当前位置:文档之家› 第一章色谱分析法概论

第一章色谱分析法概论

第一章色谱分析法概论
第一章色谱分析法概论

第一章色谱分析法概论

第一节概述

色谱分析法简称色谱法或层析法(chromatography),是一种物理或物理化学分离分析方法。从本世纪初起,特别是在近50年中,由于气相色谱法、高效液相色谱法及薄层扫描法的飞速发展,而形成一门专门的科学——色谱学。色谱法已广泛应用于各个领域,成为多组分混合物的最重要的分析方法,在各学科中起着重要作用。历史上曾有两次诺贝尔化学奖是授予色谱研究工作者的:1948年瑞典科学家Tiselins因电泳和吸附分析的研究而获奖,1952年英国的Martin和Synge因发展了分配色谱而获奖;此外在1937~l972年期间有12次诺贝尔奖的研究中,色谱法都起了关键的作用。

色谱法创始于20世纪初,1906年俄国植物学家Tsweet将碳酸钙放在竖立的玻璃管中,从顶端倒入植物色素的石油醚浸取液,并用石油醚冲洗。在管的不同部位形成色带,因而命名为色谱。管内填充物称为固定相(stationary phase),冲洗剂称为流动相(mobile phase)。随着其不断发展,色谱法不仅用于有色物质的分离,而且大量用于无色物质的分离。虽然“色”已失去原有意义,但色谱法名称仍沿用至今。

30与40年代相继出现了薄层色谱法与纸色谱法。50年代气相色谱法兴起,把色谱法提高到分离与“在线”分析的新水平,奠定了现代色谱法的基础,l957年诞生了毛细管色谱分析法。60年代推出了气相色谱—质谱联用技术(GC-MS),有效地弥补了色谱法定性特征差的弱点。70年代高效液相色谱法(HPLC)的崛起,为难挥发、热不稳定及高分子样品的分析提供了有力手段。扩大了色谱法的应用范围,把色谱法又推进到一个新的里程碑。80年代初出现了超临界流体色谱法(SFC),兼有GC与HPLC的某些优点。80年代末飞速发展起来的高效毛细管电泳法(high performance capillary electrophoresis,HPCE)更令人瞩目,其柱效高,理论塔板数可达l07m-1。该法对于生物大分子的分离具有独特优点。

色谱法的分离原理主要是利用物质在流动相与固定相之间的分配系数差异而实现分离。色谱法与光谱法的主要区别在于色谱法具有分离及分析两种功能,而光谱法不具备分离功能。色谱法是先将混合物中各组分分离,而后逐个分析,因此是分析混合物最有力的手段。这种方法还具有高灵敏度、高选择性、高效能、分析速度快及应用范围广等优点。

色谱法可从不同的角度进行分类:

1.按流动相与固定相的分子聚集状态分类在色谱法中流动相可以是气体、液体和超临界流体,这些方法相应称为气相色谱法(gas chromatography,GC)、液相色谱法(liquid chromatography,LC)和超临界流体色谱法(supercritical fluid chromatography,SFC)等。按固定相为固体(如吸附剂)或液体,气相色谱法又可分为气-固色谱法(GSC)与气-液色谱法(GLC);液相色谱法又可分为液-固色谱法(LSC)及液-液色谱法(LLC)。

2.按操作形式分类可分为柱色谱法、平板色谱法、电泳法等类别。

柱色谱法(column chromatography)是将固定相装于柱管内构成色谱柱,色谱过程在色谱柱内进行。按色谱柱的粗细等,又可分为填充柱(packed column)色谱法、毛细管柱(capillary column)色谱法及微填充柱(microbore packed column)色谱法等类别。气相色谱法、高效液相色谱法(high performance liquid chromatography,HPLC)及超临界流体色谱法等属于柱色谱法范围。

平板色谱法(planar或plane chromatography)是色谱过程在固定相构成的平面状层内进行的色谱法。又分为纸色谱法(paper chromatography;用滤纸作固定液的载体)、薄层色谱法(thin layer chromatography,TLC,将固定相涂在玻璃板或铝箔板等板上)及薄膜色谱法(thin film chromatography;将高分子固定相制成薄膜)等,这些都属于液相色谱法范围。

毛细管电泳法(capillary electrophoresis,CE)的分离过程在毛细管内进行,利用组分在电场作用下的迁移速度不同进行分离。

3.按色谱过程的分离机制分类可分为分配色谱法(partition chromatography)、吸附色谱法(adsorption chromatography)、离子交换色谱法(ion exchange chromatography,IEC)、空间排阻色谱法(steric exclusion chromatography,SEC)及亲合色谱法(affinity chromatography)等类型。

色谱法简单分类如下表:

色谱法气相色谱法

填充柱色谱法

毛细管色谱法

(GC)

GLC

GSC

液相色谱法

(LC)

平板色谱

柱色谱法

经典液相柱色谱法

高效液相色谱法(HPLC)

薄层色谱法(TLC)

纸色谱法

SEC

LSC

LLC

LLC

SEC

LSC

IEC

LLC

高效毛细管电泳法(HPCE)

超临界流体色谱法(SFC)

第二节色谱法的基本原理

一、色谱过程

色谱过程是物质分子在相对运动的两相间分

配“平衡”的过程。混合物中,若两个组分的分配

系数(distribution coefficient)不等,则被流动相携带

移动的速度不等—差速迁移,而被分离。

吸附柱色谱法的操作及色谱过程如图18-l 所

示。把含有A、B两组分的样品加到色谱柱的顶端,

A、B均被吸附到固定相上。然后用适当的流动相

冲洗,当流动相流过时,已被吸附在固定相上的两

种组分又溶解于流动相中而被解吸,并随着流动相

向前移行,已解吸的组分遇到新的吸附剂颗粒,又

再次被吸附,如此在色谱柱上不断地发生吸附、解

吸、再吸附、再解吸……的过程。若两种组分的理化性质存在着微小的差异,则在吸附剂表面的吸附能力也存在微小的差异,经过反复多次的重复,使微小的差异积累起来就变成了大的差异,其结果就使吸附能力弱的B先从色谱柱中流出,吸附能力强的A后流出色谱柱,从而使各组分得到分离。

二、基本类型色谱法的分离机制

1.分配色谱法 分配色谱法利用被分离组分在固定相或流动相中的溶解度差别而实现分离。其固定相为液体,GLC 和LLC 都属于分配色谱法范围。

分配色谱法的示意图如图18-2。图中X 代表样品中某组分(溶质)分子,下标m 与s 分别为流动相与固定相。溶于流动相与溶于固定相的溶质分子处于动态平衡,平衡时浓度之比(严格应为活度比)为狭义分配系数(partition coefficient):

m

m s

s m s V X V X C C K //== (1.1) 溶质分子在固定相中溶解度越大,或在流动相中溶解度越小,则K 越大。在LLC 中K 主要与流动相的性质(种类与极性)有关,在GLC 中K 与固定相极性和柱温有关。

2.吸附色谱法 吸附色谱法利用被分离组分对固体表面活性吸附中心吸附能力的差别而实现分离。其固定相为固体吸附剂,大部分GSC 和LSC 都属于吸附色谱法。

吸附过程是样品中各组分的分子(X)与流动相分子(Y)争夺吸附剂表面活性中心(即为竞争吸附)的过程(图18-3)。吸附平衡可以表示为:

m a a m nY X nY X +?+

流动相中组分的分子X m 与吸附在吸附剂表面的n 个流动相分子Y a 相置换,组分的分子被吸附,以X a 表示。流动相分子回至流动相内部,以Y m 表示。吸附平衡常数称为吸附系数(K a ),可近似用浓度商表示:

[][][][]

n a m n m a a Y X Y X K =

因为流动相的量很大,[][]n

a n m Y Y /近似于常数,且吸附只发生于吸附剂表面,所以,吸附系数可写成:

[][]()()m m a a m a a V X S X X X K ////== (1.2)

式中S a 为吸附剂的表面积,V m 为流动相(展开剂)的体积。吸附系数与吸附剂的活性、组分的性质和流动相的性质有关。

3.离子交换色谱法 离子交换色谱法利用被分离组分离子交换能力的差别而实现分离。其固定相为离子交换树脂,按可交换离子的电荷符号又可分为阳离子交换树脂和阴离子交换树脂。

以阳离子交换色谱为例说明分离机制。图1-4中R 为树脂骨架,树脂表面的负离子(如SO 3-)为不可交换离子;其正离子为可交换离子(H +离子)。当流动相中携带有正离子出现时,发生交换反应(见第2章)。交换反应达平衡时,以浓度表示的平衡常数称为选择系数(selec- tivity coefficient ;K s ),即

[][]

++=X RX K s / (1.3)

式中RX +为交换到树脂上的阳离子,X +为在流动相中的游离阳离子。K s 与离子的电荷和水合离子半径、流动相性质和pH 、离子交换树脂的性质及温度有关。

4.空间排阻色谱法 空间排阻色谱法根据被分离组分分子的线团尺寸而进行分离。其固定相是多孔性填料凝胶,故此法又称为凝胶色谱法(gel chromatography),也称为分子排阻色谱法。该色谱法按流动相的不同分为两类:以有机溶剂为流动相者称为凝胶渗透色谱法 (gel

permeation chromatography ,GPC);以水溶液为流动相者为凝胶过滤色谱法(gel filtration chromatography ,GFC)。

凝胶色谱法的分离机制与前三种色谱法完全不同,它只取决于凝胶的孔径大小与被分离组分线团尺寸之间的关系,与流动相的性质无关。其作用类似于分子筛的作用(反筛子),示意图如图1-5。

凝胶色谱法的分离机制有多种说法,空间排斥理论是目前被多数人所接受的理论。该理论有两条假设:

(l)孔内外同等大小的溶质分子处于扩散平衡状态:

X

m s

X m 与X s 分别代表在流动相与凝胶孔隙中同等大小的溶质分子。平衡时,两者浓度之比为渗透系数(permeation coefficient ;K p )

[][]m s p X X K /= (1.4)

(2)渗透系数的大小只由溶质分子的线团尺寸及凝胶孔隙的大小所决定。

在凝胶孔径一定时:①当分子大到不能进入凝胶的所有孔隙时,[ X m ]=0,则K p =0;②当分子小到能进入所有孔隙时,[ X s ]=[X m ],K p =1;③分子尺寸在上述两种分子之间时,0

以上是四种基本类型的色谱法,这四类色谱法都可用于液相色谱法,而气相色谱法主要用前两类。此外,还有其他分离机制的色谱法。近年来最常见的一种色谱法是化学键合相色谱法(chemically bonded-phase chromatography),从分离机制讲,键合相色谱法并未超出上述基本类型,但是对于特定固定相在特定实验条件下,哪一种机制起主要作用仍是当前研究较多的问题。

三、分配系数与保留行为的关系

l.分配系数: 达到分配“平衡”后,组分在固定相(s)与流动相(m )中的浓度(C )之比为分配系数(K )。K 与组分、固定相和流动相的性质及温度有关。

m

s C C K = (1.5)

2.保留时间: 由进样到某组分色谱峰峰顶的时间间隔为该组分的保留时间(t R ),如图18-1所示。不保留(不溶于固定相或不被固定相所吸附等)组分的保留时间为死时间(t 0),亦即流动相的保留时间。

保留时间是色谱法的基本定性参数,主要用于定距洗脱(定距展开)。所谓定距洗脱,即记录组分通过一定长度的色谱柱或色谱板的时间,如GC 、HPLC 及旋转薄层色谱法应用这种洗脱方式。记录组分在同一展开时间的迁移距离,称为定时洗脱(定时展开)。这种展开方式多用于薄层色谱法。

3.保留时间与分配系数的关系: 设在单位时间内一个分子在流动相中出现的几率(即在流动相中停留的时间分数)为R ′,若R ′=l/3,则这个分子l/3时间在流动相中,2/3时间在固定相中。对于大量分子,则可表示有l/3的溶质分子在流动相,而2/3(即l 一R ′)的溶质分子在固定相。因为在流动相及固定相中溶质的量可分别用C m V m 及C s V s 表示, 所以,

m

s m m s s V V K V C V C R R ==''-1 V s 与V m 分别为在色谱柱或薄层板中固定相与流动相所占体积,整理上式得:

m

s V V K R +='11 由于R '表示溶质分子在流动相中的几率,而溶质分子只有出现在流动相中时才能随着流动相移动,因此若R '=l/3,则表示它在色谱柱中的移动速度将是流动相分子速度的l/3。因为t 0为流动相分子流经整个色谱柱的时间,所以溶质分子流经同样路程所需时间t R 将1/R '倍于t 0,即t R =t 0/R ',所以:

()m s R V KV t t /10+= (1.6)

式(1.6)叫色谱过程方程,是色谱法的最基本公式之一,说明保留时间与分配系数的关系。由此式可见,在色谱柱一定时,V s 与V m 一定;若流速、温度一定,则t 0一定。这样t R 取决于分配系数K , K 大的组分t R 长。K 与组分、流动相和固定相的性质及温度有关。因此,在实验条件一定时t R 取决于组分的性质,因而t R 可用于定性。

上述四类基本类型色谱法的t R 与K 的关系皆可用式(1.6)描述,即分配系数大的组分保留时间长,晚流出色谱柱。但K 与V s 在不同色谱中含义不同。K 在分配色谱、吸附色谱、离子交换色谱与凝胶色谱法中分别为:狭义分配系数K 、吸附系数K a 、选择系数K s 及渗透系数K p 。四个系数统称为分配系数(distribution coefficient),各系数可以不用下标,一律用K

色谱分析法概论习题答案

第十六章色谱分析法概论 思考题和习题 1.在一液液色谱柱上,组分A和B的K分别为10和15,柱的固定相体积为,流动相体积为,流速为min。求A、B的保留时间和保留体积。 2.在一根3m长的色谱柱上分离一个试样的结果如下:死时间为1min,组分1的保留时间为14min,组分2的保留时间为17min,峰宽为1min。(1) 用组分2计算色谱柱的理论塔板数n及塔板高度H;(2) 求调整 保留时间 ' R1 t 及 ' R2 t ;(3) 用组分2 求n ef及H ef;(4) 求容量因子k1及k2;(5) 求相对保留值1,2 r 和分离度 R。 3.一根分配色谱柱,校正到柱温、柱压下的载气流速为min;由固定液的涂量及固定液在柱温下的密度计算得V s=。分离一个含四组分的试样,测得这些组分的保留时间:苯、甲苯、乙苯,异丙苯,死时间为。求:(1) 死体积;(2) 这些组分的调整保留时间;(3) 它们在此柱温下的分配系数(假定检测器及柱头等体积可以忽略);(4) 相邻两组分的分配系数比?。 (1) V0=t0×u=×min=10.5cm3 (2) ' R t(苯) =-= , ' R t(甲苯) =-= , ' R t(乙苯) =-= , ' R t(异丙苯) =-= 4.在一根甲基硅橡胶 (OV-1) 色谱柱上,柱温120℃。测得一些纯物质的保留时间:甲烷、正己烷、正庚烷、正辛烷、正壬烷、苯、3-正己酮、正丁酸乙酯、正己醇及某正构饱和烷烃。(1) 求出后5个化合物的保留指数。未知正构饱和烷烃是何物质? (2) 解释上述五个六碳化合物的保留指数为何不同。 (3) 说明应如何正确选择正构烷烃物质对,以减小计算误差。 ①根据保留指数的公式和意义,5个化合物的保留指数为: 设某正构烷烃的碳数为x,则 解此方程得x=5, 所以该正构烷烃为正戊烷。 (2)上述五个化合物极性由大到小分别为:正己醇>正丁酸乙酯>3-正己酮>苯>正戊烷,根据气液色谱固定液的作用原理,在弱极性的OV-1柱上保留能力由强到弱,即保留指数由大至小。 (3)选择正构饱和烷烃物质对的t R值最好与被测物质的t R值相近,以减小测定误差。 5.某色谱柱长100cm,流动相流速为0.1cm/s,已知组分A的洗脱时间为40 min,求组分A在流动相中的时间和保留比R?=t0/t R为多少。, 流动相流过色谱柱所需的时间即死时间t0,即为组分A在流动相中的停留时间: t0=L/u=100/×60)= 组分A的洗脱时间即其保留时间t R 保留比R?=t0/t R=40= 6.某YWG-C18H37 4.6mm×25cm柱,以甲醇-水(80:20)为流动相,测得苯和萘的t R和W1/2分别为和 min, 和 min。求柱效和分离度。

色谱分析法概论习题答案

色谱分析法概论习题答 案 Document number【980KGB-6898YT-769T8CB-246UT-18GG08】

第十六章 色谱分析法概论 思 考 题 和 习 题 1.在一液液色谱柱上,组分A 和B 的K 分别为10和15,柱的固定相体积为,流动相体积为,流速为min 。求A 、B 的保留时间和保留体积。 ml F t V V V K t t ml F t V V V K t t F V t c RB RB m s B RB c RA RA m s A RA c 0.95.018 min 18)5 .15.0151(3)1(5.65.013 min 13)5 .15 .0101(3)1(min 35.0/5.1/0000=?=?==?+?=+==?=?==?+?=+==== 2.在一根3m 长的色谱柱上分离一个试样的结果如下:死时间为1min ,组分1的保留时间为14min ,组分2的保留时间为17min ,峰宽为1min 。(1) 用组分2计算色谱柱的理论塔板数n 及塔板高度H ;(2) 求调整保留时间 'R 1 t 及 'R 2 t ;(3) 用组分2 求n ef 及H ef ;(4) 求容量因子k 1及 k 2;(5) 求相对保留值 1 ,2r 和分离度R 。 (mm) 0.65 (m) 1065.010 4.63 n L H 104.6) 1 17 (16) t 16( n )1(33 223 22R 22 =?=?==?=?==-W (mm) 0.73 (m) 1073.010 4.13 n H 101.4) 116 (16) 16(n (3)(min) 16117 (min) 13114 (2)33 ef(2)ef(2)3 22 'ef(2)' '2 2 1=?=?==?=?===-==-=-L W t t t R R R 31) 1(3)1 61(2) W () t 2(R 2.1 13 16r )5( 16116k 13113k (4)21''2,10'20'112122 1 =+-?=+-==========W t t t t t t t R R R R R R 3.一根分配色谱柱,校正到柱温、柱压下的载气流速为min ;由固定液的涂量及固定液在柱温下的密度计算得V s =。分离一个含四组分的试样,测得这些组分的保留时间:苯、甲苯、乙苯,异丙苯,死时间为。求:(1) 死体积;(2) 这些组分的调整保留时间;(3) 它们在此柱温下的分配系数(假定检测器及柱头等体积可以忽略);(4) 相邻两组分的分配系数比?。 (1) V 0=t 0×u=×min=10.5cm 3 (2) 'R t (苯) =-= , 'R t (甲苯) =-= , 'R t (乙苯) =-= , 'R t (异丙苯) =-=

第十二章 色谱分析法基础

第十二章色谱分析法基础 教师:李国清 一.教学目的: 1. 熟练掌握色谱分离方法的原理; 2. 掌握色谱流出曲线(色谱峰)所代表的各种技术参数的准确含义; 3. 能够利用塔板理论和速率理论方程判断影响色谱分离各种实验 因素; 4. 学会各种定性和定量的分析方法。 二.教学重难点: 1. 塔板理论,包括理论塔板数(n)、有效塔板数(n eff)和塔板高 度(H)及有效塔板高度(H eff)的计算。 2. 速率理论方程 3. 分离度和基本分离方程 三.教具: 多媒体计算机、板书。 四.教学方法: 讲授、演示、提问、讨论。 五.教学过程 §12-1、色谱法的特点、分类和作用 一.概述 色谱法是混合物最有效的分离、分析方法。

俄国植物学家茨维特在1906年使用右图的装置分离植物叶子中的色素时,将叶片的石油醚(饱和烃混合物)提取液倒入玻璃管中,柱中填充CaCO3粉末(CaCO3有吸附能力),用纯石油醚洗脱(淋洗)。色素受两种作用力影响: (1)一种是CaCO3吸附,使色素在柱中停滞下来 (2)一种是被石油醚溶解,使色素向下移动。 各种色素结构不同,受两种作用力大小不同,经过一段时间洗脱后,色素在柱子上分开,形成了各种颜色的谱带,这种分离方法称为色谱法。 色谱法是一种分离技术: 试样混合物的分离过程也就是试样中各组分在称之为色谱分离柱中的两相间不断进行着的分配过程。 其中的一相固定不动,称为固定相;另一相是携带试样混合物流过此固定相的流体(气体或液体),称为流动相。 当流动相中携带的混合物流经固定相时,其与固定相发生相互作用。由于混合物中各组分在性质和结构上的差异,与固定相之间产生的作用力的大小、强弱不同,随着流动相的移动,混合物在两相间经过反复多次的分配平衡,使得各组分被固定相保留的时间不同,从而按一定次序由固定相中流出。 与适当的柱后检测方法结合,可实现混合物中各组分的分离与检测。 二.色谱法分类

色谱分析法概论习题答案

第十六章 色谱分析法概论 思 考 题 和 习 题 1.在一液液色谱柱上,组分A 和B 的K 分别为10和15,柱的固定相体积为0.5ml ,流动相体积为1.5ml ,流速为0.5ml/min 。求A 、B 的保留时间和保留体积。 ml F t V V V K t t ml F t V V V K t t F V t c RB RB m s B RB c RA RA m s A RA c 0.95.018 min 18)5.15.0151(3)1(5.65.013 min 13)5 .15.0101(3)1(min 35.0/5.1/0000=?=?==?+?=+==?=?==?+?=+==== 2.在一根3m 长的色谱柱上分离一个试样的结果如下:死时间为1min ,组分1的保留时间为14min ,组分2的保留时间为17min ,峰宽为1min 。(1) 用组分2计算色谱柱的理论塔板数n 及塔板高度H ;(2) 求调整保留时间'R 1t 及'R 2t ;(3) 用组分2 求n ef 及H ef ;(4) 求容量因子k 1及k 2;(5) 求相对保留值 1,2r 和分离度R 。 (mm) 0.65 (m) 1065.010 4.63n L H 104.6) 1 17(16) t 16(n )1(3322322R 22=?=?==?=?==-W (mm) 0.73 (m) 1073.010 4.13n H 101.4) 1 16(16) 16(n (3)(min) 16117 (min) 13114 (2)33ef(2)ef(2)3 22'ef(2)''22 1=?=?==?=?===-==-=-L W t t t R R R 31) 1(3)1 61(2) W () t 2(R 2.1 13 16r )5( 16116k 13113k (4)21''2,10'20'1121221=+-?=+-==========W t t t t t t t R R R R R R 3.一根分配色谱柱,校正到柱温、柱压下的载气流速为43.75ml/min ;由固定液的涂量及固定液在柱温下的密度计算得V s =14.1ml 。分离一个含四组分的试样,测得这些组分的保留时间:苯1.41min 、甲苯2.67min 、乙苯4.18min ,异丙苯5.34min ,死时间为0.24min 。求:(1) 死体积;(2) 这些组分的调整保留时间;(3) 它们在此柱温下的分配系数(假定检测器及柱头等体积可以忽略);(4) 相邻两组分的分配系数比α。 (1) V 0=t 0×u=0.24×43.75ml/min=10.5cm 3 (2) 'R t (苯) =1.41-0.24=1.17min , 'R t (甲苯) =2.67-0.24=2.43min , 'R t (乙苯) =4.18-0.24=3.94min , 'R t (异丙苯) =5.34-0.24=5.10min 3.19 4.310.5 6.143.294.3 1.217.143.20.161 .145.1025.21K 25.21 24.0 .1050.121 .145.104.16K 4.16 24.0 .9435.71.145.101.10K 1.01 24.0 .4326.31 .145.109.4K 4.9 24.0 17.1/////////0/0/0/0/==========?======?======?======?=====乙苯异丙苯乙苯异丙苯甲苯乙苯甲苯乙苯苯甲苯苯 甲苯异丙苯异丙苯异丙苯异丙苯乙苯乙苯乙苯乙苯甲苯甲苯甲苯甲苯 苯苯苯苯R R R R R R s m R s m R s m R s m R t t t t t t V V k t t k V V k t t k V V k t t k V V k t t k ααα

色谱分析法概论

第17章 色谱分析法概论 思考题 9.试推导有效塔板数与分离度的关系式: 2 2116?? ? ??-??ααR n =有效 证明:∵ 2 ' 2216R t n W ?? ? ??? 有效= (1) 2 2 W W +R2R112(t -t ) R = 设W 1=W 2 2 2'' 2010212222[()()]2()22R R R R t t t t t t W W W W ----==+R2R112(t -t )R = ''1R t R -R22t W = (2) 将(2)代入(1)式,得: '22 ' '2222221 '''221'1 1616()16()11R R R R R R R t t t n R R R t t t t αα???==?? ?--??-有效= 10. 试推导最小板高的计算式:BC A H 2+=最小 证明:∵B H A Cu u =++ (1) 微分,得 2dH B C du u =-+ 令 0dH du =,则 2 0B C u - += opt u = 将(2)代入(1),得: H A =+最小

习题 1.在一根 2.00m 的硅油柱上分析一个混合物得下列数据:苯、甲苯及乙苯的保留时间分别为80s 、122s 、181s ;半峰宽为0.211cm 、0.291cm 及0.409cm(用读数显微镜测得),已知记录纸速为1200mm/h ,求此色谱柱对每种组分的理论塔板数及塔板高度。 解:∵2 2 /1)( 54.5W t n R = 注意:分子分母单位应保持一致 mm n L H W t n R 3.28852000,8853600 /120011.28054.554.52 2 2/1===)( =)(=苯苯苯 苯苯= mm n L H W t n R 8.110822000,10823600 /120091.212254.554.52 2 2/1===)( =)(=甲苯甲苯甲苯 甲苯甲苯= mm n L H W t n R 7.112062000,12063600 /120009.418154.554.52 2 2/1===)( =)(=乙苯乙苯乙苯 乙苯乙苯= 2.在一根 3.0m 长的色谱柱上分离样品的结果如图17-14所示。 图17-14 一个样品的色谱图 (1)用组分2计算色谱柱的理论塔板数n 及塔板高度H; (2)求调整保留时间t R1’及t R2`;(3)求有效塔板数n 有效及有效塔板高度H 有效;(4)求容量因子k 1及k 2;(5)求使二组分R s 为1.5时的柱长。 解:(1)3222106.4)0 .117 (16)( 162 ?=?==w t n R mm n L H 65.0106.430003=?= = (2)t R1′= t R1-t 0 =14-1.0=13.0min t R2′=t R2-t 0=17-1.0=16.0min (3) 32 22'101.4)0.10.16(16)( 162 ?=?==w t n R 有效 mm n L H 73.0101.430003 =?==有效 有效 (4)130.10.130' 11 ===t t k R 160 .10 .160' 22===t t k R (5)假设两组分峰宽相等。 30 .10.1) 1417(2)(21 2112=+-= +-= W W t t R R R

17色谱分析法概论

第十七章 色谱分析法概论 思 考 题 和 习 题 1.色谱法作为分析方法的最大特点是什么? 2.一个组分的色谱峰可用哪些参数描述? 这些参数各有何意义? 3.说明容量因子的物理含义及与分配系数的关系。为什么容量因子 (或分配系数) 不等是分离的前提? 4.各类基本类型色谱的分离原理有何异同? 5.说明式(17?18)中K 与V s 在各类色谱法中的含义有何不同? 6.衡量色谱柱效的指标是什么?衡量色谱系统选择性的指标是什么? 7.用塔板理论讨论流出曲线,为什么不论在 t >t R 或t <t R 时,总是C <C max ? 塔板理论有哪些优缺点? 8.简述谱带展宽的原因。 9.下列那些参数可使塔板高度减小? (1) 流动相速度,(2) 固定相颗粒, (3) 组分在固定相中的扩散系数D s ,(4) 柱长, (5) 柱温。 10.什么是分离度?要提高分离度应从哪两方面考虑? 11.组分在固定相和流动相中的质量为m A 、m B (g),浓度为C A 、 C B (g/ml),摩尔数为n A 、n B (mol),固定相和流动相的体积为V A 、V B (ml),此组分的容量因子是 ( ) 。 A. m A /m B ; B. (C A V A )/(C B V B ) ; C. n A /n B ; D. C A /C B 。 (A 、B 、C ) 12.在柱色谱法中,可以用分配系数为零的物质来测定色谱柱中 ( ) 。 A. 流动相的体积; B. 填料的体积; C. 填料孔隙的体积; D. 总体积。 (A 、C ) 13.在以硅胶为固定相的吸附色谱中下列叙述中正确的是 ( ) 。 A. 组分的极性越强,吸附作用越强; B. 组分的分子量越大,越有利于吸附; C. 流动相的极性越强,溶质越容易被固定相所吸附; D. 二元混合溶剂中正己烷的含量越大,其洗脱能力越强。 (A ) 14.在离子交换色谱法中,下列措施中能改变保留体积的是( )。 A. 选择交联度大的交换剂; B. 以二价金属盐溶液代替一价金属盐溶液作流动相; C. 降低流动相中盐的浓度; D. 改变流速。 (A 、B 、C ) 15.在空间排阻色谱法中,下列叙述中完全正确的是( )。 A. V R 与K p 成正比; B. 调整流动相的组成能改变V R ; C. 某一凝胶只适于分离一定分子量范围的高分子物质; D. 凝胶孔径越大,其分子量排斥极限越大。 (C 、D ) 16.在一液液色谱柱上,组分A 和B 的K 分别为10和15,柱的固定相体积为0.5ml ,流动相体积为1.5ml ,流速为0.5ml/min 。求A 、B 的保留时间和保留体积。 (A R t =13min A R V =6.5ml, B R t =18min B R V =9ml ) 17.在一根3m 长的色谱柱上分离一个试样的结果如下:死时间为1min ,组分1的保留时间为14min ,组分2的保留时间为17min ,峰宽为1min 。 (1) 用组分2计算色谱柱的理论塔板数n 及塔板高度H ;(2) 求调整保留时间

第12章 色谱法基础习题

第十三章 色谱法基础 基本要求:了解色谱法的分类及其特点;掌握保留值、峰宽、容量因子等色谱术语;掌握塔板的概念及描述柱效能的参数;了解速率理论方程的特点和意义;掌握分离度的定义以及影响分离度的三个因素;了解色谱定性和定量的方法,保留指数和校正因子(f )。 重点:色谱术语(保留值、峰宽、容量因子、分离因子、n 、n eff 和分离度等),色谱定性和定量方法。 难点:速率理论,影响分离度的因素,保留指数,校正因子。 参考学时:4学时 部分习题解答 8. 在气-液色谱(G-LC)中,下列措施对塔板高度(H )有何影响? ① 增加液相载荷量;② 减慢进样速度;③ 升高汽化室温度;④ 增大载气流速; ⑤ 减小固定相载体粒径; ⑥ 降低柱温 解:① 增加液相载荷量,固定液液膜厚度d f ↑, H↑ ② 如果减慢进样速度,导致未进柱前的样品塞先扩展,H↑ ③ 升高汽化室温度,分子之间距离增加,H↑ ④ 当u <u opt 时,H↓;当u >u opt 时,H↑ ⑤ 减小固定相载体粒径,d p ↓, H↓;但d p 过小,不便填充,λ会增大,H 会↑ ⑥ 降低柱温,会使D g 、D l 减小,对范氏方程中的B 、C 均有影响,对H 的影响视分子扩散项和 传质阻力项的相对大小而定。 10. 在实际色谱分析工作中,假设其他条件不变,①欲将分离度(R )提高一倍,柱长(L )要增加多少倍?②理论板数(n )增加一倍,分离度(R )增加多少倍? 解:由分离度表达式知 n R ∝ ① H L n = 欲使R 提高1倍,R 2 ∝ n = L/H, L 要增加3(22 - 1)倍; ② n 增加1倍,R 增加0.414即(12-)倍。 11. 试由分离度(R )的定义式,假设n =n 1=n 2,2 21 k k k '+'= ',导出R 的表达式: ?? ? ??'+'??? ??+-= k k n R 1112αα 解:2 112)(2W W t t R R R +-=

色谱分析法概论

色谱分析法概论 1色谱分析法是根据混合物中各组分在两相分配系数的不同进行分离,而后逐个分析。 2色谱过程:组分的分子在流动相和固定相间多次分配的过程。若两个组分的分配系数存在微小的差异,经过反复多次的分配平衡,使微小的差异积累起来,其结果就使分配系数小的组分被先洗脱,从而使两组分得到分离。色谱分离的前提是分配系数或保留因子不等。 3色谱流出曲线是由检测器输出的电信号对时间作图所绘制的曲线,又称为色谱图。 4按色谱过程的分离机制分类:分配色谱法、吸附色谱法、离子交换色谱法、分子排阻色谱法。①分配色谱法机制:利用被分离组分在固定相或流动相中的溶解度差别,即分配系数的差别而实现分离。②吸附色谱法机制:利用被分离组分对固定相表面吸附中心吸附能力的差别,即吸附系数的差别而实现分离。常见化合物的吸附能力顺序:烷烃<烯烃<卤代烃<醚<硝基化合物<叔胺<酯<酮<醛<酰胺<醇<酚<伯胺<羧酸③离子交换色谱法机制:利用分离组分离子交换能力的差别即选择性系数的差别而实现分离。④分子排阻色谱法:根据被分离组分分子的线团尺寸,即渗透系数的差别而进行分离。 5流动相线速对塔板高度的影响:在较低线速度时,纵向扩散起主要作用,线速度升高,塔板高度降低,柱效升高;在较高线速度时,传质阻抗起主要作用,线速度升高,塔板高度增高,柱效降低。 6说明保留因子的物理含意及与分配系数的关系。为什么保留因子(或分配系数)不等是分离的前提? 答:保留因子k是在一定温度和压力下,达到分配平衡时,组分在固定相和流动相中的质量之比,故又称为质量分配系数。而分配系数K是组分在固定相和流动相中的浓度之比。二者的关系是k=KV s//V m,可见保留因子除与固定相、流动相、组分三者的性质有关外,还与固定相和流动相的体积之比有关。保留因子越大的组分在色谱柱中的保留越强,t R =t0 (1+k)或t'R =kt0 ,由于在一定色谱条件下t0为定值,如果两组分的k相等,则他们的t'R一定相等,t R相等,即不能分离。要使两组分分离,即t R或t'R不等,则它们的k(或K)必须不等,即保留因子(或分配系数)不等是分离的前提。 7根据分离度的定义,哪些色谱参数与分离度有关?可从哪两方面改善色谱分离度?如何在色谱图上测定这些参数? 答:分离度的定义式为R=2(t R2 -t R1)/(W1 +W2 ),由此可见色谱峰的区域宽度和保留时间与分离度有关。为改善色谱分离度,一方面应增加两组分保留时间之差,即保留因子或分配系数之差,另一方面减小峰宽,即提高柱效使色谱峰变锐。保留时间是从进样到色谱峰峰顶的时间间隔;峰宽是在色谱峰两侧拐点作切线到基线上所截得的距离。 8什么是最佳流速?实际操作中是否一定要选择最佳流速?为什么? 答:柱效最高时(n最大或H最小)的流动相流速叫最佳流速。实验中要根据具体情况选择流速,如果分离不好,尽量选最佳流速,如果速度太慢而分离很好,则可选远于最佳值的流速。 9色谱定性是根据保留值,定量的依据是峰面积和峰高。 气相色谱法 1气相色谱法的特点:分离效能高、高灵敏度、高选择性、简单快速、应用广泛。 2气相色谱仪的组成:①气路系统②进样系统③色谱柱系统④检测和记录系统⑤控制系统3对固定液的要求:①在操作温度下蒸气压低于10Pa,否则固定液易流失。每一固定液有一

第十二章 色谱分析法

第十二章色谱分析法 1、简要说明气相色谱法的分离原理 答:气相色谱法的分离原理是利用不同物质在固定相和流动相中具有不同的分配系数。当两相作相对移动时,混合物中各组分在两相中反复多次分配,原来微波的分配差异产生了很明显的分离效果,从而依先后顺序流出色谱柱。 2、气相色谱仪有哪些主要部件?各有什么作用? 答:气相色谱仪的主要部件有:高压气瓶、气化室、恒温箱、色谱柱、检测器。 高压气瓶:储存载气; 气化室:将液体或固体试样瞬间气化,以保证色谱峰有较小的宽度; 恒温箱:严格控制色谱柱的温度; 色谱柱:分离试样; 检测器:将组分及其浓度变化以不同方式转换成易于测量的电信号。 或答:气路系统:是一个载气连续运行的密闭管路系统,通过该系统,可获得纯净、流速稳定的载气。 进样系统:包括进样器和气化室。其作用是让液体试样在进入色谱柱前瞬间气,快速而定量地加到色谱柱上端。 分离系统:色谱柱是色谱仪的分离系统,试样各组分的分离在色谱柱中进行。 温控系统:主要指对色谱柱、气化室、检测器三处的温度控制。 检测系统:是把载气里被分离的各组分的浓度或质量转换成电信号的装置。 3、试述热导池检测器及氢火焰电离检测器的工作原理。 答:热电池检测器是基于被分离组分与载气的导热系数不同进行检测的。当通过热导池他体的气体组成及浓度发生变化时,引起热敏元件温度的改变,由此产生的电阻值变化通过惠斯登电桥检测,其检测信号大小和组分浓度成正比。 氢火焰电离检测器是根据含碳有机物在氢火焰中发生电离的原理检测的。 4、根据速率理论方程式,讨论气相色谱操作条件的选择。 答:H = A + B/u + Cu 操作条件选择: ①使用适当细粒度和颗粒均匀的填充物,并尽量填充均匀,紧密,减小涡流扩散; ②载气流速u,当u较小时,分析扩散项B/u成为影响H的主要因素,此时应采用相对分子质量较大的载气(N2、Ar)以使组分在气相中有较小的扩散系数,减小组分在气相中停留的时间;当u较大时,传质阻力项Cu成为影响H的主要因素,此时宜用相对分子质量低的载气(H2、He)使组分在气相中有较大的扩散系数,减小气相传质阻力。可由H-u曲线求得U opt. ③适当降低固定液的液膜厚度,增大组分在液相中的扩散系数。 5、试述速率理论方程式中A、B/u、Cu三项的物理意义。 答:A:涡流扩散项,在填充色谱中,当组分随载气向柱出口迁移时,碰到的填充物颗粒阻碍会不断改变流动方向,使组分在气相中形成紊乱的类似“涡流”的流动,引起色谱峰变宽。 B/u:分子扩散项,是由于色谱柱内沿轴向存在浓度梯度,使组分分子随霸气迁移时自发地产生由高浓度向低浓度的扩散,从而使色谱峰变宽。

色谱分析法概论习题答案

第十六章 色谱分析法概论 思考题和习题 1在一液液色谱柱上,组分 A 和 B 勺K 分别为10和15,柱的固定相体积为0.5ml ,流动相体积为1.5ml ,流速 为0.5ml/min 。求A 、B 的保留时间和保留体积。 t V o /F c 1.5/0.5 3min t RA t o (1 K A V S ) V m 3 (1 10 1.5 13min V RA t RA F c 13 0.5 6.5ml t RB t °(1 V s 心亠) V m 3 (1 15 骑 1.5 18min V RB t RB F c 18 0.5 9.0ml 2. 在一根3m 长的色谱柱上分离一个试样的结果如下:死时间为 1min ,组分1的保留时间为14min ,组分2的 保留时间为17min ,峰宽为1min 。(1)用组分2计算色谱柱的理论塔板数 n 及塔板高度H; (2)求调整保留时 3. 一根分配色谱柱,校正到柱温、柱压下的载气流速为 43.75ml/min ;由固定液的涂量及固定液在柱温下 的密度计算得V S =14.1ml 。分离一个含四组分的试样, 测得这些组分的保留时间: 苯1.41min 、甲苯2.67min 、 乙苯4.18min ,异丙苯5.34min ,死时间为0.24min 。求:(1)死体积;(2)这些组分的调整保留时间; (3) 它们在此柱温下的分配系数(假定检测器及柱头等体积可以忽略); (4)相邻两组分的分配系数比 。 (1) V 0=t 0 x u=0.24 x 43.75ml/min=10.5cm 3 I I (2) t R (苯)=1.41 - 0.24=1.17min , t R (甲苯)=2.67 - 0.24=2.43min , I t R (异丙苯)=5.34 - 0.24=5.10min t R 苯 1.17 4.9 K 苯 k 苯 V m 4.9 10.5 3.6 k t 0 0.24 V s 14.1 k 甲苯 t R 甲苯 2.43 10.1 K 甲苯 k 甲苯 V m 10.1 10.5 7.5 t 0.24 V s 14.1 间t R 1及t R 2 ; (3)用组分2求n ef 及H f ; (4)求容量因子 刚及k 2; (5) 求相对保留值^1 和分离度R 。 (1) n 2 H 2 16(區)2 16 (卩)2 W 1 L 3 n 2 4.6 10 3 4.6 10 t R 1 14 1 13 (min) n ef(2) H ef(2) t R 2 2 16(—) 16 W L R 2 n ef(2) t R1 13 ⑷ k 1 F 7 0.65 3 10 (m) 17 1 0.65 (mm) 16 (min) 16 2 (T ) 3 4.1 103 13 4.1 3 10 0.73 10 3 (m) 0.73 (mm) R 2 16 T 16 (5) r 2,1 邑竺1.2 仁 13 R 1 2(t 甩 t R 1) 2 (16 13) R (W 1 W 2 ) 3 (1 1) t R 异丙苯 t 5.10 0.24 10.5 14.1 16.0 t R 甲苯 甲苯/苯 / t R 苯 2.43 1.17 2.1 t R 乙苯 乙苯/甲苯 / t R 甲苯 2.43 异丙苯/乙苯 t R 异丙苯 t R 乙苯 5.10 3.94 1.3 21.25 K 异丙苯 21.25

色谱分析法概论习题答案完整版

色谱分析法概论习题答 案 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

第十六章 色谱分析法概论 思 考 题 和 习 题 1.在一液液色谱柱上,组分A 和B 的K 分别为10和15,柱的固定相体积为,流动相体积为,流速为min 。求A 、B 的保留时间和保留体积。 2.在一根3m 长的色谱柱上分离一个试样的结果如下:死时间为1min ,组分1的保留时间为14min ,组分2的保留时间为17min ,峰宽为1min 。(1) 用组分2计算色谱柱的理论塔板数n 及塔板高度H ;(2) 求调整保留时间 'R 1t 及'R 2t ;(3) 用组分2 求n ef 及H ef ;(4) 求容量因子k 1及k 2;(5) 求相对保留值1,2r 和分离度R 。 3.一根分配色谱柱,校正到柱温、柱压下的载气流速为min ;由固定液的涂量及固定液在柱温下的密度计算得V s =。分离一个含四组分的试样,测得这些组分的保留时间: 苯、甲苯、乙苯,异丙苯,死时间为。求:(1) 死体积;(2) 这些组分的调整保留时间;(3) 它们在此柱温下的分配系数(假定检测器及柱头等体积可以忽略);(4) 相邻两组分的分配系数比?。 (1) V 0=t 0×u=×min=10.5cm 3 (2) 'R t (苯) =-= , ' R t (甲苯) =-= , 'R t (乙苯) =-= , ' R t (异丙苯) =-= 4.在一根甲基硅橡胶 (OV-1) 色谱柱上,柱温120℃。测得一些纯物质的保留时间:甲烷、正己烷、正庚烷、正辛烷、正壬烷、苯、3-正己酮、正丁酸乙酯、正己醇及某正构饱和烷烃。(1) 求出后5个化合物的保留指数。未知正构饱和烷烃是何物质? (2) 解释上述五个六碳化合物的保留指数为何不同。(3) 说明应如何正确选择正构烷烃物 ① 根据保留指数的公式和意义,5个化合物的保留指数为: 设某正构烷烃的碳数为x ,则 解此方程得x=5, 所以该正构烷烃为正戊烷。 (2)上述五个化合物极性由大到小分别为:正己醇>正丁酸乙酯>3-正己酮>苯>正戊烷,根据气液色谱固定液的作用原理,在弱极性的OV-1柱上保留能力由强到弱,即保留指数由大至小。 (3)选择正构饱和烷烃物质对的t R 值最好与被测物质的t R 值相近,以减小测定误差。

第一章色谱分析法概论

第一章色谱分析法概论 第一节概述 色谱分析法简称色谱法或层析法(chromatography),是一种物理或物理化学分离分析方法。从本世纪初起,特别是在近50年中,由于气相色谱法、高效液相色谱法及薄层扫描法的飞速发展,而形成一门专门的科学——色谱学。色谱法已广泛应用于各个领域,成为多组分混合物的最重要的分析方法,在各学科中起着重要作用。历史上曾有两次诺贝尔化学奖是授予色谱研究工作者的:1948年瑞典科学家Tiselins因电泳和吸附分析的研究而获奖,1952年英国的Martin和Synge因发展了分配色谱而获奖;此外在1937~l972年期间有12次诺贝尔奖的研究中,色谱法都起了关键的作用。 色谱法创始于20世纪初,1906年俄国植物学家Tsweet将碳酸钙放在竖立的玻璃管中,从顶端倒入植物色素的石油醚浸取液,并用石油醚冲洗。在管的不同部位形成色带,因而命名为色谱。管内填充物称为固定相(stationary phase),冲洗剂称为流动相(mobile phase)。随着其不断发展,色谱法不仅用于有色物质的分离,而且大量用于无色物质的分离。虽然“色”已失去原有意义,但色谱法名称仍沿用至今。 30与40年代相继出现了薄层色谱法与纸色谱法。50年代气相色谱法兴起,把色谱法提高到分离与“在线”分析的新水平,奠定了现代色谱法的基础,l957年诞生了毛细管色谱分析法。60年代推出了气相色谱—质谱联用技术(GC-MS),有效地弥补了色谱法定性特征差的弱点。70年代高效液相色谱法(HPLC)的崛起,为难挥发、热不稳定及高分子样品的分析提供了有力手段。扩大了色谱法的应用范围,把色谱法又推进到一个新的里程碑。80年代初出现了超临界流体色谱法(SFC),兼有GC与HPLC的某些优点。80年代末飞速发展起来的高效毛细管电泳法(high performance capillary electrophoresis,HPCE)更令人瞩目,其柱效高,理论塔板数可达l07m-1。该法对于生物大分子的分离具有独特优点。 色谱法的分离原理主要是利用物质在流动相与固定相之间的分配系数差异而实现分离。色谱法与光谱法的主要区别在于色谱法具有分离及分析两种功能,而光谱法不具备分离功能。色谱法是先将混合物中各组分分离,而后逐个分析,因此是分析混合物最有力的手段。这种方法还具有高灵敏度、高选择性、高效能、分析速度快及应用范围广等优点。 色谱法可从不同的角度进行分类:

第十二章色谱分析法

色谱分析法 1.色谱法有哪些类型?其分离的基本原理是什么? 答:气体为流动相的色谱称为气相色谱(GC),根据固定相是固体吸附剂还是固定液(附着在惰性载体上的一薄层有机化合物液体),又可分为气固色谱(GSC)和气液色谱(GLC).液体为流动相的色谱称液相色谱(LC)。同理,液相色谱亦可分为液固色谱(LSC)和液液色谱(LLC).超临界流体为流动相的色谱称为超临界流体色谱(SFC)。随着色谱工作的发展,通过化学反应将固定液键合到载体表面,这种化学键合固定相的色谱又称化学键合相色谱(CBPC)。 2.试述热导池及氢焰离子化检测器的原理? 答:热导池检测器是利用组分蒸气与载气导热系数不同来测定各组分的. 氢焰离子化检测器是利用有机物在氢气――空气火焰中产生离子化反应而生成许多离子对,在加有电压的两极间形成离子流. 3.如何选择气液色谱的固定液? 答:对固定液的选择并没有规律性可循。一般可按“相似相溶”原则来选择。在应用时,应按实际情况而定。 (i)分离非极性物质:一般选用非极性固定液,这时试样中各组分按沸点次序流出,沸点低的先流出,沸点高的后流出。 (ii)分离极性物质:选用极性固定液,试样中各组分按极性次序分离,极性小的先流出,极性大的后流出。 (iii)分离非极性和极性混合物:一般选用极性固定液,这时非极性组分先流出,极性组分后流出。 (vi)分离能形成氢键的试样:一般选用极性或氢键型固定液。试样中各组分按与固定液分子间形成氢键能力大小先后流出,不易形成氢键的先流出,最易形成氢键的最后流出。(v)复杂的难分离物质:可选用两种或两种以上混合固定液。 对于样品极性情况未知的,一般用最常用的几种固定液做试验。 对固定液的要求: 首先是选择性好.另外还要求固定液有良好的热稳定性和化学稳定性;对试样各组分有适当的溶解能力;在操作温度下有较低蒸气压,以免流失太快。 (a.在操作温度下呈液态,并有足够的稳定性,能溶解被分离混合物中的各组分,且不与组分发生化学反应。b.在操作温度下粘度要低,以保证固定液能均匀分布在担体上形成均匀的液膜。c.对被分离的各组分有足够的分离能力。)

色谱分析概论习题

淮 阴 师 范 学 院 仪器分析 课程 色谱分析概论 习题


一、选择题(每题 2 分,共 20 题,40 分) 1、反映色谱柱柱型特征的参数是: ( )


线
A.分配系数 B.分配比 C.相比 D.保留值 2、对某一组分来说,在一定的柱长下,色谱峰的宽或窄主要决定于组 分在色谱柱中的() A.保留值 B.扩散速度 C.分配比 D.理论塔板数 3、指出下列哪些参数改变会引起相对保留值的增加( ) A.柱长增加; B.相比率增加;C.降低温度; D.流动相速度降低 4、色谱分析中,相对保留值可由下列那种物理量确定( ) A 两组分 K B 两组分 tR C 两组分 VR D 柱子的 Vs 和 Vm 5、色谱分析采用归一化法,下列那种说法正确( ) A 不要求全部组分出峰 B 进样量要求准确 C 只能用作微量组分的精确定量 D 一次分析过程中条件需稳定 6、试指出下述说法中, 哪一种是错误的? ( ) A 根据色谱峰的保留时间可以进行定性分析 B 根据色谱峰的面积可以进行定量分析 C 色谱图上峰的个数一定等于试样中的组分数 D 色谱峰的区域宽度体现了组分在柱中的运动情况 7、在色谱分析中,柱长从 1 m 增加到 4 m ,其它条件不变,则分离度增加 (A) 4 倍 (B) 1 倍 (C) 2 倍 (D) 10 倍 8、使用热导池检测器时, 应选用下列哪种气体作载气, 其效果最好 ( ) (A) H2 (B) He (C) Ar (D) N2 9、在液相色谱中,范第姆特方程中的哪一项对柱效的影响可以忽略 ( ) (A).涡流扩散项 (B).分子扩散项 (C)流动区域的流动相传质阻力 (D).停滞区域的流动相传质阻力 10、热导池检测器是一种 ( ) (A)浓度型检测器 (B)质量型检测器 (C)只对含碳、氢的有机化合物有响应的检测器 (D)只对含硫、磷化合物有响应的检测器 11、当样品各组分全部出峰最好选用( )方法定量分析。 A 归一法 B 外标法 C 内标法 D 都行 12、载体填充的均匀程度主要影响()
系别
班级
学号
姓名

色谱分析法导论

第14章色谱分析法导论 【14-1】 在仪器分析中,色谱的独特特点是什么? 答:具有能同时进行分离和分析的特点。 【14-2】 导致谱带展宽的因素有哪些? 【14-3】 哪些参数可以改进色谱分离的分离度以及怎样在色谱图上测定这些参数? 【14-4】 影响选择性因子α的参数有哪些? 【14-5】 如何控制和调节容量因子k '? 【14-6】 色谱柱效n 由哪些因素决定?如何提高柱效? 答:根据速率理论,影响n 的因素有: (1)固定相,包括固定相的粒径、填充均匀程度、固定液种类、液膜厚度等。 (2)流动相,包括流动相的种类、组成、流速 (3)柱温。 提高柱效的方法有: (1)优化流动相组成、流速及柱温来优化柱效。 (2)增大柱长可以增加理论塔板数,但会使分析时间增长。 (3)降低塔板高度H 。 【14-7】 色谱定量分析中,为什么要定量校正因子?校正因子有几种表示方法?实验中如何测定定量校正因子? 【14-8】 已知某色谱峰的半峰宽为4.708mm ,求此色谱峰的峰底宽。 答:8.000mm 【14-9】 组分A ,B 在某气液色谱柱上的分配系数分别为495和467。试问在分离时哪个组分先流出色谱柱? 答:根据分配系数的定义:a g c K c = ,K 值表示组分与固定相作用力的差异,K 值大,说明组分与固定相的亲和力越大,其在柱中滞留的时间长。由于A 组分的分配系数大于B 组分,因此B 组分先流出色谱柱。 【14-10】 组分A 从色谱柱流出需15.0min ,组分B 流出需25.0min ,而不被色谱柱保留的组分P 流出色谱柱需2.0min 。问: (1)B 组分相对于A 组分的相对保留时间是多少? (2)A 组分相对于B 的相对保留时间是多少? (3)组分A 在柱中的容量因子是多少? (4)组分A 通过流动相的时间占通过色谱柱的总时间的百分之几? (5)组分B 通过固定相上平均停留时间是多少? 解:(1)/B A t t =(25.0-2.0)/(15.0-2.0)=17.7 (2)/A B t t =(15.0-2.0)/(25.0-2.0)=0.57

第十六章 色谱分析法概论

1、色谱柱作为分析方法的最大特点是什么? 色谱法以高超的分离能力为特点,具有高灵敏度、高选择性、高效能、分析速度快及应用范围广等优点。 2、一个组分的色谱峰可用哪些参数描述?这些参数各有何意义? 一个组分的色谱峰可用三项参数即峰高或峰面积(用于定量)、峰位(用保留值表示,用于定性)、峰宽(用于衡量柱效)来说明。 峰高:组分在柱后出现浓度极大时的检测信号,即色谱峰顶至基线的距离。 峰面积:某色谱峰曲线与基线间包围的面积。 保留时间:是从进样到某组分在柱后出现浓度极大时的时间间隔,即从进样开始到某个组分的色谱峰顶点的时间间隔。 死时间:是分配系数为零的组分,即不被固定相吸附或溶解的组分的保留时间。 调整保留时间:是某组分由于溶解(或被吸附)于固定相,比不溶解(或不被吸附)的组分在柱中多停留的时间。 峰宽:是通过色谱峰两侧拐点做切线在基线上所截得的距离。 标准差:是正态色谱流出曲线上两拐点间距离之半,或0.607倍峰高处的峰宽之半。 半峰宽:是峰高一半处的峰宽。 W 1/2=2.355σ W=4σ W=1.699 W 1/2 3、说明保留因子的物理含义及与分配系数的关系。为什么保留因子(或分配系数)不等是分离的前提? 保留因子k是在一定温度和压力下,达到分配平衡时,组分在固定相和流动相中的质量之比,故又称为质量分配系数。而分配系数K是组分在固定相和流动相中的浓度之比。二者的关系是k=KVs/Vm,可见保留因子除与固定相、流动相、组分三者的性质有关外,还与固定相和流动相的体积比有关。保留因子越大的组 分在色谱柱中的保留越强,t R =t (1+k),由于在一定色谱条件下t 为定值,如果 两组分的k相等,则它们的t R 也相等,即不能分离。要使两组分分离,即t R 不 等,则他们的k(K)必须不等,即保留因子(或分配系数)不等是分离的前提。 4、各类基本类型色谱的分离原理有何不同? 分配色谱法:利用被分离组分在固定相或流动相中的溶解度差别,即在两相间的分配系数的差别而实现分离的。 吸附色谱法:利用被分离组分在固定相表面吸附中心吸附能力的差别,即吸附系数的差别而实现分离。吸附过程是试样中组分的分子与流动相分子争夺吸附剂表面活性中心的过程,即为竞争吸附。 离子交换色谱法:利用被分离组分离子交换能力的差别,或选择性系数的差别而实现分离。固定相为离子交换剂。 分子排阻色谱法:也称空间排阻色谱法,也称为凝胶色谱法。根据被分离组分分子的线团尺寸,或渗透系数的大小而进行分离。分离只取决于凝胶的孔径大小与被分离组分线团尺寸之间的关系。

相关主题
文本预览
相关文档 最新文档