当前位置:文档之家› 高斯定理的应用

高斯定理的应用

高斯定理的应用
高斯定理的应用

简析高斯定理在电场中的应用

高斯定理是物理学中电学部分的重要定理之一,在简化计算具有对称性的电场中有着重要应用,例如均匀带电的平面、直线、圆柱体、球面、球体等的电场的计算. 如果不理解高斯定理,不熟练掌握高斯定理的应用技巧,就会感到高斯定理深不可测. 下面,笔者就几年来的教学体会对高斯定理及其在电场中的应用作以简要分析.

三、高斯定理在电场中的应用

[例题1]设一块均匀带正电无限大平面,电荷密度为σ=9.3×10-8C/m 2,放置在真空中,求空间任一点的场强.

解:根据电荷的分布情况,可作如下判断:(1)电荷均匀分布在均匀带电无限大平面上,我们知道孤立正的点电荷的电场是以电荷为中心,沿各个方向在空间向外的直线,因此空间任一点的场强只在与平面垂直向外的方向上(如果带负电荷,电场方向相反),其他方向上的电场相互抵消;(2)在平行于带电平面的某一平面上各点的场强相等;(3)带电面右半空间的场强与左半空间的场强,对带电平面是对称的.

为了计算右方一点A 的场强,在左取它的对称点B ,以AB 为轴线作一圆柱,如图-3所示. 对圆柱表面用高斯定理,

图-3

?∑=

+=?=s

e e e q ds E 0

εφφφ两个底面侧面 (1)

0=侧e φ (2) ES e 2=两个底面φ (3)

圆柱内的电荷量为

∑=S q σ (4)

把(2)、(3)、(4)代入(1)得

02εσ=

E =12

81085.82103.9--???V/m=5.25×103 V/m [例题2]设有一根无限长块均匀带正电直线,电荷线密度为λ=5.0×10-9C/m ,放置在真空中,求空间距直线1m 处任一点的场强.

解:根据电荷的分布情况,可作如下判断:(1)电荷均匀分布在无限长块均匀直线上,我们知道孤立正的点电荷的电场是以电荷为中心,沿各个方向在空间向外的直线,因此空间任一点的场强只在与直线垂直向外的方向上存在(如果带负电荷,电场方向相反),其他方向上的电场相互抵消;(2)以直线为轴线的圆柱面上各点的场强数值相等,方向垂直于柱面(如图-4).

图-4

根据场强的分布,我们以直线为轴作长为l ,半径为r 的圆柱体.把圆柱体的表面作为高斯面,对圆柱表面用高斯定理:

?∑=

+=?=s

e e e q ds E 0

εφφφ两个底面侧面 (1)

r l E E S e πφ2==侧侧 (2) 0=两个底面e φ (3)

圆柱内的电荷量为

∑=l q λ (4)

把(2)、(3)、(4)代入(1)得

r E 02πελ

=

=1

1085.814.32100.5129?????--V/m=89.96 V/m [例题3]设有一半径为R 的均匀带正电球面,电荷为q ,放置在真空中,求空间任一点的场强. 解:由于电荷均匀分布在球面上,因此,空间任一点P 的的场强具有对称性,方向由球心O 到P 的径矢方向(如果带负电荷,电场方向相反),在与带电球面同心的球面上各点E 的大小相等.

根据场强的分布,我们取一半径为r 且与带电球面同系同心的球面为为高斯面,如图-5所示.

图-5

若R r <,高斯面2S 在球壳内,对球面2S 用高斯定理得 ?∑=

?=?=s

e q r E ds E 0

24επφ球内

因为球壳内无电荷,∑=0q ,所以

0=球内E

若R r >,高斯面1S 在球壳外,对球面1S 用高斯定理得∑=q q ,故有

24επq

E R =

2

04r

q E πε=

由此可知,均匀带电球面内的场强为零,球面外的场强与电荷集中在球心的点电荷所产生的场强相同.

四、高斯定理在电场中的一般应用步骤: (1) 判断电场的分布特点;

(2) 合理作出高斯面,使电场在其中对称分布;

(3) 找出电场在高斯面内的垂直面积⊥S ; (4) 分析高斯面内的电荷量q ; (5) 应用高斯定理求解(?∑=

?=s

s e q

ds E 0

)

(εφ内).

我们知道,用电场的叠加原理也可以计算连续分布的电荷所产生的场强,但是高斯定理以其简单明了的步骤最终赢得读者的喜爱.

第四讲:高斯定理的应用

高斯定理的一个重要应用,是用来计算带电体周围电场的电场强度。实际上,只有在场强分布具有一定的对称性时,才能比较方便应用高斯定理求出场强。

步骤:

1.进行对称性分析,即由电荷分布的对称性,分析场强分布的对称性,判断能否用高斯定理来求电场强度的分布(常见的对称性有球对称性、轴对称性、面对称性等);

2.根据场强分布的特点,作适当的高斯面,要求:①待求场强的场点应在此高斯面上,②穿过该高斯面的电通量

容易计算。一般地,高斯面各面元的法线矢量n 与E 平行或垂直,n 与E 平行时,E 的大小要求处处相等,使得

E 能提到积分号外面; 3.计算电通量

???S d E

和高斯面内所包围的电荷的代数和,最后由高斯定理求出场强。

应该指出,在某些情况下(对称),应用高斯定理是比较简单的,但一般情况下,以点电荷场强公式和叠加原

理以相互补充,还有其它的方法,应根据具体情况选用。

利用高斯定理,可简洁地求得具有对称性的带电体场源(如球型、圆柱形、无限长和无限大平板型等)的空间场强分布。计算的关键在于选取合适的闭合曲面——高斯面。

例1. 均匀带电球壳的场强。

设有一半径为R 、均匀带电为Q 的薄球壳。求球壳内部和外部任意点的电场强度。

解:因为球壳很薄,其厚度可忽略不计,电荷Q 近似认为均匀分布在球面上。由于电荷分布是球对称的,所以电场强度的分布也是球对称的。因此在电场强度的空间中任意点的电场强度的方向沿径矢,大小则依赖于从球心到场点的距离。即在同一球面上的各点的电场强度的大小是相等的。

以球心到场点的距离为半径作一球面,则通过此球面的电通量为

E r dS E S d E S

S

e 2 4π=?=?=

Φ??

??

根据高斯定理,通过球面的电通量为球面内包围的电荷

εq

e =

Φ

当场点在球壳外时 Q q = 电场强度为 2

04r Q E πε=

当场点在球壳内时 0=q

电场强度为 0=E 例2. 均匀带电球体的场强。

设有一半径为R 、均匀带电为Q 的球体。求球体内部和外部任意点的电场强度。

解:由于电荷分布是球对称的,所以电场强度的分布也是球对称的。因此在电场强度的空间中任意点的电场强度的方向沿径矢,大小则依赖于从球心到场点的距离。即在同一球面上的各点的电场强度的大小是相等的。

以球心到场点的距离为半径作一球面,则通过此球面的电通量为

E r dS E S d E S

S

e 2

4π=?=?=Φ????

根据高斯定理,通过球面的电通量为球面内包围的电荷 0

εq

e =

Φ

当场点在球体外时 Q q = 电场强度为 2

04r Q E πε=

当场点在球体内时 3333

343

4R

Qr r R Q q ==

ππ 电场强度为 3

04R Qr E πε=

例3. 无限长均匀带电直线的场强。

设有一无限长均匀带电直线,单位长度上的电荷,即电荷线密度为λ,求距离直线为r 处的电场强度。

解:由于带电直线无限长,且电荷均匀分布,所以电场的场强沿垂直于该直线的径矢方向,而且在距直线等距离的各点的场强的大小相等,即电场分布是柱对称的。以该直线为轴线作一圆柱面为高斯面,长为h ,半径为r 。由于场强与上下底面的法线垂直,所以通过圆柱的上下两个底面的电通量为零,而通过圆柱侧面的电场强度的通量为rh E π2。又此高斯面所包围的电量为h λ,所以根据高斯定理有 0/2ελπh rh E = 由此可知,电场强度为 r

E 02πελ

=

例4. 无限长均匀带电平面的场强。

设有一无限长均匀带电平板,单位面积上的电荷,即电荷面密度为σ,求距离平板为r 处的电场强度。

解:由于带电平板无限长,且电荷均匀分布,所以带电平板两侧电场的分布具有对称性,所以场强沿垂直于该平面,而且在距平面等距离的各点的场强的大小相等。作圆柱面为高斯面,此圆柱面穿过带电平面,且对带电平面是对称的。其侧面的法线方向与场强垂直,而通过圆柱侧面的电场强度的通量为零;由于场强与两个底面垂直,所以通过圆柱的两个底面的电通量为ES 。又此高斯面所包围的电量为σS ,所以根据高斯定理有 0/2εσS ES = 由此可知,电场强度为 0

2εσ=

E 即无限大均匀带电平面的场强与场点到平面的距离无关,而且场强的方向与带电平面垂直。无限大带电平面的电场是匀强电场。

例5. 两个带等量异号电荷的无限大平行平面的电场。 解:有例4可知,在两平面之外,0=E

在两平面之内,0

0022εσεσεσ=+=

E 方向有带正电的平面指向带负电的平面。

1. 例题

※ P26例题2:已知半径为 R ,带电量为 q 的均匀带电球面,求空间场强 分布。

解:由对称性分析知,E

的分布为球对称,即离开球心距离为 r 处各点的场强大小相等,方

向沿各自的矢径方向。

以O 为球心,过P 点作半径为r 的闭合球面S (高斯面),各点处面积元S d 的法线方向与该点

处E

的方向相同,所以

2

4r E dS E EdS S d E S

S

S

e π===?=Φ???

由高斯定理:02

4επq r E =?,

因此得到:

()

R r r q E ≥?=

2

41πε

同理作高斯面S’ 有:042

=r E π 即()R r E ?=0

讨论

(1)当 q >0时,E 的方向沿矢径向外,当 q <0 时,E

的方向沿矢径由外指向球心O 。

(2)E —r 曲线。

(3)内部场强处处为零;外部场强分布与将球面上电荷集中于球心的点电荷场强分布

相同;场强分布在球面处不连续,产生突变。 (4)半径为R ,均匀带电球体的场强分布。

P27例题3:求无限长均匀带电直线的空间电场分布。已知直线上线电荷

密度为λ。

解:由对称性分析,E 分布为轴对称性,即与带电直线距离相等的同轴圆

柱面上各点场强大小相等,方向均沿径向。

作过P 点以带电直线为轴,半径为 r ,高为 h 的圆柱形高斯面 S ,通过 S 的电通量为

?????+?+?=?=Φ下底

上底侧面S S S S e S

d E S d E S d E S d E

rl

E dS E EdS EdS EdS S S S π290cos 90cos 0cos 0

00?==++=????下底

上底

侧面

高斯面S 内所包围的电荷为λ?=∑l q ,由高斯定理得:

02ελπl

rl E =

所以得:r E 02πελ=

。 ★ 讨论

(1)当λ>0时,E

的方向沿矢径向外;当λ<0时,E 的方向沿矢径指向带电直线。 (2)E —r 曲线。

(3)半径为R 的无限长均匀带电圆柱面,沿轴线方向线电荷密度为λ,其场强分布为

()()

R r r

E R r E ≥=

?=020πελ

※ P27例题4:求均匀带电无限大薄平板的空间场强分布,设电荷密度为σ。

解:无限大均匀带电薄平板可看成无限多根无限长均匀带电直线排列而成,由对称性分析,平板

两侧离该板等距离处场强大小相等,方向均垂直平板。其一轴垂直带电平面,高为 2 r 的圆柱面为高斯面,通过它的电通量为:

S

E S

d E S d E S d E S S S

e ?=?+?=?=Φ???2 两底

侧面

S 内包围的电荷为:

S q

??=∑σ内

由高斯定理:

02εσS S E ?=

? 所以得 02εσ

=

E

当σ>0,E

的方向垂直平板离开平板;

当σ<0,E

的方向垂直平板指向平板。

2. 总结:应用高斯定理解题的步骤

(1)根据电荷分布的对称性分析电场分布的对称性。 (2)在待求区域选取合适的封闭积分曲面(称为高斯面)。要求:

曲面必须通过待求场强的点,曲面要简单易计算面积; 面上或某部分曲面上各点的场强大小相等;

且面上或某部分曲面上各点的法线与该处的E

方向一致或垂直或是成恒定角度,以便于计算。

(3)应用高斯定理求解出E

的大小。

(4)说明E

的方向。

勾股定理的应用教学设计20

勾股定理在实际生活中的应用 学习目标 1通过本科的学习,掌握利用勾股定理理解:决实际问题的方法分析———画图———解答。 2掌握勾股定理在实际生活中的重要性。 3在互助学习中进一步了解数学源于生活,有服务于生活的道理。 教学重点 如何利用勾股地理解决实际问题。 教学难点 将实际生活问题转化成用勾股定理解决的数学问题。 教学手段 多媒体课件 教学准备 课件五个生准备门框框架 教学方式 互助学习 教学过程 —,温故知新 (一)出示课件一 生齐读勾股定理 (二)师:大家读了非常好,同学们,我们学习了勾股定理,你们知道它对我们的生活有哪些帮助呢?这节课我们就来学习17.1勾股定理——在实际生活中的应用。通过这节课的学习你会知道勾股定理的重要性。 师板书课题:勾股定理———在实际生活中的应用 一、温故知新 (一)出示课件一 生齐读勾股定理 (二)师:大家读的非常好,同学们,我们学习了勾股定理,你们知道它对我们的生活有哪些帮助呢?这节课我们就来学习17.1勾股定理——在实际生活中的应用。通过这节课的学习你会知道勾股定理的重要性。 师板书课题:勾股定理———在实际生活中的应用 师:请同学们打开教材25页,互助合作学习完成例1,例2. 二、互助学习 (一)出示课件2、3结合课件小组进行互助学习。师友互学,教师巡视指导。 生1汇报例1,师友补充并展示例1的解题过程。 生2讲解例2,师友展示例2解答过程。 (二)生讨论归纳:通过对例1、例2的学习,你发现了什么? 教师板书:分析---------画图---------解答 (RTΔ)(勾股定理) 三、探究提升 (一)出示课件4(思考题)

勾股定理的应用 (2)

勾股定理的应用 一、知识框架 1、勾股定理的猜想 2、勾股定理的验证 3、勾股定理的应用 二、目标点击 1、经历探索勾股定理的过程,培养推理能和,体会数形结合起来思想。 2、能够利用定理解决一些简单的实际问题 3、培养学生良好的探究习惯,经历猜想——验证——应用的探究过程 三、重难点预见 学习重点:经历探索勾股定理的过程。 学习难点:会用勾股定理解决一些简单的实际问题。 四、学法指导 1、让学生根据教材和教师提供的预习学案先独立探究,然后在小组内交流自已在预习过程中遇到的疑难,完成对学案内容的探究。 2、学具准备:边长为整数的直角三角形纸片(每组2个),带有刻度的直尺。 五、自主探究 情境导入: 2002年在北京召开国际数学大会,在那个大会上,到处可以看到一个简洁优美的图案在流动,那个远看像旋转的风车的图案就是大会的会标,在这个会标中到底蕴含着什么样的数学奥秘呢?今天就让我们走进这人神秘的图形,一起探究数学王国中的奥妙。 学法指导: 通过学生亲自动手测量直角三角形纸片三边的长度,猜想直角三角形三边长度的平方之间的关系,从而培养学生动手操作能力和猜想能力。 (一)猜一猜 测量你们小组的两块直角三角形纸板三边长度,并将各边的长度填入下表:

三角尺直角边a 直角边b 斜边 c 关系 1 2 根据测得的数据:你能发现直角三角形纸板三边的长度的平方之间是否存在着一定的关系?你能作出怎样的猜想?把你的发现说给组内的同学听一听。。 (二)想一想 1、观察图2正文形P中含有几个小方格,即P的面积为多少个单位面积?正方形Q与正方形R的面积为多少个单位面积呢?正方形P、Q、R的面积有什么关系?这说明等腰直角三角形三边的平方具有什么关系呢? 解后感悟: 通过数方格,可以发现等腰直角三角形直角边的平方和等于斜边的平方。 方法提升:计算平面图形面积经常用到的方法有:数方格、割补法、凑整法等。 2、观察图 3、并填下表: 正方形A的面积=_______平方单位。正方形B的面积=_______平方单位。正方形C的面积=_______平方单位。 你是如何得出正方形C的面积的?把你的想法在小组内交流。 解题关键:求出正方形C的面积是探究三个正方形C的面积是探究三个正方形面积之间关系的关键。 预见性问题:学生探究正文形C的面积时比较困难,方法比较单一。利用分割法求正方形C 的面积时,忘记中间的一个小正方形而造成失误。 预见性措施:让学生通过小组交流,然后在班内汇报。教师重点引导学生对不同方法,不同思路进行比较,最后得出最优的方案。 (三)议一议 三个正方形A、B、C的面积之间存在什么关系?那么,你能发现直角三角形三边长度的平方之间存在什么关系吗?与同伴交流。 学法指导:能过前面的探究,让学生在班内汇报自己的观点,班内其他同学补充完善,最后验证前面猜想的正确性。 (四)记一记

对高斯定理的理解

对高斯定理的理解 1.高斯面S是静电场中的任意闭合曲面.但S面上不能有有限的电荷分布。 2.从高斯定理看电力线的性质:高斯定理说明正电荷是发出E通量的源,负电荷是吸收E通最的源。若闭合面内存在正(负)电荷.则通过闭合面的E通量为正(负).表明有电力线从面内(面外)穿出(穿入),即正(负)源电荷发射(吸收)电场线;若闭合面内没有电荷,则通过闭合面的E通量为零,意味着有多少电场线穿入就有多少电场线穿出,说明在没有电荷的区域内电场线不会中断. 在闭合面内,电荷空间分布的变化将改变闭合面上各点场强的大小和方向,但只要电量相同.就不会改变通过整个闭合面的E通量: 在闭合面外,有无电荷及其如何分布,将会影响闭合面上各处场强的大小和方向,但对通过整个闭合面的E通量没有贡献。 3.利用库仑定律和叠加原理导出高斯定理,库仑定律在电荷分布已知情况下,能求出场强的分布;高斯定理在电场强度分布已知时.能求出任意区域的电荷;当电荷分布具有某种对称分布时.可用高斯定理求出这种电荷系的场强分布,而且这种方法在数学上比用库仑定律简便得多;对于静止电荷的电场,可以说库仑定律与高斯定理是等价的;在研究运动电荷的电场或一般地随时间变化的电场时,库仑定律不再成立,而高斯定理却仍然有效。所以说:高斯定理是关于电场的普遍的摹本规律。 高斯定理求电场步骤 高斯定理的一个重要应用。是用来计算带电体周围电场的电场强度。实际上。对称性不是应用高斯定理求场强的条件,对于具有对称性.且能应用高斯定理求场强的问题,由于具有对称性.总可选择合适的高斯面而使计算较为简便:但在某些非对称情况下,只要高斯定理中的f-E·ds能够进行积分,则无论电荷或电场分布是否具有对称性,均能应用高斯定理求电场强度。因此对称性不是应用高斯定理求场强的条件,应用高斯定理求场强的关键是看(1)左边的积分能否进行,过分强调对称性,往往导致忽视应用高斯定理求场强的数学条件,造成对高斯定理的误解,应用高斯定理求场强问题的步骤: 1.分析场强或电荷分布的特点.进行对称性分析和判断,即由电荷分布的对称性。分析场强分布的对称性,非对称情况下,判断能够进行积分,判断f.E·ds 能否用高斯定理来求电场强度的分布。这一步是解题的关键,也是解题的难点。常见的对称性有球对称性包括均匀带电球面、球体、点电荷;轴对称性包括均匀带电的“无限长”圆柱面、圆柱体、细直线;面对称性包括均匀带电的“无限大”平面、平板。 2.根据场强分布的特点。作适当的高斯面,要求:①待求场强的场点应在此高斯面上,②穿过该高斯面的电通量容易计算。一般地。高斯面各面元的法线矢量n与E平行或垂直,n与E平行时.E的大小要求处处相等,使得E能提到积分号外面。 3.计算电通量f E·dS和高斯面内所包围的电荷的代数和。最后由高斯定理求出场强。

北师大版八年级数学上《勾股定理的应用》精品教案

《勾股定理的应用》精品教案 ●教学目标: 知识与技能目标: 1.了解勾股定理的作用是“在直角三角形中已知两边求第三边”;而勾股逆定理的 作用是由“三角形边的关系得出三角形是直角三角形”. 2.掌握勾股定理及其逆定理,运用勾股定理进行简单的长度计算. 过程与方法目标 1.让学生亲自经历卷折圆柱. 2.让学生在亲自经历卷折圆柱中认识到圆柱的侧面展开图是一个长方形(矩形). 3.让学生通过观察、实验、归纳等手段,培养其将“实际问题转化为应用勾股定理 解直角三角形的数学问题”的能力. 情感与态度目标 1.在将实际问题抽象成数学问题的过程中,提高分析问题、解决问题的能力及渗透数 学建模的思想. 2.在利用勾股定理解决实际问题的过程中,体验数学学习的实用性. ●重点: 勾股定理的应用. ●难点: 将实际问题转化为“应用勾股定理及其逆定理解直角三角形的数学问题”. ●教学流程: 一、课前回顾 在一个直角三角形中三条边满足什么样的关系呢? 勾股定理:直角三角形两直角边的平方和等于斜边的平方. →逆命题:如果三角形的三边长a、b、c满足a2 + b2 = c2那么这个三角形是直角三角形。 二、情境引入 探究1:有一个圆柱,它的高等于12厘米,底面半径等于3厘米, 在圆柱下底面上的A点有一只蚂蚁,它想从点A爬到点B,蚂蚁沿着圆柱 侧面爬行的最短路程是多少? (π取3)

当圆柱高为12cm ,底面周长为18cm 时,蚂蚁怎么走最近呢? 所走路程为高+直径=12+2×3=18cm 所走路程为高 +πr=12+3×3=21cm 在Rt △ABC 中,利用勾股定理可得, 222CB AC AB += cm AB 1522591222=∴=+= 比较方案①②③,可得,方案③为最短路径,最短路径是15cm 总结:1、线段公理 两点之间,线段最短 2、勾股定理 在Rt △ABC 中,两直角边为a 、b,斜边为c ,则a 2+b 2=c 2. 练习1:在底面半径为1、高为2的圆柱体的左下角A 处有一只蚂蚁,欲从圆柱体的侧面如图迂回爬行去吃左上角B 处的食物,问怎样爬行路径最短,最短路径是多少? 从A 点向上剪开,则侧面展开图如图所示,连接AB ,则 AB 为爬行的最短路径.

勾股定理的应用(2)

本文为本人珍藏,有较高的使用、参考、借鉴价值!! 勾股定理的应用(二) 班级 姓名 学号 教学目标:1能运用勾股定理及直角三角形的判定条件解决实际问题. 2会用勾股定理及直角三角形的判定条件解决实际问题,逐步培养“数形结合”和“转化”数学能力。发展学生的分析问题能力和表达能力。 3在提升分析问题能力和完整表达解题过程能力的同时,感受“数形结合”和“转化”的数学思想,体会数学的应用价值和渗透数学思想给解题带来的便利。积极参加数学学习活动,增强自主、合作意识,培养热爱科学的高尚品质。 重 难 点:勾股定理及直角三角形的判定条件的应用 教学过程 (一)创设情景,引入新课; 这些图形都有什么共同特征? 几组勾股数. 3,4,5; 5,12,13; 7,24,25; 8,15,17; 9,40,41;…… (二)实践探索,揭示新知1; .图1中的x 等于多少? 图2中的z y x ,,分别是多少? (三)尝试应用,反馈矫正 在数轴上画出表示5的点 在数轴上表示76,,76--,的点怎样画出? 图2中的图形的周长和面积分别是多少? 图1 x 11 z y 11x 图2

(四)实践探索,揭示新知2; 例1、如图4,等边三角形ABC 的边长是6,求△ABC 的面积。 (五)尝试应用,反馈矫正2 如图5,在△ABC 中,AB=AC=17,BC=16, 求△ABC 的面积。 如图6,在△ABC 中,AD ⊥BC ,AB=15,AD=12,AC=13, 求△ABC 的周长和面积。 (六)实践探索,揭示新知3; 如图7,在△ABC 中,AB=25,BC=7,AC=24,问△ABC 是什么三角形? (七)尝试应用,反馈矫正1 如图9,在△ABC 中, AB=15, AD=12,BD=9,AC=13,求△ABC 的周长和面积。 勾股定理与它的逆定理在应用上有什么区别? 材料5:如图10,以△ABC 的三边为直径向外作半圆, 且S1+S3=S2,试判断△ABC 的形状?(目的:对总结的结论的应用) (八)归纳小结,巩固提高 (九)布置作业 D C B A 图6 图9 D C B A

勾股定理的应用教案

勾股定理的应用 教学目标: 知识与技能: (1) 能应用勾股定理解决一些简单的实际问题。 (2) 学会选择适当的数学模型解决实际问题。 过程与方法: 通过问题情境的设立,使学生明白数学来源于生活,又应用于生活,积累 利用数学知识解决日常生活中实际问题的经验和方法。 情感、态度和价值观:使学生认识到数学来自生活,并服务于生活,从而增强学生学数学、 用数学的意识,体会勾股定理的文化价值。发展运用数学的信心和能力, 初步形成积极参与数学活动的意识。 教学重点: 应用勾股定理解决实际问题是本节课的教学重点; 教学难点.: 把实际问题化归成勾股定理的几何模型(直角三角形)则是本节课的难点。 教学关键:应用数形结合的思想,从实际问题中,寻找可应用的RT △,然后有针对性解决。 教学媒体:电子白板 教学过程: 一、导入 1、由犍为岷江大桥图片引入(一是拉近和学生的关系,激发学生对家乡的热爱之情, 同时由斜拉桥上的直角三角形引入勾股定理的应用) 另出具复习引入题 如图,长2.5m 的梯子靠在墙上,梯子 的底部离墙角1.5m ,如何求梯子的顶 端与地面的距离h? 先让学生复习勾股 定理的简单应用。 2、复习勾股定理内容 3、板书课题 二、新课探究 1、例 小明想知道学校旗杆的高度,但又不能把旗杆放倒测量,但他发现旗杆顶端的绳子垂到地面还多1米,当他把绳子下端拉开5米后,绳子刚好斜着拉直下端接触地面,你能帮小明算算旗杆的高度吗? 首先让学生审题并画出几何图形,再引导其完成。题中隐含了什么条件? 解:设旗杆高AB=x 米,则绳子长AC=(x+1) 米,在Rt ABC 中,由勾股定理得: 答:旗杆的高度为12米。 12 ,)1(52 22222==+=++x x x AC BC AB 解方程,得即

高斯定理在电磁学中的应用 毕业论文

第 19 页 ,共 20 页 目 录 1 高斯定理的表述 1.1数学上的高斯公式 1.2静电场的高斯定理 1.3磁场的高斯定理 2高斯定理的证明方法 2.1.1静电场的高斯定理 2.1.2磁场的高斯定理 2.2高斯定理的直接证明 2.3高斯定理的另一种证明 2.4对称性原理及其在电磁学中的应用 3理解和使用高斯定理应注意的若干问题的讨论与总结 (a) 定理中的 E 是指空间某处的总电场强度 (b) 注意ξ int ∑?= ?q dS E s 中 E 和 dS 的矢量性 (c) 正确理解定理中的∑int q (d) 不能只从数学的角度理解ξ int ∑?= ?q dS E s (e) 对高斯面的理解 4 高斯定理的应用? 4.1利用高斯定理求解无电介质时电场的强度 4.2利用高斯定理求解有电介质时电场的强度 5将高斯定理推广到万有引力场中 5.1静电场和万有引力场中有关量的类比 5.2万有引力场中的引力场强度矢量 5.3万有引力场中的高斯定理 6结束语 参考文献

高斯定理在电磁学中的应用 摘要:高斯定理是电磁学的一条重要定理,它不仅在静电场中有重要的应用,而且也是麦克斯韦电磁场理论中的一个重要方程。本文比较详细的介绍了高斯定理,并提供了数学法、直接证明法等方法证明它,总结出应用高斯定理应注意的几个问题,从中可以发现高斯定理在解决电磁学相关问题时的方便之处。最后把高斯定理推广到万有引力场中去。 关键词:高斯定理,应用,万有引力场 引言 高斯定理又叫散度定理,高斯定理在物理学研究方面,应用非常广泛,应用高斯定理求曲面积分、静电场、非静电场或磁场非常方便,特别是求电场强度或者磁感应强度。虽然有时候应用高斯定理求解电磁学问题很方便,但是它也存在一些局限性,所以要更好的运用高斯定理解决电磁学问题,我们首先应对高斯定理有一定的了解。 1 高斯定理的表述 1.1数学上的高斯公式 设空间区域V 由分片光滑的双侧封闭曲面S 所围成,若函数,,P Q R 在V 上连续,且有一阶 连续函数偏导数,则 S V P Q R dxdydz Pdydz Qdzdx Rdxdy x y z ?? ???++=++ ????? ?????? 1-1 其中S 的方向为外发向。1-1式称为高斯公式[1] 。 1.2静电场的高斯定理 一半径为r 的球面S 包围一位于球心的点电荷q ,在这个球面上,场强→ E 的方向处处垂直于球面,且→ E 的大小相等,都是2 04q E r πε= 。通过这个球面S 的电通量为 o o o o εππεπεπε φq r r q dS r q dS r q S d E s s s e = ?= = ?=?=??????→ → 22 2 2 4444 其中 S dS ?? 是球面积分,等于2 4r π。从此例中可以看出,通过球面S 的电通量只与其中的电量q 有关,与高斯面的半径r 无关。若将球面S 变为任意闭合曲面,由电场线的连续性可知,通过该闭合曲面的电通量认为0q ε。

《勾股定理的应用》教学设计1

17.1 .2 勾股定理(二) 一、教学目标 1.会用勾股定理解决简单的实际问题。 2.树立数形结合的思想。 二、重点、难点 1.重点:勾股定理的应用。 2.难点:实际问题向数学问题的转化。 3.难点的突破方法: 数形结合,从实际问题中抽象出几何图形,让学生画好图后标图;在实际问题向数学问题的转化过程中,注意勾股定理的使用条件,教师要向学生交代清楚,解释明白;优化训练,在不条件、不同环境中反复运用定理,使学生达到熟练使用,灵活运用的程度;让学生深入探讨,积极参与到课堂中,发挥学生的积极性和主动性。 三、例题的意图分析 例1(教材P25页例1)明确如何将实际问题转化为数学问题,注意条件的转化;学会如何利用数学知识、思想、方法解决实际问题。 例2(教材P25页例2)使学生进一步熟练使用勾股定理 四、课堂引入 勾股定理在实际的生产生活当中有着广泛的应用。勾股定理的发现和使 用解决了许多生活中的问题,今天我们就来运用勾股定理解决一些问题,你 可以吗?试一试。 五、例习题分析 例1(教材P25页例1) 分析:⑴在实际问题向数学问题的转化过程中,注意勾股定理的使用条件, 即门框为长方形,四个角都是直角。⑵让学生深入探讨图中有几个直角三角 形?图中标字母的线段哪条最长?⑶指出薄木板在数学问题中忽略厚度,只记长度,探讨以何种方式通过?⑷转化为勾股定理的计算,采用多种方法。⑸注意给学生小结深化数学建模思想,激发数学兴趣。 例2(教材P25页例2) 分析:⑴在△AOB 中,已知AB=2.6,AO=2.4,利用勾股定理计算 OB 。 ⑵ 在△COD 中,已知CD=2.6,CO=1.9,利用勾股定理计 算OD 。 则BD=OD -OB ,通过计算可知BD ≠AC 。 ⑶进一步让学生探究AC 和BD 的关系,给AC 不同的值,计算BD 。 六、课堂练习 1.小明和爸爸妈妈十一登香山,他们沿着45度的坡路走了500米,看到了一棵红叶树,这棵红叶树的离地面的高度是 米。 2.如图,山坡上两株树木之间的坡面距离是43米,则这两株树之间的垂直距离是 米,水平距离是 米。 D A B C A B

《勾股定理的应用》教案1

《勾股定理的应用》教案 教学目标 教学知识点: 能运用勾股定理及直角三角形的判别条件(即勾股定理的逆定理)解决简单的实际问题能力训练要求: 1、学会观察图形,勇于探索图形间的关系,培养学生的空间观念 2、在将实际问题抽象成几何图形过程中,提高分析问题、解决问题的能力及渗透数学建模的思想. 情感与价值观要求: 1、通过有趣的问题提高学习数学的兴趣. 2、在解决实际问题的过程中,体验数学学习的实用性,体现人人都学有用的数学 . 教学重点难点 重点:探索、发现给定事物中隐含的勾股定理及其逆及理,并用它们解决生活实际问题难点:利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理,解决实际问题教学过程 1、创设问题情境,弓I入新课 前几节课我们学习了勾股定理,你还记得它有什么作用吗? 例如:欲登12米高的建筑物,为安全需要,需使梯子底端离建筑物5米,至少需多长的梯子? 根据题意,(如图)AC是建筑物,则AC = 12米,BC = 5米,AB是梯子的长度.所以在Rt △ ABC 中,AB2= AC2+ BC2= 122 + 52= 132 ; AB= 13米. 所以至少需13米长的梯子. 2、讲授新课:①蚂蚁怎么走最近?

出示问题:有一个圆柱,它的高等于12cm,底面上圆的周长等于18cm .在圆行柱的下底面点A 点有一只蚂蚁,它想吃到上底面上与A点相对的B点处的食物,沿圆柱侧面爬行的的最短路程是多少? (1) 自己做一个圆柱,尝试从A点到B点沿圆柱的侧面画出几条路线,你觉得哪条路线最短呢?(小组讨论) (2) 如图1-12,将圆柱侧面剪开展开成一个长方形,从A点到B点的最短路线是什么?你 画对了吗? (3) 蚂蚁从A点出发,想吃到B点上的食物,它沿圆柱侧面爬行的最短路程是多少?(学生分组讨论,公布结果) 我们知道,圆柱的侧面展开图是一长方形,好了,现在咱们就用剪刀沿母线AA '将圆 柱的侧面展开(如下图). (1)A T A'f B ;( 2)A T B'T B; (3)A T D f B ;( 4) A f B. 哪条路线是最短呢?你画对了吗? 第(4)条路线最短.因为“两点之间的连线中线段最短” ②完成教材第13页的做一做. 李叔叔想要检测雕塑(图1-13)底座正面的边AD和边BC是否分别垂直于底边AB,随身只带卷尺? 也就是要检测/ DAB = 90°,/ CBA = 90° .连结BD或AC,也就是要检测△ DAB和厶C BA是否为直角三角形.很显然,这是一个需用勾股定理的逆定理来解决的实际问题 ③随堂练习 (1)甲、乙两位探险者,到沙漠进行探险?某日早晨8 : 00甲先出发,他以6km/h的速度 向正东行走.1时后乙出发,他以5km/h的速度向正北行走.上午10 : 00,甲、乙两人相距多

14.2勾股定理的应用2

三、勾股定理 第五课时 14.2勾股定理的应用2 学习目标: 1.准确运用勾股定理及逆定理 2.经历探究勾股定理的应用过程,掌握定理的应用方法,应用“数形结合”的思想来解决。 3.培养合情推理能力,提高合作交流意识,体会勾股定理的应用价值。 重点:掌握勾股定理及逆定理 难点:正确运用勾股定理及逆定理 预习过程: 一、导入(创设问题情境) 在一棵树的10m 高的D 处有两只猴子,其中一只猴子爬下树走到离树20m 处的池塘A 处,另一只爬到树顶后直接跃向池塘A 处,如果两只猴子所经过的距离相等,试问这棵树有多高? 分析:如图,其中一只猴子从D →B →A 共走了30m , 另一只猴子从D →C →A 也共走了30m ,且树身垂直 与地面,于是这个问题可化归到直角三角形解决。 二、例题讲解 例1:如图,在5×5的正方形网格中,每个小正方形的边长都为1,请在给定网格中按下列要求画出图形: 从点A 出发一条线段AB 使它的另一端点B 在格点(即小正方形的顶点)上,且长度为22 画出所有的以(1)中的AB 为边的等腰三角形,使另一个顶点在格点上,且另两边的长度都是无理数 \

例2:已知CD=6m , AD=8m ,∠ADC=90°, BC=24m ,AB=26m 。求图中阴影部分的面 积. 练习:已知:如图,四边形ABCD 中,∠B =90°,AB =3,BC =4,CD =12,AD =13,求 四边形ABCD 的面积? 三、拓展练习: 已知如图,Rt △ABC 中,∠BAC=90°,AB=AC,D 为BC 上任意一点。 求证:2222CD BD AD += D C B A

勾股定理的简单应用教案

课题 3.3勾股定理的应用第1课时 学习目标1、在运用勾股定理解决实际问题的过程中,感受数学的“转化”思想, 2、进一步发展有条理思考和有条理表达的能力。 3、通过对勾股定理应用,培养解决实际问题的能力和审美能力。 教学重点解斜三角形问题转化为解直角三角形的问题 教学难点勾股定理及直角三角形的判定条件的应用的区别 教法教具自主探究合作交流 教师活动二次备课 一创设情境 勾股定理在生活中的应用 从远处看,斜拉桥的索塔、桥面与拉索组成许多直角三角形 二探索活动 已知桥面以上索塔AB的高,怎样计算AC、AD、AE、AF、AG的 长. A B C E F G D

二.例题教学 例1 九章算术中的“折竹”问题:今有竹高一丈,末折抵地,去根三尺,问折者高几何? 意思是:有一根竹子原高1丈(1丈=10尺),中部有一处折断,竹梢触地面处离竹根3尺,试问折断处离地面多高? 练习 “引葭赴岸”是《九章算术》中另一道题“今有池方一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐.问水深、葭长各几何?” 题意是:有一个边长为10尺的正方形池塘,在水池正中央有一根新生的芦苇,它高出水面1尺,如果把这根芦苇沿与水池边垂直的方向拉向岸边,它的顶端恰好到达岸边.请问这个水池的深度和这根芦苇的长度各是多少? A C B 例2 如图,在△ABC中,AB=26,BC=20,BC边上的中线AD =24,求AC.

勾股定理与它的逆定理在应用上有什么区别? 三.展示交流 1.如图,在△ABC 中, AB =AC =17,BC =16,求△ABC 的面积. 2如图,在△ ABC 中,AD ⊥BC ,AB =15,AD =12,AC =13,求△ABC 的周长和面积. 3、如图,以△ABC 的三边为直径向外作半圆,且S 1+S 3=S 2,试判断△ABC 的形状? 四.总结 从勾股定理的应用中我们进一步体会到直角三角形与等腰三角形有着密切的联系;把研究等腰三角形转化为研究直角 D C B A D C B A

高斯定理

简析高斯定理在电场中的应用 高斯定理是静电学中的一个重要定理, 它反映了静电场的一个基本性质, 即静电场是有源场, 其源即是电荷。可表述为: 在静电场中, 通过任意闭合曲面的电通量, 等于该闭合曲面所包围的电荷的代数和的1/ε倍, 与闭合曲面外的电荷无关。表达式为 01 () 1/n i i S E ds q φε==?=∑?? (1) 高斯定理是用来求场强E 分布, 定理中, S 是任意曲面, 由于数学水平的限制, 要由高斯定理计算出E,则对由场的分布有一定的要求, 即电荷分布具有严格的对称性( 若电荷分布不对称性即不是均匀的, 引起电场分布不对称, 不能从高斯定理求空间场强分布,高斯定理当然仍是成立的) , 由于电荷分布的对称性导致场强分布的对称性, 场强分布的对称性应包括大小和方向两个方面。典型情况有三种: 1) 球对称性, 如点电荷, 均匀带电球面或球体等; 2) 轴对称性, 如无限长均匀带电直线, 无限长均匀带电圆柱或圆柱面, 无限长均匀带电同轴圆柱面 3) 面对称性, 如均匀带电无限大平面或平板,或者若干均匀带电无限大平行平面。 根据高斯定理计算场强时, 必须先根据电荷分布的对称性, 分析场强分布的对称性; 再适当选取无厚度的几何面作为高斯面。选取的原则是: ○ 1 待求场强的场点必须在高斯面上;○ 2 使高斯面的各个部分或者与E 垂直, 或者E 平行;○ 3 与E 垂直的那部分高斯面上各点的场强应相等;○ 4 高斯面的形状应是最简单的几何面。 最后由高斯定理求出场强。高斯定理说明的是通过闭合曲面的电通量与闭合 曲面所包围的所有电荷的代数和之间的关系, 即闭合曲面的总场强E 的电通量只与曲面所包围的电荷有关, 但与曲面内电荷的分布无关。但闭合曲面上的电场强度却是与曲面内外所有电荷相联系的,是共同激发的结果。 步骤: 1.进行对称性分析,即由电荷分布的对称性,分析场强分布的对称性,判断能否用高斯定理来求电场强度的分布(常见的对称性有球对称性、轴对称性、面对称性等); 2.根据场强分布的特点,作适当的高斯面,要求:①待求场强的场点应在此高斯面上,②穿过 该高斯面的电通量容易计算。一般地,高斯面各面元的法线矢量n 与E 平行或垂直,n 与E 平行时, E 的大小要求处处相等,使得E 能提到积分号外面; 3.计算电通量???S d E 和高斯面内所包围的电荷的代数和,最后由高斯定理求出场强。 应该指出,在某些情况下(对称),应用高斯定理是比较简单的,但一般情况下,以点电荷场强公式和叠加原理以相互补充,还有其它的方法,应根据具体情况选用。 利用高斯定理,可简洁地求得具有对称性的带电体场源(如球型、圆柱形、无限长和无限大平板型等)的空间场强分布。计算的关键在于选取合适的闭合曲面——高斯面。 典型例题: 例题1、设一块均匀带正电无限大平面,电荷密度为σ=9.3×10-8C/m 2,放置在真空中,求空间任一点的场强. 解:根据电荷的分布情况,可作如下判断:(1)电荷均匀分布在均匀带电无限大平面上,我们知道孤立正的点电荷的电场是以电荷为中心,沿各个方向在空间向外的直线,因此空间任一点的场强只在与平面垂直向外的方向上(如果带负电荷,电场方向相反),其他方向上的电场相互抵消;(2)在平行于带电平面的某一平面上各点的场强相等;(3) 带电面右半空间

勾股定理的应用教案

勾股定理的应用教案 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

121教学模式 科目_________________________ 年级_________________________ 教师____________ 数学 八年级 潘明明

课前1分钟交通安全教育 “121”教学模式导学案(______科) 数学 2013 年 9 月 7日制订

际问题 2、将立体图形问题转化成平面图形问题 合作探究交流共享第一环节:情境引入 内容: 情景1:多媒体展示: 提出问题:从二教楼到综合楼怎样走最近 情景2: 如图:在一个圆柱石凳上,若小明在吃东西时留下 了一点食物在B处,恰好一只在A处的蚂蚁捕捉到这 一信息,于是它想从A处爬向B处,你们想一想,蚂蚁怎么走最近意图: 通过情景1复习公理:两点之间线段最短;情景2的创设引入新课,激发学生探究热情. 效果: 从学生熟悉的生活场景引入,提出问题,学生探究热情高涨,为下一环节奠定了良好基础. 第二环节:合作探究 内容: 学生分为4人活动小组,合作探究蚂蚁爬行的最短路线,充分讨论后,汇总各小组的方案,在全班范围内讨论每种方案的路线计算方法,通过具体计算,总结出最短路线.让学生发现:沿圆柱体母线剪开后展开得到矩形,研究“蚂蚁怎么走最近”就是研究两点连线最短问题,引导学生体会利用数学解决实际问题的方法. 意图: 通过学生的合作探究,找到解决“蚂蚁怎么走最近”的方法,将曲面最短距离问题转化为平面最短距离问题并利用勾股定理求解.在活动中体

验数学建摸,培养学生与人合作交流的能力,增强学生探究能力,操作能力,分析能力,发展空间观念. 效果: 学生汇总了四种方案: (1) (2) (3) (4) 学生很容易算出:情形(1)中A →B 的路线长为:'AA d +, 情形(2)中A →B 的路线长为:'2 d AA π+ 所以情形(1)的路线比情形(2)要短. 学生在情形(3)和(4)的比较中出现困难,但还是有学生提出用剪刀沿母线AA ’剪开圆柱得到矩形,情形(3)A →B 是折线,而情形(4)是线段,故根据两点之间线段最短可判断(4)较短,最后通过计算比较(1)和(4)即可. 如图: (1)中A →B 的路线长为:'AA d +. (2)中A →B 的路线长为:''AA A B +>AB . (3)中A →B 的路线长为:AO +OB >AB . (4)中A →B 的路线长为:AB . 得出结论:利用展开图中两点之 间,线段最短解决问题.在这个环节中,可让学生沿母线剪开圆柱体,具体观察.接下来后提问:怎样计算AB 在Rt △AA′B 中,利用勾股定理可得222'B A A A AB +'=,若已知圆柱体高为12cm ,底面半径为3cm ,π取3,则 A ’ A ’ A ’

《勾股定理的应用》教学设计

《勾股定理的应用》教学设计 教学目标: 1、准确运用勾股定理及逆定理. 2、经历勾股定理的应用过程,熟练掌握其应用方法,应用“数形结合”的思想来解决. 3、培养合情推理能力,提高合作交流意识,体会勾股定理的应用 教学重点:掌握勾股定理及其逆定理 教学难点:正确运用勾股定理及其逆定理. 教学关键:应用数形结合的思想,从实际问题中,寻找可应用的RT△,然后有针对性解决. 教学准备: 教师准备:直尺、圆规 教学过程: 一、创设情境,激发兴趣 教师道白:在一棵树的l0m高的D处有两只猴子,其中一只猴子爬下树走到离树 20m处的池塘A处,另一只爬到树顶后直接跃向池塘A处,如果两只猴子所经过的 距离相等,试问这棵树有多高? 评析:如图所示,其中一只猴子从D→B→A共走了30m,另一只猴子从D→C→A也共走了30m,且树身垂直于地面,于是这个问题可化归到直角三角形解决. 教师提出问题,引导学生分析问题、明确题意,用化归的思想解决问题. 解:设DC=xm,依题意得:BD+BA=DC+CA CA=30-x,BC=l0+x在RtnABC中 2 2 2BC AB AC+ =AC' =AB' +BC 即()()2 2 210 20 30x x+ + = - 解之x=5 所以树高为15m. 二、范例学习 如图,在5×5的正方形网格中,每个小正方形的边长都为1,请在给定网格中按下列要求画出图形:(1)从点A出发画一条线段AB,使它的另一个端点B在格点(即小正方形的顶点)上,且长度为22;(2)画出所有的以(1)中的AB为边的等腰三角形,使另一个顶点在格点上,且另两边的长度都是无理数.

教师分析 只需利用勾股定理看哪一个矩形的对角线满足要求. 解(1) 图1中AB长度为22. (2) 图2中△ABC、 △ABD 就是所要画的等腰三角形. 例如图,已知CD =6m , AD =8m , ∠ADC =90°, BC =24m , AB=26m .求 图中阴影部分的面积. 教师分析:课本图14.2.7中阴影部分的面积是一个不规则的图形,因此我们首先应考虑如何转化为规则图形的和差形,这是方向,同学们记住,实际上 阴S =ABC S ?-ACD S ?,现在只要明确怎样计算ABC S ?和ACD S ?了。 解 在Rt △ADC 中, AC 2=AD2+CD2=62+82=100(勾股定理), ∴ AC =10m . ∵ AC2+BC2=102+242=676=AB2 ∴ △ACB 为直角三角形(如果三角形的三边长a 、 b 、 c 有关系: a 2+b 2=c 2,那么这个三角形是直角三角形),∴ S 阴影部分=S△ACB -S△ACD =1/2×10×24-1/2×6×8=96(m 2). 评析:这题应总结出两种思想方法:一是求不规则图形的面积方法“将不规则图化成规则”,二是求面积中,要注意其特殊性. 三、课堂小结 此课时是运用勾股定理和判定直角三角形的勾股逆定理来解决实际问题,解决这类问题的关键是画出正确的图形,通过数形结合,构造直角三角形,碰到空间曲面上两点间的最短距离间题,一般是化空间问题为平面问题来解决.即将空间曲面展开成平面,然后利用勾股定理及相关知识进行求解,遇到求不规则面积问题,通常应用化归思想,将不规则问题转换成规则何题来解决.解题中,注意辅助线的使用.特别是“经验辅助线”的使用. 五、布置作业

勾股定理及其应用

勾股定理及其应用 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

第五次课勾股定理及其应用 本章知识要点 A. 勾股定理及其逆定理。 B. 验证、证明勾股定理及其依据(面积法)。 C. 勾股数组、基本勾股数组及勾股数的推算公式。 D. 勾股定理及其逆定理的应用。 E. 感受“方程”思想、“数形结合”思想、“化归与转化”思想等数学思想。 重点知识勾股定理的验证

(美)伽菲尔德总统拼图 如右图,直角梯形的面积等于三个直角三角形的面积之和,所以 ()()22121221 c ab b a b a +?=+? +,即222c b a =+ 赵爽弦图 如右图,用四个全等的直角三角形可得到一个以()a b -为边长的小正方形和一个边长为c 的大正方形,因为大正方形的边长为c ,所以面积为2c ,又因为大正方形被分割成了四个全等的直角边长分别为b a ,的直角三角形和一个边长为()a b -的正方形,所以其面积为 ()2 2 14a b ab -+?所以()2 22 14a b ab c -+?=,从而222b a c +=. 刘徽:青朱出入图 如右图,通过拼图,以c 为边长的正方形面积等于分别以b a ,为边长的两个正方形的面积之和 名师提示 用拼图法验证勾股定理的思路:①图形经过割补拼接后,只 要没有重叠、没有空隙,那么面积就不会改变;②根据同一种图形面积的不同表示方法(简称面积法)列出等式,推导勾股定理 重点知识 确定几何体上的最短路线 描述 示意图 9 E D B A C F 7 D A E B C F 展开 5 甲 F D E F

高斯定理的应用

简析高斯定理在电场中的应用 高斯定理是物理学中电学部分的重要定理之一,在简化计算具有对称性的电场中有着重要应用,例如均匀带电的平面、直线、圆柱体、球面、球体等的电场的计算. 如果不理解高斯定理,不熟练掌握高斯定理的应用技巧,就会感到高斯定理深不可测. 下面,笔者就几年来的教学体会对高斯定理及其在电场中的应用作以简要分析. 三、高斯定理在电场中的应用 [例题1]设一块均匀带正电无限大平面,电荷密度为σ=9.3×10-8C/m 2,放置在真空中,求空间任一点的场强. 解:根据电荷的分布情况,可作如下判断:(1)电荷均匀分布在均匀带电无限大平面上,我们知道孤立正的点电荷的电场是以电荷为中心,沿各个方向在空间向外的直线,因此空间任一点的场强只在与平面垂直向外的方向上(如果带负电荷,电场方向相反),其他方向上的电场相互抵消;(2)在平行于带电平面的某一平面上各点的场强相等;(3)带电面右半空间的场强与左半空间的场强,对带电平面是对称的. 为了计算右方一点A 的场强,在左取它的对称点B ,以AB 为轴线作一圆柱,如图-3所示. 对圆柱表面用高斯定理, 图-3 ?∑= +=?=s e e e q ds E 0 εφφφ两个底面侧面 (1) 0=侧e φ (2) ES e 2=两个底面φ (3) 圆柱内的电荷量为 ∑=S q σ (4) 把(2)、(3)、(4)代入(1)得 02εσ=E =12 810 85.82103.9--???V/m=5.25×103 V/m [例题2]设有一根无限长块均匀带正电直线,电荷线密度为λ=5.0×10-9C/m ,放置在真空中,求空间距直线1m 处任一点的场强. 解:根据电荷的分布情况,可作如下判断:(1)电荷均匀分布在无限长块均匀直线上,我们知道孤立正的点电荷的电场是以电荷为中心,沿各个方向在空间向外的直线,因此空间任一点的场强只在与直线垂直向外的方向上存在(如果带负电荷,电场方向相反),其他方向上的电场相互抵消;(2)以直线为轴线的圆柱面上各点的场强数值相等,方向垂直于柱面(如图-4).

14.2勾股定理的应用教案

14.2 勾股定理的应用 执笔人:审核:八年级数学组课型:新授时间: 1、知识与方法目标:通过对一些典型题目的思考、练习,能正确、熟练的进行勾股定理有关 计算,深入对勾股定理的理解。 2、过程与方法目标:通过对一些题目的探讨,以达到掌握知识的目的。 3、情感与态度目标:感受数学在生活中的应用,感受数学定理的美。 课前复习 1、勾股定理的内容是什么? 问:是这样的。在RtΔABC中,∠C =90°,有:AC2+BC2=AB2,勾股定理揭示了直角三角形三边之间的关系。 今天我们来看看这个定理的应用。 新课过程 分析: 大家分组合作探究: 解:在RtΔABC中,由题意有: AC==≈2.236 ∵AC大于木板的宽 ∴薄木板能从门框通过。 学生进行练习: 1、在Rt△ABC中,AB=c,BC=a,AC=b,∠B=90゜. ①已知a=5,b=12,求c; ②已知a=20,c=29,求b (请大家画出图来,注意不要简单机械的套a2+b2=c2,要根据本质来看问题) 2、如果一个直角三角形的两条边长分别是6厘米和8厘米,那么这个三角形的周长是多少厘米? 解:①当6cm和8cm分别为两直角边时;

斜边==10 ∴周长为:6+8+10=24cm ②当6cm为一直角边,8cm是斜边时, 另一直角边==2 周长为:6+8+2=14+2 解:由题意有:∠O=90°,在RtΔABO中 ∴AO==2.4(米) 又∵下滑了0.4米 ∴OC=2.0米 在RtΔODC中 ∴OD==1.5(米) ∴外移BD=0.8米 答:梯足将外移0.8米。 例3再来看一道古代名题: 这是一道成书于公元前一世纪,距今约两千多年前的,《九章算术》中记录的一道古代趣题: “现在有一个贮满水的正方形池子,池子的中央长着一株芦苇,水池的边长为10尺,芦苇露出水面1尺。若将芦苇拉到岸边,刚好能达到水池岸与水面的交接线的中点上。请求出水深与芦苇的长各有多少尺? 解:由题意有:DE=5尺,DF=FE+1。 设EF=x尺,则DF=(x+1)尺

2.7勾股定理的应用(2)

课题:§2.7 勾股定理的应用(2) 教学目标:1.能运用勾股定理及其逆定理解决实际问题. 2.在运用勾股定理解决实际问题的过程中,学会数学建模,学会将斜三角形问题转化为直角三角形的问题,进一步发展有条理思考和有条理表达的能力,体会数学的应用价值. 教学重点:实际问题转化成数学问题再转化为直角三角形中 . 教学难点:“转化”思想的应用. 教学过程: 【预习导航】 1.阅读课本第82页到83页,完成讨论P 82 中的问题: (1)如何求出图中的x、y、x?⑵如何画出5、6、7的线段吗? 2.在数轴上画出表示-5的点. 【新知探索】 3. 如图,正方形网格中有一个△ABC,若小方格边长为1,则△ABC是三角形. 【交流展示】 【活动一】4.已知:如图,等边△ABC的边长是6 cm. (1)求高AD的长;(精确到0.01) (2)求S △ABC (保留4位有效数字). A B C

B A C 【活动二】5.已知:如图,在△ABC 中,AC=26,AB=20,边A B 上的中线CD=24. 求①B C 的长;②△ABC 的面积. 【随堂训练】 6. 已知一个直角三角形的两边长分别为5和12,则其周长为______________. 7. 若一个直角三角形的一条直角边长是7cm ,另一条直角边比斜边短1cm ,则斜边长为 . 板书设计 教学反思 【达标反馈】 8.已知:如图①,在Rt △ABC 中,两直角边AC 、BC 的长分别为6和8,现将直角边AC 沿AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于 ( ) A.2 B.3 C.4 D.5 9.在上题中的Rt △ABC 折叠,使点B 与A 重合,折痕为DE (如图②),则CD 的长为 ( ) A.1.50 B.1.75 C.1.95 D.以上都不对 10.如图,在△ABC 中,AB=15,BC=14,AC=13,求△ABC 的面积. B 图② A C B D E 图①

勾股定理教案

动态教案模板 学科数学授课年级八年级学校教师姓名 章 课 题 第十八章勾股定理总课时 5 第课时 1 节 课 题 18.1 勾股定理(1)课型新授课授课时间3月19日 教 学 三 维 目 标 知识与技能: 1.了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。 2.培养在实际生活中发现问题总结规律的意识和能力。 3.介绍我国古代在勾股定理研究方面所取得的成就,激发学生的爱国热情,促其勤奋学习。 过程与方法: 经历观察与发现直角三角形三边关系的过程,感受勾股定理的应用意识。 情感、态度价值观: 培养学生严谨的数学学习态度,体会勾股定理的应用价值。 教 学 用 具 教 学 重 点 勾股定理的内容及证明。 教勾股定理的证明。

S正方形=C S正方形=4ab+(a-b) 方法二; 已知:在△ABC中,∠C=90°,∠A、∠B、∠C的对边为a、b、c。 求证:a2+b2=c2。 分析:左右两边的正方形边长相等,则两个正方形的面积相等。 左边S=4× ab+c2 右边S=(a+b)2 左边和右边面积相等,即 4× ab+c2=(a+b)2 化简可得。 方法三: 以a、b 为直角边,以c为斜边作两个全等的直角三角

形,则每个直角三角形的面积等于 . 把这两个直角三角形拼成如图所示形状,使A、E、B 三点在一条直线上. ∵ RtΔEAD ≌ RtΔCBE, ∴ ∠ADE = ∠BEC. ∵ ∠AED + ∠ADE = 90o, ∴ ∠AED + ∠BEC = 90o. ∴ ∠DEC = 180o―90o= 90o. ∴ ΔDEC是一个等腰直角三角形, 它的面积等于 . 又∵ ∠DAE = 90o, ∠EBC = 90o, ∴ AD∥BC. ∴ ABCD是一个直角梯形,它的面积等于 . ∴ . ∴ . 勾股定理的证明方法,达300余种。请学生利用业余时 间探究。 三、课堂练习:

相关主题
文本预览
相关文档 最新文档