41.98米,宽度38.42米。 1.2场地土质情况 根据地勘报告(KC-2012-3-051)(详勘)结果(勘探点号21#,孔顶标高386.780m):场地湿陷等级按Ⅰ级(轻微)设防。 2.计算依据 采用力学验算法计算。场地土质为粘性土,按圆弧滑动面法中 表解法规则在图解和计算的基础上,经过分析研究,制定图表,供 边坡稳定性验算时采用。 基坑周边无其它荷载。 按正常工作状态算:

基坑总深度7.8米,正常工作状态基坑深度7.8米,上部3.2m放坡比1:0.5,下部4.6m放坡比1:0.9,错台1.4米。 3.力学验算法的基本假定 滑动土楔体是均质各向同性、滑动面通过坡脚、不考虑滑动土体内部的应力分布及各土条(指条分法)之间相互作用力的影响。再假定几个可能的滑动圆弧,按步骤分别计算相应的稳定系数,在圆心辅助线上绘出稳定系数对应于圆心的关系曲线K=f(o),在该曲线上找出最小的稳定系数Kmin,与Kmin对应的滑动面就是最危险的滑动面。 4.判定标准 国标50330-2002《建筑边坡工程技术规范》,5.3.1边坡稳定性评价: 边坡类别:二级边坡 当Kmin≥1.25认为边坡是稳定的。 当尺Kmin≤1.25时,则应放缓边坡,再按上述方法进行稳定性验算。 5.验算过程(泰勒图表法) 5.1 公式及字母意义 C B K=fA+ rH K 稳定系数

九种基坑坍塌事故案例分析

一、整体失稳 整体失稳是指在土体中形成了滑动面,围护结构连同基坑外侧及坑底的土体一起丧失稳定性,一般的失稳形态是围护结构的上部向坑外倾倒,围护结构的底部向坑内移动,坑底土体隆起,坑外地面下陷。

龙潭空中花园基坑事故。 2005年8月3日,凌晨约30m宽位置坡顶出现开裂并出现沉降,坡脚水泥土搅拌桩出现断裂。早晨7时,下起大雨,半小时后该段出现塌滑。原因主要是基坑北侧东端滑塌地段出现超挖,开挖后放置了较长时间;坑内大量积水未及时抽排;坡脚土层受水浸泡,降低了土层强度,势必导致边坡蠕动变形;紧邻坑边下水管长期漏水,边坡蠕动变形积累到一定程度后,坡顶道路下的下水道出现开裂,大量水浸入边坡土体内,导致边坡失稳。

2005年**日12时,武昌区彭刘杨路金榜名苑已开挖至设计深度5.2M的深基坑东侧(cd)段约40余米长的边坡发生滑塌险情。 二、坑底隆起 坑底隆起是一种向上的位移,产生的原因一是深层土的卸荷回弹,二是由开挖形成的压力差导致的土体塑流。

由于土体是连续体,坑底的隆起和围护结构的水平位移必然导致坑外土体产生沉降和水平位移,带动相邻建筑物或市政设施发生倾斜或挠曲,这些附加的变形使结构构件或管道可能产生开裂,影响使用,危及安全。 一般解决的方法是被动区加固,提高土的抗力,减少变形,同时解决整体稳定和坑底隆起问题。 三金.鑫城国际C地块事故 三、围护结构倾覆失稳

围护结构倾覆失稳主要发生在重力式结构或悬臂式围护结构,重力式结构在坑外主动土压力的作用下,围护结构绕其下部的某点转动,围护结构的顶部向坑内倾倒。抵抗倾覆失稳的力矩主要由围护结构自身的重力形成,坑底的被动抗力也是构成抵抗力矩的因素。 如武汉火炬大厦开挖深度10m,上部为老钻土,下部为基岩,采用¢900mm人工挖孔嵌岩排桩支护,开挖至设计标高后,由于老粘土局部浸水,强度降低,土压力剧增,由于桩嵌人岩层,变形不易谐调,造成十余根支护桩折断,危及邻近六层综合楼,使该楼楼梯间悬空,情况危急。经紧急回填,增设锚杆后。得以稳定。 四、围护结构滑移失稳 围护结构底部地基承载力失稳是指重力式围护结构的底面压力过大,地基承载力不足引起的失稳。由于在围护结构的外侧还作用着土压力,因此其合力是倾斜的。在倾斜荷载作用下,地基土发生向坑内的挤出,围护结构产生不均匀的沉降,可能导致部分围护结构的开裂损坏。

基坑支护及土坡稳定性方案

目录 §1.0概述 (1) §1.1工程概况 (1) §1.2工程地质条件 (1) §1.3工程施工特点 (3) §2.0土方开挖 (4) §2.1坑内降水 (4) §2.2土方挖运 (4) §3.0基坑支护设计及土坡稳定性计算 (6) §3.1、总体概述 (6) §3.2、基坑土坡的稳定性计算 (6) §3.3、坑内排水 (8) §3.4、基坑监测 (8) §4.0施工工期 (12) §4.1工期计划 (12) §4.2工期保证措施 (13) §5.0质量保证措施 (14) §6.0安全生产、文明施工措施 (16) §6.1安全生产措施 (16) §6.2、基坑边坡安全应急措施 (17) §6.3文明施工管理 (18)

§1.0概述 §1.1工程概况 广州市芳村坑口地铁站西侧地块华福苑商住楼基坑支护工程位于芳村区龙溪大道以北,花地大道以西,浣花路以南,由华福房地产开发有限公司兴建,广州省轻纺建筑设计院负责施工图纸设计。该地块占地面积8299平方米,地上总建筑面积34695平方米,其中住宅26106平方米,商业及公共建筑8589平方米;地下总建筑面积4725平方米。 本工程有一层地下室,平面尺寸约为170×29m。本工程±0.000相当于绝对标高8.500m,现场地土方开挖范围标高5.64~6.04m,地下室底板面标高:地下自行车库为-4.30m,其他为-5.30m,水池及泵房为-6.9m。考虑地下室底板厚400mm,地下室基坑底标高为2.80~3.80m,土方开挖深度约为2.2~2.9m,在场地南部已回填杂填土范围内,局部开挖深度达4.0~4.2 m。 §1.2工程地质条件 根据广东有色工程勘查设计院提供的《岩土工程勘查报告》,本场区的地层由上而下分为:耕土层、淤泥、粉质粘土层、强风化带、中风化岩带、微风化岩带。现分述如下: 1、土层部分

深基坑边坡稳定性计算书模板

完美WORD 格式 土坡稳定性计算书 本计算书参照《建筑施工计算手册》江正荣编著中国建筑工业出版社、《实用土木工程手册》第三版杨文渊编著人民教同出版社、《地基与基础》第三版中国建筑工业出版社、《土力学》等相关文献进行编制。 计算土坡稳定性采用圆弧条分法进行分析计算,由于该计算过程是大量的重复计算,故本计算书只列出相应的计算公式和计算结果,省略了重复计算过程。 本计算书采用瑞典条分法进行分析计算,假定滑动面为圆柱面及滑动土体为不变形刚体,还假定不考虑土条两侧上的作用力。 一、参数信息: 条分方法:瑞典条分法; 考虑地下水位影响; 基坑外侧水位到坑顶的距离(m):1.56; 基坑内侧水位到坑顶的距离(m):14.000; 放坡参数: 序号放坡高度(m) 放坡宽度(m) 平台宽度(m) 条分块数 0 3.50 3.50 2.00 0.00 1 4.50 4.50 3.00 0.00 2 6.20 6.20 3.00 0.00 荷载参数: 土层参数: 专业知识分享

二、计算原理: 根据土坡极限平衡稳定进行计算。自然界匀质土坡失去稳定,滑动面呈曲面,通常滑动面接近圆弧,可将滑裂面近似成圆弧计算。将土坡的土体沿竖直方向分成若干个土条,从土条中任意取出第i条,不考虑其侧面上的作用力时,该土条上存在着: 1、土条自重, 2、作用于土条弧面上的法向反力, 3、作用于土条圆弧面上的切向阻力。 将抗剪强度引起的极限抗滑力矩和滑动力矩的比值作为安全系数,考虑安全储备的大小,按照《规范》要求,安全系数要满足>=1.3的要求。 将抗剪强度引起的极限抗滑力矩和滑动力矩的比值作为安全系数,考虑安全储备的大小,按照《规范》要求,安全系数要满足>=1.3的要求。 三、计算公式:

岩土基坑边坡失稳及加固处理技术

岩土基坑边坡失稳及加固处理技术 摘要:众所周知,在岩土工程施工过程中,如果采用基坑就必须要选择加强支 护法,以确保支护稳定施工。由于岩土工程施工过程本身具有较大的复杂性以及 风险性,因此,必须对岩土工程的基坑支护进行详细的分析。本文正是从基坑支 护工程的特点出发,对岩土基坑边坡失稳及加固处理进行了详细的分析。 关键词:岩土基坑;边坡失稳;加固处理技术 引言 基坑支护设计工作是进行岩土工程施工中的重要内容,设计人员必须要对岩 土工程施工场所进行全面的勘验和调查,获得准确的施工数据,从而基于这些数 据进行深基坑支护的设计工作,确保岩土工程的施工质量,进而实现建筑工程的 经济效益。 1基坑支护工程的概念 岩土工程中基坑支护工程,通常是说在进行基坑支护过程当中,对地下结构 进行施工,实现对基坑环境的加固,对于基坑的侧壁以及周围环境进行有效的固 定和加固处理,起到一定的保护作用。支档和加固处理,能够使基坑工程施工的 安全性和稳定性得到有效的保证和提高。定期对整个基坑支护工程的稳定性和施 工质量进行检测,进而做到以此为依据,对基坑支护工程的实际情况进行综合准 确的判定,使整个岩土工程的安全性和稳定性得到有效的保障。 2岩土工程中基坑失稳的原因 2.1超挖、欠挖现象较为严重 造成基坑支护工程中超挖、欠挖现象的关键原因在于施工人员的技术水平低下,进而导致许多操作不合乎相关规范。比如在机械开挖作业过程中,由于施工 过程具有一定的难度,因此如果机械操作人员没有足够的操作水平或者操作经验,就非常容易发生边坡不平的现象。这会大大加大工程的施工量,进而影响工程质 量与工程进度。 2.2基坑支护结构设计存在不合理 在正式进行深基坑支护施工前,要根据公式准确计算岩土工程的压力以及承 载能力,但通常情况,采用的公式不能适用于深基坑承载力与压力的计算,所以 计算不准确,导致支护结构的体量超出岩土工程的承载范围,无法保障结果的科 学性与稳定性,也使施工出现质量隐患。由于结构不合理,在施工过程中无法正 确考虑内摩擦角度、凝聚力变化等问题,从而对深基坑支护施工的质量造成了严 重影响,并且威胁了岩土工程的安全,极有可能发生安全事故。 2.3设计与施工之间存在差异 基坑支护设计是进行岩土工程具体施工前必须要进行的工作,进行设计的目 的是为了保证施工的有序进行,但是因为岩土工程的地质情况复杂,从而导致在 施工中频频出现突发情况,导致基坑设计与施工之间存在差异,无法保证基坑支 护的最终质量顺利达标。在设计与施工出现差异的原因上,一半是因为岩土工程 本身的条件复杂,而另外一半则在于施工人员出现作业上的失误,以及管理人员 经验不足。 3各类型基坑边坡加固技术的应用 3.1深层搅拌桩支护 深层搅拌桩支护的工作主要是对石灰和水泥进行固化,增强其自身的稳定性,经过充分搅拌之后,确保分体本身、浆液以及部分软土能够有效混合在一起,之

深基坑边坡稳定性计算书(精编文档).doc

【最新整理,下载后即可编辑】 土坡稳定性计算书 本计算书参照《建筑施工计算手册》江正荣编著中国建筑工业出版社、《实用土木工程手册》第三版杨文渊编著人民教同出版社、《地基与基础》第三版中国建筑工业出版社、《土力学》等相关文献进行编制。 计算土坡稳定性采用圆弧条分法进行分析计算,由于该计算过程是大量的重复计算,故本计算书只列出相应的计算公式和计算结果,省略了重复计算过程。 本计算书采用瑞典条分法进行分析计算,假定滑动面为圆柱面及滑动土体为不变形刚体,还假定不考虑土条两侧上的作用力。 一、参数信息: 条分方法:瑞典条分法; 考虑地下水位影响; 基坑外侧水位到坑顶的距离(m):1.56; 基坑内侧水位到坑顶的距离(m):14.000; 放坡参数: 序号放坡高度(m) 放坡宽度(m) 平台宽度(m) 条分块数 0 3.50 3.50 2.00 0.00 1 4.50 4.50 3.00 0.00 2 6.20 6.20 3.00 0.00 荷载参数:

序 号土名称土厚 度 (m ) 坑壁土的 重度 γ(kN/m3) 坑壁土的 内摩擦角 φ(°) 粘聚力 (kPa) 饱容重 (kN/m3) 1 粉质粘 土 15 20.5 10 10 20.5 二、计算原理: 根据土坡极限平衡稳定进行计算。自然界匀质土坡失去稳定,滑动 面呈曲面,通常滑动面接近圆弧,可将滑裂面近似成圆弧计算。将土坡的土体沿竖直方向分成若干个土条,从土条中任意取出第i条,不考虑其侧面上的作用力时,该土条上存在着: 1、土条自重, 2、作用于土条弧面上的法向反力, 3、作用于土条圆弧面上的切向阻力。 将抗剪强度引起的极限抗滑力矩和滑动力矩的比值作为安全系数,考虑安全储备的大小,按照《规范》要求,安全系数要满足>=1.3的要求。 将抗剪强度引起的极限抗滑力矩和滑动力矩的比值作为安全系数,考虑安全储备的大小,按照《规范》要求,安全系数要满足>=1.3的要求。 三、计算公式:

边坡失稳的原因分析及防治措施

边坡失稳的原因分析及防治措施 1.现象 (1)基槽(坑)坡顶土面出现裂缝或局部下沉。 (2)边坡土方滑坡、坍塌。 2.原因分析 (1)边坡坡度值选用不当,坡度过陡。 (2)对地表水没有采取截流和排除措施,导致土中含水率升高,抗剪强度降低。 (3)开挖地下水位以下的土方时,特别在易发生流砂条件区域施工时,不采取降低地厂水位的施工方法。 (4)边坡顶部附近堆放大量土方或材料、设备,或坡顶附近有振动设备作用。 (5)选用不适当的开挖顺序和方法。 (6)基槽(坑)土坡长期暴露,在日晒、雨淋或外力作用下造成坍塌。 3.预防措施 (1)基槽(坑)开挖、基础工程施工和土方回填应连续进行,尽快完成。施工中应防上地面水流入槽、坑内、以免边坡塌方;同时还应做好地面排水设施,避免边坡附近土体勺积水,而造成边坡塌方。 (2)挖方边坡不放坡作成直立壁并不加支撑时,要求土质均匀且地下水位低于基槽:坑)底面标高,挖土深度应符合第 3 章表 3―9 规定数值。基槽(坑)土方开挖不符合上述条件时,应按规定放坡或作成直立壁加支撑。 (3)选用合适的边坡坡度。当地质条件良好、土质均匀且地下水位低于基槽(坑)底面标高时,挖方深度在 5m 以内,不加支撑的边坡最陡坡度应符合第 3 章表 3。8 的规定。

(4)在软土地区开挖基槽(坑)时,必须事先做好地面排水和降低地下水位工作,地厂水位应降低至基底以下 0.5~1.0m 后,方可开挖。降水工作应持续到回填完成。 (5)当建筑场地不允许放坡开挖而需设置坑壁支撑时,应根据开挖深度、土质条件、也下水位、施工方法、相邻建筑物和构筑物等情况进行选择和设计。支撑必须牢固可靠,确保安全施工。 (6)在基槽(坑)边坡顶上侧堆土或材料,或设置施工机械时,应与槽(坑)边缘保持一定距离,以保证边坡或直立壁的稳定。当土质良好时,堆土或材料距边缘 0.8m 以外,堆高不宜超过 1.5m。 (7)开挖土方时,应合理确定开挖顺序和分层开挖深度,自上而下、分层分段地进行。禁止采用先挖坡脚的方法。当接近地下水位时,应先完成标高最低处的挖方,以便在该处集中排水。 4.治理方法 基槽(坑)边坡发生坍塌后,除了清除塌落的土方外,还应针对造成塌方的原因和场地条件,分别采取改缓边坡坡度、卸除坡顶荷载,或对土壁进行支护(如堆放装土草袋、设支撑、打设简易板桩等)后,再继续施工。

基坑放坡稳定性验算

基坑放坡稳定性验算 根据施工组织安排, 10-03 地块各楼栋基坑采用分块开挖,临时放坡的施工 方案,我司对基坑临时放坡后的坑边坡顶堆载及车载道路进行边坡稳定性验算, 验算过程如下: 参数信息 : 条分方法:瑞典条分法; 考虑地下水位影响; 基坑外侧水位到坑顶的距离 (m):1.50 ; 基坑内侧水位到坑顶的距离 (m):8.00 ; 放坡参数: 序号 放坡高度 (m) 1 2.50 3.80 2.00 2 3.00 4.50 2.00 计算原理: 根据土坡极限平衡稳定 进行计算。 通常滑动面接近圆弧, 可将滑裂面近似成圆弧计算。 将土坡的土体沿竖直方向分 成若干个土条, 从土条中任意取出第 i 条,不考虑其侧面上的作用力时, 该土条 r F - /■ - .、”/?■ 上存在着: 1、土条自重 2、作用于土条弧面上的法向反力 3、作用于土条圆弧面上的切向阻力 将抗剪强度引起的极限抗滑力矩和滑动力矩的比值作为安全系数, 考虑安全 储备的大小,按照《规范》要求,安全系数要满足 >=1.3 的要求。 放坡宽度 (m) 平台宽度 (m) 条分块数 0.00 0.00 自然界匀质土坡失去稳定, 滑动面呈曲面,

式子中: F s -- 土坡稳定安全系数; c -- 土层的粘聚力; l i --第i 条土条的圆弧长度; 丫 -- 土层的计算重度; 9 i --第i 条土到滑动圆弧圆心与竖直方向的夹角; ? -- 土层的内摩擦角; b i --第i 条土的宽度; h i --第i 条土的平均高度; h ii ――第i 条土水位以上的高度; h 2i ――第i 条土水位以下的高度; 丫 ’一一第i 条土的平均重度的浮重度;将抗剪强度引起的极限抗滑力矩和滑动力矩的比值作为安全系数, 储备的大小,按照《规范》要求,安全系数要满足 >=1.3的要求。 计算公式: 考虑安全 工*£ + f (?% + r 俎)勺 tan (p

管道基坑边坡稳定计算书

基坑边坡稳定性计算 根据基槽路段统计表,槽深最深处不超过7.5m。本工程按照三种槽深2.5m、5.0m、7.5m 分别进行边坡稳定计算。开挖坡度1:1,平台设置宽度1.5m。 采用软件:理正岩土边坡稳定系统6.0 采用规: 建筑边坡工程技术规(50330--2002) 一、2.5m深基坑稳定计算 计算项目:复杂土层土坡稳定计算1 ------------------------------------------------------------------------ [计算简图] [控制参数]: 采用规: 建筑边坡工程技术规(50330--2002) 计算目标: 安全系数计算 滑裂面形状: 圆弧滑动法 [坡面信息] 坡面线段数2 坡面线号水平投影(m) 竖直投影(m) 超载数 1 2.500 2.500 0 2 2.000 0.000 1 超载1 距离0.010(m) 宽2.000(m) 荷载(20.00--20.00kPa) 270.00(度) [土层信息] 坡面节点数3 编号X(m) Y(m) 0 0.000 0.000 -1 2.500 2.500 -2 4.500 2.500

附加节点数7 编号X(m) Y(m) 1 -6.000 -5.000 2 9.000 -6.000 3 8.000 2.000 4 20.000 -6.000 5 15.000 3.000 6 25.000 5.000 7 -8.000 0.000 不同土性区域数3 区号重度饱和重度粘结强度孔隙水压节点 (kN/m3) (kN/m3) (kpa) 力系数编号 1 18.000 20.000 120.000 --- ( 0,7,1,2,3,) 2 18.000 20.000 120.000 --- ( 2,4,5,3,) 3 18.000 20.000 120.000 --- ( 0,3,-1,) 区号粘聚力摩擦角水下粘聚水下摩 (kPa) (度) 力(kPa) 擦角(度) 1 15.000 13.000 10.000 25.000 2 17.000 17.000 10.000 25.000 3 17.000 17.000 10.000 25.000 区号十字板τ强度增十字板τ水强度增长系 (kPa) 长系数下值(kPa) 数水下值 1 --- --- --- --- 2 --- --- --- --- 3 --- --- --- --- [水面信息] 采用有效应力法 孔隙水压力采用近似方法计算 考虑渗透力作用 不考虑边坡外侧静水压力 水面线段数1 水面线起始点坐标: (0.000,-0.500) 水面线号水平投影(m) 竖直投影(m) 1 1.000 0.500 [计算条件] 圆弧稳定分析方法: 瑞典条分法 土条重切向分力与滑动方向反向时: 当下滑力对待 稳定计算目标: 自动搜索最危险滑裂面 条分法的土条宽度: 1.000(m)

相关主题
文本预览
相关文档 最新文档