当前位置:文档之家› 锅炉内胆水温控制讲解

锅炉内胆水温控制讲解

锅炉内胆水温控制讲解
锅炉内胆水温控制讲解

目录

1 系统组成介绍 (1)

1.1 被控对象 (1)

1.2 检测仪表 (1)

1.3 执行机构 (2)

1.5 控制屏组件 (2)

1.6 实验控制系统流程图 (3)

1.7 控制原理框图 (4)

2 上位机组态与程序设计 (6)

2.1 组态软件介绍 (6)

2.2 WinCC的发展及应用 (6)

2.3 Wincc监控组态与程序设计 (7)

2.4 WiNCC组态软件的通讯 (14)

3 PLC300控制程序 (17)

4 实验内容与步骤 (21)

4.1 实验准备工作 (21)

4.2 控制规律选择参数调节 (21)

5 实验结果显示 (23)

总结 (26)

参考文献 (27)

1 系统组成介绍

本实验装置对象主要由锅炉和盘管三大部分组成。供水系统:一路由三相(380V 恒压供水)磁力驱动泵、电动调节阀、涡轮流量计及自动电磁阀组成;另一路由变频器、三相磁力驱动泵(220V变频调速)、涡轮流量计及自动电磁阀组成。

1.1 被控对象

4.5KW三相电加热模拟锅炉(由不锈钢锅炉内胆加温筒和封闭式锅炉夹套构成)

1.模拟锅炉:是利用电加热管加热的常压锅炉,包括加热层(锅炉内胆)和冷却层(锅炉夹套),均由不锈钢精制而成,可利用它进行温度实验。做温度实验时,冷却层的循环水可以使加热层的热量快速散发,使加热层的温度快速下降。冷却层和加热层都装有温度传感器检测其温度,可完成温度的定值控制、串级控制,前馈-反馈控制,解耦控制等实验。

2.盘管:模拟工业现场的管道输送和滞后环节,长37米(43圈),在盘管上有三个不同的温度检测点,它们的滞后时间常数不同,在实验过程中可根据不同的实验需要选择不同的温度检测点。盘管的出水通过阀门的切换既可以流入锅炉内胆,也可以经过涡轮流量计流回储水箱。它可用来完成温度的滞后和流量纯滞后控制实验。

3.管道及阀门:整个系统管道由敷塑不锈钢管连接而成,所有的阀门均采用优质阀,彻底避免了管道系统生锈的可能性。有效提高了实验装置的使用年限。其中储水箱侧面有一个进水阀和出水阀,当水箱需要更换水时,可把球阀打开将水直接接入或排出。

1.2 检测仪表

1.压力传感器、变送器:三个液位传感器分别用来对上、中、下三个水箱的液位进行检测,其量程为0~5KP,精度为0.5级。采用工业用的扩散硅压力变送器,带不锈钢隔离膜片,同时采用信号隔离技术,对传感器温度漂移跟随补偿。采用标准二线制传输方式,工作时需提供24V直流电源,输出:4~20mADC。

2.温度传感器:装置中采用了六个Pt100铂热电阻温度传感器,分别用来检测锅炉内胆、锅炉夹套、盘管(有3个测试点)以及上水箱出口的水温。Pt100测温范围:-200~+420℃。经过调节器的温度变送器,可将温度信号转换成4~20mA直流电流信

号。Pt100传感器精度高,热补偿性较好。

3.流量传感器、变送器:三个涡轮流量计分别用来对由电动调节阀控制的动力支路、由变频器控制的动力支路及盘管出口处的流量进行检测。它的优点是测量精度高,反应快。采用标准二线制传输方式,工作时需提供24V直流电源。流量范围:0~1.2m3/h;精度:1.0%;输出:4~20mADC。

4.锅炉防干烧保护装置:为保证实验效果好、不降低锅炉加热功率的前提下,本套装置配备了良好的防干烧保护系统,当锅炉内胆液位低于红色警戒水位线时,保护装置将切断调压模块输出电压,以有效保护电加热管不被干烧损坏。

1.3 执行机构

1.电动调节阀:采用智能直行程电动调节阀,用来对控制回路的流量进行调节。电动调节阀型号为:QSVP-16K。电源为单相220V,控制信号为4~20mADC或1~

5VDC,输出为4~20mADC的阀位信号,使用和校正非常方便。

2.水泵:本装置采用磁力驱动泵,型号为16CQ-8P,流量为30升/分,扬程为8米,功率为180W。泵体完全采用不锈钢材料,以防止生锈,使用寿命长。本装置采用两只磁力驱动泵,一只为三相380V恒压驱动,另一只为三相变频220V输出驱动。

3.电磁阀:本套装置共有17支优质电磁阀配合控制器完成所有实验项目,其阀体为黄铜材质,磁力连接栓为不锈钢榜及弹簧、弹杆、橡皮膜片,以防止生锈,它具有体积小、流量大、耐高温、耐高压、动作快、寿命长等特点。

1.5 控制屏组件

1.通讯线介绍

“THJ-4型高级过程控制系统实验平台”可以挂智能仪表、远程数据采集和

S7-200PLC挂件,并可控制对象系统完成相应的实验。屏中布有485通讯线线,从正面看控制屏时,从左边数的五个通讯口挂在一条485总线上,然后引出来一根通讯线,通讯头上标有“1”的字样;最右边的通讯口单独从控制屏后引出一个通讯头,上面标有“6”的字样。485通讯线主要用于仪表和远程数据采集模块与计算机的通讯,485通讯方式与计算机建立通讯时需接一个转换器到计算机串口上。THJ-4-3面板是与对象系

统通过2号42芯和3号19芯电缆线相连的接口板,可取来对象上的信号,也可将控制屏上的信号通过它送出;面板上有24V开关电源的输出端子,它不但控制着面板上三路24V直流输出,而且控制着对象系统所有变送器的电源。

2.交流变频控制挂件

MicroMaster440变频器,控制信号输入为4~20mADC或0~5VDC,交流220V变频输出用来驱动三相磁力驱动泵。有关变频器的使用请参考使用手册中相关的内容。3.三相移相SCR调压装置

采用三相可控硅移相触发装置,输入控制信号为4~20mA标准电流信号,其移相触发角与输入控制电流成正比。输出交流电压用来控制电加热器的端电压,从而实现锅炉温度的连续控制。

1.6 实验控制系统流程图

图1.1实验控制系统流程图

本实验主要涉及两路信号,一路是现场测量信号锅炉内胆温度,另外一路是控制移

项调压模块输出的控制信号。

锅炉内胆温度的检测装置为PT100热电阻,PT100热电阻检测到的信号传送给温度变送器,本系统采用带PROFIBUS-PA通讯接口的温度变送器,挂接在PROFIBUS-PA 总线上,PROFIBUS-PA总线通过LINK和COUPLER组成的DP链路与PROFIBUS-DP 总线交换数据,PROFIBUS-DP总线上挂接有控制器CPU315-2 DP,这样就完成了现场测量信号到CPU的传送。

本实验的执行机构为移项调压模块,移项调压模块所需的控制信号是4到20mA电流信号。控制信号由控制器CPU315-2 DP发出,经由PROFIBUS-DP总线到达分布式I/O 模块ET200M,模拟量输出模块SM332和分布式I/O模块ET200M直接相连,最后模拟量输出4到20mA电流信号控制移项调压模块的输出电压。

1.7 控制原理框图

本实验系统结构图和方框图如下图所示。以锅炉内胆作为被控对象,内胆的水温为系统的被控制量。本实验要求锅炉内胆的水温稳定至给定量,将铂电阻TT1检测到的锅炉内胆温度信号作为反馈信号,在与给定量比较后的差值通过调节器控制三相调压模块的输出电压(即三相电加热管的端电压),以达到控制锅炉内胆水温的目的。在锅炉夹套水温的定值控制系统中,其参数的整定方法与其它单回路控制系统一样,但由于锅炉夹套的温度升降是通过锅炉内胆的热传导来实现的,所以夹套温度的加热过程容量时延非常大,其控制过渡时间也较长,系统的调节器可选择PD或PID控制。实验中用变频器支路以固定的小流量给锅炉内胆供循环水,以加快冷却。图(b)为一个单回路的锅炉夹套温度控制系统的结构框图.实验前先给锅炉内胆打适量的水,而锅炉夹套为动态环水,变频器,齿轮泵,锅炉内胆组成循环供水系统。实验投入运行后,变频器以固定得频率使锅炉夹套得水处于循环状态。在单回路的锅炉夹套温度控制系统中,若没有循环水加以快速热交换,散热过程相对比较缓慢,温度调节得效果受对象特性和环境的限制,在精确和稳定性上存在着一定的误差。当增加了循环水系统以后,有利于热交换并提高散热能力。相比与静态温度控制实验,在控制的精确性,快速性上有很大的提高。本系统控制的被控制量锅炉夹套水温,既控制任务是控制锅炉夹套水温等于给定值,并采取工业智能PID调节。

通讯信号传输的双向性,这样既完成了现场测量信号到CPU的传送,又使得CPU 发出的控制信号能传送到模拟量输出模块,模拟量输出模块输出的4到20mA电流信号控制移项调压模块的输出电压。本实验系统结构图和方框图如图1.2所示。

图1.2 锅炉内胆温度特性测试系统

(a)结构图(b)方框图

可以采用两种方案对锅炉内胆的水温进行控制:

(一)锅炉夹套不加冷却水(静态)

(二)锅炉夹套加冷却水(动态)

显然,两种方案的控制效果是不一样的,后者比前者的升温过程稍慢,降温过程稍快。无论操作者采用静态控制或者动态控制,本实验的上位监控界面操作都是一样的。

2 上位机组态与程序设计

2.1 组态软件介绍

本设计用组态软件的是西门子公司的WinCC,它是Windows Control Center(视窗控制中心)的简称,是HMI/SCADA软件中的后起之秀。WinCC是Siemens公司的一种功能强大的工业控制软件。它集成了SCADA、组态、脚本(Script)语言和OPC等先进技术,为用户提供了Windows操作系统环境下使用各种通用软件的功能。WinCC继承了西门子公司的全集成自动化(TIA)产品的技术先进性和无缝集成的特点。WinCC 运行于个人计算机环境,可以与多种自动化设备及控制软件集成,具有丰富的设置项目、可视窗口和菜单选择,使用方便灵活,功能齐全。用户在其友好的界面下进行组态、编程和数据管理,可形成所需的操作画面、监视画面、控制画面、报警画面、趋势曲线等。它为操作者提供了图文并茂、形象直观的操作环境,不仅缩短了软件设计周期,而且提高了工作效率。WinCC的另一个特点在于它的整体开放性,它可以方便的与各种软件和用户程序组合在一起,建立友好的人机界面,满足实际需要。用户也可以将WinCC作为系统扩充的基础,通过开放式接口,开发其自身需要的应用系统。

WinCC由三大部分组成:

1、控制中心:控制中心使用户通过WinCC应用进行浏览,并且对其数据进行一些操作。从形式和操作上看,控制中心与Windows资源管理器相似。

2、系统控制器:管理各站之间的系统通讯。

3、数据管理器:在WinCC项目中用于处理中央任务的启动。其主要任务是处理变量管理器,其通讯通道用于访问过程数据。

2.2 WinCC的发展及应用

从面市伊始,用户就对SIMATIC WinCC印象深刻。一方面,是其高水平的创新,它使用户在早期就认识到即将到来的发展趋势并予以实现;另一方面,是其基于标准的长期产品策略,可确保用户的投资利益。

依据这种战略思想,WinCC,这一运行于Microsoft Windows 2000和XP下的Windows控制中心,已发展成为欧洲市场中的领导者,乃至业界遵循的标准。如果你想使设备和机器最优化运行,如果你想最大程度地提高工厂的可用性和生产效率,WinCC

当是上乘之选。突出的优点:通用的应用程序;适合所有工业领域的解决方案;多语言支持,全球通用;可以集成到所有自动化解决方案内;内置所有操作和管理功能;可简单、有效地进行组态;可基于Web持续延展;采用开放性标准,集成简便集成的Historian 系统作为IT 和商务集成的平台;可用选件和附加件进行扩展;“全集成自动化” 的组成部分。

2.3 Wincc监控组态与程序设计

变量系统是组态软件的重要组成部分。在组态软件的运行环境下,工业现场的生产状况将实时地保存在变量的数值中,操作人员监控过程数据,他在计算机上发布的指令通过变量传送给生产现场。WinCC的变量管理是变量管理器。WinCC使用变量管理器来组态变量。变量管理器对项目所使用的变量和通讯驱动程序进行管理。WinCC与自动化控制系统间的通讯依靠通讯驱动程序来实现;自动化控制系统与WinCC工程间的数据交换通过过程变量来实现。

变量管理器管理WinCC工程中使用的变量和通讯驱动程序。它位于WinCC项目管理器的浏览窗口中。WinCC的变量按照功能可分为外部变量、内部变量、系统变量和脚本变量四种类型。

1、新建新驱动器连接

在WINCC变量中建立SIEMENS S7 PROTOCOL SUIT,选择MPI,新建驱动程序连接,点击系统参数,选择逻辑设备名称为“CP5611”,如图:

图2.1 WINCC系统参数设置

再进入选择参数窗口,设置插槽号为2,PLC 315—2DP的插槽号为2。如下图所示:

图2.2 WINCC连接参数设置

2、建立外部变量

以变量d为例右击新建变量命名为“d”,然后选择类型为浮点数32位变量,数据选择为DB,DB号为42,因为在STEP 7中我们建立的PID设为DB42,最后地址设置为DB28,点击确定完成地址属性设置。如下图所示:

图2.3地址属性

图2.4新建变量按上面步骤建立所有外部变量,如图2.5及表2.1

图2.5 外部变量

表2.1外部变量

名称数据类型参数地址程序中名称

man-on 二进制变量DB42,D0.1 MAN_ON

p-select 二进制变量DB42, D0.3 P_SEL

i-select 二进制变量DB42, D0.4 I_SEL

d-select 二进制变量DB42, D0.7 D_SEL

sp1 浮点数32位IEEE754 DB42, DD6 SP_INT

fushe 浮点数32位IEEE754 DB41, DD16 MAN

p 浮点数32位IEEE754 DB42, DD20 GAIN

i 浮点数32位IEEE754 DB42, DD24 TI

d 浮点数32位IEEE754 DB42, DD28 TD

op 浮点数32位IEEE754 DB42, DD72 LMN

pv1 浮点数32位IEEE754 DB41, DD92 PV

pv2 浮点数32位IEEE754 DB42, DD92 PV pvper_on_1 二进制变量DB42.DD0.2 PVPER_ON pvper_on_2 二进制变量DB42.DD0.2 PVPER_ON 3、建立内部变量

在WINCC中,打开变量管理,点击内部变量,建立新变量ssqx、lsqx、kaiqi。ssqx 是用来控制实时曲线显示和隐藏的,llqx是用来控制历史曲线显示和隐藏的,kaiqi是开始按钮控制的水管闪烁的。这三个变量全都为二进制。如表2.2

表2.2内部变量

名称说明参数类型

lsqx 历史曲线二进制变量

ssqx 实时曲线二进制变量

kaiqi 开启按钮二进制变量

创建过程画面

在图形编辑器中组态画面如图所示。并根据系统要求组态历史曲线、实时曲线。系统WinCC监控界面如下一章所示

1设置管道动态效果

选择所有的水管,在属性中选择控件属性,在BlinkMode中静态选择No Flash,右击动态中的动态对话框,在表达式/公式中选择变量“man_on”,在数据类型中选择布尔型。当“是”的时候Blink为No Flash,当“否”的时候Blink为Shaded。Black color和Back color选择浅蓝色。man_on地址为DB42.D0.1。

这一步作用是,当MAN_ON_1置为1时,水管不闪烁,当man_on置为0时,水管开始闪烁,表明PID运行时水管有水通过。

2 PID开关编辑

在对象选项板中选择窗口对象,选择按钮,然后命名为“积分开关”,点击事件中的鼠标属性,在右面的单击左键,设置C动作。添加脚本程序如下:

SetTagBit("i_select",1); //Return-Type: BOOL

同样在鼠标右击,设置C动作。脚本程序如下:

SetTagBit("i_select",0); //Return-Type: BOOL

以此类推,Td微分开关的开启和关闭按钮都要这么设置。

3输入输出域的设置

对副测量值进行设定,在对象选项板中选择智能对象,然后新建一个输入输出域,在输出值中选择动态对话框,在表达式/公式中选择变量pv1,数据类型选择为直接。pv1的变量地址为DB4.DD92。同样方法设置变频器支路测量值pv2,变量地址DB42.DD92。

(1)电气阀支路测量pv1 (2)变频器支炉测量pv2

图2.6设置寻址方式

对给定值进行设定,在对象选项板中选择智能对象,然后新建一个输入输出域,在输出值中选择变量fushe,fushe的地址为DB41.DD6。

用同样的方法设定Kp、Ti、Td的输入输出域,在输出值中选择变量p、i、d,它们的地址分别为DB41.DD20、DB41.DD24、DB41.DD28。

4设置开启按钮

在对象选项板中选择窗口对象,选择按钮,然后命名为“开启”,点击事件中的鼠标属性,在右面的单击左键,设置C动作。添加脚本程序如下:

SetTagBit("kaiqi",1); //Return-Type: BOOL

SetTagBit("main_on",0); //Return-Type: BOOL

SetTagBit("pvper_on_1",1); //Return-Type: BOOL

SetTagBit("pvper_on_2",1);

单击“开启”后,由于管道的动画效果设置,管道会闪烁。Main_on为1时控制循环将被中断,手动值被设置为操作值。由于本设计要求,电动阀的PID “Main_on”保持默认值1。变频器PID“Main_on”设置为0,控制循环不会中断。由于检测量为电动阀支路流量PIW272,变频器支路流量PIW274,为外围设备,故此本设计的两个PID,PVPER_ON 应为1状态。

5设置实时曲线历史曲线

在对象选项板中选择窗口对象,选择按钮,然后命名为“实时曲线”,点击事件中的按左键,右击选择C语言。在编辑动作中中插入下列脚本程序:

SetTagBit("ssqx",1);

这条语句的意思是当点击鼠标左键时,“ssqx”置为1。点击确定。

再点击事件中的按右键,右击选择C语言,在编辑动作中插入如下脚本程序:SetTagBit("ssqx",0);

这条语句的意思是当点击鼠标左键时,“ssqx”置为0。点击确定。

如图所示:

图2.7实时曲线C动作脚本程序设置

历史曲线按钮设置相同,只需要将“ssqx”改为“lsqx”。

接下来在对象选项板中选择控件中的曲线,对曲线进行编辑,命名为“实时曲线”。在WINCC在线趋势控件的属性中进行编辑,在数据源中选择在线变量,选择公共X轴和公共Y轴以及可调整大小。

在曲线一栏中选择pv1,命名为“电动阀支路流量测量值”,颜色选择为绿色。然后再添加曲线,命名为“变频器支路流量测量值”,在线变量选择为pv2,颜色为蓝色;然后再添加曲线,命名为“变频器支路流量给定值”,在线变量选择为sp1,颜色为红色。

点击曲线属性,然后在显示中选择动态对话框,在表达式/公式中选择变量“ssqx”,数据类型为布尔量,当“是”时,置为1,当“否”时,置为0。

历史曲线的属性同样如此设置。

当鼠标左键点击“实时曲线”按钮时,实时曲线会出现,当鼠标右键点击“实时曲线”按钮时,曲线会隐藏。历史曲线也是这样的效果。

历史曲线设置不同的是在选择数据源时要设置为归档变量,然后选择已经设置好的变量,如图所示:

图2.8归档变量选择

2.4 WiNCC组态软件的通讯

(1)给PC和PLC上电,打开SETP 7,打开已建立好的工程。

(2)进入STEP 7软件界面,点击options中的Set PG/PC Interface,选择

CP5611(MPI),然后选择Diagnostics进行测试,出现OK,在进行下载。如图4.9所示。

图2.9 CP5611

(3)点击Diagnostics对MPI、硬件组态诊断如下图所示。

图2.10 CP5611(MPI)

图2.11 硬件诊断

(4)将PLC置为run状态,SF灯没有红灯,电磁阀自动开启。无错误。

(5)运行WINCC 目录下的已建立组态界面。点击运行键进入监控画面。

(6)选择SIEMENS\WINCC\TOOLs中的WINCC Channel Diagnosis,点击运行,出现如下图所示窗口:

图2.12 WINCC通讯监测这表明WINCC 已经跟PLC通讯上了。通讯成功。

3 PLC300控制程序实验六、锅炉内胆水温定值控制系统

sy6: L PIW 264

ITD

DTR

L 1.000000e+001

/R

T DB41.DBD 10

CALL "CONT_C" , DB41

COM_RST :=

MAN_ON :=

PVPER_ON:=FALSE

P_SEL :=

I_SEL :=

INT_HOLD:=

I_ITL_ON:=

D_SEL :=

CYCLE :=

SP_INT :=

PV_IN :=

PV_PER :=

MAN :=

GAIN :=

TI :=

TD :=

TM_LAG :=

DEADB_W :=

LMN_HLM :=

LMN_LLM :=

PV_FAC :=1.000000e+000 PV_OFF :=0.000000e+000 LMN_FAC :=1.000000e+000 LMN_OFF :=0.000000e+000 I_ITLV AL:=

DISV :=

LMN :=

LMN_PER :=PQW256 QLMN_HLM:=

QLMN_LLM:=

LMN_P :=

LMN_I :=

LMN_D :=

PV :=

ER :=

NOP 0

CALL "CONT_C" , DB42 COM_RST :=

MAN_ON :=

PVPER_ON:=FALSE

P_SEL :=

I_SEL :=

INT_HOLD:=

I_ITL_ON:=

D_SEL :=

CYCLE :=

SP_INT :=

PV_IN :=

PV_PER :=

MAN :=

GAIN :=

TI :=

TD :=

TM_LAG :=

DEADB_W :=

LMN_HLM :=

LMN_LLM :=

PV_FAC :=1.000000e+000 PV_OFF :=0.000000e+000 LMN_FAC :=1.000000e+000 LMN_OFF :=0.000000e+000 I_ITLV AL:=

DISV :=

LMN :=

LMN_PER :=PQW258 QLMN_HLM:=

QLMN_LLM:=

LMN_P :=

LMN_I :=

LMN_D :=

PV :=

组态王课程设计锅炉温度控制系统

锅炉温度控制系统上位机设计 1.设计背景 锅炉是化工、炼油、发电等工业生产过程中必不可少的重要的动力设备。它所产生的高压蒸汽,既可以作为风机、压缩机、大型泵类的驱动透平的动力源,又可作为蒸馏、化学反应、干燥和蒸发等过程的热源。随着工业生产规模的不断扩大,生产设备的不断创新,作为全厂动力和热源的锅炉,办向着大容量、高参数、高效率发展。为了确保安全,稳定生产,锅炉设备的控制系统就显得愈加重要。随着经济的迅猛发展,自动化控制水平越来越高,用户对锅炉控制系统的工作效率要求也越来越高,为了提高锅炉的工作效率,较少对环境的污染问题,所以利用计算机与组态软件技术对锅炉生产过程进行自动控制有着重要的意义。 2.任务要求 (1) 按照题目设计监控画面及动态模拟; (2) 在数据字典中定义需要的内存变量和I/O变量; (3) 实现监控系统的实时、历史曲线及报警界面显示; (4) 实现保存数据和参数报表打印功能; (5) 实现登陆界面和帮助界面。 3. 界面功能 3.1 系统说明 本系统的目的是实现锅炉的温度控制,所以在监控界面设置了加热部分和降温部分,同时通过观察相应仪表,操作者手动的实现对锅炉温度的控制,而且在加热过程和降温过程中有信号灯可以清楚地显示系统工作在什么阶段。此外,在监控界面加入了液位控制部分,通过对进水量和出水量的控制实现液位平衡。实时曲线和历史曲线可以让操作者清楚地观察到锅炉内液体的液位高度和温度,从而更加准确的操作系统,达到控制要求。实时报警界面可以随时进行提醒,防止发生意外情况。帮助界面可以让初次登陆该系统的用户快速学会如何操作系统。登陆界面中加入用户登陆部分,只有有相应权限的操作者也可以控制系统。该系统还加入历史曲线打印功能和对系统相关变量的保存功能,用户可以随时查看历史记录。 3.2主监控界面 主控界面实现的是操作者观察仪表,得到锅炉内液体温度和液位的实时信息,通过调节电磁阀1、2,使得锅炉内液体液位保持在要求范围内,通过加热按钮和降温按钮对

水温自动控制系统实验报告汇总

水温控制系统(B题) 摘要 在能源日益紧张的今天,电热水器,饮水机和电饭煲之类的家用电器在保温时,由于其简单的温控系统,利用温敏电阻来实现温控,因而会造成很大的能源浪费。但是利用AT89C51 单片机为核心,配合温度传感器,信号处理电路,显示电路,输出控制电路,故障报警电路等组成的控制系统却能解决这个问题。单片机可将温度传感器检测到的水温模拟量转换成数字量,并显示于1602显示器上。该系统具有灵活性强,易于操作,可靠性高等优点,将会有更广阔的开发前景。 水温控制系统概述 能源问题已经是当前最为热门的话题,离开能源的日子,世界将失去一切颜色,人们将寸步难行,我们知道虽然电能是可再生能源,但是在今天还是有很多的电能是依靠火力,核电等一系列不可再生的自然资源所产生,一旦这些自然资源耗尽,我们将面临电能资源的巨大的缺口,因而本设计从开源节流的角度出发,节省电能,保护环境。 一、设计任务 设计并制作一个水温自动控制系统,控制对象为 1 升净水,容器为搪瓷器皿。水温可以在一定范围内由人工设定,并能在环境温度降低时实现自动控制,以保持设定的温度基本不变。 二、要求 1、基本要求 (1)温度设定范围为:40~90℃,最小区分度为1℃,标定温度≤1℃。 (2)环境温度降低时温度控制的静态误差≤1℃。 (3)能显示水的实际温度。 第2页,共11页

2、发挥部分 (1)采用适当的控制方法,当设定温度突变(由40℃提高到60℃)时,减小系统的调节时间和超调量。 (2)温度控制的静态误差≤0.2℃。 (3)在设定温度发生突变时,自动打印水温随时间变化的曲线。 (4)其他。 一系统方案选择 1.1 温度传感器的选取 目前市场上温度传感器较多,主要有以下几种方案: 方案一:选用铂电阻温度传感器。此类温度传感器线性度、稳定性等方面性能都很好,但其成本较高。 方案二:采用热敏电阻。选用此类元器件有价格便宜的优点,但由于热敏电阻的非线性特性会影响系统的精度。 方案三:采用DS18B20温度传感器。DS18B20是DALLAS公司生产的一线式数字温度传感器,具有3引脚TO-92小体积封装形式;温度测量范围为-55℃~+125℃,可编程为9位~12位A/D转换精度,测温分辨率可达0.0625℃,被测温度用符号扩展的16位数字量方式串行输出远端引入。此器件具有体积小、质量轻、线形度好、性能稳定等优点其各方面特性都满足此系统的设计要求。 比较以上三种方案,方案三具有明显的优点,因此选用方案三。 1.2温度显示模块 方案一:采用8个LED八段数码管分别显示温度的十位、个位和小数位。数码管具有低能耗,低损耗、寿命长、耐老化、对外界环境要求低。但LED八度数码管引脚排列不规则,动态显示时要加驱动电路,硬件电路复杂。 方案二:采用带有字库的12864液晶显示屏。12864液晶显示屏具有低功耗,轻薄短小无辐射危险,平面显示及影像稳定、不闪烁、可视面积大、画面

锅炉内胆水温PID控制实验

第五节锅炉内胆水温PID控制实验 一、实验目的 1. 根据实验数据和曲线,分析系统在阶跃扰动作用下的动、静态性能。 2. 比较不同PID参数对系统的性能产生的影响。 3. 分析P、PI、PD、PID四种控制规律对本实验系统的作用。 二、实验设备 1. THJ-2型高级过程控制系统实验装置 2. 计算机及相关软件 3. 万用电表一只 三、实验原理 本实验以锅炉内胆作为被控对象,内胆的水温为系统的被控制量。本实验要求锅炉内胆的水温稳定至给定量,将铂电阻TT1检测到的锅炉内胆温度信号作为反馈信号,在与给定量比较后的差值通过调节器控制三相调压模块的输出电压(即三相电加热管的端电压),以达到控制锅炉内胆水温的目的。在锅炉内胆水温的定值控制系统中,其参数的整定方法与其它单回路控制系统一样,但由于加热过程容量时延较大,所以其控制过渡时间也较长,系统的调节器可选择PD或PID控制。本实验系统结构图和方框图如图5-1所示。

图5-1 锅炉内胆温度特性测试系统 (a)结构图(b)方框图 可以采用两种方案对锅炉内胆的水温进行控制: (一)锅炉夹套不加冷却水(静态) (二)锅炉夹套加冷却水(动态) 显然,两种方案的控制效果是不一样的,后者比前者的升温过程稍慢,降温过程稍快。无论操作者采用静态控制或者动态控制,本实验的上位监控界面操作都是一样的。 四、实验内容与步骤 1.先将储水箱贮足水量,将阀门F1-1、F1-4、F1-5、F1-13全开,打开电磁阀开关,其余阀门关闭,启动380伏交流磁力泵,给锅炉内胆贮存一定的水量(要求至少高于液位指示玻璃管的红线位置),然后关闭阀F1-13、F1-4及电磁阀,打开阀F1-12,为给锅炉夹套供冷水做好准备。

组态王课程设计--锅炉温度控制系统

锅炉温度控制系统上位机设计 1. 设计背景 锅炉是化工、炼油、发电等工业生产过程中必不可少的重要的动力设备。它所产生的高压蒸汽,既可以作为风机、压缩机、大型泵类的驱动透平的动力源,又可作为蒸馏、化学反应、干燥和蒸发等过程的热源。随着工业生产规模的不断扩大,生产设备的不断创新,作为全厂动力和热源的锅炉,办向着大容量、高参数、高效率发展。为了确保安全,稳定生产,锅炉设备的控制系统就显得愈加重要。随着经济的迅猛发展,自动化控制水平越来越高,用户对锅炉控制系统的工作效率要求也越来越高,为了提高锅炉的工作效率,较少对环境的污染问题,所以利用计算机与组态软件技术对锅炉生产过程进行自动控制有着重要的意义。 2.任务要求 (1) 按照题目设计监控画面及动态模拟; (2) 在数据字典中定义需要的内存变量和I/O变量; (3) 实现监控系统的实时、历史曲线及报警界面显示; (4) 实现保存数据和参数报表打印功能; (5) 实现登陆界面和帮助界面。 3. 界面功能 3.1 系统说明 本系统的目的是实现锅炉的温度控制,所以在监控界面设置了加热部分和降温部分,同时通过观察相应仪表,操作者手动的实现对锅炉温度的控制,而且在加热过程和降温过程中有信号灯可以清楚地显示系统工作在什么阶段。此外,在监控界面加入了液位控制部分,通过对进水量和出水量的控制实现液位平衡。实时曲线和历史曲线可以让操作者清楚地观察到锅炉内液体的液位高度和温度,从而更加准确的操作系统,达到控制要求。实时报警界面可以随时进行提醒,防止发生意外情况。帮助界面可以让初次登陆该系统的用户快速学会如何操作系统。登陆界面中加入用户登陆部分,只有有相应权限的操作者也可以控制系统。该系统还加入历史曲线打印功能和对系统相关变量的保存功能,用户可以随时查看历史记录。 3.2主监控界面 主控界面实现的是操作者观察仪表,得到锅炉内液体温度和液位的实时信息,通过调节电磁阀1、2,使得锅炉内液体液位保持在要求范围内,通过加热按钮和降温按钮对温度进行控制,使得温度在要求范围内。这样,就实现了锅炉温度的控制。在该界面加入菜单项,可以查看历史系统报警。加入实时曲线、历史曲线和帮助界面按钮,可以使操作者更加快捷、准确的实现对系统的控制。如图1所示:

水温自动控制系统设计

水温自动控制系统设计 摘要 水温自动控制系统在工业及日常生活中应用广泛,在生产中发挥着重要作用。实现水温控制的方法很多,如单片机控制、PLC控制等等。而其中用单片机控制实现的水温控制系统,具有可靠性高、价格低、简单易实现等多种优点。单片机用于工业控制是近年来发展非常迅速的领域,现在许多自动化的生产车间里,都是靠单片机来实现的。 温度是工业控制对象主要被控参数之一,在温度控制中,由于受到温度被控对象特性(如惯性大、滞后大、非线性等)的影响,使得控制性能很难提高,有些工艺过程其温度控制的好坏直接影响着产品的质量,因此设计一种较为理想的温度控制系统是非常有价值的。 为了实现高精度的水温测量和控制,本文介绍了一种以Atmel公司的低功耗高性能CMOS 8位单片机为核心,以PID算法控制以及PID参数整定相结合的方法来实现的水温控制系统,其硬件电路包括温度采集、温度控制、温度显示、键盘输入以及RS232接口等电路。该系统可实现对温度的测量,并能根据设定值对温度进行调节,实现控温的目的。 关键词:AT89S52;温度控制;PT1000;PID

Design of Temperature Automatic Control System ABSTRACT The temperature is one of the mainly charged parameters which are industrial control targets. It is difficult to enhance the control performance due to the characteristics of the temperature charged object. Such as inertia, hysteresis and non-linear, etc…Its temperature control process will have a direct impact on the quality of the product in some technological process. Therefore it is absolute valuable to design a ideal temperature control system. In order to realize the high accuracy survey and control of water temperature. Systematic core is AT89S52, which is a low-power loss, high-performance 8-bit MCU of Atmel Company. The system unifies PID control algorithm and PID parameter tuning to control the water temperature. Its hardware circuit also includes temperature gathering, temperature control and temperature display, keyboard input and RS232 interfaces. The system can realize to survey the water temperature, and it can adjust the temperature according to the setting value. Keywords:AT89S52; temperature control; PT1000; PID

基于PLC系统的锅炉内胆水温控制系统设计

1 PLC构成及WinCC的组态 采用WinCC组态技术设计多机联网运行的实时监控系统,核心思想是通过计算机超强的处理能力,以软件实现实际生产过程变化,把传统控制中进行人工操作或数据分析与处理、数据输出与表达的硬件,利用方便的PC机软硬件代替。 建立WinCC组态监控系统。首先启动WinCC,建立一个单用户项目——添加通讯驱动程序——选择通道单元——输入逻辑连接名,确定与S7—300端口的通讯连接。然后在驱动程序连接下建立结构类型和元素,给过程变量分配一个在PLC中的对应地址(地址类型与通讯对象相关),给除二进制变量外的过程变量和内部变量设定上限值和下限值(当过程值超出上限值和下限值的范围时,数值将变为灰色,并且不可以再对其进行任何处理)。 接着创建和编辑主导航画面、单台空压机组态画面、远程监控画面、分析诊断画面、数据归档画面、报警显示画面、报警在线限制值画面、报表打印画面、用户登录方式画面等。对画面中添加的按钮、窗口和静态文本等,进行组态变量连接、状态显示设置等等。 再对远程控制画面中的启动/停止按钮进行变量连接,设置手动控制和自动控制两种方式,并且手动控制为高级控制方式。通过设置随变量值的变化范围而改变颜色的比功率棒图进行故障诊断分析;通过对过程值的归档,建立历史和当前的表格与曲线两种状态的监控界面;利用报警和报表打印等,实现信息上报、及时反馈的功能,实现最佳的生产状态监测控制。还可通过用户管理权限的设置,为不同级别的用户设置权限和等待空闲时间,以更好地安全防护。 1.1 PLC控制柜的组成 (1) 电源部分 (2) CPU模块 西门子S7-300PLC,型号为CPU315-2 DP,它集成了MPI接口,可以很方便的在PLC站点、操作站OS、编程器PG、操作员面板建立较小规模的通讯。它还集成了PROFIBUS-DP接口,通过DP可以组建更大范围的分布式自动化结构。 工作电压:DC 24V; 通讯方式:CP5611网卡进行通讯; 通讯协议:PROFIBUS-DP。 (3) 模拟量输入模块 采用西门子SM331-7NF00-OABO模拟量输入模块。输入所采集到的信号至控制单元。规格:AI 8×16bit; (4) 模拟量输出模块 采用西门子SM332-5HD01-OABO模拟量输出模块。输出控制信号至执行机构。规格:AO 4×12 bit (5) 数字量模块 本系统采用西门子SM323-1BH01-0AA0数字量模块,该模块集成了8路数字量输入通道和8路数字量输出通道。锅炉内胆水温控制系统没用到此模块,但在硬件组态时需编入硬件组态。 1.2 基于PLC的锅炉内胆水温控制的系统结构

锅炉内胆温度控制系统设计

锅炉内胆温度控制系统设计 一.引言 过程控制是自动化的重要分支,其应用范围覆盖石油、化工、制药、生物、医疗、水利、电力、冶金、轻工、建材、核能、环境等许多领域,在国民经济中占有极其重要的地位。无论是在现代复杂工业生产过程中还是在传统生产过程的技术改造中,过程控制技术对于提高劳动生产率、保证产品质量、改善劳动条件以及保护生态环境、优化技术经济指标等方面都起着非常重要的作用。 过程控制的主要任务是对生产过程中的有关参数(温度、压力、流量、物位、成分、湿度、PH值和物性等)进行控制,使其保持恒定或按一定规律变化,在保证产品质量和生产安全的前提下,是连续型生产过程自动的进行下去。实际的生产过程千变万化,要解决生产过程的各种控制问题必须采用有针对性的特殊方法与途径。这就是过程控制要研究和解决的问题。二.任务和要求 任务:设计锅炉内胆温度控制系统,选择合适的传感器、控制器和执行器,使其满足一定的控制要求。 要求:本系统的控制对象为锅炉内胆的水温,要求锅炉内胆的温度的稳定值等于给定值,误差保持在 5%的误差带以内。 三.总体方案 系统组成:本实验装置由被控对象和控制仪表两部分组成。系统动力支路分两路:一路由三相(380V交流)磁力驱动泵、电动调节阀、直流电磁阀、涡轮流量计及手动调节阀组成;另一路由日本三菱变频器、三相磁力驱动泵(220V变频)、涡轮流量计及手动调节阀组成。1.原理框图 图1

2.简要原理 单闭环锅炉水温定值控制系统的结构示意如课程设计指导书所示,图1为其结构框图。其中锅炉内胆为动态循环水,磁力泵、电动调节阀、锅炉内胆组成循环供水系统。而控制参数为锅炉内胆的水温,即要求锅炉内胆的水温等于设定值。先通过变频器-磁力泵动力支路给锅炉内胆打满水,然后关闭锅炉内胆的进水阀。待系统投入运行后,再打开锅炉内胆的进水阀,允许变频器-磁力泵以固定的小流量使锅炉内胆的水处于循环状态。在锅炉内胆水温的控制过程中,由于锅炉内胆由循环水,因此锅炉内胆循环水水温控制相比于内胆静态水温控制时更充分,因而控制速度有较大的改善。 在结构原理框图中可以清楚的看出,我们给定温度的设定值,将温度传感器的值与设定值相比较,把偏差值送入PID调节器,PID调节器的输出信号送入可控硅调压装置,经调压装置输出的电压信号来控制加热装置的阻值,从而控制锅炉内胆的水温。此控制系统为单闭环反馈系统,只要PID参数设置的合理,就能够使系统达到稳定。 3.优缺点分析 优点:单闭环系统结构简单,稳定性好、可靠性高,在工业控制中得到广泛的应用。 缺点:对动态特性复杂、存在多种扰动或扰动幅度很大,控制质量要求高的生产过程,简单控制系统难以满足要求 四.元器件的选择与参数整定 1.元器件的选择: (1)被控对象 由不诱钢储水箱、4.5千瓦电加热锅炉(由不锈钢锅炉内胆加温筒构成)、冷热水交换盘管和敷朔不锈钢管道组成。 模拟锅炉:本装置采用模拟锅炉进行温度实验,此锅炉采用不锈钢精制而成,设计巧妙。 管道:整个系统管道采用不诱钢管组成,所有的水阀采用优质球阀,彻底避免了管道系统生锈的可能性。有效提高了实验装置的使用年限。其中储水箱底有一个出水阀,当水箱需要更换水时,将球阀步打开直接将水排出。 (2)检测装置 变送器:采用工业用的扩散硅压力变送器,含不诱钢隔离膜片,同时采用信号隔离技术,对传感器温度漂移跟随补偿。 温度传感器:本装置采用六个Pt100传感器,分别用来检测上水箱出口、锅炉内胆、锅炉夹套以及盘管的水温。经过调节器的温度变送器,可将温度信号转换成4~20mA DC电流信

锅炉的自动控制系统

锅炉自动控制系统 摘要 锅炉是国民经济中主要的供热设备之一。电力、机械、冶金、化工、纺织、造纸、食品等工业和民用采暖都需要锅炉供给大量的蒸汽。各种工业的生产性质与规模不同,工业和民用采暖的规模大小不尽相同。锅炉是供热之源,锅炉及其设备的任务在于安全,可靠,有效把燃料的化学能转化成热能,进而将热能传递给水,以生产热水和蒸汽。为了生产工艺有特殊要求外,所生产的热水不需要过高温的压力和温度,容量也无需很大。 随着现代工业技术的飞速发展,对能源利用率的要求越来越高。锅炉作为将一次能源转化为二次能源的重要设备之一,其控制和管理的水平也日趋提高。但在我国,大部分锅炉还采用仪表和继电器控制,甚至人工操作,已无法满足生产需求。因此,对锅炉控制系统采用先进的控制技术,不仅能够保证安全生产,而且能够节能增效,具有很好的市场发展空间和投资收益前景。 本论文的主要方向就是采用过程控制对工业锅炉进行控制。 关键字:锅炉;过程控制;控制算法;DCS;现场总线;工业以太网;监控软件 一、锅炉的基本构造及其工作原理 锅炉的主要设备包括汽锅、炉子、炉膛、锅筒、水冷壁、过热器、省煤器、燃烧热备、引风设备、送风设备、给水设备、空气预热器、水处理设备、燃烧供给设备以及除灰除尘设备等。 锅炉的原理及过程 锅炉的工作过程概括起来应该包括三个同时进行的过程:燃料的燃烧过程,烟气向水的传热过程,水的汽化过程。 一个锅炉进行工作,其主要任务是:(1) 要使锅炉出口蒸汽压力稳定;(2)保证燃烧过程的经济性;(3)保持锅炉负压稳定,通常我们是炉膛负压保持在微负压(-10~80Pa)。为了完成上述三项任务,我们对三个变量进行控制:燃烧

水温自动控制系统

《电子技术综合设计》 设计报告 设计题目:水温自动控制系统 组长姓名:学号: 专业与班级:工业自动化14-16班 姓名:学号: 专业与班级:工业自动化14-16班 姓名:学号: 专业与班级:工业自动化14-16班 时间: 2016 ~ 2017 学年第(1)学期指导教师:陈烨成绩:评阅日期:

一、课题任务 设计并制作一个水温自动控制系统,对1.5L净水进行加。水温保持在一定范围内且由人工设定。 细节要求如下: 1.温度设定范围为40℃~90℃,最小分辨率为0.1℃,误差≤1℃。 2.可通过LCD显示屏显示温度目标值与实时温度。 3.可以通过键盘调整目标温度的数值。 二、方案比较 1.系统模块设计 为完成任务目标,可以将系统分为如下几个部分:5V直流电供电模块、测温模块、80C52单片机控制系统、键盘控制电路、温度显示模块、继电器控制模块、强电加热电路。通过各模块之间的相互配合,可以完成水温检测、液晶显示、目标值设置、水温控制等功能。 系统方框图如下:

2.5V直流电供电模块 方案一:直接用GP品牌的9v电池,然后接通过三端稳压芯片7805稳压成5伏直流电源提供给单片机系统使用,接两个5伏电源的滤波电容后输出。 方案二:通过变压器,将220v的市电转换成9v左右的交流电,变压器输出端的9V电压经桥式整流并电容滤波。要得到一个比较稳定的5v电压,在这里接一个三端稳压器的元件7805。 由于需要给继电器提供稳定的5V电压,而方案一中导致电池的过度损耗,无法稳定带动继电器持续工作,所以我们选用能够提供更加稳定5v电源的方案二。 3.测温模块 经查阅资料,IC式感温器在市场上应用比较广泛的有以下几种: AD590:电流输出型的测温组件,温度每升高1 摄氏度,电流增加1μA,温度测量范围在-55℃~150℃之间。其所采集到的数据需经A/D 转换,才能得到实际的温度值。 DS18B20:内含AD转换器,所以除了测量温度外,它还可以把温度值以数字的方式(9 B i t ) 送出,因此线路连接十分简单,它无需其他外加电路,直接输出数字量,可直接与单片机通信,读取测温数据。它能够达到0.5℃的固有分辨率,使用读取温度暂存寄存器的方法还能达到0.0625℃以上精度,温度测量范围在-55℃~125℃之间,应用方便。 SMARTEC感温组件:这是一只3个管脚感温IC,温度测量范围在 -45℃~13℃,误差可以保持在0.7℃以内。 max6225/6626:最大测温范围也是-55~+125℃,带有串行总线接口,测量温度在可测范围内的的误差在4℃以内,较大,故舍弃该方案。 本设计选用DS18B20感温IC,这是因其性能参数符合设计要求,接口简单,内部集成了A/D 转换,测温更简便,精度较高,反应速度快,且经过市场考察,该芯片易购买,使用方便。 下面是DS18B20感温IC的实物和接口图片

锅炉内胆温度二位式控制实验

实验三、锅炉内胆温度二位式控制实验 一、实验目的 1)、熟悉实验装置,了解二位式温度控制系统的组成。 2)、掌握位式控制系统的工作原理、控制过程和控制特性。 二、实验设备 过程控制实验装置、上位机软件、计算机、RS232-485转换器1只、串口线1根、实验连接线。 三、实验原理 1、温度传感器 温度测量通常采用热电阻元件(感温元件)。它是利用金属导体的电阻值随温度变化而变化的特性来进行温度测量的。其电阻值与温度关系式如下: Rt=Rt [1+α(t-t0)] 式中Rt——温度为t(如室温20℃)时的电阻值; Rt 0——温度为t (通常为0℃)时的电阻值; α——电阻的温度系数。 可见,由于温度的变化,导致了金属导体电阻的变化。这样只要设法测出电阻值的变化,就可达到温度测量的目的。 虽然大多数金属导体的电阻值随温度的变化而变化,但是它们并不能都作为测温用的热电阻。作为热电阻的材料一般要求是:电阻温度系数小、电阻率要大、热容量要小;在整个测温范围内,应具有稳定的物理、化学性质和良好的重复性;并要求电阻值随温度的变化呈线性关系。 但是,要完全符合上述要求的热电阻材料实际上是有困难的。根据具体情况,目前应用最广泛的热电阻材料是铂和铜。本装置使用的是铂电阻元件PT100,并通过温度变送器(测量电桥或分压采样电路或者AI人工智能工业调节器)将电阻值的变化转换为电压信号。 铂电阻元件是采用特殊的工艺和材料制成,具有很高的稳定性和耐震动等特点,还具有较强的抗氧化能力。 在0~650℃的温度范围内,铂电阻与温度的关系为:

Rt =Rt 0(1+At+Bt 2+Ct 3) 式中Rt ——温度为t(如室温20℃)时的电阻值; Rt 0——温度为t 0(通常为0℃)时的电阻值; A 、 B 、 C 是常数,一般A=3.90802*10-31/℃,B=-5.802*10-71/℃,C=-4.2735*10-121/℃。 Rt-t 的关系称为分度表。不同的测温元件用分度号来区别,如Pt100、C U 50等。 2、二位式温度控制系统 二位控制是位式控制规律中最简单的一种。本实验的被控对象是1.5KW 电加热管,被控制量是复合小加温箱中内套水箱的水温T ,智能调节仪内置继电器线圈控制的常开触点开关控制电加热管的通断,图3-1为位式调节器的工作特性图,图3-2为位式控制系统的方块图。 图3-1、位式调节器的特性图 由图3-1可见,在一定的范围内不仅有死区存在,而且还有回环。因而图3-2所示的系统实质上是一个典型的非线性控制系统。执行器只有“开”或“关”两种极限输出状态,故称这种控制器为两位调节器。 该系统的工作原理是当被控制的水温测量值V P =T 小于给定值V S 时,即测量 值〈给定值,且当e=VS-VP ≥dF 时,调节器的继电器线圈接通,常开触点变成常闭,电加热管接通380V 电源而加热。随着水温T 的升高,Vp 也不断增大,e 相应变小。若T 高于给定值,即Vp 〉Vs ,e 为负值,若e ≤-dF 时,则两位调节器的继电器线圈断开,常开触点复位断开,切断电加热管的供电。由于这种控制方

锅炉温度自动控制

综述 锅炉汽包燃烧系统是工业蒸汽锅炉安全、稳定运行的重要指标,温度过高,会使蒸汽带水过多,汽水分离差,使后续的过热器管壁结垢,传热效率下降,过热蒸汽温度下降,严重时将引起蒸汽品质下降,影响生产和安全;温度过低又将破坏部分水冷壁的水循环不能满足工艺要求,严重时会发生锅炉爆炸。尤其是大型锅炉,一旦控制不当,容易使汽包满水或汽包内的水全部汽化,造成重大事故。因此,在锅炉运行中,保证温度在正常范围是非常重要的。 本文设计了一种数字式锅炉温度控制系统,并给出了硬件原理图。该控制系统是用MCS-51系列单片机及其相关硬件来实现,利用传感器测量温度数据、CPU循环检测传感器输出状态,并用光柱和LED指示温度的高度。当锅炉温度低于用户设定的值时,系统自动打开燃料通道,当温度到达设定值时,系统自动关闭燃料通道。通过定量的计算表明该控制系统设计合理、可行。

一.系统总体设计 1.1 系统总体设计方案 设计框图如下所示: 图1-1系统框图 1.2 单元电路方案的论证与选择 硬件电路的设计是整个实验的关键部分,我们在设计中主要考虑了这几个方面:电路简单易懂,较好的体现物理思想;可行性好,操作方便。在设计过程中有的电路有多种备选方案,我们综合各种因素做出了如下选择。 1.2.1 温度信号采集电路的论证与选择 采用温度传感器DS18B20 美国DALLAS公司的产品可编程单总线数字式温度传感器DS18B20可实现室内温度信号的采集,有很多优点:如直接输出数字信号,故省去了后继的信号放大及模数转换部分,外围电路简单,成本低;单总线接口,只有一根信号线作为单总线与CPU连接,且每一只都有自己唯一的64位系列号存储在其内部的ROM存储器中,故在一根信号线上可以挂接多个DS18820,便于多点测量且易于扩展。 DS 18 B2 0的测温范围较大,集成度较高,但需要串口来模拟其时序才能使用,故没有选用此方案。

实验六、锅炉内胆水温PID整定实验(动态)

实验六、锅炉内胆水温PID整定实验(动态) 一、实验目的 1)、了解单回路温度控制系统的组成与工作原理。 2)、研究P、PI、PD和PID四种调节器分别对温度系统的控制作用。 3)、改变P、PI、PD和PID的相关参数,观察它们对系统性能的影响。 二、实验设备 CS2000型过程控制实验装置, PC机,DCS监控软件,DCS控制系统。 三、实验原理 图6-1、温度控制系统原理图 本系统所要保持的恒定参数是锅炉内胆温度给定值,即控制的任务是控制锅炉内胆温度等于给定值。根据控制框图,采用DCS控制系统。 一、实验内容与步骤 1)、开通以水泵、电动调节阀、孔板流量计以及锅炉内胆进水阀所组成的水路系统,关闭通往其他对象的切换阀。 2)、将锅炉内胆的出水阀关闭。 3)、检查电源开关是否关闭。 4)、开启相关仪器和计算机软件,进入相应的实验六。 5)、点击上位机界面上的“点击以下框体调出PID参数”按钮,设定好给定值,并根据实验情况反复调整P、I、D三个参数,直到获得满意的测量值。 6)、比例调节(P)控制 待基本不再变化时,加入阶跃扰动(可通过改变调节器的设定值来实现)。观察并记录在当前比例P时的余差和超调量。每当改变值P后,再加同样大小的阶跃信号,比较不同P 时的ess和σp,并把数据填入表一中。 表一、不同比例P时的余差和超调量

记录实验过程各项数据绘成过渡过程曲线。(数据可在软件上获得) 7)比例积分调节(PI)控制 (1)、在比例调节器控制实验的基础上,待被调量平稳后,加入积分(I)作用,观察被控制量能否回到原设定值的位置,以验证系统在PI调节器控制下没有余差。 (2)、固定比例P值,然后改变积分时间常数I值,观察加入扰动后被调量的动态曲线,并记录不同I值时的超调量σp。 表二、不同Ti值时的超调量σp (3)、固定I于某一中间值,然后改变比例P的大小,观察加扰动后被调量的动态曲线,并记下相应的超调量σp。 表三、不同δ值时的超调量σp (4)、选择合适的P和I值,使系统瞬态响应曲线为一条令人满意的曲线。此曲线可通过改变设定值(如把设定值由50%增加到60%)来实现。 8)比例微分调节器(PD)控制 在比例调节器控制实验的基础上,待被调量平稳后,引入微分作用(D)。固定比例P 值,改变微分时间常数D的大小,观察系统在阶跃输入作用下相应的动态响应曲线。 表四、不同D时的超调量和余差 9)比例积分微分(PID)调节器控制 (1)、在比例调节器控制实验的基础上,待被调量平稳后,引入积分(I)作用,使被调量回复到原设定值。减小P,并同时增大I,观察加扰动信号后的被调量的动态曲线,验证

锅炉蒸汽温度控制系统

引言 随着科学技术的发展,自动控制在现代工业中起着主要的作用,目前已广泛应用于工农业生产及其他建设方面。生产过程自动化是保持生产稳定、降低成本、改善劳动成本、促进文明生产、保证生产安全和提高劳动生产率的重要手段,是20世纪科学与技术进步的特征,是工业现代化的标志之一。可以说,自动化水平是衡量一个国家的生产技术和科学水平先进与否的一项重要标志。电力工业中电厂热工生产过程自动化技术相对于其他民用工业部门有较长的历史和较高的自动化水平,电厂热工自动化水平的高低是衡量电厂生产技术的先进与否和企业现代化的重要标志。 本次毕业设计的主要是针对单元机组汽温控制系统的设计。锅炉汽温控制系统主要包括过热蒸汽和再热蒸汽温度的调节。主蒸汽温度与再热蒸汽温度的稳定对机组的安全经济运行是非常重要的。过热蒸汽温度控制的任务是维持过热器出口蒸汽温度在允许的范围之内,并保护过热器,使其管壁温度不超过允许的工作温度。过热蒸汽温度是锅炉汽水系统中的温度最高点,蒸汽温度过高会使过热器管壁金属强度下降,以至烧坏过热器的高温段,严重影响安全。一般规定过热器的温度与规定值的暂时偏差不超过±10℃,长期偏差不超过±5℃。 如果过热蒸汽温度偏低,则会降低电厂的工作效率,据估计,温度每降低5℃,热经济性将下降约1%;且汽温偏低会使汽轮机尾部蒸汽温度升高,甚至使之带水,严重影响汽轮机的安全运行。一般规定过热汽温下限不低于其额定值10℃。通常,高参数电厂都要求保持过热汽温在540℃的范围内。 由于汽温对象的复杂性,给汽温控制带来许多的困难,其主要难点表现在以下几个方面: (1)影响汽温变化的因素很多,例如,蒸汽负荷、减温水量、烟气侧的过剩空气系数和火焰中心位置、燃料成分等都可能引起汽温变化。 (2)汽温对象具有大延迟、大惯性的特点,尤其随着机组容量和参数的增加,蒸汽的过热受热面的比例加大,使其延迟和惯性更大,从而进一步加大了汽温控制的难度。 (3)汽温对象在各种扰动作用下(如负荷、工况变化等)反映出非线性、时变等特性,使其控制的难度加大。

基于单片机的水温控制系统毕业设计

基于单片机的水温控制系统设计 摘要 温度控制系统可以说是无所不在,热水器系统、空调系统、冰箱、电饭煲、电风扇等家电产品以至手持式高速高效的计算机和电子设备,均需要提供温度控制功能。本系统的设计可以用于热水器温度控制系统和饮水机等各种电器电路中。它以单片机AT80C51为核心,通过3个数码管显示温度和4个按键实现人机对话,使用单总线温度转换芯片DS18B20实时采集温度并通过数码管显示,并提供各种运行指示灯用来指示系统现在所处状态,如:温度设置、加热、停止加热等,整个系统通过四个按键来设置加热温度和控制运行模式。 关键词:单片机、数码管显示、单总线、DS18B20. Based Temperature Control System Abstract Temperature control system can be said to be ubiquitous, water heaters, air conditioning systems, refrigerators, rice cookers, electric fans and other home appliances as well as high-speed and efficient hand-held computers and electronic equipment are required to provide temperature control. The system design can be used for drinking water heater temperature control systems and other electrical circuits. AT80C51 microcontroller as the core of it, through the three temperature digital display and 4 keys to achieve man-machine dialogue, the use of single-chip bus temperature conversion temperature DS18B20 real-time acquisition and through the digital display and offers a variety of operating light to indicate system now live in the state, such as: temperature setting, heating, and stop heating, the entire system through the four buttons to set the heating temperature and control the operating mode. KEY WORDS:Microcontroller, digital display, single bus, DS18B20 绪论

锅炉内胆水温与循环水流量串级控制系统

九江学院电子工程学院 电子工程学院课外学分设计报告 题目:锅炉内胆水温与循环水流量串级控制系统 姓名:曾志成黄家平龙建平学号:25、32、29 专业:自动化实验室:开放实验室班级:A1031 设计时间:2012年9月10日——2012年12月30 日 评定成绩:审阅教师:

目录 1.专业综合设计任务 (1) 2.方案设计与论证 (1) 3.硬软件设计 (1) 4.实现与测试 (6) 5.分析与总结 (6) 1.专业综合设计任务

本实验选择锅炉内胆和循环水组成串级控制系统。实验之前先将储水箱中贮足水量,然后将阀门F2-1、F2-6、F1-12、F1-13全开,将锅炉出水阀门F2-11、F2-12关闭,其余阀门也关闭。将变频器A、B、C三端连接到三相磁力驱动泵(220V),打开变频器电源并手动调节变频器频率,给锅炉内胆和夹套贮满水。然后关闭变频器、关闭阀F1-12,打开阀F1-13,为给锅炉内胆供循环冷水作好准备。 具体实验内容与步骤可根据本实验的目的与原理参照本章第二节水箱液位串级控制中相应方案进行,实验的接线可按照下面电路图中的的接线图连接。 2. 方案设计与论证 本实验系统的主控量为锅炉内胆的水温T,副控量为锅炉内胆循环水流量Q,它是一个辅助的控制变量。内胆内的电热管持续恒压加热,执行元件为电动调节阀,它控制管道中流过的冷水的流量大小,以改变内胆中的水温。副回路是一个随动系统,要求副回路的输出能正确、快速地复现主调节器输出的变化规律,以达到对主控制量T的控制目的,因而副调节器可采用P控制。但选择流量作副控参数时,为了保持系统稳定,比例度必须选得较大,这样比例控制作用偏弱,为此需引入积分作用,即采用PI控制规律。引入积分作用的目的不是消除静差,而是增强控制作用。显然,由于副对象管道的时间常数远小于主对象锅炉内胆的时间常数,因而当主扰动(二次扰动)作用于副回路时,通过副回路的调节作用可快速消除扰动的影响。本实验系统结构图和方框图如图5-21所示。 图5-21 锅炉内胆水温与循环水流量串级控制系统 (a)结构图(b)方框图 3. 硬软件设计

基于S7300锅炉内胆水温的前馈反馈控制系设计(组态)

基于S7300锅炉内胆水温的前馈反馈控制系设计(组态)

毕业设计(论文) 题目:基于S7-300锅炉内胆水温的前馈 -反馈控制系设计(组态) (英文):Design of Feedforward and Feedback Control Systems Based on S7-300 Boiler Water Temperature (Configuration) 院别:自 动化学院 专业:自

动化 姓名:肖 奎 学号: 2010104843020 指导教师:李 虎山 日期: 2014年4月 基于S7-300锅炉内胆水温的前馈-反馈控制系 统设计(组态) 摘要 温度是常见的过程参数之一,许多的生产过程都离不开对温度的控制,温度的控制往往是对加热和冷却的平衡,锅炉正是这样的系统,当加热大于冷却时整个系统升温;反之则降温;二者若是趋于相等就可以使温度趋于稳定。若是采用单纯的反馈控制对锅炉内胆水温进行控制,由于流量变化快而温度控制滞后大就会导致系统的稳定性、快速性较差,不能取得理想的控制效果。解决这个问题的办法就是加入对主要扰动流量的前馈补偿环节构成锅炉内胆水温的前馈-反馈控制系统,使得流量的变化能够迅速得到补偿,提高系统的响应速度。 近年来,可编程控制器(PLC)依托着可靠性高,抗干扰,功能强大等特点得到

了广泛的运用,随着生产和编程的技术不断进步,越来越多的控制方式得以在PLC上实现。本设计将围绕西门子S7-300 PLC从前馈-反馈控制系统的介绍、PLC及测量变送仪表设备的选择、软件的展示及组态编程这三个方面来阐述锅炉内胆水温的前馈-反馈控制系统的设计,力求展示出前馈-反馈控制系统的特点。通过本设计可以观测到前馈-反馈控制系统在以流量变化为主要扰动的情况下对锅炉内胆的水温可以取得较好的控制效果。 关键词:前馈-反馈控制; PLC;温度

水温自动控制系统设计

水温自动控制系统设计 作者姓名:孙德彪 专业班级:电子信息科学与技术指导教师:李雪梅讲

摘要 温度是工业控制对象主要被控参数之一,在温度控制中,由于受到温度被控对象特性(如惯性大、滞后大、非线性等)的影响,使得控制性能难以提高,有些工艺过程其温度控制的好坏直接影响着产品的质量,因而设计一种较为理想的温度控制系统是非常有价值的。 为了实现高精度的水温测量和控制,本文介绍了一种以Atmel公司的低功耗高性能CMOS 8位单片机为核心,以PID算法控制以及PID参数整定相结合的控制方法来实现的水温控制系统,其硬件电路还包括温度采集、温度控制、温度显示、键盘输入以及RS232接口等电路。该系统可实现对温度的测量,并能根据设定值对温度进行调节,实现控温的目的。 关键词:AT89S52;温度控制;PT1000;PID

Design of Temperature Automatic Control System Abstract: The temperature is one of the mainly charged parameters which are industrial control targets. It is difficult to enhance the control performance due to the characteristics of the temperature charged object. Such as inertia, hysteresis and non-linear, etc…I ts temperature control process will have a direct impact on the quality of the product in some technological process. Therefore it is absolute valuable to design a ideal temperature control system. In order to realize the high accuracy survey and control of water temperature. Systematic core is AT89S52, which is a low-power loss, high-performance 8-bit MCU of Atmel Company. The system unifies PID control algorithm and PID parameter tuning to control the water temperature. Its hardware circuit also includes temperature gathering, temperature control and temperature display, keyboard input and RS232 interfaces. The system can realize to survey the water temperature, and it can adjust the temperature according to the setting value. Keywords:AT89S52; temperature control; PT1000; PID

相关主题
文本预览
相关文档 最新文档