当前位置:文档之家› 量子化学复习提纲

量子化学复习提纲

量子化学复习提纲
量子化学复习提纲

量子化学复习提纲

1 量子力学QM与分子力学MM

研究化合物的结构和性能,可以从两个层次:宏观层次和微观层次。宏观层次就是我们熟悉的实验观测;微观则是计算分子结构。计算分子结构基本上可以分为两种方法:量子力学(Quantum Mechanics)和分子力学(Molecular Mechanics)

量子力学是计算电子波函数的,计算电子波函数就要解薛定谔方程,简称S方程。通过核和电子的相互作用原理和规律等,运用量子力学原理,经过近似处理直接求解S方程得到电子波函数,从而求得电子总能和分子结构,我们称为第一性原理(First Principle),狭义的第一性原理计算就是从头算(ab initio),它不采用经验参数,只用电子质量,光速,质子中子质量等少数实验数据去做量子计算。所以说量子力学是纯净无污染的(自己种的苹果)。

分子力学则从另一个方面,其直接计算原子和分子,不计算电子波函数,又叫力场方法(force field method)。它应用的原理是能量最小值方法。即原子间相互作用势下,改变原子(分子)的几何分布,以能量最小为判据,求得体系最佳构型。分子立场方法来源不清,假象的(超市卖的苹果)。

2 薛定谔方程

薛定谔方程HΨ=EΨ。薛定谔方程可以由驻波方程去推导。因为电子本身既是粒子又是波,而驻波的方程恰好可以反应粒子的性质。将驻波方程求二阶微导并与波粒二象性公式联系即可得到S方程。S方程不含自旋,而一个完整的电子波函数应该包括空间波函数和自旋波函数。S方程得到的波函数Ψ是不含自旋的空间波函数。既包括空间波函数也包括自旋波函数的方程是狄拉克方程D方程。

3 能量E

能量包括两部分:动能和势能。S方程中H代表哈密顿算符。H与E对应,所以H应该包括两个算符动能算符+势能算符。动能算符就是拉布拉斯算符(倒三角)作用于(-h2/8π2m)

一个完整的哈密顿算符在具体的电子计算中包括五个部分:电子动能(-)+核动能(-)+电子核吸引势能(-)+电子之间排斥能(+)+核之间排斥能(+),括号内代表值的正负

实际计算中我们都采用B-O近似,也就是玻恩奥本海默近似(绝热近似)。与电子相比,核质量大,基本不动,所以我们把核动能+核之间排斥势视为常数,所以B-O近似下的哈密顿算符就只包括三项。这样就把薛定谔方程分为了两部分乘积:核S方程X 电子S方程。

4 结构优化

结构优化就是dE/dx=0的过程

5 全同粒子

所谓全同粒子是指质量电荷自旋等固有属性都相同的粒子。如所有的电子是全同粒子。全同粒子构成的体系特点是粒子无法区分,因为属性都一样。全同粒子可以分为两类:费米子和波色子。电子、质子、中子等是费米子,特点是自旋是半整数(如电子是

1/2),费米子构成的全同粒子体系,如果交换任意两个粒子的位置,其波函数变号。

6 Slater行列式

基于费米子全同粒子体系交换位置变号的特点,可以用矩阵的形式表示出来。因为交换矩阵任意两行,矩阵值变负。倘若有任意两行相同,矩阵值为零(Pauli不相容原理,因为矩阵值为零,所以不允许两个完全一样属性的粒子占据同一个轨道)。这样的一个矩阵我们称之为Slater 行列式。矩阵前系数是1/√N!。矩阵中的每一项都是一个分子轨道。

7 周期性边界条件(Periodic Boundary Conditions,PBC)

一种边界性条件,在这种边界性条件下,当有一个粒子跑出我们设定的盒子时,必有一个粒子(称之为镜像)跑进来,从而维持系统粒子的稳定。周期性边界条件是分子动力学模拟的基本条件。整个体系就是这个盒子的无限三维扩展。(Born-von-Karman边界条件,从头算分子动力学模拟AIMD)

8 计算的基本理念

要根据问题选软件,而不是根据软件选择问题。

计算结果不是越接近实验值就是正确的。一个错误的方法可以得到更接近实验值的数值,但方法是错误的,值是没意义的。

计算的好不好与理论水平不一定成正比。比如有时候用高水平的理论结算得到的结果还不如低水平的理论计算得到的结果。但一般来说选择大基组会提供精确度。

精确度与cost关系。一般来说,牺牲精确度会提高效率。算得快的方法大部分都是以牺牲精确度为前提的。

9 原子单位

量化计算采用的单位制,me=1,e=1,h/2π=1,距离采用波尔半径a0=0.529埃,光速C=137,能量单位为Hartree,1Hartree=27.21ev=627.5095kcal/mol=2625.51kJ/mol

10 势能面(Potential energy surface ,PEC)

以能量为纵坐标,分子键长、键角等为横坐标,绘图,得到势能与分子结构参数的函数曲面,曲面上一阶导数为零的点我们称之为驻点(stationary point),最小的驻点对应于分子的平衡构型(equilibrium geometry),1级鞍点(saddle point)对应于过渡态。势能曲面上的最小能量途径(minimum energy path)对应于最可能的反应路径。(反应路径很多,最小能量路径是反应发生的几率最大的路径,但不是唯一路径)

11 基组(basis set)

首先介绍LCAO(linear combination of atomic orbitals),原子轨道线性组合。我们知道薛定谔方程只能对一些简单体系,如类氢粒子等有精确解,当处理多电子原子时,我们不得不采用LCAO的方法。我们用一部分原子轨道的线性组合来表示分子轨道。选用的这些原子轨道,我们称之为基函数。基函数分为两部分:径向部分和角度部分。我们熟知的STO和GTO在径向部分表达式方面是不同的。

STO,称为Slater 函数,GTO称为高斯型函数。STO数值逼近真实值,但是收敛慢,所以计算速度慢;GTO函数收敛快,计算速度快,但是结果偏离真实值。因此人们结合上面两个函数特点,用多个GTO去模拟STO,同时达到计算精度较高和计算速度较快的目的

基组分类很多,王老师讲课中主要涉及到了三种基组分类。Pople基组和相关一致性CC(correlation consistent)基组、赝势基。

Pople基组。最小基组:就是填满电子所需的最少轨道。STO-3G是最小基组。分裂基组:处理价层轨道时,我们对价层轨道进行分层,分成两层,叫做双ζ基组。比如6-31G,表示对内层核心轨道采用6个GTO,对价层轨道分成两层,内层用3个GTO,外层用1个GTO。如果分成三层,叫做三ζ基组,比如6-311G,表示外层轨道分成三层,分别用3、1、1个GTO表示。极化:6-31G(d,p),d表示对重原子加d极化,p表示对氢原子加p极化。弥散:6-31++G,第一个+表示对重原子加弥散,第二个+表示对氢原子+弥散

CC基组:相关一致性基组考虑了价电子的相关能量,CC-pVDZ、CC-pVTZ、https://www.doczj.com/doc/5410050978.html,基组可以通过添加弥散函数的方式增大,符号表示为aug-,以aug-CC-pVDZ 为例,需要在原函数基础上加上1s,1p和1d函数

ECP(effective core potential):又称赝势。ECP是经验函数,哪个更精确需通过实验验证,,赝势没有结点。为什么引入赝势呢?我们知道在计算的时候,很多内核电子是不参与化学反应的,这些内核电子又要耗去我们大量的基函数描述。所以引入赝势的概念,ECP代表所有的内核电子,这是一种半经验的方法。内核电子通过合适的函数模型化,从而只考虑价层电子。

12 理论水平

AO→MO→Slater determinant→wave function→S equation→all energy of electrons →PEC

n-particle N-particle n、N越大代表理论水平越高

13 自旋

一个体系的总自旋度为2S+1,若一个体系存在未配对电子,则总自旋度>1

15 简并态

简并态能量相同,比如将一个电子填入2P轨道,有三种填法,2Px1,2Py1,2Pz1,这三个状态我们成为简并的。简并态亦即电子状态不能乘,波函数不能有交集。

16电子相关能

由于Hartree-Fock没有考虑电子相关,所以实际能量与所算的能量的差值就是电子相关能Eee.

电子相关能包括两个部分库仑积分J和交换积分K。

17 组态电子在轨道中的排布方式

18振动光谱和旋转光谱和同位素有关,称为同位素依赖

19 Hartree-Fock近似解、

Hartree近似中心场近似,即电子在其余电子和原子核组成的平均势场中运动

S方程的势能部分求解,有两种方法,一个是解析函数的形式,一个是数值解的形式。采用解析函数的形式,就采用有效核电势的概念,它表示由于内层电子的排斥,外层电子所感受到的实际核电势。采用数值解的形式,就是自洽场(self-consistent field)的方法。所谓自洽场,就是首先对函数赋值,带入S方程,求得新的函数,然后将新的函数再带入继续求值,直到两次的解之差小于规定的数值,我们称之为自洽。

Hartree-Fock只采用一个slater行列式求解。HF方法算键长结果比较好,而频率和能量值则比较差。Hartree-Fock可以算出99%的能量。

20后Hartree-Fock方法

Hartree-Fock没考虑电子相关能,所以人们在Hartree-Fock的基础上加入了电子相关项的近似处理,得到的组态相互作用CI(configuration interaction)、微扰理论MPn 和耦合簇理论CC(coupled cluster)等都被称为后Hartree-Fock方法。

22 动态和静态相关能

静态相关能主要是相互作用,静态相关能是电子与其他电子作用运动方式。CI、CC、MPn都是处理动态相关能的。处理静态相关能的方法有MCSCF、MRCI、MRCC等。

21 CI

波函数Ψ可以写成Ψ=d0Φ0+d1Φ1+d2Φ2+…dnΦn,只考虑d0Φ0这一项叫做HF方法,考虑后面激发态的则称为CI。考虑一激发态d1Φ1叫做CIS,考虑双激发态叫做CISD。。。。把所有的激发态都考虑进去的叫做FullCI。用CI计算相关能必须算到D。CISDT比CISD更精确,更耗时,但CISD更容易收敛。

FullCI是size consistent and extensive,but CI is not.

因此在计算He+He→He2这样一个体系能量变化时,前面用CISD,后面用CISDTQ 才是对的,左右都用CISD算得的能量差不对。

CI是变分的,所以求得的能量总是高于真实值。。对于开壳层分子体系(自旋>1)的体系,非动态相关能很重要。

22 MPn

没有MP0和MP1,MPn不是变分法,得到的能量值有时高于真实值,有时低于真实值,时好时坏,与计算体系和选择的基组有关。MPn算能量值可能不准确,但计算差值很准。MPn is size consistent.

冻结核近似:不同于BO近似,只考虑价轨道,包括虚轨道。

改进的MPn方法:ZAPT ICPT

23 CC

CC is a predictive theory,is size consistency.E(A+B)=E(A)+E(B)

CC把波函数写成Ψ=eTΦ eT=1+C1+C2+C3+…没有CCS,只需做CCSD即可。

24 complete basis set CBS

⊿E=E(AB,rC)-E(A,rB)-E(B,rB)只有在CBS基组下成立

不然算的⊿E偏大,多出来的那部分误差叫做BSSE(Basis set superposition error).需要进行CP(counterpoise correction).

方法是在计算A的时候把B看做一个只提供基组不提供能量的ghost.

25 密度泛函理论 DFT

所谓泛函就是函数的函数,即由一个函数推出另一个函数值的运算法则

无论波函数和电子密度都是函数

而与之对应的能量就是波函数或者电子密度的函数,所以叫泛函

密度泛函是以电子密度作为研究对象的。

那么为什么要研究密度和能量之间的函数关系?有什么理论依据?

我们知道当我们计算一个大的多电子体系的时候,假设这个体系有N个电子,那么就会有N个电子波函数,4N个自由度(每个电子有三个空间坐标和一个自旋坐标),N越大,意味着我们需要更大的内存来让其占据,并且计算时间远远变长。

但如果我们只考虑电子密度的话ρ,就只有四个自由度,三个空间+一个自旋。

简单地说:薛定谔方程在计算电子运动的时候需要知道每个电子的确切位置,电子越多,计算量是人们无法想象的。而密度泛函则是从全新的角度去计算电子运动,我们不需要知道每个电子的确切位置,我们只需要知道一个微体积内在一个时刻内的平均电子数目,就好像我们去描述一片云彩,我们可以用云中水滴的密度去描述一样。

其理论依据便是Hobenborg -Kohn 定理,该定理有两个重要描述:

1 基态的总能量可以写成电子密度的泛函,即两者之间存在一一对应关系

2 总能量的电荷密度泛函存在变分学原理。即我们可以猜测任意的电荷密度函数,将其带入此泛函,由此得到的所有能量中,能量越低,越接近实际能量。

但是H-K定理虽然证明了两者之间的一一对应关系,但却没给出此泛函的任何形式和公式。直到Kohn-Sham理论的提出才真正让DFT理论得到应用。

其实在之前已经有了著名的Thomas-Fermi-Dirac公式,但是这个方程却是失败的。动能是体系总能量中很重要的一部分,尤其当电子运动到近核区域(R/A<1)的时候,体系动能要比交换能和相关能大很多,该方程在处理动能方面采用了均匀电子气和统计的方法,导致动能处理很粗糙。

Kohn和Sham则从新的方向出发,通过类比Hartree-Fock方程得到K-S方程。

该方程与Hartree-Fock方程最大的不同就是引入了Vxc(交换-相关势),Vxc是交换相关能Exc的泛函微分形式。

如果我们知道Exc的具体形式,那我们就可以求出Vxc,进而得到精确解。可无人知道Exc的具体形式。我们只知道Exc是电子密度的函数,电子密度是方向坐标(X,Y,Z)的函数,所以Vxc也是x,y,z的函数。

因此所有的DFT方法的不同就是对Exc的猜测。

猜测的基本方法有:

LDA:the Local-Density Approximation 局域密度近似

Gradient Corrected Methods :梯度校正方法

杂化方法;Hybrid

即是采用上面的几种组合得到的,方法很多,应用也很广泛,比如B3LYP就是 B3 和 LYP 的组合

26 半经验方法

在Hartree-Fock水平上,只考虑价电子,采用最小基,应用试验参数拟合。

HMO-休克尔分子轨道近似,只能处理共轭体系

EHMO-改进后的HMO,改进后的EHMO可以用来处理非共轭体系

ZDO-零级微分重叠

CNDO-全略微分重叠

INDO-间略微分重叠

NDDO-忽略双原子微分重叠

ZINDO/1/S-1 是基态 S是激发态

27 分子动力学模拟

采用经典的牛顿运动模型,不考虑电子相关信息,基本步骤为

创建分子初始结构;选择力场;确定原子类型;确定电荷;非键作用截断;运行;分析。

分子的初始结构有机CCDC,无机ICSD,生物大分子RCSB。

分子动力学模拟在进行短程作用的时候是OK的,但计算长程相互作用却不行,需要进行Ewald sum(傅里叶变换,消除噪音)

MD的结果不能被精确重复。

28 相关函数CF

又叫记忆函数CAB(t)=

自相关函数CAA(t)=相关性强,意味着混乱度小

Cv(t)=傅里叶变换得到振动光谱

Cd(t)=傅里叶变换得到红外光谱

29 系综(ensemble)

在一定的宏观条件下,大量性质和结构完全相同的、处于各种运动状态的、各自独立的系统的集合。

微正则系综NVE:能量和粒子数固定的孤立系统

正则系综NVT:可以和大热源交换能量但粒子数固定的系统

巨正则系综mVT:可以和大热源交换能量和粒子的系统

量子化学计算方法试验

量子化学计算方法试验 1. 应用量子化学计算方法进行计算的意义 化学是一门基础学科,具有坚实的理论基础,化学已经发展为实验和理论并重的科学。理论化学和实验化学的主要区别在于,实验化学要求把各种具体的化学物质放在一起做试验,看会产生什么新的物质,而理论化学则是通过物理学的规律来预测、计算它可能产生的结果,这种计算和预测主要借助计算机的模拟。也就是说,理论化学可以更深刻地揭示实验结果的本质并阐述规律,还可以对物质的结构和性能预测从而促进科学的发展。特别是近几年来,随着分子电子结构、动力学理论研究的不断深入以及计算机的飞速发展,理论与计算化学已经发展成为化学、生物化学及相关领域中不可缺少的重要方向。目前,已有多种成熟的计算化学程序和商业软件可以方便地用于定量研究分子的各种物理化学性质,是对化学实验的重要的补充,不仅如此,理论计算与模拟还是药物、功能材料研发环境科学的领域的重要实用工具。 理论化学运用非实验的推算来解释或预测化合物的各种现象。理论化学主要包括量子化学,(quantum chemistry)是应用量子力学的基本原理和方法研究化学问题的一门基础科学。研究范围包括稳定和不稳定分子的结构、性能及其结构与性能之间的关系;分子与分子之间的相互作用;分子与分子之间的相互碰撞和相互反应等问题。量子化学可分基础研究和应用研究两大类,基础研究主要是寻求量子化学中的自身规律,建立量子化学的多体方法和计算方法等,多体方法包括化学键理论、密度矩阵理论和传播子理论,以及多级微扰理论、群论和图论在量子化学中的应用等。理论与计算化学的巨大进展,正使化学学科经历着革命性的变化。今天的理论与计算化学几乎渗透到现代一切科技领域,与材料、生物、能源、信息和环保尤为密切,理论化学的应用范围将越来越广。理论与计算化学逐步发展成为一门实用、高效、富有创造性的基础科学,在化学、生物学等领域的影响越来越显著,且与日剧增。 2. 应用量子化学计算方法进行计算的目的 (1)了解量子化学计算的用途。 (2)了解量子化学计算的原理、方法和步骤。 (3)通过一两个计算实例进行量子化学计算的上机操作试验。 (4)学会简单的分析和应用计算结果。 3. 量子化学计算试验的原理

量子化学习题及答案

量子化学习题及答案

1.1998及2013年度诺贝尔化学奖分别授予了量子化学以及分子模拟领域的杰出贡献者,谈谈你的了解及认识。 答:1998年诺贝尔化学奖得主:瓦尔特·科恩和约翰·波普尔。1964-1965年瓦尔特·科恩提出:一个量子力学体系的能量仅由其电子密度所决定,这个量比薛定谔方程中复杂的波函数更容易处理得多。他同时还提供一种方法来建立方程,从其解可以得到体系的电子密度和能量,这种方法称为密度泛函理论,已经在化学中得到广泛应用,因为方法简单,可以应用于较大的分子。沃尔特·库恩的密度泛函理论对化学作出了巨大的贡献。约翰·波普尔发展了化学中的计算方法,这些方法是基于对薛定谔方程中的波函数作不同的描述。他创建了一个理论模型化学,其中用一系列越来越精确的近似值,系统地促进量子化学方程的正确解析,从而可以控制计算的精度,这些技术是通过高斯计算机程序向研究人员提供的。今天这个程序在所有化学领域中都用来作量子化学的计算。 2013年诺贝尔化学奖得主:马丁·卡普拉斯、迈克尔·莱维特、阿里耶·瓦谢勒。他们为复杂化学系统创立了多尺度模型。为研发了解和预测化学过程的强有力的计算机程序奠定了基础。对于今天的化学家来说,计算机就像试管一样重要。模拟过程是如此的真实以至于传统实验的结果也能被计算机预测出来。多尺度复杂化学系统模型的出现无疑翻开了化学史的“新篇章”。化学反应发生的速度堪比光速。刹那间,电子就从一个原子核跳到另一个原子核,以前,对化学反应的每个步骤进行追踪几乎是不可能完成的任务。而在由这三位科学家研发出的多尺度模型的辅助下,化学家们让计算机做“做帮手”来揭示化学过程。20世纪70年代,这三位科学家设计出这种多尺度模型,让传统的化学实验走上了信息化的快车道。 2.谈谈你对量子化学中两种流派(VBT,MOT)的认识。 答:1926年,奥地利物理学家薛定谔(Schrodinger)建立了描述电子运动规律的波动方程。1927年,海尔特(Heilter)和伦敦(London)在处理氢分子结构时首次采用两个氢原子基态电子波函数的乘积表示电子对键,通过共振结构波函数的线性组合获得薛定谔方程的解,标志着价键理论的诞生。1931年,鲍林(Pauling)建立了较为完善的电子对键与杂化轨道理论模型,随后以电子配对形成定域化学键为核心思想的价键理论,凭借其既直观又能定量计算的优势,得以在化学领域迅速推广应用。他也因此获得了1954年的诺贝尔化学奖。但是VB理论做出的某些预言不正确。比如简单的VB模型错误地预言了环丁二烯(以及其它含四元环的)有较大的共振能。事实上是简单的休克尔MO(HMO)理论过分地强调了4n与(4n+2)环之间的区别。正确的共振能结果是MO和VB预言的中间值。此外,由于选用非正交的原子轨道为基函数,计算量大,曾一度停滞不前,但随着计算机的发展这种理论进入复兴期。 1932年美国化学家莫立肯(Mullikeen)和德国化学家洪特(Hund)从不同于价键理论的角度提出了分子轨道(MO)理论。并获得1966年诺贝尔化学奖。罗汤(Roothaan)和美国化学家哈尔(Hall)各自独立地为自洽场(SCF)计算方法学完成了原子轨道线型组合型(LCAO)数学框架。从此分子轨道的数学计算得以实现并得到了广泛的应用。此后,20世纪50年代日本化学家福井谦一的前线轨道理论和美国化学家杜瓦(Dewer)的微扰分子轨道理论(PMO)以及60年代中期美国化学家伍德沃德·霍夫曼(Woodward·Hoffman)的分子轨道对称守恒原理的提出,使该理论可以定性地对化学反应的结果做出预言。福井谦一和霍夫曼双双获得1981年诺贝尔化学奖。 在处理具体分子中,这两种理论所用的原始基函数——原子轨道是同样的,并且都是用变分法来处理。所不同的仅在于MOT先经过了一次基函数的组合,把它变为非定域的基函数;而VBT则直接使用原始基函数。严格计算,其结果是一样的。两种理论的结果差别完全是由于实际计算中引入了不同的近似所造成的。对一般分子的定性解释,两种理论的结果往往是一样的。 3.试了解中国量子化学发展状况。 答:解放前,在旧中国科学研究不受重视,因而量子化学这个领域几乎是个空白点。1949-1959:所研究的问题比较集中在分子的内旋转、杂化轨道理论、分子间作用力、小分子的分子轨道计算、多电子键函数等问题。六十年代中期:对配位场理论方法开展研究,获得了重要成果。1966年以后,“四人帮”的干扰,量子化学的研究被迫停止了一个时期。七十年代:课题主要集中在分自1978年科学大会以来,有了更大的发展。特别是结合电子计算机的应用,量子化学应用研究从无到有,由小到大,有了更为明显的发展。子轨道理论方面。在轨道对称守恒原理、分子轨道图形理论、几何剖析法课题

量子化学计算

物理化学专业博士研究生课程 教学大纲 课程名称:量子化学计算(Computational Quantum Chemistry) 课程编号:B07030411 学分:3 总学时数:72 开课学期:第2学期 考核方式:学习论文 课程说明:(课程性质、地位及要求的描述)。 《量子化学计算》是在学习了《结构化学》、《量子化学》之后,为物理化学专业博士研究生开设的一门方向课,在每学年第二学期讲授。 如果说《结构化学》、《量子化学》还有更多的抽象,那么《量子化学计算》则直接对各研究体系进行可与实验对比的计算机模拟。近二十年来,随着计算机硬件和软件水平的迅速发展,计算化学已成为理论化学的重要分支,主要通过量子化学方法、分子力学方法以及分子动力学模拟来解决与化学相关的问题。目前,计算化学已广泛应用于化学及相关交叉学科的各个领域,迅速成为定量预测分子的结构、性质以及反应性能的有力工具。 本课程计划安排72个学时。采用授课与上机演习相结合的教学方法,使学生在较短时间内掌握当今国际流行的常用计算软件的原理、使用方法及技巧,着重培养同学们解决化学实际问题的能力。要求同学们通过本课程的学习,能对计算化学的原理和方法有一个初步的了解,并能够在化学合成、反应机理、生物、材料等各个领域中得到应用。 教学内容、要求及学时分配: 第一章绪论 内容: 1.1量子力学历史背景 1.221世纪的理论化学计算机模拟

要求:了解量子化学的背景知识、国际国内发展现状及其未来方向学时:4 第二章从头计算法的基本原理和概念 内容: 2.1量子力学基本假设2.2定态近似 2.3从头计算法的“头” 2.4自洽场方法2.5变分法和LCAO-MO近似 2.6量子化学中的一些基本原理和 概念 2.7量子化学中的基本近似 要求:了解从头计算法的基础知识、计算化学中的一些基本原理、概念和近似。 学时:12 第三章布居分析和基组专题 内容: 3.1布居分析 3.2基组专题 要求:理解基组概念及选择的原则,掌握布居分析的计算方法和基组的计数,了解Mulliken布居分析的优缺点及改进的思路。 学时:6 第四章计算方法简介 内容: 4.1半经验方法 4.2HF方法 4.3Post-HF方法 4.4DFT方法 4.5SCF-X 方法 4.6精确模型化学理论方法——Gn 和CBS 4.7赝势价轨道从头计算法 4.8激发态的计算——CIS和CAS 4.9溶剂效应 4.10分子力学和分子动力学基础 要求:了解一些常用计算方法的基本原理及优缺点,重点掌握AM1、INDO、MNDO/PM3、HF、MP、CI、CC、DFT、CAS、溶剂效应等方法的原理,掌握选择计算方法的思路和原则。

量子化学理论与软件介绍

量子化学是应用量子力学的规律和方法来研究化学问题的一门学科。将量子理论应用于原子体系还是分子体系是区分量子物理与量子化学的标准之一。 主要分为:①分子轨道法(简称MO法,见分子轨道理论);②价键法(简称VB法,见价键理论);③密度泛函理论。以下只介绍分子轨道法。 ①分子轨道法:分子体系中的电子用单电子波函数满足Pauli不相容原理的直积(如Slater 行列式)来描述,其中每个单电子波函数通常由原子轨道线性组合得到(类似于原子体系中的原子轨道),被称作分子轨道,分子轨道理论是目前应用最为广泛的量子化学理论方法。 o HF方法:它是原子轨道对分子的推广,即在物理模型中,假定分子中的每个电子在所有原子核和电子所产生的平均势场中运动,即每个电子可由一个单电子函数(电子的坐标的函数)来表示它的运动状态,并称这个单电子函数为分子轨道,而整个分子的运动状态则由分子所有的电子的分子轨道组成(乘积的线性组合),这就是分子轨道法名称的由来。分子轨道法的核心是哈特里-福克-罗特汉方程,简称HFR方程,它是以三个在分子轨道法发展过程中做出卓著贡献的人的姓命名的方程。1928年D.R. 哈特里提出了n个将电子体系中的每一个电子都看成是在由其余的n-1个电子所提 供的平均势场中运动的假设。这样对于体系中的每一个电子都得到了一个单电子方程(表示这个电子运动状态的量子力学方程),称为哈特里方程。使用自洽场迭代方式求解这个方程(见自洽场分子轨道法),就可得到体系的电子结构和性质。哈特里方程未考虑由于电子自旋而需要遵守的泡利原理。1930年,B.A.福克和J.C.斯莱特分别提出了考虑泡利原理的自洽场迭代方程,称为哈特里-福克方程。它将单电子轨函数(即分子轨道)取为自旋轨函数(即电子的空间函数与自旋函数的乘积)。泡利原理要求,体系的总电子波函数要满足反对称化要求,即对于体系的任何两个粒子的坐标的交换都使总电子波函数改变正负号,而斯莱特行列式波函数正是满足反对称化要求的波函数。将哈特里-福克方程用于计算多原子分子,会遇到计算上的困难。C.C.J.罗 特汉提出将分子轨道向组成分子的原子轨道(简称AO)展开,这样的分子轨道称为原子轨道的线性组合(简称LCAO)。使用LCAO-MO,原来积分微分形式的哈特里-福克方程就变为易于求解的代数方程,称为哈特里-福克-罗特汉方程,简称HFR 方程。 o CI方法:组态相互作用(Configuration Interaction)方法。用HF自洽场方法计算获得的波函数和各级激发的波函数为基展开体系波函数。完全的组态相互作用(Full-CI)是指定基组下最精确的方法,但其计算量约以基函数的阶乘规模增加,目前仅限于对小分子作为Benchmark以检测其他方法的可靠性,在实际应用中常采用截断CI方法,如

量子化学计算实验详解

量子化学计算方法及应用 吴景恒 实验目的: (1)掌握Gaussian03W的基本操作 (2)掌握 Gaussian03W进行小分子计算的方法,比较不同方法与基组对计算结果的影响,并比较同分异构体的稳定性(3)通过运用量子力学方法计算分子的总电子密度,自旋密度,分子轨道及静电势 实验注意: (1)穿实验服;实验记录用黑色,蓝色或蓝黑色钢笔或签字笔记录;实验数据记录不需要画表格 (2)实验前请先仔细阅读前面的软件使用介绍,然后逐步按照实验步骤所写内容进行操作 (3)截图方法:调整视角至分子大小适中,按下键盘上的PrintScreen按键截图,从“Windows开始菜单”打开“画图”工具,按Ctrl+v或“编辑-粘贴”,去掉四周多余部分只留下分子图形,保存图片 (4)所有保存的文件全部存在E盘或D盘根目录用自己学号命名的文件夹下,不要带中文命名,实验完毕全部删除,不得在计算用机上使用自己携带的U盘或其他便携存储设备! (5)HyperChem里面截图时候可以用工具栏以下几个工具调整视图: Rotate out-of-plane:平面外旋转工具,转换视角用 Mgnify/Shrink:放大镜工具,转换视角用 Gaussian03W使用介绍:(注意,下面只是界面示意图,实验時切勿按下图设置) 输入文件:Gaussian输入文件,以GJF为文件后缀名 联系命令行:设定中间信息文件(以CHK为后缀名)存放的位置、计算所需的内存、CPU数量等 作业行:指定计算的方法,基组,工作类型,如:#P HF/6-31G(d) Scf=tight Opt Pop=full #作业行开始标记 P 计算结果显示方式为详细, 选择还有T(简单)和 N(常规,默认) HF/6-31G(d) 方法/基组 Opt对分子做几何优化 Pop=full进行轨道布居分析,详尽输出轨道信息和能量 电荷 多重态:分子总电荷及自旋多重态(2S+1, S=n/2, n为成单电子数) 分子结构的表示 1、直角坐标:元素符号X坐标Y坐标Z坐标(如上图所示) 2、Z矩阵(参考后附内容):元素符号(原子一)原子二键长原子三键角原子四二面角

量子化学-重要概念

(1)开壳层,闭壳层 指电子的自旋状态,对于闭壳层,采用限制性计算方法,在方法关键词前面加R 对于开壳层,采用非限制性计算方法,在方法关键词前面加U.比如开壳层的HF就是UHF.对于不加的,程序默认为是闭壳层. 一般采用开壳层的可能性是 1. 存在奇数个电子,如自由基,一些离子 2. 激发态 3. 有多个单电子的体系 4. 描述键的分裂过程 (2) 核磁是单点能计算中另外一个可以提供的数据,在计算的工作设置部分,就是以#开头的一行里,加入NMR关键词就可以了,如 #T RHF/6-31G(d) NMR Test 在输出文件中,寻找如下信息 GIAO Magnetic shielding tensor (ppm) 1 C Isotropic = Anisotropy = 这是采用上面的设置计算的甲烷的核磁结果,所采用的甲烷构形是用B3LYP密度泛函方法优化得到的. 一般的,核磁数据是以TMS为零点的,下面是用同样的方法计算的TMS(四甲基硅烷)的结果1 C Isotropic = Anisotropy = 这样,计算所得的甲烷的核磁共振数据就是,与实验值相比,还是很接近的. (3) 标准几何坐标. 找到输出文件中Standard Orientation一行,下面的坐标值就是输入分子的标准几何坐标. (4) stable 本例中采用SCF方法分析分子的稳定性.对于未知的体系,SCF稳定性是必须要做的.当分子本身不稳定的时候,所得到的SCF结果以及波函数等信息就没有

化学意义. (5)势能面 分子几何构型的变化对能量有很大的影响.由于分子几何构型而产生的能量的变化,被称为势能面.势能面是连接几何构型和能量的数学关系.对于双原子分子,能量的变化与两原子间的距离相关,这样得到势能曲线,对于大的体系,势能面是多维的,其维数取决与分子的自由度. (6)opt Opt=ReadFC 从频率分析(往往是采用低等级的计算得到的)所得到的heckpoint文件中读取初始力矩阵,这一选项需要在设置行之前加入%Chk= filename 一句,说明文件的名称. Opt=CalCFC 采用优化方法同样的基组来计算力矩阵的初始值. Opt=CalcAll 在优化的每一步都计算力矩阵.这是非常昂贵的计算方法,只在非常极端的条件下使用. 有时候,优化往往只需要更多的次数就可以达到好的结果,这可以通过设置MaxCycle来实现.如果在优化中保存了Checkpoint文件,那么使用Opt=Restart可以继续所进行的优化.当优化没有达到效果的时候,不要盲目的加大优化次数.这是注意观察每一步优化的区别,寻找没有得到优化结果的原因,判断体系是否收敛,如果体系能量有越来越小的趋势,那么增加优化次数是可能得到结果的,如果体系能量变化没有什么规律,或者,离最小点越来越远,那么就要改变优化的方法. (7) 频率分析的计算要采用能量对原子位置的二阶导数.HF方法,密度泛函方法(如B3LYP),二阶Moller-Plesset方法(MP2)和CASSCF方法(CASSCF)都可以提供解析二阶导数.对于其他方法,可以提供数值二阶导数. 一般的,对于HF方法,采用计算的频率乘以矫正因子, 方法频率矫正因子零点能矫正因子 HF/3-21G HF/6-31G(d) MP2(Full)/6-31G(d) MP2(FC)/6-31G(d) SVWN/6-31G(d)

四应用量子化学计算方法进行分子结构优化

实验四 应用量子化学计算方法进行分子结构优化 以及异构化反应研究 Experiment 4. Study on Molecular Structure Optimization and Isomerization Reaction by Using Quantum Chemistry Method 4.1 目的要求 Purpose (1)了解量子化学计算的原理和用途以及几种常用的量子化学计算方法。 (2)熟悉常用量子化学计算软件Gaussian 03的基本使用方法和操作步骤。 (3)掌握如何使用Gaussian 03软件进行分子结构优化和异构化反应过渡态计算。 (4)本实验4学时。 4.2 背景介绍 Background Information 量子化学(quantum chemistry )以量子力学为理论基础,以计算机为工具,主要通过计算来阐述物质(化合物、晶体、离子、过渡态、反应中间体等)的结构、性质、反应性能及反应机理,研究物质的微观结构与宏观性质的关系,揭示物质和化学反应所具有的特性的内在本质及其规律性[1-4]。随着量子化学计算方法不断发展,计算量以及计算速度不断提高,所计算的体系越来越复杂,现在可以计算有机分子甚至较大分子量的生物分子。 目前常用的量子化学计算软件有Gaussian (https://www.doczj.com/doc/5410050978.html, )、GAMESS (https://www.doczj.com/doc/5410050978.html,/GAMESS )、Spartan (https://www.doczj.com/doc/5410050978.html, )和Molpro (https://www.doczj.com/doc/5410050978.html, )等。Gaussian 软件是使用最为广泛的量子化学计算软件,支持几乎所有的量子化学计算方法,可以计算得到分子的几乎一切性质,如稳定结构、能量、振动频率、红外和拉曼光谱、NMR 化学位移、轨道能级、静电势、极化率、电离能、电子亲和力、电子密度分布、过渡态和反应途径等。可以模拟在气相和溶液中的体系,模拟基态和激发态等问题。它最早的版本是1970年的Gaussian 70,最新的版本是Gaussian 09。本实验使用的版本为Gaussian 03。 4.3 实验原理 Experimental Principles 4.3.1 量子化学计算方法和特点 多体理论是量子化学的核心问题。n 个粒子构成的量子体系的性质原则上可通过求解n 粒子体系的薛定谔(Schr?dinger )方程得到体系的波函数来描述。 22 ,111122p q p p i p pq j pi P i p q i j p i Z Z Z E m R ri r ψψ<

第一章,量子化学积分一Slater函数

绪论 1.什么是量子化学 量子化学是理论化学的一个分支学科,是应用量子力学的基本原理和方法研究化学问题的一门基础学科。 化学是研究物质的组成、结构、性质及其变化规律的一门学科。我们主要在原子-分子这个层次上研究物质的化学性质和化学反应。电子、原子核这些微观物体的相互作用使原子组成了分子、形成了晶体、液体等形态的物质。所以,化学学科的研究对象归根结底是电子、原子核等微观物体的相互作用。而微观物体的运动规律,我们已经了解清楚,这就是在1925到1926年间,发展起来的量子力学。量子化学就是用量子力学的理论和方法来研究化学问题。由于量子力学是微观化学物质所遵循的根本规律,所以,量子化学是整个化学学科的理论基础。实际上,量子化学的研究成果也已经深入到化学学科的各个分支。 2.量子化学的发展简况 1927年,W.Heitler和F.London用量子力学方法研究了氢分子,人们往往把这作为量子化学的开端。 近80年来,量子化学的发展可以分为两个阶段。 第一阶段是1960年代以前。量子化学的主要成果在形成概念和理论方面,其中有Pauling的价键理论,Hunt,Slater及Mulliken分子轨道理论,配位场理论,Eyring的过渡态理论;在具体计算方面则有即Hartree对原子轨道能量的计算。 第二阶段,1960年代至今。在这个阶段,由于电子计算机技术的飞速发展,人们可以把分子轨道理论的计算应用于几乎所有的各类分子,计算它们的性质,分析它们的反应。另一方面,新的理论(如密度泛函理论)和新的计算方法也得到了广泛的应用。

现在,量子化学的理论和计算已经深入到化学的各个分支学科。在物理化学中,量子化学被用于计算分子的各种热力学函数(例如熵,焓和自由能等等);计算分子的结构性质(如键长、键角、电偶极矩、转动势垒、异构化能等等);计算化学反应的速率常数;解释分子间相互作用以及分子和固体中的成键情况。有机化学家可以用量子化学估计分子的相对稳定性;研究化学反应的中间体;计算反应势垒、研究反应机理等。分析化学家可以用量子化学了解和解释各种光谱,计算各种光谱的频率和强度。无机化学家可以用量子化学预测过渡金属络合物和晶体等各种体系的性质。生物化学家可以用量子化学研究生物分子,计算生物大分子的构型和构象,研究生物分子的相互作用(例如酶和底物的相互作用)等等。 随着计算机计算速度和容量的迅速发展,量子化学计算的精度也日益精密。对于较小的体系,量子化学计算的精度已经达到或超过了实验精度。 自从20世纪80年代起,有许多量子化学的计算程序可供化学家使用。早在1983年,Schaefer III 就指出:电子结构理论的大多数应用者并不是专职的理论化学家而是实验化学家,这些人在未来的10年中将飞快的增加,这种现象对量子化学家来说是最大的胜利也是最大的威胁。历史的发展证实了Schaefer III 的预言,现在,全世界数以千计的化学家已经在使用量子化学计算程序研究它们各自的领域,而量子化学的概念则应用于几乎所有的化学文献。 量子化学是化学各领域中发展最迅速的分支学科之一,正如瑞典皇家科学院在1998年诺贝尔化学奖通报的背景材料中指出的:“30年前,量子化学的努力被许多化学家嘲笑为无用的事情,影响很小,当今已完全不同了。毫无疑问,人们已经认识到了量子化学的用处和巨大威力。现已形成了广泛一致的意见。这种突破是最近一、二十年化学中最主要的发展之一。”

量子化学习题及答案

1.1998及2013年度诺贝尔化学奖分别授予了量子化学以及分子模拟领域的杰出贡献者,谈谈你的了解及认识。 答:1998年诺贝尔化学奖得主:瓦尔特·科恩和约翰·波普尔。1964-1965年瓦尔特·科恩提出:一个量子力学体系的能量仅由其电子密度所决定,这个量比薛定谔方程中复杂的波函数更容易处理得多。他同时还提供一种方法来建立方程,从其解可以得到体系的电子密度和能量,这种方法称为密度泛函理论,已经在化学中得到广泛应用,因为方法简单,可以应用于较大的分子。沃尔特·库恩的密度泛函理论对化学作出了巨大的贡献。约翰·波普尔发展了化学中的计算方法,这些方法是基于对薛定谔方程中的波函数作不同的描述。他创建了一个理论模型化学,其中用一系列越来越精确的近似值,系统地促进量子化学方程的正确解析,从而可以控制计算的精度,这些技术是通过高斯计算机程序向研究人员提供的。今天这个程序在所有化学领域中都用来作量子化学的计算。 2013年诺贝尔化学奖得主:马丁·卡普拉斯、迈克尔·莱维特、阿里耶·瓦谢勒。他们为复杂化学系统创立了多尺度模型。为研发了解和预测化学过程的强有力的计算机程序奠定了基础。对于今天的化学家来说,计算机就像试管一样重要。模拟过程是如此的真实以至于传统实验的结果也能被计算机预测出来。多尺度复杂化学系统模型的出现无疑翻开了化学史的“新篇章”。化学反应发生的速度堪比光速。刹那间,电子就从一个原子核跳到另一个原子核,以前,对化学反应的每个步骤进行追踪几乎是不可能完成的任务。而在由这三位科学家研发出的多尺度模型的辅助下,化学家们让计算机做“做帮手”来揭示化学过程。20世纪70年代,这三位科学家设计出这种多尺度模型,让传统的化学实验走上了信息化的快车道。 2.谈谈你对量子化学中两种流派(VBT,MOT)的认识。 答:1926年,奥地利物理学家薛定谔(Schrodinger)建立了描述电子运动规律的波动方程。1927年,海尔特(Heilter)和伦敦(London)在处理氢分子结构时首次采用两个氢原子基态电子波函数的乘积表示电子对键,通过共振结构波函数的线性组合获得薛定谔方程的解,标志着价键理论的诞生。1931年,鲍林(Pauling)建立了较为完善的电子对键与杂化轨道理论模型,随后以电子配对形成定域化学键为核心思想的价键理论,凭借其既直观又能定量计算的优势,得以在化学领域迅速推广应用。他也因此获得了1954年的诺贝尔化学奖。但是VB理论做出的某些预言不正确。比如简单的VB模型错误地预言了环丁二烯(以及其它含四元环的)有较大的共振能。事实上是简单的休克尔MO(HMO)理论过分地强调了4n与(4n+2)环之间的区别。正确的共振能结果是MO和VB预言的中间值。此外,由于选用非正交的原子轨道为基函数,计算量大,曾一度停滞不前,但随着计算机的发展这种理论进入复兴期。 1932年美国化学家莫立肯(Mullikeen)和德国化学家洪特(Hund)从不同于价键理论的角度提出了分子轨道(MO)理论。并获得1966年诺贝尔化学奖。罗汤(Roothaan)和美国化学家哈尔(Hall)各自独立地为自洽场(SCF)计算方法学完成了原子轨道线型组合型(LCAO)数学框架。从此分子轨道的数学计算得以实现并得到了广泛的应用。此后,20世纪50年代日本化学家福井谦一的前线轨道理论和美国化学家杜瓦(Dewer)的微扰分子轨道理论(PMO)以及60年代中期美国化学家伍德沃德·霍夫曼(Woodward·Hoffman)的分子轨道对称守恒原理的提出,使该理论可以定性地对化学反应的结果做出预言。福井谦一和霍夫曼双双获得1981年诺贝尔化学奖。 在处理具体分子中,这两种理论所用的原始基函数——原子轨道是同样的,并且都是用变分法来处理。所不同的仅在于MOT先经过了一次基函数的组合,把它变为非定域的基函数;而VBT则直接使用原始基函数。严格计算,其结果是一样的。两种理论的结果差别完全是由于实际计算中引入了不同的近似所造成的。对一般分子的定性解释,两种理论的结果往往是一样的。 3.试了解中国量子化学发展状况。 答:解放前,在旧中国科学研究不受重视,因而量子化学这个领域几乎是个空白点。1949-1959:所研究的问题比较集中在分子的内旋转、杂化轨道理论、分子间作用力、小分子的分子轨道计算、多电子键函数等问题。六十年代中期:对配位场理论方法开展研究,获得了重要成果。1966年以后,“四人帮”的干扰,量子化学的研究被迫停止了一个时期。七十年代:课题主要集中在分自1978年科学大会以来,有了更大的发展。特别是结合电子计算机的应用,量子化学应用研究从无到有,由小到大,有了更为明显的发展。子轨道理论方面。在轨道对称守恒原理、分子轨道图形理论、几何剖析法课题方面获得较为突出的成果。 4. 试用前线轨道理论说明下列反应在没有催化剂的条件下不能发生。

公司量化指标计算方法

公司量化指标计算方法 办公室 1、特殊工种/工序资格一次评定合格率 对特殊工种/工序需要进行资格评定的人员,可以采取抽查几批的办法,对每批计算出一次评定合格率,再把几批一次评定合格率相加除以批次之和。 2、办公设施完好率 办公设施完好率即对主要办公设施进行检(抽)查,完好的办公设施除以所检(抽)查办公设施总和。 3、年度失窃次数 本年度被发现失窃次数之和。 工会 经有效评价合格的人数1、职工培训有效性评价合格率=————————————— — 接受有效性评价的总人数 全厂职工年内接受培训的总时间(学时)2、年度人均接受培训时间=——————————————————

全厂职工人数 内部培训完成项目+外出培训完成项目3、培训计划完成率=——————————————————— 内部培训项目+外出培训项目 本年度提出合理化建议数 4、合理化建议人均提出率=————————————— 全厂职工人数 已采纳和实施数 5、合理化建议落实率=—————————————— 本年度提出合理化建议数 采购部 1、计划按时完成率 采购部计划完成率=按时完成计划数 / 应完成计划数 个人计划完成率=按时完成计划数 / 应完成计划数 影响因素:a.计划要求时间不合理;b.一份计划包含多项物资,其中一项没有完成,记为该计划没有完成。 2、按时交付率 统计方法:

原材料、摩擦副组件按年度签订意向性合同,每个月按采购计划向供方下达订单,通知供方本月交货的型号、数量、价格、交货期,要求供方审核无误后盖章确认,我公司按供方确认的交货时间接收。 按时交付的数量 / 总的订货数量=按时交付率 3、质量合格率 统计方法: (1)、摩擦副: 质量不合格有:进货检验不合格、装配废品、市场退回产品。 将出现的不合格分项进行统计,气缸套的不合格分为:金相、尺寸、外观、标识等。 分项不合格数量 / 交付总量X1000000=分项质量合格率(PPM) 各分项质量合格率相加得到总的质量合格率 (2)原材料 我公司对原材料主要监控其成分。 不合格数量 / 总进货量X100%=质量合格率(%) 4、超额运费统计 记录每一笔超额运费,每月月底分析超额运费产品的原因,进行整改和预防。 5、产品价格 制定物资采购的最高限价,对于超出限价的采购进行审核,分析原因。对于采购价格的分析,限于目前的知识水平和计算机的应用水平,还不能确定明确的指标。

量子化学

量子化学是理论化学的一个分支学科,是应用量子力学的基本原理和方法,研究化学问题的一门基础科学。 1927年海特勒和伦敦用量子力学基本原理讨论氢分子结构问题,说明了两个氢原子能够结合成一个稳定的氢分子的原因,并且利用相当近似的计算方法,算出其结合能。由此,使人们认识到可以用量子力学原理讨论分子结构问题,从而逐渐形成了量子化学这一分支学科。 量子化学的发展历史可分两个阶段:第一个阶段是1927年到20世纪50年代末,为创建时期。其主要标志是三种化学键理论的建立和发展,分子间相互作用的量子化学研究。在三种化学键理论中,价键理论是由鲍林在海特勒和伦敦的氢分子结构工作的基础上发展而成,其图象与经典原子价理论接近,为化学家所普遍接受。 分子轨道理论是在1928年由马利肯等首先提出,1931年休克尔提出的简单分子轨道理论,对早期处理共轭分子体系起重要作用。分子轨道理论计算较简便,又得到光电子能谱实验的支持,使它在化学键理论中占主导地位。 配位场理论由贝特等在1929年提出,最先用于讨论过渡金属离子在晶体场中的能级分裂,后来又与分子轨道理论结合,发展成为现代的配位场理论。 第二个阶段是20世纪60年代以后。主要标志是量子化学计算方法的研究,其中严格计算的从头算方法、半经验计算的全略微分重叠和间略微分重叠等方法的出现,扩大了量子化学的应用范围,提高了计算精度。 1928~1930年,许莱拉斯计算氦原子,1933年詹姆斯和库利奇计算氢分子,得到了接近实验值的结果。70年代又对它们进行更精确的计算,得到了与实验值几乎完全相同的结果。计算量子化学的发展,使定量的计算扩大到原子数较多的分子,并加速了量子化学向其他学科的渗透。 量子化学的研究范围包括稳定和不稳定分子的结构、性能,及其结构与性能之间的关系;分子与分子之间的相互作用;分子与分子之间的相互碰撞和相互反应等问题。 量子化学可分基础研究和应用研究两大类,基础研究主要是寻求量子化学中的自身规律,建立量子化学的多体方法和计算方法等,多体方法包括化学键理论、密度矩阵理论和传播子理论,以及多级微扰理论、群论和图论在量子化学中的应用等。应用研究是利用量子化学方法处理化学问题,用量子化学的结果解释化学现象。 量子化学的研究结果在其他化学分支学科的直接应用,导致了量子化学对这些学科的渗透,并建立了一些边缘学科,主要有量子有机化学、量子无机化学、量子生物和药物化学、表面吸附和催化中的量子理论、分子间相互作用的量子化学理论和分子反应动力学的量子理论等。 三种化学键理论建立较早,至今仍在不断发展、丰富和提高,它与结构化学和合成化学的发展紧密相联、互相促进。合成化学的研究提供了新型化合物的类型,丰富了化学键理论的内容;同时,化学键理论也指导和预言一些可能的新化合物的合成;结构化学的测定则是理论和实验联系的桥梁。

徐小明数字量化 计算公式

数字是具备唯一值的,它能把一片的思维定在一个点上。用空间的123求4法,这次行情的下跌我所有的个股买入操作上都解决了精确价格的问题。公式描述: 1代表第一个波段的起点 2代表第一个波段的终点 3代表第二个波段的起点 买入价格 举例1:600091(明天科技),第一波下跌起点1月17日(波段最高价格)1=9.97元;第一波下跌的终点2月1日(波段最低价格)2=7.50元;第二波下跌起点3月6日(波段最高价格)3=9.80元;求该股的买入价格。 公式:4=2乘3除以1。4=7.50*9.8/9.97=7.38元。 结论:该股再价格下穿7.38元之后,马上受到强大支撑,反身向上,用数字化定量分析得到的精确买入价格,有效。如图。 举例2:600070(浙江富润),第一波下跌起点1月14日(波段最高价格)1=10.10元;第一波下跌的终点2月1日(波段最低价格)2=7.50元;第二波下跌起点3月6日(波段最高价格)3=9.63元;求该股的买入价格。 公式:4=2乘3除以1。4=7.50*9.63/10.1=7.15元。 结论:该股再价格下穿7.15元之后,最低下探至7.02元。马上受到强大支撑,反身向上,用数字化定量分析得到的精确买入价格,有效。如图。

举例3:000595(西北轴承),第一波下跌起点1月25日(波段最高价格)1=10.72元;第一波下跌的终点2月1日(波段最低价格)2=8.10元;第二波下跌起点3月6日(波段最高价格)3=10.17元;求该股的买入价格。 公式:4=2乘3除以1。4=8.1*10.17/10.72=7.69元。 结论:该股再价格下穿7.69元之后,最低下探至7.02元, 受到强大支撑,反身向上,这次用数字化定量分析得到的买入价格虽不够太精确,但仍有效。如图。 举例4:最后一只002219(独一味),由于日线的k线数量比较少,如果你在日线上是找不到取点,就把它切换到小周期。还是可以进行空间定量。我们该股看30分钟线。 第一波下跌起点1=29.25元;第一波下跌的终点2=21.67元;第二波下跌起点3

量子化学主要研究方向及使用工具

我整理了一下大家的研究方向和主要工具,编成这个全家福。如果其中有遗漏和错误请告 诉我。现在一共有22位同行加入这个大家庭了,新来的朋友和还没跟贴的朋友请跟贴说明。 这个全家福将会不定期增补。 (按跟贴顺序) 1. gobin34, 主要研究方向:分子间弱相互作用. 工具: ADF, Turbomole, Gaussian, G amess. email: fan@chemie.uni-siegen.de 2. O0O0O0O0,研究方向:激光光谱学。计算主要集中在IIIA族单卤化物双原子分子 激发态的相对论量化计算上。 现在主要用GAMESS,DALTON。ADF,DIRAC,MOLFDIR偶尔用。 初学量化的时候,也用过盗版HyperChem和Gaussian。 本来还准备用MOLCAS或NOLPRO的,无奈老板是实验派。 3. spinsight, 研究方向:固体NMR及其在分子筛研究中的应用。量化计算是 一个辅助手段,主要想计算化学位移,以及研究分子筛的结构,催化反应机理 等等。现在主要是用Gaussian。 4. elizerbeth,主要研究方向纳米尺度上的电阻(conductance on the nanoscale system ) 主要用工具:Gaussian,V ASP,DFT++ email:站内信箱 (注:该版斑竹及创版人) 5. Chemis,主要研究领域催化反应机理,粒子-分子反应机理,金属簇;使用软件有gauss ian,NWChem,ADF,Gamss等,尽力拓展。 email:chjwang@https://www.doczj.com/doc/5410050978.html, 6. silali, 本人感兴趣的是含离子的分子体系,优化用GA(自造的东东),然后再GAUSS IAN一下,作些性质计算。一直在WIN下作,目前正向LINUX平台过度。 7. Alwens,曾做过计算材料的东西,使用ADF,Gaussian,Gamess。现主要集中于 从事ab initio Molecular Dynamics,同时将来开展QM/MM的研究。

量子化学在化学领域中的应用

任课教师: 一、命题部分 量子化学在化学领域(或与各专业学生研究方向相关的领域)的应用。 二、评分标准 1、题目及撰写内容与命题要求一致性评价;格式符合要求评价及论文内容完整性、条理性、严谨性评价。(20%) 2、检索、引用论文的篇数、技术相关性;综述是否调理清晰,观点明确和内容丰富,且有足够的数据支撑及研究关联性。(50%) 3、对论文创新性、技术价值评价。(20%) 4、结论明确、是否为有内涵的评价;对论文原创性、独立性评价。(10%) 三、教师评语 请根据您确定的评分标准详细评分,给定成绩,填入“成绩”部分。

____________________________ 注1:本页由学生填写卷头和“任课教师”部分,其余由教师填写。其中蓝色字体部分请教师在命题时删除。提交试卷时含本页。学生从第二页开始写作,要求见蓝色字体部分。 注2:“阅卷教师评语”部分请教师用红色或黑色碳素笔填写,不可用电子版。无“评语”视为不合规范。 注3:试题、评分标准、评语尽量控制在本页。 注4:不符合规范试卷需修改规范后提交。 量子化学在化学领域中的应用 摘要量子化学是理论化学的一个分支学科,是应用量子力学的基本原理和方法研究化学问题的 一门基础科学。研究范围包括稳定和不稳定分子的结构、性能及其结构与性能之间的关系;分 子与分子之间的相互作用;分子与分子之间的相互碰撞和相互反应等问题。而研究物质的组成 及结构必须借助量子化学方法来计算化合物分子中的电子结构,研究形成化学键的相互作用及 其它有关的微观信息。国内外都有许多化学工作者从事这方面的研究,近年来,随着计算机的 发展和理论上的突破,量子化学在研究化合物结构中的应用越来越广泛。本文介绍了量子化学 的发展,计算方法以及应用。 关键词量子化学结构计算 1.量子化学的发展及历史 自从现代化学成立以来,人们一直认为化学是一门实验学科,因为之前人类认识化学通过两种科学方法,一种是培根创造的实验科学归纳法,而另一种是笛卡尔创造的演绎法。但由于化学界的没能形成统一理论,使演绎法难以在化学研究中得到根本上的广泛应用,即化学研究无法像物理那样通过计算来逻辑地预言和解释化学行为。但是,20世纪30年代量子力学的出现,却给理论化学家带来了一线曙光。 19世纪三十年代,奥地利物理学家薛定谔总结出了实物微粒运动规律的薛定愕方程[1]。之后,德国革丁根大学的两位年青人海特勒和隆多首次借用量子力学处理化学问题,建立和求解了氢分子薛定愕方程,开辟了用量子理论方法研究分子中电子行为的广阔领域,导致了量子化学的产生。

揭秘量子化学中的计算方法

揭秘量子化学中的计算方法 材料的腐蚀与防护是现代科学技术研究的重要领域之一。添加缓蚀剂是抑制材料腐蚀最为简单、高效、经济的防护手段。因此,缓蚀剂的研究是科研工作者极为关注的重要课题。1971年,Vosta和Eliasek首次用量子化学方法研究了缓蚀剂的缓蚀机理,开创了量子腐蚀电化学。此后,众多学者采用量子化学方法研究缓蚀剂及其作用机理,并取得了丰硕的成果。 什么是量子化学法呢?让我们现在就来看看吧! 彩虹分割线 量子化学计算方法是……? 量子化学是以量子力学为基础,利用量子力学的基本原理和方法来研究化学问题的一门学科。 量子化学计算方法的发展 量子化学的基本理论形成于20世纪30年代,随着计算机水平的飞速发展,量子化学计算方法也高速发展起来,并涌现出多种理论算法,并出现大量量子化学计算软件。它们被广泛运用于分子设计、材料性能、化学过程等领域,其方法和结果都显示出了与其他研究手段相比无可比拟的优越性。 密度泛函理论 1、简介 密度泛函理论(DFT)是20世纪60年代在Thomas-Fermi近似理论的基础上发展起来的一种量子力学表达方式。 密度泛函理论指出,电子密度决定分子的一切性质,体系的能量是电子密度的泛函,并指出只要知道体系基态的电子密度,那么体系的一切性质就可以通过量子力学计算得到。 2、优势 密度泛函理论相比于其它量化算法最突出的优势是计算速度快、计算精度高,可用于大分子体系的量化计算,对于含过渡金属体系的计算则更具优势。 3、分类 密度泛函理论种类较多,各种理论的差异在于选择了不同的交换相关能量泛函近似形式。 常见的密度泛函理论算法有以BDW,BLYP为代表的纯密度泛函和以B3LYP,BHANDHLYP为代表的杂密度泛函,而其中最常用于缓蚀剂研究的是B3LYP。 4、应用 随着密度泛函理论体系的日益完善和计算精度的逐步提高,密度泛函理论越来越受到人们的

相关主题
文本预览
相关文档 最新文档