当前位置:文档之家› 作业3-多变量回归模型与假设检验知识讲解

作业3-多变量回归模型与假设检验知识讲解

作业3-多变量回归模型与假设检验知识讲解
作业3-多变量回归模型与假设检验知识讲解

作业3-多变量回归模型与假设检验

作业3:多变量线性回归模型与假设检验

姓名:_____万瑜_______;学号:______1157120_________

12根据美国1965年第一季度到1983年第四季度的数据(n=76),詹姆斯和埃斯马尔得到下面的回归方程,用以解释美国的个人消费支出

Y ?t =-10.36+0.93X 2t -2.09X 3t

t=(-3.33)(249.06)(-3.06)R 2=0.9996

F=83753.7

其中,Y ——个人消费支出(10亿美元);X 2——(税后)可支配收入(10亿美元);X 3——银行支付利率(%)。

A . 求边际消费倾向(MPC )——每额外增加1美元个人可支配收入所增加的消费支出。

解:每额外增加一美元个人可支配收入所增加的消费支出为:0.93美元。即:MPC=0.93

B . MP

C 显著不为1吗?给出检验过程(给定显著性水平为5%,且t 0。05(73)=2;t 0。

025(73)=2.385。

? 提示:在回归参数的t 检验中原假设与备择假设分别为:H 0:βi =0 H 1:βi ≠0 。

构造的统计量为:

给定显著性水平α时,拒绝原假设H 0 的条件为 |t|> t α/2(n-k-1)

我们计算当H 0成立时的t 值,再与t α/2(n-k-1)比较,可得t 检验是否通过。

而此题中,因为MPC 实际上是X 2的系数,故我们只需要将原假设写为:H 0:

βi =1,再计算此时的t 值(需要考虑?i

S β怎么计算出来,这也是F 小问的问题),与显

著性水平下的t α/2(n-k-1)比较就行。

解:先由上原假设:0:10=βH 的已知t 值和1?β,又因为01

=β,所以由上式得:06

.24993

.0?1?1

=

=

t

S ββ

再由上问题假设:

1:10='

βH

7465

.1806

.24993

.01

93.0?1

?

11-=-=-=

'βββS t

.

因为给定显著性水平5%:385.2)73(7465.18025.0=>=t t .所以拒绝H0原假设MPC=1.

C . 模型中包括主要利率变量的理论基础是什么?先验地预期这个变量的符号为负吗?

解:购买物品时有时需要贷款及信用卡消费,很多是分期付款的,所以利率变量也有可能成为影响消费的因素之一;当银行利率升高时,人们的消费欲望就会降低,比较愿意把钱存在银行中吃利息。

D . b 3显著不为0吗?

解:同B 题解法:t=(-2.09)/(-2.09/-3.06)=-3.06. 385.2)73(06.3025.0=>=t t .所以拒绝H0。

在0.05的置信水平上是显著的

E . 检验假设R 2=0.

解:?=02R 0:210==ββH 。相当于F 检验的联合假设假设。 总体显著性的检验:=F 83753.7.选取显著性水平为5%,)73,3(025.0F =

3.12210293

因为 3.122102937.837530=>=F F .所以拒绝0H

F . 计算每个系数的标准误。

解:1111.333.336.100?=-=

βS ;003734.006

.24993.01?==βS ;6830.006.309

.21

?=--=βS

14.表4-7给出了64个国家婴儿死亡率(CM )、女性文盲率(FLR )、人均GNP (PGNP )和总生育率(TFR )的数据。 设:CM=y , FLR=x1,PGNP=x2,TFR=x3

A .先验地从经济意义上预期CM 和各个变量之间的关系。

解:婴儿的死亡率(CM )应与女性文盲率 (FLR )和 人均GNP (PGNP )成负相关 ,与总生育率(TRF )成正相关。 B .做CM 对FLR 的回归。

回归方程为:

y=263.8635-2.390496x1

C. 做CM对FLR和PGNP的回归。

回归方程为:

y=263.6416-2.231586x1-0.005647x2

D. 做CM对FLR,PGNP和TFR的回归,并给出ANOVA表

回归方程为:

y=168.3067-1.768029x1-0.005511x2+12.86864x3;

E. 根据各种回归结果,选择哪个模型?为什么?

解:用三个变量的模型更好,所有的系数的正负都与问题A 中的预测相同,每个变量的t 检验的p 值都很小,所以回归系数都是显著的,而且根据D 问中的

三个表观察到调整2

R 的值随着自变量的增加而变大。

F. 如果回归模型(d )是正确的模型,但却估计了(a )或(b )或(c ),会有什么后果?

解:模型中漏了某个相关变量造成模型的估计量不一致。

G. 假定做回归(b ),如何决定增加变量PGNP 和TFR ?使用了哪种检验?给出必要的计算结果。

解:回归变量的增加使得2R 变大,说明加入的变量对y 值有显著影响,决定增

H0:受限模型的约束是有效的。

无约束条件下(非受限模型)回归的可决系数为747372.02

=r R ,(受限模型)有约束条件下的回归系数为66959.02

=ur R ,约束条件的个数(所增加变量的个数,原来为FLR ,现在多了PGNP 和TFR)为m=2 (PGNP 和TFR )得:

2399.9)

464/()747372.01(2

/)66959.0747372.0()

/()1(/)(2

2

2

=---=

---=k n R m R R F ur r ur

150411.3)60,2(2399.9025.0=>=F F 拒绝原假设,F 统计量在统计上是显著的,PGNP 和TFR 对CM 有显著影响应保留在模型中。

多元线性回归模型的各种检验方法.doc

对多元线性回归模型的各种检验方法 对于形如 u X X X Y k k +++++=ββββΛΛ22110 (1) 的回归模型,我们可能需要对其实施如下的检验中的一种或几种检验: 一、 对单个总体参数的假设检验:t 检验 在这种检验中,我们需要对模型中的某个(总体)参数是否满足虚拟假设0 H :j j a =β,做出具有统计意义(即带有一定的置信度)的检验,其中j a 为某个给定的已知数。特别是,当j a =0时,称为参数的(狭义意义上的)显著性检验。如果拒绝0H ,说明解释变量j X 对 被解释变量Y 具有显著的线性影响,估计值j β?才敢使 用;反之,说明解释变量j X 对被解释变量Y 不具有显 著的线性影响,估计值j β?对我们就没有意义。具体检验 方法如下: (1) 给定虚拟假设 0H :j j a =β;

(2) 计算统计量 )?(?)?()(?j j j j j j Se a Se E t βββββ-=-= 的数值; 11?)?(++-==j j jj jj j C C Se 1T X)(X ,其中σβ (3) 在给定的显著水平α下(α不能大于1.0即 10%,也即我们不能在置信度小于90%以下的前提下做结论),查出双尾t (1--k n )分布的临界值2/αt ; (4) 如果出现 2/αt t >的情况,检验结论为拒绝 0H ;反之,无法拒绝0H 。 t 检验方法的关键是统计量 )?(?j j j Se t βββ-=必须服从已 知的t 分布函数。什么情况或条件下才会这样呢?这需要我们建立的模型满足如下的条件(或假定): (1) 随机抽样性。我们有一个含n 次观测的随机样(){}n i Y X X X i ik i i ,,2,1:,,,,21ΛΛ=。这保证了误差u 自身的随机性,即无自相关性,

门限分位数自回归模型及在股市收益自相关分析中的应用

门限分位数自回归模型及在股市收益自相关分析中的应用 摘要:门限分位数自然回归模型是一种非限行分位数回归模型,其可以应用讨论系统之中的门限效应。并且在该模型之中,自然回归阶数以及门限值的确定等都将会为模型的分析效果带来直接的影响。本文主要对门限分位数自然回归模型以及其在股市收益中的相关应用做出分析,希望能够给予同行业的工作人员提供一定参考价值。 关键词:门限分位数;回归模型;股市收益;分析 股市收益的自相关性是金融市场研究中的一个重要问题,研究人员针对于理性预定理论提出了有效的市场假说,奠定了传统的金融学基础。有效的市场假说理论认为在一个有效的市场之中,股市的价格或者收益直接地反映了所有可能会获得的信息,过去的收益以及未来的收益并不相关,股市的收益则是不可以预测的,反而言之如果股市的收益在时间上是自相关的,那么历史收益是可以影响当前的收益的,这也直接表明了有效市场假说是难以成立的,可以采取序列自相关分析的方法,对其有效市场假说做出相应验证。 一、门限分位数自然回归模型的分析 1. 模型的表示分析 主要是记{ yt }作为其1 维响应的变量,然而x =(1,yt -1,yy

-2,…,yt -p)T 主要是为p+1为向量组成的解释变量,然而{ yt }则是为1维门限的白能量,其自然回归模型之中的门限变量通常情况下是需要相应变量{ yt }的滞后项,而γ则表示为门限,其模型如下所示: 和均值自激励门限自然回归的模型进行对比,门限分位数自回归模型存在着下述的优点:一是信息刻画更加全面,回归系数估计在不同的分位点可能存在着不同的表型,同时不同阶段的变量之间关系更加细致。二是具有比较强的稳健性,和均值自激励门限自回归模型要求误差项服从特定分布的不同,其允许误差项服从一般的非对称的分布。 2. 模型的定阶 在门限分位数自然回归之中,最优滞后阶数p的选择是十分重要的,可以通过AIC的准确去进行实现,然而定义AIC的准则则是如下所示: 可以看出,AIC主要由两个部分所组成,一是可以反映出模型的拟合程度,主要是为前半段进行表示。二是反映出模型的复杂城市,则是经过后半段进行表示。 3. 门限效应的诊断检验分析 针对于门限效应而言,其诊断检验主要是包括了以下方面的内容:第一,门限效应存在性检验,主要检验两个阶段的门限效应

多元线性回归模型的各种检验方法-7页文档资料

对多元线性回归模型的各种检验方法 对于形如 u X X X Y k k +++++=ββββΛΛ22110 (1) 的回归模型,我们可能需要对其实施如下的检验中的一种或几种检验: 一、 对单个总体参数的假设检验:t 检验 在这种检验中,我们需要对模型中的某个(总体)参数是否满足虚拟假设0H :j j a =β,做出具 有统计意义(即带有一定的置信度)的检验,其中j a 为某个给定的已知数。特别是,当j a =0时,称为参 数的(狭义意义上的)显著性检验。如果拒绝 0H ,说明解释变量j X 对被解释变量Y 具有显著的线性 影响,估计值j β?才敢使用;反之,说明解释变量 j X 对被解释变量Y 不具有显著的线性影响,估计值j β?对我们就没有意义。具体检验方法如下: (1) 给定虚拟假设 0H :j j a =β; (2) 计算统计量 )?(?)?()(?j j j j j j Se a Se E t βββββ-= -= 的数值; (3) 在给定的显著水平α 下( α 不能大于 1.0即 10%,也即我们不能在置信度小于90%以下的前提下做结论),查出双尾t (1--k n )分布的临界值2/αt ; (4) 如果出现 2/αt t >的情况,检验结论为拒绝0H ;反之,无法拒绝0H 。

t 检验方法的关键是统计量 )?(?j j j Se t βββ-= 必须服从已知的 t 分布函数。什么情况或条件下才会这 样呢?这需要我们建立的模型满足如下的条件(或假定): (1) 随机抽样性。我们有一个含n 次观测的随 机样 (){}n i Y X X X i ik i i ,,2,1:,,,,21ΛΛ=。这保证了误差u 自身的随机性,即无自相关性, 0))())(((=--j j i i u E u u E u Cov 。 (2) 条件期望值为0。给定解释变量的任何值,误差 u 的期望值为零。即有 这也保证了误差u 独立于解释变量 X X X ,,,21Λ,即模型中的解释变量是外生性的,也使得 0)(=u E 。 (3) 不存在完全共线性。在样本因而在总体中,没有一个解释变量是常数,解释变量之间也不存在严格的线性关系。 (4) 同方差性。常数==2 21),,,(σk X X X u Var Λ。 (5) 正态性。误差u 满足 ),0(~2 σNormal u 。 在以上5个前提下,才可以推导出: 由此可见, t 检验方法所要求的条件是极为苛刻的。 二、 对参数的一个线性组合的假设的检验 需要检验的虚拟假设为 0H :21j j ββ=。比如21ββ=无 法直接检验。设立新参数 211ββθ-=。

非参数回归模型

非参数回归模型 非参数回归模型也叫多元回归模型,它是一种脱离于混沌理论的多条路段分析方法。它是对当前路段和几条相邻路段的交通流信息对当前路段进行交通流预测的单条路段分析的扩展。它不需要先验知识,只需要有足够的历史数据即可。它的原理是:在历史数据库中寻找与当前点相似的近邻,并根据这些近邻来预测下一时间段的流量。该算法认为系统所有的因素之间的内在联系都蕴含在历史数据中,因此直接从历史数据中得到信息而不是为历史数据建立一个近似模型。非参数回归最为一种无参数、可移植、预测精度高的算法,它的误差比较小,且误差分布情况良好。尤其通过对搜索算法和参数调整规则的改进,使其可以真正达到实时交通流预测的要求。并且这种方法便于操作实施,能够应用于复杂环境,可在不同的路段上方便地进行预测。能够满足路网上不同路段的预测,避免路段位置和环境对预测的影响。随着数据挖掘技术左键得到人们的认可和国内外学者的大量相关研究,使得非参数回归技术在短时交通流预测领域得到广泛应用。 非参数回归的回归函数()X g Y =的估计值()X g n 一般表示为: ()()∑==n i i i i n Y X W X g 1 其中,Y 为以为广策随机变量;X 为m 维随机变量;(Xi,Yi )为第i 次观测值,i=1,...,n ;Wi(Xi)为权函数.非参数回归就是对g(X)的形状不加任何限制,即对g (X )一无所知的情况下,利用观测值(Xi,Yi ),对指定的X 值去估计Y 值。由于其不需要对系统建立精确的数学模型,因此比较适合对事变的、非线性的系统进行预测,符合对城市交通流的预测,同时可以与历史平均模型实现优缺点的互补。 K 近邻法 Friedman 于1977年提出了K 近邻法。其并不是让所有的数据都参与预测,而是以数据点到X 点的距离为基础,甲醛是只有离X 最近的K 个数据被用来估计相应的g(X)值。可以引入欧式空间距离d ,然后按这个距离将X1,X2,...,Xn 与X 接近的程度重新排序:Xk1,...,Xkn,取权值如下: Wki(X:X1,...,Xn)=ki,i=1,..,n 将与X 最近的前K 个观测值占有最大的权K=1,其余的观测值赋予权值k=0.最终得到应用于短时交通流预测的K 近邻法可表示为: ()()()()K t V t V g t V K i i ∑=+==+111

Stata门限模型的操作和结果详细解读

一、门限面板模型概览 如果你不愿意看下面一堆堆的文字,更不想看计量模型的估计和检验原理,那就去《数量经济技术经济研究》上,找一篇标题带有“双门槛(或者双门限)”的文章,浏览一遍,看看文章计量部分列示的统计量和检验结果。这样,在软件操作时,你就知道每一步得到的结果有什么意义,怎么解释了,起码心里会有点印象。 一般情况下,一个研究生花费在研究上的时间越多,他的成果越丰富,也就是说,研究成果和研究时间存在某种正向关联。但是,这种关联是线性的吗?在最初阶段,他可能看了两三年的文献,也没有写出一篇优秀的文章,但是一旦过了这个基础期,他的能量和成果将如火山爆发一样喷涌出来,此时,他投入少量的时间,就能产出大量优质文章。再过几年,他可能会进入另外一种境界,虽然比以前有了极大提高,但是研究进入新的瓶颈期,文章发表的数量减少。由此可以看出,研究成果与研究年限存在一种阶段性的线性关系。这个基础期的结点、瓶颈期的起点就像“门槛”一样把研究阶段分成三个部分,在不同部分,成果和时间的线性关系都不同。这个效应被称为门槛效应或门限效应。 门限效应,是指当一个经济参数达到特定的数值后,引起另外一个经济参数发生突然转向其它发展形式的现象。作为原因现象的临界

值称为门限值。在上面的例子中,成果和时间存在非线性关系,但是在每个阶段是线性关系。有些人将这样的模型称为门槛模型,或者门限模型。如果模型的研究对象包含多个个体多个年度,那么就是门限面板模型。 汉森(Bruce E. Hansen)在门限回归模型上做出了很多贡献。了解门限模型最好的办法,首先就要阅读他的文章。他的文章很有特点:条理很清晰,推导过程详细,语言简练,语法不复杂。有关他的论文、程序、数据可以参考Hansen的个人网站: https://www.doczj.com/doc/5417601777.html,/~bhansen/progs/progs_subject.htm。 Hansen于1996年在《Econometrica》上发表文章《Inference when a nuisance parameter is not identified under the null hypothesis》,提出了时间序列门限自回归模型(TAR)的估计和检验。之后,他在门限模型上连续追踪,发表了几篇经典文章,尤其是1999年的《Threshold effects in non-dynamic panels: Estimation, testing and inference》,2000年的《Sample splitting and threshold estimation》和2004年与他人合作的《Instrumental Variable Estimation of a Threshold Model》。 在这些文章中,Hansen介绍了包含个体固定效应的静态平衡面板数据门限回归模型,阐述了计量分析方法。方法方面,首先要通过减去时间均值方程,消除个体固定效应,然后再利用OLS(最小二乘法)进行系数估计。如果样本数量有限,那么可以使用自举法

Stata门限模型的操作和结果详细解读(完整资料).doc

【最新整理,下载后即可编辑】 一、门限面板模型概览 如果你不愿意看下面一堆堆的文字,更不想看计量模型的估计和检验原理,那就去《数量经济技术经济研究》上,找一篇标题带有“双门槛(或者双门限)”的文章,浏览一遍,看看文章计量部分列示的统计量和检验结果。这样,在软件操作时,你就知道每一步得到的结果有什么意义,怎么解释了,起码心里会有点印象。 一般情况下,一个研究生花费在研究上的时间越多,他的成果越丰富,也就是说,研究成果和研究时间存在某种正向关联。但是,这种关联是线性的吗?在最初阶段,他可能看了两三年的文献,也没有写出一篇优秀的文章,但是一旦过了这个基础期,他的能量和成果将如火山爆发一样喷涌出来,此时,他投入少量的时间,就能产出大量优质文章。再过几年,他可能会进入另外一种境界,虽然比以前有了极大提高,但是研究进入新的瓶颈期,文章发表的数量减少。由此可以看出,研究成果与研究年限存在一种阶段性的线性关系。这个基础期的结点、瓶颈期的起点就像“门槛”一样把研究阶段分成三个部分,在不同部分,成果和时间的线性关系都不同。这个效应被称为门槛效应或门限效应。 门限效应,是指当一个经济参数达到特定的数值后,引起另外一个经济参数发生突然转向其它发展形式的现象。作为原因现象的临界值称为门限值。在上面的例子中,成果和时间存在非线性关系,但是在每个阶段是线性关系。有些人将这样的模型称为门槛模型,或者门限模型。如果模型的研究对象包含多个个体多个年度,那么就是门限面板模型。 汉森(Bruce E. Hansen)在门限回归模型上做出了很多贡献。了解门限模型最好的办法,首先就要阅读他的文章。他的文章很有特点:条理很清晰,推导过程详细,语言简练,语法不复杂。有关他的论文、程序、数据可以参考Hansen的个人网站:

S门限模型的操作和结果详细解读

一、门限面板模型概览? 如果你不愿意看下面一堆堆的文字,更不想看计量模型的估计和检验原理,那就去《数量经济技术经济研究》上,找一篇标题带有“双门槛(或者双门限)”的文章,浏览一遍,看看文章计量部分列示的统计量和检验结果。这样,在软件操作时,你就知道每一步得到的结果有什么意义,怎么解释了,起码心里会有点印象。 一般情况下,一个研究生花费在研究上的时间越多,他的成果越丰富,也就是说,研究成果和研究时间存在某种正向关联。但是,这种关联是线性的吗?在最初阶段,他可能看了两三年的文献,也没有写出一篇优秀的文章,但是一旦过了这个基础期,他的能量和成果将如火山爆发一样喷涌出来,此时,他投入少量的时间,就能产出大量优质文章。再过几年,他可能会进入另外一种境界,虽然比以前有了极大提高,但是研究进入新的瓶颈期,文章发表的数量减少。由此可以看出,研究成果与研究年限存在一种阶段性的线性关系。这个基础期的结点、瓶颈期的起点就像“门槛”一样把研究阶段分成三个部分,在不同部分,成果和时间的线性关系都不同。这个效应被称为门槛效应或门限效应。 门限效应,是指当一个经济参数达到特定的数值后,引起另外一个经济参数发生突然转向其它发展形式的现象。作为原因现象的临界值称为门限值。在上面

的例子中,成果和时间存在非线性关系,但是在每个阶段是线性关系。有些人将这样的模型称为门槛模型,或者门限模型。如果模型的研究对象包含多个个体多个年度,那么就是门限面板模型。 汉森(Bruce E. Hansen)在门限回归模型上做出了很多贡献。了解门限模型最好的办法,首先就要阅读他的文章。他的文章很有特点:条理很清晰,推导过程详细,语言简练,语法不复杂。有关他的论文、程序、数据可以参考Hansen的个人网站: 。 Hansen于1996年在《Econometrica》上发表文章《Inference when a nuisance parameter is not identified under the null hypothesis》,提出了时间序列门限自回归模型(TAR)的估计和检验。之后,他在门限模型上连续追踪,发表了几篇经典文章,尤其是1999年的《Threshold effects in non-dynamic panels: Estimation, testing and inference》,2000年的《Sample splitting and threshold estimation》和2004年与他人合作的《Instrumental Variable Estimation of a Threshold Model》。 在这些文章中,Hansen介绍了包含个体固定效应的静态平衡面板数据门限回归模型,阐述了计量分析方法。方法方面,首先要通过减去时间均值方程,消除个体固定效应,然后再利用OLS(最小二乘法)进行系数估计。如果样本数量有限,那么可以使用自举法(Bootstrap)重复抽取样本,提高门限效应的显著性检验效率。 在Hansen(1999)的模型中,解释变量中不能包含内生解释变量,无法扩展

实验(二)多变量线性回归模型Microsoft Word 文档

实验(二)多变量回归模型及面板数据初步处理 【实验目的】 掌握多变量线性回归模型的参数估计及相关内容 【实验内容】 建立多变量线性回归模型,回归参数估计,散点图,残差图等。建立面板数据库并处理数据。 【实验步骤】 实验步骤一:如何在数据表删除某一列数据,或在两列数据中插入一列数据, 在数据表删除某一列数据的操作:双击数据组标示→打开数据组表→编辑一组数据→点击鼠标右键→拉出一菜单→点击Remove Series。 在两列数据中插入一列数据:双击数据组标示→打开数据组表→编辑一组数据→点击鼠标右键→拉出一菜单→点击Insert Series。 实验步骤二:建立面板数据库并处理数据。 向EViews6.0中输入截面数据名称的时候,应先建立一个合并数据(Pool)对象。 ★选择EViews6.0主菜单Object→New Object→Pool ★在Pool中输入 _BJ _TJ _HB _LN _SHH _JS _ZHJ _FJ _SHD _GD _HN ★在Pool窗口点击name,保存。 ★在Pool窗口点击sheet,打开一个窗口,输入GDP?,RENKOU?,GSH?,GZH?。就得到一个东部地区GDP,RENKOU,GSH,GZH的Poolsheet(面板数据表)。 ★在Pool窗口点击define,回到Pool的标示窗口;点击Pool的标示窗口sheet,打开一个窗口,输入GDP?,RENKOU?,GSH?,GZH?。得到GDP,RENKOU,GSH,GZH的Poolsheet (面板数据表)。 ★Pool序列的序列名使用的是基本名和“?”占位符。例如,GDP?代表: GDP_BJ——北京GDP GDP_TJ——天津GDP GDP_HB——河北GDP GDP_LN——辽宁GDP

门限回归(门槛)

门槛回归模型(阈值回归模型) (1)模型设置 Hansen(2000) 将“门槛回归”模型的基本形式定义为: i i i e x y +='1θ, q i ≤γ (1) i i i e x y +='2θ, q i >γ (2) 其中,作为解释变量的x i 是一个m 维的列向量。q i 被称为“门槛变量”,Hansen(2000)认为门槛变量既可以是解释变量x i 中的一个回归元 ,也可以作为一个独立的门槛变量。根据其相应的“门槛值”γ,可将样本分成“两类”(two regimes)。 将模型 (1) (2) 的形式改写成单一方程形式时,首先需要定义一个虚拟变量d i (γ)={q i ≤γ} ,此处{g}是一个指示函数( indicator function),令集合x i (γ ) = x i d i (γ)。因此,模型(1) (2)可写成: i i n i i e x x y ++=)(''γδθ (3) 通过这种添加虚拟变量的方式,可知θ=θ2 ,δn =θ2-θ1。将式(3)进一步改写成矩阵形式: e +=n δX +X Y γθ (4) 此时模型中的回归参数为 (θ,δn ,γ) 。在γ给定的前提下,式(4)中的θ和δn 是线性关系。因此,根据条件最小二乘估计方法,用X γ* = [X X r ]对Y 回归,得到相应的残差平方和函数如下: Y X X X X Y Y Y S S n n ')'('')),(),(()(*1***γγγγγγδγθγ--== 估计得到的门槛值就是使S n (γ)最小的γ?。被定义为: )(min arg ?γγγn S n Γ∈= (5) 其中,Γn =Γ∩{ q 1,…,q n }。Hansen(2000) 将门槛变量中的每一观测值均作为了可能的门槛值,将满足式(5)的观测值确定为门槛值。当门槛估计值确定之后,那么其他参数值也就能够相应地确定。 2. 显著性检验 门槛回归模型显著性检验的目的是,检验以门槛值划分的两组样本其模型估计参数是否显著不同。因此,不存在门槛值的零假设为: H0:θ1 =θ2。同时构造LM 统计量: )?()?(0γ γn n S S S n L -= (6) 其中,S 0是在零假设下的残差平方和。由于LM 统计量并不服从标准的分布。因此,Hansen(2000)提出了通过“自举法”(Bootstrap )来获得渐进分布的想法,进而得出相应的概率p 值,也称为Bootstrap P 值。这种方法的基本思想是:在解释变量和门槛值给定的前提 下,模拟(Simulate) 产生一组因变量序列,并使其满足N (0 ,2 ?e ),其中e ?是式(4)的残差项。每得到一个自抽样样本,就可以计算出一个模拟的LM 统计量。将这一过程重复1000次,Hansen(1996)认为模拟产生的LM 统计量大于式(6)的次数占总模拟次数的百分比就是“自举

S门限模型的操作和结果详细解读

S门限模型的操作和结果详细解读 文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)

一、门限面板模型概览? 如果你不愿意看下面一堆堆的文字,更不想看计量模型的估计和检验原理,那就去《数量经济技术经济研究》上,找一篇标题带有“双门槛(或者双门限)”的文章,浏览一遍,看看文章计量部分列示的统计量和检验结果。这样,在软件操作时,你就知道每一步得到的结果有什么意义,怎么解释了,起码心里会有点印象。? 一般情况下,一个研究生花费在研究上的时间越多,他的成果越丰富,也就是说,研究成果和研究时间存在某种正向关联。但是,这种关联是线性的吗在最初阶段,他可能看了两三年的文献,也没有写出一篇优秀的文章,但是一旦过了这个基础期,他的能量和成果将如火山爆发一样喷涌出来,此时,他投入少量的时间,就能产出大量优质文章。再过几年,他可能会进入另外一种境界,虽然比以前有了极大提高,但是研究进入新的瓶颈期,文章发表的数量减少。由此可以看出,研究成果与研究年限存在一种阶段性的线性关系。这个基础期的结点、瓶颈期的起点就像“门槛”一样把研究阶段分成三个部分,在不同部分,成果和时间的线性关系都不同。这个效应被称为门槛效应或门限效应。? 门限效应,是指当一个经济参数达到特定的数值后,引起另外一个经济参数发生突然转向其它发展形式的现象。作为原因现象的临界值称为门限值。在上面的例

子中,成果和时间存在非线性关系,但是在每个阶段是线性关系。有些人将这样的模型称为门槛模型,或者门限模型。如果模型的研究对象包含多个个体多个年度,那么就是门限面板模型。? 汉森(Bruce E. Hansen)在门限回归模型上做出了很多贡献。了解门限模型最好的办法,首先就要阅读他的文章。他的文章很有特点:条理很清晰,推导过程详细,语言简练,语法不复杂。有关他的论文、程序、数据可以参考Hansen的个人网站:。? Hansen于1996年在《Econometrica》上发表文章《Inference when a nuisance parameter is not identified under the null hypothesis》,提出了时间序列门限自回归模型(TAR)的估计和检验。之后,他在门限模型上连续追踪,发表了几篇经典文章,尤其是1999年的《Threshold effects in non-dynamic panels: Estimation, testing and inference》,2000年的《Sample splitting and threshold estimation》和2004年与他人合作的《Instrumental Variable E s t i m a t i o n o f a T h r e s h o l d M o d e l》。? 在这些文章中,Hansen介绍了包含个体固定效应的静态平衡面板数据门限回归模型,阐述了计量分析方法。方法方面,首先要通过减去时间均值方程,消除个体固定效应,然后再利用OLS(最小二乘法)进行系数估计。如果样本数量有限,那么可以使用自举法(Bootstrap)重复抽取样本,提高门限效应的显着性检验效率。?

回归分析方法

回归分析方法Newly compiled on November 23, 2020

第八章回归分析方法 当人们对研究对象的内在特性和各因素间的关系有比较充分的认识时,一般用机理分析方法建立数学模型。如果由于客观事物内部规律的复杂性及人们认识程度的限制,无法分析实际对象内在的因果关系,建立合乎机理规律的数学模型,那么通常的办法是搜集大量数据,基于对数据的统计分析去建立模型。本章讨论其中用途非常广泛的一类模型——统计回归模型。回归模型常用来解决预测、控制、生产工艺优化等问题。 变量之间的关系可以分为两类:一类叫确定性关系,也叫函数关系,其特征是:一个变量随着其它变量的确定而确定。另一类关系叫相关关系,变量之间的关系很难用一种精确的方法表示出来。例如,通常人的年龄越大血压越高,但人的年龄和血压之间没有确定的数量关系,人的年龄和血压之间的关系就是相关关系。回归分析就是处理变量之间的相关关系的一种数学方法。其解决问题的大致方法、步骤如下: (1)收集一组包含因变量和自变量的数据; (2)选定因变量和自变量之间的模型,即一个数学式子,利用数据按照最小二乘准则计算模型中的系数; (3)利用统计分析方法对不同的模型进行比较,找出与数据拟合得最好的模型; (4)判断得到的模型是否适合于这组数据; (5)利用模型对因变量作出预测或解释。 应用统计分析特别是多元统计分析方法一般都要处理大量数据,工作量非常大,所以在计算机普及以前,这些方法大都是停留在理论研究上。运用一般计算语言编程也要

占用大量时间,而对于经济管理及社会学等对高级编程语言了解不深的人来说要应用这些统计方法更是不可能。MATLAB 等软件的开发和普及大大减少了对计算机编程的要求,使数据分析方法的广泛应用成为可能。MATLAB 统计工具箱几乎包括了数理统计方面主要的概念、理论、方法和算法。运用MATLAB 统计工具箱,我们可以十分方便地在计算机上进行计算,从而进一步加深理解,同时,其强大的图形功能使得概念、过程和结果可以直观地展现在我们面前。本章内容通常先介绍有关回归分析的数学原理,主要说明建模过程中要做的工作及理由,如模型的假设检验、参数估计等,为了把主要精力集中在应用上,我们略去详细而繁杂的理论。在此基础上再介绍在建模过程中如何有效地使用MATLAB 软件。没有学过这部分数学知识的读者可以不深究其数学原理,只要知道回归分析的目的,按照相应方法通过软件显示的图形或计算所得结果表示什么意思,那么,仍然可以学到用回归模型解决实际问题的基本方法。包括:一元线性回归、多元线性回归、非线性回归、逐步回归等方法以及如何利用MATLAB 软件建立初步的数学模型,如何透过输出结果对模型进行分析和改进,回归模型的应用等。 8.1 一元线性回归分析 回归模型可分为线性回归模型和非线性回归模型。非线性回归模型是回归函数关于未知参数具有非线性结构的回归模型。某些非线性回归模型可以化为线性回归模型处理;如果知道函数形式只是要确定其中的参数则是拟合问题,可以使用MATLAB 软件的curvefit 命令或nlinfit 命令拟合得到参数的估计并进行统计分析。本节主要考察线性回归模型。 一元线性回归模型的建立及其MATLAB 实现 其中01ββ,是待定系数,对于不同的,x y 是相互独立的随机变量。

自回归模型的参数估计案例

自回归模型的参数估计案例 案例一: 建立中国长期货币流通量需求模型。中国改革开放以来,对货币需求量(Y)的影响因素,主要有资金运用中的贷款额(X)以及反映价格变化的居民消费者价格指数(P)。 长期货币流通量模型可设定为 120e t t t t P Y X βμββ=+++ (1) 其中,e t Y 为长期货币流通需求量。由于长期货币流通需求量不可观测,作局部调整: 11()e t t t t Y Y Y Y δ---=- (2) 其中,t Y 为实际货币流通量。 将(1)式代入(2)得短期货币流通量需求模型: 0121(1)t t t t t Y X P Y δβδβδβδδμ-=+++-+ 表1中列出了1978年到2007年我国货币流通量、贷款额以及居民消费者价格指数的相关数据。 表1 年份 货币流通量Y (亿元) 居民消费者价格指数P (1990年=100) 贷款额X (亿元) 1978 212.0 46.2 1850.0 1979 267.7 47.1 2039.6 1980 346.2 50.6 2414.3 1981 396.3 51.9 2860.2 1982 439.1 52.9 3180.6 1983 529.8 54.0 3589.9 1984 792.1 55.5 4766.1 1985 987.8 60.6 5905.6 1986 1218.4 64.6 7590.8 1987 1454.5 69.3 9032.5

1988 2134.0 82.3 10551.3 1989 2344.0 97.0 14360.1 1990 2644.4 100.0 17680.7 1991 3177.8 103.4 21337.8 1992 4336.0 110.0 26322.9 1993 5864.7 126.2 32943.1 1994 7288.6 156.7 39976.0 1995 7885.3 183.4 50544.1 1996 8802.0 198.7 61156.6 1997 10177.6 204.2 74914.1 1998 11204.2 202.6 86524.1 1999 13455.5 199.7 93734.3 2000 14652.7 200.6 99371.1 2001 15688.8 201.9 112314.7 2002 17278.0 200.3 131293.9 2003 19746.0 202.7 158996.2 2004 21468.3 210.6 178197.8 2005 24031.7 214.4 194690.4 2006 27072.6 217.7 225347.2 2007 30375.2 228.1 261690.9 对局部调整模型0121(1)t t t t t Y X P Y δβδβδβδδμ-=+++-+运用OLS 法估计结果如图1: 图1 回归估计结果 由图1短期货币流通量需求模型的估计式: 1202.50.03577.45570.7236t t t t Y X P Y -=-+++

实验一 Eviews的基本使用、线性回归模型的估计和检验

实验一 Eviews 的基本使用、线性回归模型的估计和检验 实验目的与要求:熟悉Eviews 软件基本使用功能、掌握线性回归模型的参数估计及其检验。 实验内容:建立一个工作文件、数据的输入、数据的保存、生成新序列、 作序列图和相关图。线性回归模型的参数估计及其检验。 实验步骤:(具体步骤同学们可按照课堂讲解的程序进行也可按下面的指导操作,无论怎么操作,只要得到正确的结果即可) 一、模型的构建 表 2002年中国各地区城市居民人均年消费支出和可支配收入 作城市居民家庭平均每人每年消费支出(Y)和城市居民人均年可支配收入(X)的散点图,如图 从散点图可以看出居民家庭平均每人每年消费支出 (Y)和城市居民人均年可支配 收入(X)大体呈现为线性关系, 4000 6000 8000 10000 12000 4000 6000 8000 10000 12000 14000 X Y

所以建立的计量经济模型为如下线性模型: 12i i i Y X u ββ=++ 二、估计参数 利用EViews 作简单线性回归分析的步骤如下: 1、建立工作文件 首先,双击EViews 图标,进入EViews 主页。在菜单一次点击File\New\Workfile ,出现对话框“Workfile Range ”。在“Workfile frequency ”中选择数据频率: Annual (年度) Weekly ( 周数据 ) Quartrly (季度) Daily (5 day week ) ( 每周5天日数据 ) Semi Annual (半年) Daily (7 day week ) ( 每周7天日数据 ) Monthly (月度) Undated or irreqular (未注明日期或不规则的) 在本例中是截面数据,选择“Undated or irreqular ”。并在“Start date ”中输入开始时间或顺序号,如“1”在“end date ”中输入最后时间或顺序号,如“31”点击“ok ”出现“Workfile UNTITLED ”工作框。其中已有变量:“c ”—截距项 “resid ”—剩余项。 在“Objects ”菜单中点击“New Objects”,在“New Objects”对话框中选“Group”,并在“Name for Objects”上定义文件名,点击“OK ”出现数据编辑窗口。 若要将工作文件存盘,点击窗口上方“Save ”,在“SaveAs ”对话框中给定路径和文件名,再点击“ok ”,文件即被保存。 2、输入数据 在数据编辑窗口中,首先按上行键“↑”,这时对应的“obs”字样的空格会自动上跳,在对应列的第二个“obs”有边框的空格键入变量名,如“Y ”,再按下行键“↓”,对因变量名下的列出现“NA ”字样,即可依顺序输入响应的数据。其他变量的数据也可用类似方法输入。 也可以在EViews 命令框直接键入“data X Y ”(一元时) 或 “data Y 1X 2X … ”(多元时),回车出现“Group”窗口数据编辑框,在对应的Y 、X 下输入数据。 若要对数据存盘,点击 “fire/Save As”,出现“Save As ”对话框,在“Drives ”点所要存的盘,在“Directories ”点存入的路径(文件名),在“Fire Name ”对所存文件命名,或点已存的文件名,再点“ok ”。 若要读取已存盘数据,点击“fire/Open”,在对话框的“Drives”点所存的磁盘名,在“Directories”点文件路径,在“Fire Name”点文件名,点击“ok”即可。

线性回归模型检验方法拓展-三大检验

第四章线性回归模型检验方法拓展——三大检验作为统计推断的核心内容,除了估计未知参数以外,对参数的假设检验是实证分析中的一个重要方面。对模型进行各种检验的目的是,改善模型的设定以确保基本假设和估计方法比较适合于数据,同时也是对有关理论有效性的验证。 一、假设检验的基本理论及准则 假设检验的理论依据是“小概率事件原理”,它的一般步骤是 (1)建立两个相对(互相排斥)的假设(零假设和备择假设)。 (2)在零假设条件下,寻求用于检验的统计量及其分布。 (3)得出拒绝或接受零假设的判别规则。 另一方面,对于任何的检验过程,都有可能犯错误,即所谓的第一类错误 P(拒绝H |H0为真)=α 和第二类错误 P(接受H |H0不真)=β 在下图,粉红色部分表示P(拒绝H0|H0为真)=α。黄色部分表示P(接受H0|H0不真)=β。 而犯这两类错误的概率是一种此消彼长的情况,于是如何控制这两个概率,使它们尽可能的都小,就成了寻找优良的检验方法的关键。

下面简要介绍假设检验的有关基本理论。 参数显著性检验的思路是,已知总体的分布(,)F X θ,其中θ是未知参数。总体真实分布完全由未知参数θ的取值所决定。对θ提出某种假设 001000:(:,)H H θθθθθθθθ=≠><或,从总体中抽取一个容量为n 的样本,确定 一个统计量及其分布,决定一个拒绝域W ,使得0()P W θα=,或者对样本观测数据X ,0()P X W θα∈≤。α是显著性水平,即犯第一类错误的概率。 既然犯两类错误的概率不能同时被控制,所以通常的做法是,限制犯第一类错误的概率,使犯第二类错误的概率尽可能的小,即在 0()P X W θα∈≤ 0θ∈Θ 的条件下,使得 ()P X W θ∈,0θ∈Θ-Θ 达到最大,或 1()P X W θ-∈,0θ∈Θ-Θ 达到最小。其中()P X W θ∈表示总体分布为(,)F X θ时,事件W ∈{X }的概率,0 Θ为零假设集合(0Θ只含一个点时成为简单原假设,否则称为复杂原假设)。 0Θ-Θ为备择假设集合,并且0Θ与0Θ-Θ不能相交。由前述可知,当1H 为真时,它被拒绝(亦即H 0不真时,接受H 0)的概率为β,也就是被接受(亦即H 0不真时,拒绝H 0)的概率是1β-(功效),我们把这个接受1H 的概率称为该检验的势。在对未知参数θ作假设检验时,在固定α下,对θ的每一个值,相应地可求得1β-的值,则定义 =1()()P X W θβθ-∈

基于核估计的多变量非参数随机模型初步研究

基于核估计的多变量非参数随机模型初步研究 王文圣1,丁晶1 (1.四川大学水利水电学院,四川成都 610065) 摘要:本文基于核估计理论构造了多变量非参数模型。该模型是数据驱动的、不需识别和假定序列相依形式和概率分布形式的一类随机模型,克服了多变量参数模型的不足。实例统计试验表明,建议的多变量非参数模型是有成效的,为随机水文学发展提供了一些新思路。 关键词:核估计;多变量非参数模型;随机模拟;实用性检验 中图分类号:P333.9文献标识码:A 流域水资源的开发利用,不仅需要单站水文信息,而且需要流域内各站的水文信息。进行多站水文序列模拟的一个重要手段就是建立多站(变量)随机模型。目前,多变量随机模型[1]比较成熟的有自回归模型和解集模型。这两类模型的共同点是用有限个参数的线性函数关系描述水文现象。因此简便实用,能表征水文序列的统计特性和一般变化规律,但缺点也明显:①水文序列是一时间不可逆过程,而参数模型描述的是可逆过程,因此大多数参数模型难以反映其涨落不对称性;②水文现象受流域下垫面、人类活动、气候等多因素影响而变化错综,是一个高度复杂的非线性系统,而多数参数模型仅能表征变量及变量之间的线性相依结构,忽略了占据重要位置的非线性性;③水文变量概率密度函数复杂且未知,某一指定概率分布与真实分布存在着差异。如图1、2所示,正态分布、P-Ⅲ型分布都与直方图相差甚远,但χ2检验并不拒绝P-Ⅲ型分布和正态分布;而核估计和k最近邻估计与直方图比较接近。即概率分布具有不确定性;④模型参数由于抽样误差和估计方法不同具有不确定性。 为克服参数模型之不足,文献[2]提出了单变量非参数模型,径流模拟表明是满意的。在此基础上,本文基于核估计理论构造了多变量非参数模型。该模型避开了序列相依形式和模型结构的假设,不涉及模型参数估计,能反映各种复杂关系,较参数模型优越。以中国金沙江流域屏山站和宜宾—屏山区间两站日流量过程随机模拟为例,对建议模型进行了应用研究。 1 核估计理论[3] 1.1 多维核估计定义设X为d维随机变量,X1,X2,……X n为X的一样本。X的概率密度函数f(X)的核估计定义如下: (1)

多元线性回归实例分析报告

SPSS--回归-多元线性回归模型案例解析!(一) 多元线性回归,主要就是研究一个因变量与多个自变量之间的相关关系,跟一元回归原理差不多,区别在于影响因素(自变量)更多些而已,例如:一元线性回归方程 为: 毫无疑问,多元线性回归方程应该 为: 上图中的 x1, x2, xp分别代表“自变量”Xp截止,代表有P个自变量,如果有“N组样本,那么这个多元线性回归,将会组成一个矩阵,如下图所示: 那么,多元线性回归方程矩阵形式为: 其中:代表随机误差, 其中随机误差分为:可解释的误差与不可解释的误差,随机误差必须满足以下四个条件,多元线性方程才有意义(一元线性方程也一样) 1:服成正太分布,即指:随机误差必须就是服成正太分别的随机变量。 2:无偏性假设,即指:期望值为0 3:同共方差性假设,即指,所有的随机误差变量方差都相等 4:独立性假设,即指:所有的随机误差变量都相互独立,可以用协方差解释。 今天跟大家一起讨论一下,SPSS---多元线性回归的具体操作过程,下面以教程教程数据为例,分析汽车特征与汽车销售量之间的关系。通过分析汽车特征跟汽车销售量的关系,建立拟合多元线性回归模型。数据如下图所示:

点击“分析”——回归——线性——进入如下图所示的界面:

将“销售量”作为“因变量”拖入因变量框内, 将“车长,车宽,耗油率,车净重等10个自变量拖入自变量框内,如上图所示,在“方法”旁边,选择“逐步”,当然,您也可以选择其它的方式,如果您选择“进入”默认的方式,在分析结果中,将会得到如下图所示的结果:(所有的自变量,都会强行进入) 如果您选择“逐步”这个方法,将会得到如下图所示的结果:(将会根据预先设定的“F统计量的概率值进行筛选,最先进入回归方程的“自变量”应该就是跟“因变量”关系最为密切,

(完整版)多元线性回归模型公式

二、多元线性回归模型 在多要素的地理环境系统中,多个(多于两个)要素之间也存在着相互影响、相互关联的情况。因此,多元地理回归模型更带有普遍性的意义。 (一)多元线性回归模型的建立 假设某一因变量y 受k 个自变量k x x x ,...,,21的影响,其n 组观测值为(ka a a a x x x y ,...,,,21), n a ,...,2,1=。那么,多元线性回归模型的结构形式为: a ka k a a a x x x y εββββ+++++=...22110(3.2.11) 式中: k βββ,...,1,0为待定参数; a ε为随机变量。 如果k b b b ,...,,10分别为k ββββ...,,,210的拟合值,则回归方程为 ?=k k x b x b x b b ++++...22110(3.2.12) 式中: 0b 为常数; k b b b ,...,,21称为偏回归系数。 偏回归系数i b (k i ,...,2,1=)的意义是,当其他自变量j x (i j ≠)都固定时,自变量i x 每变化一个单位而使因变量y 平均改变的数值。 根据最小二乘法原理,i β(k i ,...,2,1,0=)的估计值i b (k i ,...,2,1,0=)应该使 ()[]min (2) 1 2211012 →++++-=??? ??-=∑∑==∧ n a ka k a a a n a a a x b x b x b b y y y Q (3.2.13) 有求极值的必要条件得 ???????==??? ??--=??=??? ??--=??∑∑=∧=∧n a ja a a j n a a a k j x y y b Q y y b Q 110) ,...,2,1(0202(3.2.14) 将方程组(3.2.14)式展开整理后得:

相关主题
文本预览
相关文档 最新文档