当前位置:文档之家› 概率论与数理统计公式大全最全最强复习材料

概率论与数理统计公式大全最全最强复习材料

概率论与数理统计公式大全最全最强复习材料
概率论与数理统计公式大全最全最强复习材料

第1章随机事件及其概率

第二章随机变量及其分布

第三章二维随机变量及其分布

材料力学公式最全总汇

外力偶矩计算公式(P功率,n转速) 弯矩、剪力和荷载集度之间的关系式 轴向拉压杆横截面上正应力的计算公式(杆件横截面轴力FN,横截 面面积A,拉应力为正) 轴向拉压杆斜截面上的正应力与切应力计算公式(夹角a 从x轴正方向逆时针转至外法线的方位角为正) 纵向变形和横向变形(拉伸前试样标距l,拉伸后试样标距l1;拉伸前试样直径d,拉伸后试样直径d1) ^ 纵向线应变和横向线应变 泊松比 胡克定律 受多个力作用的杆件纵向变形计算公式 承受轴向分布力或变截面的杆件,纵向变形计算公式 `

轴向拉压杆的强度计算公式 许用应力,脆性材料,塑性材料 延伸率 截面收缩率 剪切胡克定律(切变模量G,切应变g ) 、 拉压弹性模量E、泊松比和切变模量G之间关系式 圆截面对圆心的极惯性矩(a)实心圆 (b)空心圆 圆轴扭转时横截面上任一点切应力计算公式(扭矩T,所求点到圆心距离r ) 圆截面周边各点处最大切应力计算公式 扭转截面系数,(a)实心圆 (b)空心圆 :

薄壁圆管(壁厚δ≤ R0 /10 ,R0 为圆管的平均半径)扭转切应力计算公式 圆轴扭转角与扭矩T、杆长l、扭转刚度GHp的关系式 同一材料制成的圆轴各段内的扭矩不同或各段的直径不同(如阶梯轴)时或 等直圆轴强度条件 塑性材料;脆性材料 > 扭转圆轴的刚度条件或 受内压圆筒形薄壁容器横截面和纵截面上的应力计算公式, 平面应力状态下斜截面应力的一般公式 , 平面应力状态的三个主应力, ,

主平面方位的计算公式 / 面内最大切应力 受扭圆轴表面某点的三个主应力,, 三向应力状态最大与最小正应力, 三向应力状态最大切应力 广义胡克定律 ~ 四种强度理论的相当应力 一种常见的应力状态的强度条件,

概率论与数理统计公式整理超全免费版

第1章随机事件及其概率 (1)排列组合公式 )! ( ! n m m P n m- =从m个人中挑出n个人进行排列的可能数。 )! (! ! n m n m C n m- =从m个人中挑出n个人进行组合的可能数。 (2)加法和乘法原理加法原理(两种方法均能完成此事):m+n 某件事由两种方法来完成,第一种方法可由m种方法完成,第二种方法可由n种方法来完成,则这件事可由m+n 种方法来完成。 乘法原理(两个步骤分别不能完成这件事):m×n 某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m×n 种方法来完成。 (3)一些常见排列重复排列和非重复排列(有序)对立事件(至少有一个) 顺序问题 (4)随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。 试验的可能结果称为随机事件。 (5)基本事件、样本空间和事件在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质: ①每进行一次试验,必须发生且只能发生这一组中的一个事件; ②任何事件,都是由这一组中的部分事件组成的。 这样一组事件中的每一个事件称为基本事件,用ω来表示。 基本事件的全体,称为试验的样本空间,用Ω表示。 一个事件就是由Ω中的部分点(基本事件ω)组成的集合。通常用大写字母A,B,C,…表示事件,它们是Ω的子集。 Ω为必然事件,?为不可能事件。 不可能事件(?)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。 (6)事件的关系与运算①关系: 如果事件A的组成部分也是事件B的组成部分,(A发生必有事件B发生):B A? 如果同时有B A?,A B?,则称事件A与事件B等价,或称A等于B:A=B。 A、B中至少有一个发生的事件:A B,或者A+B。 属于A而不属于B的部分所构成的事件,称为A与B的差,记为A-B,也可表示为A-AB或者B A,它表示A发生而B不发生的事件。 A、B同时发生:A B,或者AB。A B=?,则表示A与B不可能同时发生,称 事件A与事件B互不相容或者互斥。基本事件是互不相容的。 Ω-A称为事件A的逆事件,或称A的对立事件,记为A。它表示A不发生的

资料分析计算公式大全

统计图表知识收集与分析 产业 第一、第二、第三产业,是根据社会生产活动历史发展的顺序对产业结构的划分。它大体反映了人类生活需要、社会分工和经济发展的不同阶段,基本反映了有史以来人类生产活动的历史顺序,以及社会生产结构与需求结构之间相互关系,是研究国民经济的一种重要方法。 产品直接取自自然界的部门称为第一产业,即农业,包括种植业、林业、牧业和渔业;对初级产品进行再加工的部门称为第二产业,即工业(包括采掘工业、制造业、自来水、电力蒸汽、热水、煤气)和建筑业;为生产和消费提供各种服务的部门称为第三产业,即除第一、第二产业以外的其他各业。根据我国的实际情况,第三产业可以分为两大部门:一是流通部门,二是服务部门。 此外,通常说的办“三产”,其内容并不一定都是第三产业,把企事业单位创办的主业之外的营利性的经济实体都称之为“三产”是不确切的。例如:所办的实体如是养牛场则属于第一产业,如果是工厂、施工队则属于第二产业,如果是商店、招待所、咨询机构、游艺厅等才属于第三产业。 三次产业各年度的比重(%) 1991 1992 1993 1994 1995 1996 1997 1998 1999 第一产业 8.1 6.9 6.2 6.9 5.8 5.2 4.7 4.3 4.0

第二产业 52.2 48.7 48.0 46.1 44.1 42.3 40.8 39.1 38.9 第三产业 39.7 44.4 45.8 47.0 50.1 52.5 54.5 56.6 57.1 第三产业是由流通部门和服务部门的有关行业组成,它的基本属性决定了第三产业必须为第一产业和第二产业提供各种配套服务 。在我国,由于长期受计划经济的影响,第三产业没有受到足够的重视,以致长期处于滞后状态。80年代以来,随着我国改革开放的不断深入,第三产业迅速恢复和发展起来,成为国民经济的重要组成部分。但第三产业的发展和其它经济产业一样,也必须遵循客观发展的规律。就现阶段来看,在我国第一和第二产业仍占经济的主导地位,对国民经济的支配作用并没有改变,而第三产业正处在培育和发展阶段。因此,还不能说第三产业在国民经济中的比重越高越好,而应该和其它产业保持适当的比例关系,相互协调,共同促进国民经济的健康发展。如果片面强调第三产业的作用,不切实际地提高第三产业增加值占国内生产总值的比重,就可能出现“泡沫”经济现象,难以保持国民经济持续、稳定、健康发展。同时,第三产业的发展还必须同国民经济的整体实力相适应,从世界范围来看,经济发达地区第三产业比重较高,而经济欠发达地区则比重较低。北京199 5年第三产业增加值占全市GDP的比重突破50%,1998年达到56.6%,在全国30个省会城市中居第一位。“九五”期间,北京经济继续坚持“三、二、一”产业发展方针,大力发展第三产业,努力提高第三产业在全市GDP的比重,这是一个长远的发展战略。 第三产业增加值占国内生产总值比重(%) 总产值、净产值、增加值与国内生产总值究竟有什么区别与联系?

概率论与数理统计(经管类)公式

概率论与数理统计必考知识点 一、随机事件和概率 1、随机事件及其概率 运算律名称 表达式 交换律 A B B A +=+ BA AB = 结合律 C B A C B A C B A ++=++=++)()( ABC BC A C AB ==)()( 分配律 AC AB C B A ±=±)( ))(()(C A B A BC A ++=+ 德摩根律 B A B A =+ B A AB += 2、概率的定义及其计算 公式名称 公式表达式 求逆公式 )(1)(A P A P -= 加法公式 )()()()(AB P B P A P B A P -+=+ 条件概率公式 ) () ()(A P AB P A B P = 乘法公式 )()()(A B P A P AB P = )()()(B A P B P AB P = 全概率公式 ∑== n i i i A B P A P B P 1 )()()( 贝叶斯公式 (逆概率公式) ∑∞ == 1 ) ()() ()()(i i j j j j A B P A P A B P A P B A P 伯努利概型公式 n k p p C k P k n k k n n ,1,0,)1()(=-=- 两件事件相互独立相应 公式 )()()(B P A P AB P =;)()(B P A B P =;)()(A B P A B P =;1)()(=+A B P A B P ; 1)()(=+A B P A B P 二、随机变量及其分布 1、分布函数性质 )()(b F b X P =≤ )()()(a F b F b X a P -=≤< 2、离散型随机变量 分布名称 分布律 0–1分布),1(p B 1,0,)1()(1=-==-k p p k X P k k 二项分布),(p n B n k p p C k X P k n k k n ,,1,0,)1()( =-==-

资料分析公式汇总

资料分析公式汇总

速算技巧 一、估算法 精度要求不高的情况下,进行粗略估值的速算方式。选项相差较大,或者在被比较的数字相差必须比较大,差距的大小将直接决定对“估算”时对精度的要求。 二、直除法 在比较或者计算较复杂的分数时,通过“直接相除”的方式得到商的首位(首一位、首两位、首三位),从而得出正确答案的速算方式。 常用形式: 1.比较型:比较分数大小时,若其量级相当,首位最大∕小数为最大∕小数 2.计算型:计算分数大小时,选项首位不同,通过计算首位便可得出答案。 难易梯度:1.基础直除法:①可通过直接观察判断首位的情形; ②需要通过手动计算判断首位的情形。 2.多位直除法:通过计算分数的“首两位”或“首三位”判断答案情形。 三、插值法 1.“比较型”插值法 如果A与B的比较,若可以找到一个数C,使得A﹥C,而B﹤C,既可以判定A﹥B;若可以找到一个数C,使得A﹤C,而B﹥C,既可以判定A﹤B; 2.“计算型”插值法 若A﹤C﹤B,则如果f﹥C,则可以得到f=B;如果f﹤C,则可以得到f=A; 若A﹥C﹥B,则如果f﹥C,则可以得到f=A;如果f﹤C,则可以得到f=B。

四、放缩法 当计算精度要求不高时,可以将中间结果进行大胆的“放”(扩大)或者“缩”(缩小),从而迅速得到精度足够的结果。 常用形式: 1. A﹥B,C﹥D,则有A+C﹥B+D;A-D﹥B-C; 2. A﹥B﹥0,C﹥D﹥0,则有A×C﹥B×D;A÷D﹥B÷C 五、割补法 在计算一组数据的平均值或总和值时,首先选取一个中间值,根据中间值将这组数据“割”(减去)或“补”(追上),进而求取平均值或总和值。 常用形式: 1.根据该组数据,粗略估算一个中间值; 2.将该组值分别减去中间值得到一组数值;

材料力学公式汇总

材料力学重点及其公式 材料力学的任务 (1)强度要求;(2)刚度要求;(3)稳定性要求。 变形固体的基本假设 (1)连续性假设;(2)均匀性假设;(3)各向同性假设;(4)小变形假设。 外力分类: 表面力、体积力;静载荷、动载荷。 内力:构件在外力的作用下,内部相互作用力的变化量,即构件内部各部分之间的因外力作用而引起的附加相互作用力 截面法:(1)欲求构件某一截面上的内力时,可沿该截面把构件切开成两部分,弃去任一部分,保留另一部分研究(2)在保留部分的截面上加上内力,以代替弃去部分对保留部分的作用。(3)根据平衡条件,列平衡方程,求解截面上和内力。 应力: dA dP A P p A = ??=→?lim 0正应力、切应力。 变形与应变:线应变、切应变。 杆件变形的基本形式 (1)拉伸或压缩;(2)剪切;(3)扭转;(4)弯曲;(5)组合变形。 静载荷:载荷从零开始平缓地增加到最终值,然后不在变化的载荷动载荷:载荷和速度随时间急剧变化的载荷为动载荷。 失效原因:脆性材料在其强度极限 b σ破坏,塑性材料在其屈服极限s σ时失效。二者统称为极限应 力理想情形。塑性材料、脆性材料的许用应力分别为: []3 n s σσ=, []b b n σσ=,强度条件: []σσ≤??? ??=max max A N ,等截面杆 []σ≤A N m a x 轴向拉伸或压缩时的变形:杆件在轴向方向的伸长为:l l l -=?1,沿轴线方向的应变和横截面上的应力分别为:l l ?= ε,A P A N ==σ。横向应变为:b b b b b -=?=1'ε,横向应变与轴向应变的关系为:μεε-=' 。 胡克定律:当应力低于材料的比例极限时,应力与应变成正比,即 εσE =,这就是胡克定律。E 为弹性模量。将应力与应变的表达式带入得:EA Nl l = ? 静不定:对于杆件的轴力,当未知力数目多于平衡方程的数目,仅利用静力平衡方程无法解出全部未知力。 圆轴扭转时的应力 变形几何关系—圆轴扭转的平面假设dx d φ ρ γρ=。物理关系——胡克定律dx d G G φρ γτρρ==。力学关系dA dx d G dx d G dA T A A A ???===2 2ρφφρρτρ 圆轴扭转时的应力:t p W T R I T == max τ;圆轴扭转的强度条件: ][max ττ≤=t W T ,可以进行强度校核、截面设计和确

行测资料分析计算公式汇总

资料分析计算公式汇总 考点 已知条件 计算公式 方法与技巧 基期量计算 (1)已知现期量,增长率x% x%1+= 现期量 基期量 截位直除法,特殊分数法 (2)已知现期量,相对基期量增加M 倍 M += 1现期量 基期量 截位直除法 (3)已知现期量,相对基期量的增长量N N -现期量基期量= 尾数法,估算法 基期量比较 (4)已知现期量,增长率x% 比较:x% 1+= 现期量 基期量 (1)截位直除法(2)如果现期量差距较大,增长率相差不大,可直接比较现期量。 (3)化同法 分数大小比较: (1)直除法(首位判断或差量比较) (2)化同法,差分法或其它 现期量计算 (5)已知基期量,增长率x% ) (基期量基期量基期量现期量x %1 x %+?=?+= 特殊分数法,估算法

(6)已知基期量,相对基期量增加M 倍 ) (基期量基期量基期量现期量M M +?=?+=1 估算法 (7)已知基期量,增长量N N +=基期量现期量 尾数法,估算法 增长量计算 (8)已知基期量与现期量 基期量现期量增长量-= 尾数法 (9)已知基期量与增长率x% x%?=基期量增长量 特殊分数法 (10)已知现期量与增长率x% x%x% 1?+= 现期量 增长量 (1)特殊分数法,当x%可以被视为 n 1 时,公式可被化简为:n += 1现期量 增长量; (2)估算法(倍数估算)或分数的近似计算(看大则大,看小则小) (11)如果基期量为A ,经N 期变为B ,平均增长量为x N A B x -= 直除法 增长量比较 (12)已知现期量与增长率x% x%x% 1?+=现期量 增长量 (1)特殊分数法,当x%可以被视为 n 1 时,公式可被化简为:n += 1现期量 增长量 (2)公式可变换为: % 1%x x +? =现期量增长量,其中

概率论与数理统计公式定理整理汇编

概率论与数理统计公式集锦 一、随机事件与概率

二、随机变量及其分布 1、分布函数性质 ()()(),()()() ()k k x x x P X x F x P X x P a X b F b F a f t dt 2、离散型随机变量及其分布 3、连续型随机变量及其分布

4、随机变量函数Y=g(X)的分布 离散型:()(),1,2,j i i j g x y P Y y p i L , 连续型:①分布函数法,②公式法()(())()(())Y X f y f h y h y x h y 单调 三、多维随机变量及其分布 1、离散型二维随机变量及其分布 分布律:(,),,1,2,i j ij P X x Y y p i j L 分布函数(,)i i ij x x y y F X Y p 边缘分布律:()i i ij j p P X x p ()j j ij i p P Y y p 条件分布律:(),1,2,ij i j j p P X x Y y i p L ,(),1,2,ij j i i p P Y y X x j p L 2、连续型二维随机变量及其分布 ①分布函数及性质 分布函数: x y dudv v u f y x F ),(),( 性质:2(,) (,)1,(,),F x y F f x y x y ((,))(,)G P x y G f x y dxdy ②边缘分布函数与边缘密度函数 分布函数: x X dvdu v u f x F ),()(密度函数: dv v x f x f X ),()( y Y dudv v u f y F ),()( du y u f y f Y ),()( ③条件概率密度 y x f y x f x y f X X Y ,)(),()(, x y f y x f y x f Y Y X ,) () ,()(

材料力学公式超级大汇总

1.外力偶矩计算公式(P功率,n转速) 2.弯矩、剪力和荷载集度之间的关系式 3.轴向拉压杆横截面上正应力的计算公式(杆件横截面轴力F N,横截面面积A,拉应 力为正) 4.轴向拉压杆斜截面上的正应力与切应力计算公式(夹角a 从x轴正方向逆时针转至外法线的方 位角为正) 5.纵向变形和横向变形(拉伸前试样标距l,拉伸后试样标距l1;拉伸前试样直径d,拉伸后试 样直径d1) 6.纵向线应变和横向线应变 7.泊松比 8.胡克定律 9.受多个力作用的杆件纵向变形计算公式?

10.承受轴向分布力或变截面的杆件,纵向变形计算公式 11.轴向拉压杆的强度计算公式 12.许用应力,脆性材料,塑性材料 13.延伸率 14.截面收缩率 15.剪切胡克定律(切变模量G,切应变g ) 16.拉压弹性模量E、泊松比和切变模量G之间关系式 17.圆截面对圆心的极惯性矩(a)实心圆 (b)空心圆 18.圆轴扭转时横截面上任一点切应力计算公式(扭矩T,所求点到圆心距离r) 19.圆截面周边各点处最大切应力计算公式 20.扭转截面系数,(a)实心圆 (b)空心圆

21. 薄壁圆管(壁厚δ≤ R 0 /10 ,R 0 为圆管的平均半径)扭转切应力计算公式 22. 圆轴扭转角与扭矩T 、杆长l 、 扭转刚度GH p 的关系式 23. 同一材料制成的圆轴各段内的扭矩不同或各段的直径不同(如阶梯轴)时 或 24. 等直圆轴强度条件 25. 塑性材料 ;脆性材料 26. 扭转圆轴的刚度条件? 或 27. 受内压圆筒形薄壁容器横截面和纵截面上的应力计算公式, 28. 平面应力状态下斜截面应力的一般公式 , 29. 平面应力状态的三个主应力 , ,

概率论与数理统计 重要公式

一、随机事件与概率 公式名称 公式表达式 德摩根公式 B A B A =,B A B A = 古典概型 ()m A P A n = =包含的基本事件数基本事件总数 几何概型 () ()()A P A μμ= Ω,其中μ为几何度量(长度、面积、体积) 求逆公式 )(1)(A P A P -= 加法公式 P(A ∪B)= P(A+B)=P(A)+P(B)-P(AB) 当P(AB)=0(A 、B 互斥)时,P(A ∪B)=P(A)+P(B) 减法公式 P(A-B)=P(A)-P(AB),B A ?时P(A-B)=P(A)-P(B) 条件概率公式 乘法公式 )() ()(A P AB P A B P = ()()()()()P AB P A P B A P B P A B == ()()()()P ABC P A P B A P C AB = 全概率公式 1 ()()()n i i i P A P B P A B ==∑ 从原因计算结果 贝叶斯公式 (逆概率公式) 1 ()() ()()() i i i n i i i P B P A B P B A P B P A B == ∑ 从结果找原因 两个事件 相互独立 ()()()P AB P A P B =;()()P B A P B =;)()(A B P A B P =;

二、随机变量及其分布 1、分布函数 ()()(),()()() ()k k x x x P X x F x P X x P a X b F b F a f t dt ≤-∞ ?=?=≤=<≤=-???∑? 概率密度函数 计算概率: 2、离散型随机变量及其分布 分布名称 分布律 0-1分布 X ~b(1,p) 1,0,)1()(1=-==-k p p k X P k k 二项分布(贝努利分布) X ~B(n,p) n k p p C k X P k n k k n ,,1,0,)1()( =-==- 泊松分布 X ~p(λ) (),0,1,2,! k P X k e k k λλ-== = 3、续型型随机变量及其分布 分布名称 密度函数 分布函数 均匀分布 x ~U(a,b) ?? ?? ?<<-=其他,0,1 )(b x a a b x f 0, (),1, =-0 , 00,)(x x e x f x λλ ???? ?≤>-=-0 , 00 , 1)(x x e x F x λ 正态分布 x ~N(2,σμ) 2 2 ()21()2μσπσ -- = -∞<<+∞ x f x e x 22 ()21 ()d 2μσπσ -- -∞ = ?t x F x e t 标准正态分布 x ~N(0,1) 2 2 1()2?π - = -∞<<+∞ x x e x 212 1 ()2t x x e dt π --∞ Φ= ? 1 )(=? +∞ ∞ -dx x f ?=≤≤b a dx x f b X a P )()(

资料分析计算公式

资料分析计算公式 考点 已知条件 计算公式 方法与技巧 基期量计算 已知现期量,增长量 增长量-现期量基期量= 直接做差、简单估算 已知现期量,增长率x% x% 1现期量基期量+= ()x %1-≈现期量 截位直除法,特殊分数法 当X<5,才可使用约等于号之后的公式 已知现期量,相对基期量增加M 倍 M += 1现期量基期量 截位直除法 基期量比较 已知现期量,增长率x% x% 1现期量基期量+= (1)截位直除法(2)如果现期量差距较大,增长率相差不大,可直接比较现期量。 (3)化同法 分数大小比较: (1)直除法(首位判断或差量比较) (2)化同法,差分法或其它 计算基期量时,如果给出现期量和增长率: 若增长率< 5%,建议使用公式法化除为乘进速算; 若5%≤增长率<10%,那么在答案精度要求不高的情况下也可使用化除为乘近似公式; 若增长率没有什么特殊特征,则考虑直接进行直除或估算。

现期量计算 已知基期量,增长量 量增长基期量 现期量+= 尾数法,估算法 已知基期量,增长率x% () %1%x x +?=?+=基期量现期量基期量基期量现期量 特殊分数法,估算法 已知基期量,相对基期量增加M 倍 ) (基期量基期量基期量现期量M M +?=?+=1 估算法 现期量的计算常和年均增长率结合考查,求年均增长率时可利用的近似计算公式为())5%(1%1<+≈+x nx x n ,估算结果比真实值偏小 增长量计算 已知基期量与现期量 基期量现期量增长量-= 尾数法、直接做减法 已知基期量与增长率x% x%?=基期量增长量 特殊分数法、估算 已知现期量与增长率x% x%x%1?+= 现期量 增长量 (1)特殊分数法,当x%可以被视为n 1时,公式 可被化简为:n +=1现期量增长量; (2)估算法(倍数估算)或分数的近似计算(看大则大,看小则小) 如果基期量为A ,经N 期变为B ,平均增长量为x N A B x -= 直除法

材料力学公式总结大全

材料力学 材料力学的任务 (1)强度要求;(2)刚度要求;(3)稳定性要求。 变形固体的基本假设 (1)连续性假设;(2)均匀性假设;(3)各向同性假设;(4)小变形假设。 外力分类:表面力、体积力;静载荷、动载荷。 内力:构件在外力的作用下,内部相互作用力的变化量,即构件内部各部分之间的因外力作用而引起的附加相互作用力 截面法:(1)欲求构件某一截面上的内力时,可沿该截面把构件切开成两部分,弃去任一部分,保留另一部分研究(2)在保留部分的截面上加上内力,以代替弃去部分对保留部分的作用。(3)根据平衡条件,列平衡方程,求解截面上和内力。 应力: dA dP A P p A = ??=→?lim 正应力、切应力。 变形与应变:线应变、切应变。 杆件变形的基本形式 (1)拉伸或压缩;(2)剪切;(3)扭转;(4)弯曲;(5)组合变形。 静载荷:载荷从零开始平缓地增加到最终值,然后不再变化的载荷。 动载荷:载荷和速度随时间急剧变化的载荷为动载荷。 失效原因:脆性材料在其强度极限 b σ破坏,塑性材料在其屈服极限s σ时失效。二者统称为极限应力理想情形。塑性材 料、脆性材料的许用应力分别为: []3n s σσ=, []b b n σ σ=,强度条件: []σσ≤??? ??=max max A N ,等截面杆 []σ≤A N max 轴向拉伸或压缩时的变形:杆件在轴向方向的伸长为:l l l -=?1,沿轴线方向的应变和横截面上的应力分别为:l l ?=ε,A P A N == σ。横向应变为:b b b b b -=?=1'ε,横向应变与轴向应变的关系为:μεε-=' 。 胡克定律:当应力低于材料的比例极限时,应力与应变成正比,即 εσE =,这就是胡克定律。E 为弹性模量。将应力与应变的表达式带入得:EA Nl l = ? 静不定:对于杆件的轴力,当未知力数目多于平衡方程的数目,仅利用静力平衡方程无法解出全部未知力。 圆轴扭转时的应力 变形几何关系—圆轴扭转的平面假设dx d φργρ=。物理关系——胡克定律dx d G G φργτρρ==。力学关系dA dx d G dx d G dA T A A A ??? === 2 2ρφφρρτρ 圆轴扭转时的应力:t p W T R I T ==max τ;圆轴扭转的强度条件: ][max ττ≤= t W T ,可以进行强度校核、截面设计和确定许可载荷。

资料分析计算公式整理

资料分析计算公式整理 考 点 已知条件计算公式方法与技巧 去年量计算(1)已知今年量, 增长率x% x% 1+ = 现期量 基期量截位直除法,特殊分数法 (2)已知今年量, 相对去年量增加 M倍 M + = 1 现期量 基期量截位直除法 (3)已知今年量, 相对去年量的增 长量N N - 现期量 基期量=尾数法,估算法 去 年量比较(4)已知今年量, 增长率x% 比较: x% 1+ = 现期量 基期量 (1)截位直除法(2)如果今年量 差距较大,增长率相差不大,可直 接比较今年量。 (3)化同法 分数大小比较: (1)直除法(首位判断或差量比 较) (2)化同法,差分法或其它 今年量计算(5)已知去年量, 增长率x% ) ( 基期量 基期量 基期量 现期量 x% 1 x% + ? = ? + = 特殊分数法,估算法 (6)已知去年量, 相对去年量增加 M倍 ) ( 基期量 基期量 基期量 现期量 M M + ? = ? + = 1 估算法 (7)已知去年量, 增长量N N + =基期量 现期量尾数法,估算法 增长量计算(8)已知去年量 与今年量 基期量 现期量 增长量- =尾数法 (9)已知去年量 与增长率x% x% ? =基期量 增长量特殊分数法 (10)已知今年量 与增长率x% x% x% 1 ? + = 现期量 增长量 (1)特殊分数法,当x%可以被视 为 n 1 时,公式可被化简为: n + = 1 现期量 增长量; (2)估算法(倍数估算)或分数 的近似计算(看大则大,看小则小)(11)如果去年量 为A,经N期变为 B,平均增长量为x N A B x - =直除法

概率论与数理统计经管类公式

概率论与数理统计(经管类)公式

————————————————————————————————作者:————————————————————————————————日期: 1

概率论与数理统计必考知识点 一、随机事件和概率 1、随机事件及其概率 运算律名称 表达式 交换律 A B B A +=+ BA AB = 结合律 C B A C B A C B A ++=++=++)()( ABC BC A C AB ==)()( 分配律 AC AB C B A ±=±)( ))(()(C A B A BC A ++=+ 德摩根律 B A B A =+ B A AB += 2、概率的定义及其计算 公式名称 公式表达式 求逆公式 )(1)(A P A P -= 加法公式 )()()()(AB P B P A P B A P -+=+ 条件概率公式 ) () ()(A P AB P A B P = 乘法公式 )()()(A B P A P AB P = )()()(B A P B P AB P = 全概率公式 ∑== n i i i A B P A P B P 1 )()()( 贝叶斯公式 (逆概率公式) ∑∞ == 1 ) ()() ()()(i i j j j j A B P A P A B P A P B A P 伯努利概型公式 n k p p C k P k n k k n n ,1,0,)1()(=-=- 两件事件相互独立相应 公式 )()()(B P A P AB P =;)()(B P A B P =;)()(A B P A B P =;1)()(=+A B P A B P ; 1)()(=+A B P A B P 二、随机变量及其分布 1、分布函数性质 )()(b F b X P =≤ )()()(a F b F b X a P -=≤< 2、离散型随机变量 分布名称 分布律 0–1分布),1(p B 1,0,)1()(1=-==-k p p k X P k k 二项分布),(p n B n k p p C k X P k n k k n ,,1,0,)1()( =-==-

材料力学公式总结完美版

材料力学重点及其公式 材料力学的任务 (1)强度要求;(2)刚度要求;(3)稳定性要求。 变形固体的基本假设 (1)连续性假设;(2)均匀性假设;(3)各向同性假设;(4)小变形假设。 外力分类:表面力、体积力;静载荷、动载荷。 内力:构件内部各部分之间的因外力作用而引起的附加相互作用力。 截面法:(1)欲求构件某一截面上的内力时,可沿该截面把构件切开成两部分,弃去任一部分,保留另一部分研究。(2)在保留部分的截面上加上内力,以代替弃去部分对保留部分的作用。(3)根据平衡条件,列平衡方程,求解截面上和内力。 应力: dA dP A P p A = ??=→?lim 0 正应力、切应力。 变形与应变:线应变、切应变。 杆件变形的基本形式 (1)拉伸或压缩;(2)剪切;(3)扭转;(4)弯曲 静载荷:载荷从零开始平缓地增加到最终值,然后不再变化的载荷。 动载荷:载荷和速度随时间急剧变化的载荷为动载荷。 失效原因:脆性材料在其强度极限b σ破坏,塑性材料在其屈服极限s σ时失效。二者统称为极限应力理想情形。塑性材料、脆性材料的许用应力分别为:[]s s n σσ= ,[]b b n σσ= ,强度条件:[]σσ≤??? ??=max max A F N ,等截面杆 []σ≤A F N max 延伸率 1100%l l l δ-= ?,截面收缩率1 100%A A A ψ-=? 轴向拉伸或压缩时的变形:杆件在轴向方向的伸长为:l l l -=?1,沿轴线方向的应变和横截面上的应力分别为: l l ?= ε,A P A F N ==σ(杆件横截面轴力F N ,横截面面积A ,拉应力为正)。横向应变为:b b b b b -=?=1' ε,横向应变与轴向应变的关系为:μεε-=' 。 胡克定律:当应力低于材料的比例极限时,应力与应变成正比,即 εσE =,这就是胡克定律。E 为弹性模量。将应力与应变的表达式带入得:EA l F l N = ?,受多个力作用的杆件纵向变形计算公式∑∑=?=?i i Ni i EA l F l l ;承受轴 向分布力或变截面的杆件,纵向变形计算公式 ?= ?dx x EA x F l N )() (。 静不定:对于杆件的轴力,当未知力数目多于平衡方程的数目,仅利用静力平衡方程无法解出全部未知力。 外力偶矩计算公式 ./min 9549 kN e N m r P M n =(P 功率,n 转速);薄壁圆管(壁厚δ≤ R 0 /10 ,R 0 为圆管的平均半径)扭转切应力计算公式202T R τπδ = 。

材料力学公式超级大汇总汇总

材料力学公式超级大汇总汇总 (P功率,n转速)2、弯矩、剪力和荷载集度之间的关系式3、轴向拉压杆横截面上正应力的计算公式(杆件横截面轴力FN,横截面面积A,拉应力为正)4、轴向拉压杆斜截面上的正应力与切应力计算公式(夹角a 从x轴正方向逆时针转至外法线的方位角为正)5、纵向变形和横向变形(拉伸前试样标距l,拉伸后试样标距l1;拉伸前试样直径d,拉伸后试样直径d1) 6、纵向线应变和横向线应变 7、泊松比 8、胡克定律 9、受多个力作用的杆件纵向变形计算公式? 10、承受轴向分布力或变截面的杆件,纵向变形计算公式 11、轴向拉压杆的强度计算公式 12、许用应力,脆性材料,塑性材料 13、延伸率 14、截面收缩率 15、剪切胡克定律(切变模量G,切应变g ) 16、拉压弹性模量E、泊松比和切变模量G之间关系式 17、圆截面对圆心的极惯性矩(a)实心圆 (b)空心圆 18、圆轴扭转时横截面上任一点切应力计算公式(扭矩T,所求点到圆心距离r ) 19、圆截面周边各点处最大切应力计算公式

20、扭转截面系数,(a)实心圆 (b)空心圆 21、薄壁圆管(壁厚δ≤ R0 /10 ,R0 为圆管的平均半径)扭转切应力计算公式 22、圆轴扭转角与扭矩T、杆长l、扭转刚度GHp的关系式 23、同一材料制成的圆轴各段内的扭矩不同或各段的直径不同(如阶梯轴)时或 24、等直圆轴强度条件 25、塑性材料;脆性材料 26、扭转圆轴的刚度条件? 或 27、受内压圆筒形薄壁容器横截面和纵截面上的应力计算公式, 28、平面应力状态下斜截面应力的一般公式 , 29、平面应力状态的三个主应力 , , 30、主平面方位的计算公式 31、面内最大切应力 32、受扭圆轴表面某点的三个主应力,, 33、三向应力状态最大与最小正应力 , 34、三向应力状态最大切应力 35、广义胡克定律 36、四种强度理论的相当应力 37、一种常见的应力状态的强度条件,

资料分析计算公式整理

资料分析计算公式整理 现期量=现在的量,或者是今年的量。 基期量=原始的量,或者是上年的量。 考点 已知条件 计算公式 方法与技巧 基期量计算 (1)已知现期量,增长率x% x%1+= 现期量 基期量 截位直除法,特殊分数法 (2)已知现期量,相对基期量增加M 倍 M += 1现期量 基期量 截位直除法 (3)已知现期量,相对基期量的增长量N N -现期量基期量= 尾数法,估算法 基期量比较 (4)已知现期量,增长率x% 比较:x% 1+= 现期量 基期量 (1)截位直除法(2)如果现期量差距较大,增长率相差不大,可直接比较现期量。 (3)化同法 分数大小比较: (1)直除法(首位判断或差量比较) (2)化同法,差分法或其它

现期量计算 (5)已知基期量,增长率x% ) (基期量基期量基期量现期量x %1 x %+?=?+= 特殊分数法,估算法 (6)已知基期量,相对基期量增加M 倍 ) (基期量基期量基期量现期量M M +?=?+=1 估算法 (7)已知基期量,增长量N N +=基期量现期量 尾数法,估算法 增长量计算 (8)已知基期量与现期量 基期量现期量增长量-= 尾数法 (9)已知基期量与增长率x% x%?=基期量增长量 特殊分数法 (10)已知现期量与增长率x% x%x% 1?+= 现期量 增长量 (1)特殊分数法,当x%可以被视为 n 1 时,公式可被化简为:n += 1现期量 增长量; (2)估算法(倍数估算)或分数的近似计算(看大则大,看小则小) (11)如果基期量为A ,经N 期变为B ,平均增长量为x N A B x -= 直除法 增长量比较 (12)已知现期量与增长率x% x%x% 1?+= 现期量 增长量 (1)特殊分数法,当x%可以被视为 n 1 时,公式可被化简为:n += 1现期量 增长量

概率论与数理统计公式总结【已整理 可直接打印】

第一章 P(A+B)=P(A)+P(B)- P(AB) 特别地,当A 、B 互斥时, P(A+B)=P(A)+P(B) 条件概率公式 概率的乘法公式 全概率公式:从原因计算结果 Bayes 公式:从结果找原因 第二章 二项分布(Bernoulli 分布)——X~B(n,p) 泊松分布——X~P(λ) 概率密度函数 怎样计算概率 均匀分布X~U(a,b) 指数分布X~Exp (θ) 分布函数 对离散型随机变量 对连续型随机变量 分布函数与密度函数的重要关系: 二元随机变量及其边缘分布 分布规律的描述方法 联合密度函数 联合分布函数 联合密度与边缘密度 离散型随机变量的独立性 连续型随机变量的独立性 第三章 数学期望 离散型随机变量,数学期望定义 连续型随机变量,数学期望定义 ● E(a)=a ,其中a 为常数 ● E(a+bX)=a+bE(X),其中a 、b 为常数 ● E(X+Y)=E(X)+E(Y),X 、Y 为任意随机变量 随机变量g(X)的数学期望 常用公式 ) () ()|(B P AB P B A P =)|()()(B A P B P AB P =) |()(A B P A P =∑ ==n k k k B A P B P A P 1)|()()(∑ ==n k k k i i k B A P B P B A P B P A B P 1 )|()()|()()|() ,...,1,0()1()(n k p p C k X P k n k k n =-==-,,...) 1,0(! )(== =-k e k k X P k ,λλ 1)(=? +∞ ∞ -dx x f )(b X a P ≤≤?=≤≤b a dx x f b X a P )()() 0(1 )(/≥= -x e x f x θ θ ∑≤==≤=x k k X P x X P x F ) ()()(? ∞ -=≤=x dt t f x X P x F )()()(? ∞ -=≤=x dt t f x X P x F )()()() ,(y x f ) ,(y x F 0 ),(≥y x f 1),(=?? +∞∞-+∞ ∞ -dxdy y x f 1),(0≤≤y x F } ,{),(y Y x X P y x F ≤≤=?+∞ ∞ -=dy y x f x f X ),()(?+∞ ∞ -=dx y x f y f Y ),()(} {}{},{j Y P i X P j Y i X P =====) ()(),(y f x f y x f Y X =∑+∞ -∞ =?= k k k P x X E )(? +∞ ∞ -?=dx x f x X E )()(∑ =k k k p x g X g E )())((∑∑=i j ij i p x X E )(dxdy y x xf X E ??=),()() (1 )(b x a a b x f ≤≤-= ) ()('x f x F =

材料力学公式总结完全版

材料力学公式总结完全版

————————————————————————————————作者:————————————————————————————————日期:

1 截面几何参数 序号 公式名称 公式 符号说明 (1.1) 截面形心位置 A zdA z A c ?= ,A ydA y A c ?= Z 为水平方向 Y 为竖直方向 (1.2) 截面形心位置 ∑∑=i i i c A A z z , ∑∑= i i i c A A y y (1.3) 面积矩 ?=A Z ydA S ,?=A y zdA S (1.4) 面积矩 i i z y A S ∑=,i i y z A S ∑= (1.5) 截面形心位置 A S z y c = ,A S y z c = (1.6) 面积矩 c y Az S =,c z Ay S = (1.7) 轴惯性矩 dA y I A z ?=2,dA z I A y ?=2 (1.8) 极惯必矩 dA I A ?=2ρρ (1.9) 极惯必矩 y z I I I +=ρ (1.10) 惯性积 dA zy I A zy ?= (1.11) 轴惯性矩 A i I z z 2=,A i I y y 2 = (1.12) 惯性半径 (回转半径) A I i z z = ,A I i y y = (1.13) 面积矩 轴惯性矩 极惯性矩 惯性积 ∑=zi z S S ,∑=yi y S S ∑=zi z I I ,∑=yi y I I ∑=i I I ρρ,∑=zyi zy I I (1.14) 平行移轴公式 A a I I zc z 2+= A b I I yc y 2+= abA I I zcyc zy +=

材料力学公式大全[机械]

材料力学常用公式 1.外力偶矩计算公式(P功率,n转速) 2.弯矩、剪力和荷载集度之间的关系式 3.轴向拉压杆横截面上正应力的计算公式(杆件横截面轴力F N, 横截面面积A,拉应力为正) 4.轴向拉压杆斜截面上的正应力与切应力计算公式(夹角a 从x 轴正方向逆时针转至外法线的方位角为正) 5.纵向变形和横向变形(拉伸前试样标距l,拉伸后试样标距l1; 拉伸前试样直径d,拉伸后试样直径d1) 6.纵向线应变和横向线应变 7.泊松比 8.胡克定律 9.受多个力作用的杆件纵向变形计算公式? 10.承受轴向分布力或变截面的杆件,纵向变形计算公式 11.轴向拉压杆的强度计算公式 12.许用应力,脆性材料,塑性材料 13.延伸率 14.截面收缩率

15.剪切胡克定律(切变模量G,切应变g ) 16.拉压弹性模量E、泊松比和切变模量G之间关系式 17.圆截面对圆心的极惯性矩(a)实心圆 (b)空心圆 18.圆轴扭转时横截面上任一点切应力计算公式(扭矩T,所求点 到圆心距离r) 19.圆截面周边各点处最大切应力计算公式 20.扭转截面系数,(a)实心圆 (b)空心圆 21.薄壁圆管(壁厚δ≤ R0 /10 ,R0为圆管的平均半径)扭转 切应力计算公式 22.圆轴扭转角与扭矩T、杆长l、扭转刚度GH p的关系式 23.同一材料制成的圆轴各段内的扭矩不同或各段的直径不同(如 阶梯轴)时或 24.等直圆轴强度条件 25.塑性材料;脆性材料 26.扭转圆轴的刚度条件? 或 27.受内压圆筒形薄壁容器横截面和纵截面上的应力计算公式, 28.平面应力状态下斜截面应力的一般公式, 29.平面应力状态的三个主应力, , 30.主平面方位的计算公式 31.面内最大切应力

相关主题
文本预览
相关文档 最新文档