当前位置:文档之家› 金属学与热处理课后习题答案第六章

金属学与热处理课后习题答案第六章

金属学与热处理课后习题答案第六章
金属学与热处理课后习题答案第六章

第六章金属及合金的塑性变形和断裂6-1 锌单晶体试样截面积A=,经拉伸试验测定的有关数据如下表:

1)根据以上数据求出临界分切应力τk并填入上表

2)求出屈服载荷下的取向因子,作出取向因子和屈服应力的关系曲线,说明取向因子对屈服应力的影响。

答:

1)需临界临界分切应力的计算公式:τk=σs cosφcosλ,σs为屈服强度=屈服载荷/截面积

需要注意的是:在拉伸试验时,滑移面受大小相等,方向相反的一对轴向力的作用。

当载荷与法线夹角φ为钝角时,则按φ的补角做余弦计算。

2)cosφcosλ称作取向因子,由表中σs和cosφcosλ的数值可以看出,随着取向因子的增大,屈服应力逐渐减小。cosφcosλ的最大值是φ、λ均为45度时,数值为,此时σs为最小值,金属最易发生滑移,这种取向称为软取向。当外力与滑移面平行(φ=90°)或垂直(λ=90°)时,cosφcosλ为0,则无论τk数值如何,σs均为无穷大,表示晶体在此情况下根本无法滑移,这种取向称为硬取向。

6-2 画出铜晶体的一个晶胞,在晶胞上指出:

1)发生滑移的一个滑移面

2)在这一晶面上发生滑移的一个方向

3)滑移面上的原子密度与{001}等其他晶面相比有何差别

4)沿滑移方向的原子间距与其他方向有何差别。

答:

解答此题首先要知道铜在室温时的晶体结构是面心立方。

1)发生滑移的滑移面通常是晶体的密排面,也就是原子密度最大的晶面。在面心立方晶格中的密排面是{111}晶面。

2)发生滑移的滑移方向通常是晶体的密排方向,也就是原子密度最大的晶向,在{111}晶面中的密排方向<110>晶向。

3){111}晶面的原子密度为原子密度最大的晶面,其值为a2,{001}晶面的原子密度为a2

4)滑移方向通常是晶体的密排方向,也就是原子密度高于其他晶向,原子排列紧密,原子间距小于其他晶向,其值为a。

6-3 假定有一铜单晶体,其表面恰好平行于晶体的(001)晶面,若在[001]晶向施加应力,使该晶体在所有可能的滑移面上滑移,并在上述晶面上产生相应的滑移线,试预计在表面上可能看到的滑移线形貌。

答:

对受力后的晶体表面进行抛光,在金相显微镜下可以观察到在抛光的表面上出现许多相互平行的滑移带。在电子显微镜下,每条滑移带是由一组相互平行的滑移线组成,这些滑移线实际上是晶体中位错滑移至晶体表面产生的一个个小台阶,其高度约为1000个原子间距。相临近的一组小台阶在宏观上反映的就是一个大台阶,即滑移带。所以晶体表面上的滑移线形貌是台阶高度约为1000个原子间距的一个个小台阶。

6-4 试用多晶体的塑性变形过程说明金属晶粒越细强度越高、塑性越好的原因?

答:

多晶体的塑性变形过程:

1、多晶体中由于各晶粒的位向不同,则各滑移系的取向也不同,因此在外加拉伸力的

作用下,各滑移系上的分切应力也不相同。由此可见,多晶体中各个晶粒并不是同时发生塑性变形,只有那些取向最有利的晶粒随着外力的增加最先发生塑性变形。

2、晶粒发生塑性变形就意味着滑移面上的位错源已开启,位错将会源源不断地沿着滑

移面上的滑移方向运动。但是,由于相邻晶粒的位向不同,滑移系的取向也不同,因此运动着的位错不能够越过晶界,滑移不能发展到相邻晶粒中,于是位错在晶界处受阻,形成位错的平面塞积群。

3、位错平面塞积群在其前沿附近造成很大的应力集中,这一集中应力与不断增加的外

加载荷相叠加,使相邻晶粒某些滑移系上的分切应力达到临界值,于是位错源开动,开始塑性变形。

4、为了协调已发生变形的晶粒形状的改变,要求相邻晶粒必须进行多系滑移,这样就

会使越来越多的晶粒参与塑性变形。

5、在多晶体的塑性变形中,由外加载荷直接引起塑性变形的晶粒只占少数,不产生明

显的宏观效果,多数晶粒的塑性变形是由已塑性变形的晶粒中位错平面塞积群所造成的应力集中所引起,并造成一定的宏观塑性变形效果。

6、多晶体的塑性变形具有不均匀性。由于各晶粒间以及晶粒内和晶界位向不同的影响,

各个晶粒间及晶粒内的变形都是不均匀的。

晶粒越细强度越高、塑性越好的原因:

强度:由多晶体的塑性变形过程可知,多数晶粒的塑性变形是由先塑性变形晶粒中的

位错平面塞积群引起的应力集中于外加载荷相叠加而引起的。由位错运动理论可以得

知,位错塞积群在障碍处产生的应力集中与位错数目有关,位错数目越多,造成的应力集中越大,而位错数目与位错源到障碍物的距离成正比。所以晶粒越小,位错源到障碍物(晶界)的距离越短,位错数目越少,造成的应力集中越小,此时如果要是相邻晶粒发生塑性变形,则需要较大的外加载荷,也就是抵抗塑性变形的能力月强,强度越高。

塑性:由多晶体的塑性变形过程可知,多晶体的塑性变形具有不均匀性。晶粒越细,各晶粒间或晶粒内部与晶界处的应变相差越小,变形较均匀,相对来说因不均匀变形产生应力集中引起开裂的机率较小,这就有可能在断裂前承受较大的塑性变形量,可以得到较高的伸长率和断面收缩率。

韧性:由于细晶粒的变形较均匀,不易产生应力集中裂纹,而且晶粒越细晶界面积越大,对裂纹扩展的阻力越大,因此在断裂过程中可以吸收更多的能量,表现出较高的韧性。

6-5 口杯采用低碳钢板冷冲而成,如果钢板的晶粒大小很不均匀,那么冲压后常常发现口杯底部出现裂纹,这是为什么?

答:

裂纹原因:

1、低碳钢板冷冲时,各部分的塑性变形是不均匀的,在口杯局内在宏观内应力。

2、由于多晶体晶粒变形的不均匀性,加上原始晶粒大小不一,则更加促进了变形的不

均匀性,由此产生较大的第二类内应力。

3、所以,冲压后口杯底部出现裂纹的原因是由钢板不均匀变形产生的宏观内应力和晶

粒变形不均匀造成的内应力相叠加,超过了钢板的断裂强度,出现裂纹。

6-6 滑移与孪生有何区别,试比较它们在塑性变形过程中的作用。

答:

滑移定义:晶体在切应力作用下,晶体的一部分相对于另一部分沿某些晶面(滑移面)和晶向(滑移方向)发生滑动的现象。本质:滑移并不是晶体的一部分相对于另一部分作整体的刚性移动,而是位错在切应力的作用下沿着滑移面上的滑移方向逐步移动的结果。

孪生定义:晶体在切应力作用下,晶体的一部分沿一定的晶面(孪生面)和一定的晶向(孪生方向)相对于另一部分晶体做均匀地切变;在切变区域内,与孪生面平行的的每层原子的切变量与它距离孪生面的距离成正比,而且不是原子间距的整数倍,这种切变不会改变晶体的点阵类型,但可使变形部分晶体的位向发生变化,并与未变形部分的晶体以孪晶界为分界面构成镜面对称的位向关系。通常把对称的两部分晶体称为孪晶,而将形成孪晶的过程称为孪生。

滑移在塑性变形过程中的作用:

在常温和低温下金属的塑性变形主要通过滑移方式进行。

1、晶体中滑移系越多,则可供滑移采用的空间位向越多,塑性变形越容易进行。当沿

滑移面上滑移方向的分切应力达到临界分切应力时,滑移就可进行,而且位错只需一个很小的切应力就可以实现运动。

2、在晶体发生滑移的同时,滑移面和滑移方向会发生转动,造成滑移系取向的变化,

有可能使其他滑移系的分切应力达到临界值,产生多滑移现象,促进晶体的塑性变形。

孪生在塑性变形过程中的作用:

孪生对塑性变形的贡献比滑移要小。

1、孪生的临界分切应力要比滑移的临界分切应力大得多,只有在滑移很难进行的条件

下,晶体才进行孪生变形。

2、但是,由于孪生后变形部分的晶体位向发生改变,可能会使原来处于不利取向的滑

移系转变为新的有利取向,这样可以激发晶体的进一步塑性变形。所以当金属中存在大量孪晶时,可以促进塑性变形。

6-7 试述金属经塑性变形后组织结构与性能之间的关系,阐明加工硬化在机械零构件生产和服役过程中的重要意义。

答:

金属塑性变形后组织结构与性能之间的关系:

1、金属塑性变形后,晶粒形状发生变化,沿变形方向伸长,当变形量很大时出现纤维

组织,使金属的力学性能呈方向性。

2、金属塑性变形后,晶体中的亚结构得到细化,形成大量的胞状亚结构。位错密度增

加,位错相互交割出现位错割阶和位错缠结现象,产生加工硬化,硬度、强度增加,塑性、韧性降低。

3、金属塑性变形后,当变形量很大时,多晶体中原为任意取向的各个晶粒逐渐调整其

取向而趋于彼此一致,产生形变织构。金属性能表现为各向异性。

4、金属塑性变形后,晶体缺陷增加,产生大量的空位。空位增加,电阻率增大,导电

性能和导热性能略为下降。内能增加,化学性提高,耐腐蚀性能降低。

加工硬化在机械零件生产和服役过程中的重要意义:

加工硬化:金属在塑性变形过程中,随着变形程度的增加,金属的硬度、强度增加,而塑性、韧性下降的现象。又称形变强化。

原因:随着塑性变形的进行,位错密度不断增大,位错在运动时的相互交割加剧,产生位错割阶和位错缠结等障碍,使位错运动的阻力增大,造成晶体的塑性变形抗力增大。

在零件生产中的意义:

1、对于用热处理方法不能强化的材料来说,可以用加工硬化方法提高其强度。如塑性

很好而强度较低的铝、铜及某些不锈钢,在生产中往往制成冷拔棒材或冷轧板材使用。

2、加工硬化也是某些工件或半成品能够加工成型的重要因素。例如钢丝冷拔过程中产

生加工硬化保证其不被拉断。

在零件使用过程中的意义:

提高零件在使用过程中的安全性。零件在使用过程中各个部位的受力是不均匀的,往往会在某些部位产生应力集中和过载现象,使该处产生塑性变形。如果没有加工硬化,则该处变形会越来越大直至断裂。正是由于加工硬化的原因,这种偶尔过载部位的变形会因为强度的增加而自行停止,从而提高零件的安全性。

需要指出的是:加工硬化现象也会给零件生产和使用带来一些不利因素

1、金属随着塑性变形程度的增加,塑性变形抗力不断增大,进一步的变形就必须增大

设备功率,增加能源动力的消耗。

2、金属经加工硬化后,塑性大为降低,在使用过程中,如果继续变形容易导致开裂。6-8 金属材料经塑性变形后为什么会保留残留内应力,研究这部分内应力有什么意义?

答:

残留内应力的形成原因:

金属材料经塑性变形后,外力所做的功大部分转化为热能消耗掉,但尚有一小部分(约占总变形功的10%)保留在金属内部,形成残留内应力。

主要分为以下三类:

1、宏观内应力(第一类内应力):它是由于金属材料各部分的不均匀变形引起的,是

整个物体范围内处于平衡的力。

2、微观内应力(第二类内应力):它是由于晶粒或亚晶粒不均匀变形而引起的,是在

晶粒或亚晶粒范围内处于平衡的力。

3、点阵畸变(第三类内应力):它是由于塑性变形使金属内部产生大量的位错和空位,

使点阵中的一部分原子偏离其平衡位置,造成点阵畸变。它是只在晶界、滑移面等附近不多的原子群范围内保持平衡的力。

研究这部分内应力的意义:

1、通常情况下,残留内应力的存在对金属材料的力学性能是有害的,它会导致材料的

变形、开裂和产生应力腐蚀,降低材料的力学性能。

2、但是当工件表面残留一薄层压应力时,可以在服役时抵消一部分外加载荷,反而对

使用寿命有利。

因此,研究这部分内应力可以降低其对金属材料的损害,甚至可以利用内应力来提高工件的使用寿命。

6-9 何谓脆性断裂和塑性断裂,若在材料中存在裂纹时,试述裂纹对脆性材料和塑性材料断裂过程的影响。

答:

塑性断裂:又称为延性断裂,断裂前发生大量的宏观塑性变形,断裂时承受的工程应力大于材料的屈服强度。

脆性断裂:又称为低应力断裂,断裂前极少有或没有宏观塑性变形,但在局部区域仍

存在一定的微观塑性变形,断裂时承受的工程应力通常不超过材料的屈服强度,甚至

低于按宏观强度理论确定的许用应力。

裂纹对材料断裂的影响:

当存在裂纹的材料受到外力作用时,会在裂纹尖端附近产生复杂的应力状态,并引起

应力集中。

对于塑性材料,在外力作用下裂纹尖端区域的应力集中很快会超过材料的屈服极限,

形成塑性变形区,微孔很容易在此变形区形成、扩大,并与裂纹连接,使裂纹失稳扩展,导致材料发生断裂。

对于脆性材料,其塑性较差,在裂纹尖端区域出现析出质点的几率很大,因此,一旦

在裂纹尖端附近形成一个不大的塑性变形区后,此区的析出相质点附近就可能形成微

孔并导致裂纹失稳扩展,直至断裂。此时整个裂纹界面的平均应力σc仍低于σ,也就

是说含裂纹的脆性材料往往表现出低应力断裂,但断裂源于微孔聚集方式,微观断口

形貌仍具有韧窝特征。

6-10 何谓断裂韧度,它在机械设计中有何功用?

答:

应力强度因子:材料中不可避免的存在裂纹,当含有裂纹的材料受外加应力σ作用时,裂纹尖端应力场的各应力分量中均有一个共同因子K I(K I=σ√πa,a为裂纹长度的一半),用K I表示裂纹尖端应力场的强弱,简称应力强度因子。

断裂韧度:当外加应力达到临界值σc时,裂纹开始失稳扩展,引起断裂,相应地K I值增加到临界值K c,这个临界应力场强度因子K c称为材料的断裂韧度,可以通过实验测得。

平面应变断裂韧度:对同一材料来说,K c取决于材料的厚度:随着厚度的增加,K c单调减小至一常数K Ic,这时裂纹尖端区域处于平面应变状态,K Ic称为平面应变断裂韧度。在机械设计中的功用:

1、确定构件的安全性。根据探伤测定构件中的缺陷尺寸,在确定构件工作应力后,即

可算出裂纹尖端应力强度因子K I。与构件材料的K Ic相比,如果K I<K Ic,则构件安全,否则有脆断危险。

2、确定构件承载能力。根据探伤测出构件中最大裂纹尺寸,通过实验测得材料的K Ic,

就可由σc= K Ic /√πa计算出断裂应力,从而确定构件的安全承载能力。

3、确定临界裂纹尺寸。若已知材料K Ic的和构件的实际工作应力,则可根据a c=K Ic2/πσ

c2求出临界裂纹尺寸。如果探伤测定构件实际裂纹尺寸a<2a c,则构件安全,否则有脆断危险。

金属学与热处理知识点总结

金属学与热处理总结 一、金属的晶体结构 重点内容:面心立方、体心立方金属晶体结构的配位数、致密度、原子半径,八面体、四面体间隙个数;晶向指数、晶面指数的标定;柏氏矢量具的特性、晶界具的特性。 基本内容:密排六方金属晶体结构的配位数、致密度、原子半径,密排面上原子的堆垛顺序、晶胞、晶格、金属键的概念。晶体的特征、晶体中的空间点阵。 晶胞:在晶格中选取一个能够完全反映晶格特征的最小的几何单元,用来分析原子排列的规律性,这个最小的几何单元称为晶胞。 金属键:失去外层价电子的正离子与弥漫其间的自由电子的静电作用而结合起来,这种结合方式称为金属键。 位错:晶体中原子的排列在一定范围内发生有规律错动的一种特殊结构组态。位错的柏氏矢量具有的一些特性: ①用位错的柏氏矢量可以判断位错的类型;②柏氏矢量的守恒性,即柏氏矢量与回路起点及回路途径无关;③位错的柏氏矢量个部分均相同。 刃型位错的柏氏矢量与位错线垂直;螺型平行;混合型呈任意角度。 晶界具有的一些特性: ①晶界的能量较高,具有自发长大和使界面平直化,以减少晶界总面积的趋势;②原子在晶界上的扩散速度高于晶内,熔点较低;③相变时新相优先在晶界出形核;④晶界处易于发生杂质或溶质原子的富集或偏聚;⑤晶界易于腐蚀和氧化;⑥常温下晶界可以阻止位错的运动,提高材料的强度。 二、纯金属的结晶 重点内容:均匀形核时过冷度与临界晶核半径、临界形核功之间的关系;细化晶粒的方法, 铸锭三晶区

的形成机制。 基本内容:结晶过程、阻力、动力,过冷度、变质处理的概念。铸锭的缺陷;结晶的热力学条件和结构条件,非均匀形核的临界晶核半径、临界形核功。 相起伏:液态金属中,时聚时散,起伏不定,不断变化着的近程规则排列的原子集团。 过冷度:理论结晶温度与实际结晶温度的差称为过冷度。 变质处理:在浇铸前往液态金属中加入形核剂,促使形成大量的非均匀晶核,以细化晶粒的方法。 过冷度与液态金属结晶的关系:液态金属结晶的过程是形核与晶核的长大过程。从热力学的角度上看,没有过冷度结晶就没有趋动力。根据Rk= 1..,T可知当过冷度T为零时临界晶核半 径R k为无穷大,临界形核功(1订2 )也为无穷大。临界晶核半径R k与临界形核功为无穷大时,无法形核,所以液态金属不能结晶。晶体的长大也需要过冷度,所以液态金属结晶需要过冷度。 细化晶粒的方法:增加过冷度、变质处理、振动与搅拌。 铸锭三个晶区的形成机理:表面细晶区:当高温液体倒入铸模后,结晶先从模壁开始,靠近模壁一层的液体产生极大的过冷,加上模壁可以作为非均质形核的基底,因此在此薄层中立即形成大量的晶核,并同时向各个方向生长,形成表面细晶区。柱状晶区:在表面细晶区形成的同时,铸模温度迅速升高,液态金属冷却速度减慢,结晶前沿过冷都很小,不能生成新的晶核。垂直模壁方向散热最快,因而晶体沿相反方向生长成柱状晶。中心等轴晶区:随着柱状晶的生长,中心部位的液体实际温度分布区域平缓,由于溶质原子的重新分配,在固液界面前沿出现成分过冷,成分过冷区的扩大,促使新的晶核形成长大形成等轴晶。由于液体的流动使表面层细晶一部分卷入液体之中或柱状晶的枝晶被冲刷脱落而进入前沿的液体中作为非自发生核的籽晶。 三、二元合金的相结构与结晶 重点内容:杠杆定律、相律及应用。 基本内容:相、匀晶、共晶、包晶相图的结晶过程及不同成分合金在室温下的显微组织。合金、成分过冷;非平衡结晶及枝晶偏析的基本概念。 相律:f = c -p + 1其中,f为自由度数,c为组元数,p为相数。 伪共晶:在不平衡结晶条件下,成分在共晶点附近的亚共晶或过共晶合金也可能得到全部共晶组织,这种共晶组织称为伪共晶。 合金:两种或两种以上的金属,或金属与非金属,经熔炼或烧结、或用其它方法组合而成的具有金属特性的物质。 合金相:在合金中,通过组成元素(组元)原子间的相互作用,形成具有相同晶体结构与性质,并以明确界面分开的成分均一组成部分称为合金相。 四、铁碳合金 重点内容:铁碳合金的结晶过程及室温下的平衡组织,组织组成物及相组成物的计算 基本内容:铁素体与奥氏体、二次渗碳体与共析渗碳体的异同点、三个恒温转变。 钢的含碳量对平衡组织及性能的影响;二次渗碳体、三次渗碳体、共晶渗碳体相对量的计算;五种渗碳体的来源及形态。

金属学与热处理教学大纲

《金属学与热处理》课程教学大纲 课程名称:金属学与热处理课程代码: 05224040 课程类型:专业必修课程 学分:3 总学时:48 理论学时:32 实验学时:16 先修课程:高等数学材料力学适用专业:材料成型与控制技术、模具设计与制造 一、课程性质、目的和任务 本课程是“材料成型与控制技术、模具设计与制造”专业的专业必修课,是学习材料专业课的技术基础课。它在基础课和专业课之间起桥梁作用。只有在修完本课程之后,才能进入其他专业课的学习。开设该课程的目的主要是向学生阐述金属学与热处理的基础知识,任务是使学生通过该课程的学习,掌握金属材料的成份、组织结构、热处理工艺与性能之间的相互关系及其变化规律,熟悉热处理基本工艺和常用工程材料的种类、成份、组织、性能特点,为后续专业课的学习奠定基础。 二、教学基本要求 1、知识、能力、素质的基本要求 通过本课程的学习,应使学生掌握金属学与热处理的基础知识,即金属及合金的成分、组织、结构与性能之间的相互关系及其变化规律;初步学会使用金相显微镜对金属及合金的组织进行观察及相应的实验能力;具备能用所学理论对金属材料热处理的一些实际工程问题进行分析的素质。 2、教学模式基本要求(课程主要教学环节要求,教学方法及手段要求) 本课程的特点是理论抽象,空间结构多且复杂,理论性叙述多,计算内容少。针对这些特点,在教学时应尽量结合工程实例来加深对基础理论的理解;有关金属组织的认识和识别对初学者来说是难度很大的内容,必须配合实验来加深认识。 三、教学内容及要求 第一章金属的晶体结构 要求学生掌握三种常见金属的晶体结构、晶体学基本概念、实际金属中三类晶体缺陷、合金中的两类基本相。 第二章纯金属金属的结晶 要求学生掌握结晶的规律,结晶基本过程以及结晶后获得细晶粒的方法,了解晶核长大机理、铸锭组织形成过程、铸锭组织结构与性能特点。 第三章二元合金相图 要求学生掌握二元合金相图的建立方法,熟悉匀晶相图.共晶相图、包晶相图的结构,正确地分析相应合金的结晶过程,画出示意图,并能熟练地运用杠杆定律计算相组成物的相

金属学与热处理 哈工大第三版版部分答案

14、何谓组元?何谓相?何谓固溶体?固溶体的晶体结构有何特点?何谓置换固溶体?影响其固溶度的因素有哪些? 答: 组元:组成合金最基本的、独立的物质。 相:合金中结构相同、成分和性能均一并以界面相互分开的组成部分。 固溶体:合金组元之间以不同的比例相互混合形成的晶体结构与某一组元相同的固相。 固溶体的晶体结构特点:固溶体仍保持着溶剂的晶格类型,但结构发生了变化,主要包括以下几个方面:1)有晶格畸变,2)有偏聚与有序,3)当低于某一温度时,可使具有短程有序的固溶体的溶质和溶剂原子在整个晶体中都按—定的顺序排列起来,转变为长程有序,形成有序固溶体。 置换固溶体:溶质原子位于溶剂晶格的某些结点位置所形成的固溶体。 影响置换固溶体固溶度的因素:原子尺寸,电负性,电子浓度,晶体结构 何谓柏氏矢量? 答:柏氏矢量:不但可以表示位错的性质,而且可以表示晶格畸变的大小和方向,从而使人们在研究位错时能够摆脱位错区域内原子排列具体细节的约束 1、名词解释: 过冷现象:结晶时,实际结晶温度低于理论结晶温度的现象。在一定压力下,当液体的 温度已低于该压力下液体的凝固点,而液体仍不凝固的现象叫液体的过冷现象 结构起伏液态金属中近程有序的原子集团处于瞬间出现、瞬间消失、此起彼伏、变化不定 的状态之中,仿佛在液态金属中不断涌现出一些极微小的固态结构一样。这种不断变化的近 程有序原子集团成为结构起伏。 能量起伏液态金属中处于热运动的原子能量有高有低,同一原子的能量也在随时间不停地 变化,时高时低的现象。 2、根据结晶的热力学条件解释。为什么金属结晶时一定要有过冷度?冷却速度与过冷度有什么关系? 答:由热力学第二定律知道,在等温等压条件下,一切自发过程都朝着使系统自由能降低的方向进行。液态金属要结晶,其结晶温度一定要低于理论结晶温度Tm,此时的固态金属自由能低于液态金属的自由能,两相自由能之差构成了金属结晶的驱动力。要获得结晶过程所必须的驱动力,一定要使实际结晶温度低于理论结晶温度,这样才能满足结晶的热力学条件。过冷度越大,液、固两相自由能的差值越大,即相变驱动力越大,结晶速度越快,所以金属结晶必须有过冷度。冷却速度越大,过冷度越大;反之,冷却速度越小,则过冷度越小. 12、常温下晶粒大小对金属性能有何影响?根据凝固理论,试述细化晶粒的方法有哪些?答:金属的晶粒越细小,强度和硬度则越高,同时塑性韧性也越好。 细化晶粒的方法: 1)控制过冷度,在一般金属结晶时的过冷度范围内,过冷度越大,晶粒越细小;2)变质处理,在浇注前往液态金属中加入形核剂,促进形成大量的非均匀晶核来细化晶粒;3)振动、搅动,对即将凝固的金属进行振动或搅动,一方面是依靠从外面输入能量促使晶核提前形成,另一方面是使成长中的枝晶破碎,使晶核数目增加. 3、何谓枝晶偏析?是如何形成的?影响因素有哪些?对金属性能有何影响,如何消除? 2)答:枝晶偏析:在一个晶粒内部化学成分不均匀的现象称为晶内偏析,由于固溶体晶体通常是树枝状,枝干,枝间的化学成分不同,所以之为枝晶偏析。形成原因:固溶体合金平衡结晶的结果,使前后从液相中结晶出的固相成分不同,再加上冷却较快,不能使成分扩散均匀,结果就使每个晶粒内部的化学成分很不均匀,先结晶的含高熔点组元多,后结晶的含低熔点组元多,再结晶内部存在浓

金属学与热处理课后习题问题详解(崔忠圻版)

第十章钢的热处理工艺 10-1 何谓钢的退火?退火种类及用途如何? 答: 钢的退火:退火是将钢加热至临界点AC1以上或以下温度,保温一定时间以后随炉缓慢冷却以获得近于平衡状态组织的热处理工艺。 退火种类:根据加热温度可以分为在临界温度AC1以上或以下的退火,前者包括完全退火、不完全退火、球化退火、均匀化退火,后者包括再结晶退火、去应力退火,根据冷却方式可以分为等温退火和连续冷却退火。 退火用途: 1、完全退火:完全退火是将钢加热至AC3以上20-30℃,保温足够长时间,使 组织完全奥氏体化后随炉缓慢冷却以获得近于平衡状态组织的热处理工艺。 其主要应用于亚共析钢,其目的是细化晶粒、消除应力和加工硬化、提高塑韧性、均匀钢的化学成分和组织、改善钢的切削加工性能,消除中碳结构钢中的魏氏组织、带状组织等缺陷。 2、不完全退火:不完全退火是将钢加热至AC1- AC3(亚共析钢)或AC1-ACcm (过共析钢)之间,保温一定时间以后随炉缓慢冷却以获得近于平衡状态组织的热处理工艺。对于亚共析钢,如果钢的原始组织分布合适,则可采用不完全退火代替完全退火达到消除应力、降低硬度的目的。对于过共析钢,不完全退火主要是为了获得球状珠光体组织,以消除应力、降低硬度,改善切削加工性能。 3、球化退火:球化退火是使钢中碳化物球化,获得粒状珠光体的热处理工艺。 主要用于共析钢、过共析钢和合金工具钢。其目的是降低硬度、改善切削加工性能,均匀组织、为淬火做组织准备。 4、均匀化退火:又称扩散退火,它是将钢锭、铸件或锻轧坯加热至略低于固相 线的温度下长时间保温,然后缓慢冷却至室温的热处理工艺。其目的是消除铸锭或铸件在凝固过程中产生的枝晶偏析及区域偏析,使成分和组织均匀化。 5、再结晶退火:将冷变形后的金属加热到再结晶温度以上保持适当时间,然后 缓慢冷却至室温的热处理工艺。其目的是使变形晶粒重新转变为均匀等轴晶粒,同时消除加工硬化和残留应力,使钢的组织和性能恢复到冷变形前的状态。 6、去应力退火:在冷变形金属加热到再结晶温度以下某一温度,保温一段时间 然后缓慢冷却至室温的热处理工艺。其主要目的是消除铸件、锻轧件、焊接件及机械加工工件中的残留应力(主要是第一类应力),以提高尺寸稳定性,减小工件变形和开裂的倾向。 10-2 何谓钢的正火?目的如何?有何应用? 答: 钢的正火:正火是将钢加热到AC3或Accm以上适当温度,保温适当时间进行完全奥氏体化以后,以较快速度(空冷、风冷或喷雾)冷却,得到珠光体类组织的热处理工艺。正火过程的实质是完全奥氏体化加伪共析转变。 目的:细化晶粒、均匀成分和组织、消除应力、调整硬度、消除魏氏组织、带状组织、网状碳化物等缺陷,为最终热处理提供合适的组织状态。

金属学与热处理复习题

金属学与热处理复习题

第一章复习题 晶向指数相同,符号相反的为同一条直线 原子排列相同但空间位向不同的所有晶向 晶面指数的数字和顺序相同,符号相反则两平面互相平行 晶面的空间位向不同但原子排列相同的所有晶面 当一个晶向[uvw]与一个晶面(hkl)平行时hu+kv+lw=0 当一个晶向[uvw]与一个晶面(hkl)垂直时h=u,K=v,l=w 晶体的各向异性原因: 在不同晶面上的原子紧密程度不同 纯铁冷却时在912 发生同素异晶转变是从结构转变为结构,配位数,致密 度降低,晶体体积,原子半径发 生。 面心立方晶胞中画出) 11晶面和]211[晶向 (2 刃型位错的四个特征(作业) 螺型位错的四个特征(作业) 面心立方(FCC)体心立方(BCC)密排六方(HCP)晶胞原子数

原子半径 配位数 致密度 同素异构转变定义--18页 晶体缺陷的分类: 常见的点缺陷: 常见的面缺陷: 第二章复习题 一、填空 1、金属结晶两个密切联系的基本过程是和 2 、金属结晶的动力学条件为 3 、金属结晶的结构条件为 4 、铸锭的宏观组织包括 5、如果其他条件相同,则金属模浇注的铸件晶粒比砂模浇注的晶粒更细,高 温浇注的铸件晶粒比低温浇注的晶粒粗大,采用振动浇注的铸件晶 粒比不采用振动的晶粒更细,薄铸件的晶粒比厚铸件晶粒更细。 二、问答 1、金属的结晶形核45页 2、金属的长大的要点52页 2、铸锭三晶区名称及形成过程(柱状晶为重点) 3、影响柱状晶生长的因素56-57页 三、名词解释: 1、细晶强化 2、变质处理 3、铸造织构 第三章二元合金的相结构与结晶作业题(复习题) 1、概念 合金、相、固溶体、固溶强化、、离异共晶、伪共晶 2、填空

北京科技大学金属学与热处理期末考试资料

1、热处理的定义:根据钢件的热处理目的,把钢加热到预定的温度,在此温度下保持一定的时间,然后以预定的速度冷却下来的一种综合工艺。钢的热处理是通过加热、保温和冷却的方法,来改变钢内部组织结构,从而改善其性能的一种工艺。凡是材料体系(金属、无机材料)中有相变发生,总可以采用热处理的方法,来改变组织与性能。 2、Ac1、Ac 3、Accm的意义:对于一个具体钢成分来说,A1、A3、Acm是一个点,而且是无限缓慢加热或冷却时的平衡临界温度。加热时的实际临界温度加注脚字母“C”,用Ac1、Ac3、Accm表示;冷却时的实际临界温度加注脚字母“r”,用Ar1、Ar3、Arcm表示。 3、什么是奥氏体化?奥氏体化的四个过程?是什么类型的相恋?将钢加热到AC1点或AC3点以上,使体心立方的α-Fe铁结构转变为面心立方结构的γ-Fe,这个过程就是奥氏体化过程。从铁碳相图可知,任何成分碳钢加热到Ac1以上,珠光体就向奥氏体转变;加热到Ac3或Accm以上,将全部变为奥氏体。这种加热转变称奥氏体化。共析钢的奥氏体化过程包括以下四个过程:形核;长大;残余渗碳体溶解;奥氏体成分均匀化。加热时奥氏体化程度会直接影响冷却转变过程,以及转变产物的组成和性能。是扩散型相变。 4、碳钢与合金钢的奥氏体化有什么区别?为什么?在同一奥氏体化温度下,合金元素在奥氏体中扩散系数只有碳的扩散系数的千分之几到万分之几,可见合金钢的奥氏体均匀化时间远比碳钢长得多。在制定合金钢的热处理工艺规范时,应比碳钢的加热温度高些,保温时间长些,促使合金元素尽可能均匀化。 5奥氏体晶粒的三个概念(初始晶粒、实际晶粒和本质晶粒)?奥氏体的初始晶粒:指加热时奥氏体转变过程刚刚结束时的奥氏体晶粒,这时的晶粒大小就是初始晶粒度。奥氏体实际晶粒:指在热处理时某一具体加热条件下最终所得的奥氏体晶粒,其大小就是奥氏体的实际晶粒度。奥氏体的本质晶粒:指各种钢的奥氏体晶粒的长大趋势。晶粒容易长大的称为本质粗晶粒钢;晶粒不容易长大的称为本质细晶粒钢; 6为什么要研究奥氏体晶粒大小?奥氏体晶粒大小会显著影响冷却转变产物的组织和性能。 7、工厂中对奥氏体晶粒大小的表征方法是什么?本质晶粒度的测试方法?统一采用与标准金相图片比较,来确定晶粒度的级别。生产中为了便于确定钢的本质晶粒度,只需测出930度左右的实际晶粒度,就可以判断。 8过冷奥氏体:奥氏体冷至临界温度以下,牌热力学不稳定状态,称为过冷奥氏体。 9、钢的共析转变?珠光体组织的三种类型?钢的共析转变:钢奥氏体化后,过冷到A1至“鼻尖”之间区域等温停留时,将发生共析转变,形成珠光体组织,其反应如下:γ→P(α+Fe3C)结构:FCC、BCC、正交;含碳:0.77%、0.0218%、6.69%珠光体的三种类型:珠光体,索氏体,屈氏体。 10、什么叫钢的C曲线?如何测定?影响C曲线的因素?过冷奥氏体等温转变曲线,也称TTT曲线。因曲线形状象英文字母“C”,故常称C曲线。在过冷奥氏体的转变过程中有组织(相变)转变和性能变化,因此可用金相法、硬度法、膨胀法或磁性法等来测定过冷奥氏体的等温转变过程,其中金相法是最基本的。金相法测定过冷奥氏体等温转变图---C曲线(基本方法),以共析钢为例:①用共析钢制成多组圆片状试样(φ10×1.5);②取一组试样加热奥氏体化;③迅速转入A1以下一定温度熔盐浴中等温;④各试样停留不同时间后分别淬入盐水中,使未分解的过冷奥氏体变为马氏体;⑤这样在金相显微镜下就可以观察到过冷奥氏体的等温分解过程。钢的成分和热处理条件都会引起C曲线形状和位置的变化1)含碳量的影响2)合金元素的影响3)奥氏体化温度和保温时间的影响 11、什么叫CCT曲线?如何测定?连接冷却曲线上相同性质的转变开始点和终了点,得到钢种的连续冷却转变图称为CCT曲线。与测定C曲线的方法相同,一般也都用膨胀法或金相-硬度法等来测定CCT(Continuous Cooling Transformation)图;在测定时,首先选定一组具有不同冷却速度的方法,然后将欲测试样加热奥氏体化,并以各种冷却速度进行冷却,同时测

金属学与热处理章节重点总结

第1章金属和合金的晶体结构 1.1金属原子的结构特点:最外层的电子数很少,一般为1~2个,不超过3个。 金属键的特点:没有饱和性和方向性 结合力:当原子靠近到一定程度时,原子间会产生较强的作用力。结合力=吸引力+排斥力结合能=吸引能+排斥能(课本图1.2) 吸引力:正离子与负离子(电子云)间静电引力,长程力 排斥力:正离子间,电子间的作用力,短程力 固态金属原子趋于规则排列的原因:当大量金属原子结合成固体时,为使固态金属具有最低的能量,以保持其稳定状态,原子间也必须保持一定的平衡距离。 1.2晶体:基元在三维空间呈规律性排列。晶体结构:晶体中原子的具体排列情况, 也就是晶体中的这些质点在三维空间有规律的周期性的重复排列方式。 晶格:将阵点用直线连接起来形成空间格子。晶胞:保持点阵几何特征的基本单元 三种典型的金属晶体结构(要会画晶项指数,晶面指数) 共带面:平行或相交于同一直线的一组晶面组成一个晶带,这一组晶面叫做共带面 晶带轴:同一晶带中所有晶面的交线互相平行,其中通过坐标原点的那条直线。 多晶型转变或同素异构转变:当外部的温度和压强改变时,有些金属会由一种晶体结构向另一种晶体结构转变。 1.3合金:两种或两种以上金属元素,或金属元素与非金属元素,经熔炼、烧结或其它方法组合而成并具有金属特性的物质。组元:组成合金最基本的独立的物质,通常组元就是组成合金的元素。相:是合金中具有同一聚集状态、相同晶体结构,成分和性能均一,并以界面相互分开的组成部分。固溶体:合金的组元通过溶解形成一种成分及性能均匀的、且结构与组元之一相同的固相,称为固溶体。与固溶体结构相同的组元为溶剂,另一组元为溶质。 固溶体的分类:按溶质原子在溶剂晶格中的位置:置换固溶体与间隙固溶体。按溶质原子在固体中的溶解度:分为有限固溶体和无限固溶体。按溶质原子在固溶体内分布规则:分为有序固溶体和无序固溶体 固溶强化:在固体溶液中,随着溶质浓度的增加,固溶体的强度、硬度提高,塑性韧性下降。 间隙相:当非金属原子半径与金属原子半径的比值小于0.59时,将形成具有简单晶体结构的金属间化合物。间隙化合物:与间隙相相反(比值大于0.59)。 1.4点缺陷:⑴空位⑵间隙原子⑶置换原子。线缺陷:线缺陷就是各种类型的位错。它是指晶体中的原子发生了有规律的错排现象。(刃型位错、螺型位错、混合型位错)滑移矢量:表示位错的性质,晶格畸变的大小的物理量(刃型位错的柏氏矢量与其位错线相垂直;螺形位错的柏氏矢量与其位错线平行。)。 面缺陷:晶体的面缺陷包括晶体的外表面(表面或自由界面)和内界面两类,其中的内界面又有晶界、亚晶界、 小角度晶界、大角度晶界:两相邻晶粒位向差小于或大于10° 相界面的结构有三类:共格界面、半共格界面、非共格界面 习题3 、5做一下 第2章纯金属的结晶 2.1结晶:结晶是指从原子不规则排列的液态转变为原子规则排列的晶体状态的过程。 同素异构转变:金属从一种固态过渡为另一种固体晶态的转变 过冷度:理论结晶温度与实际结晶温度之差。过冷是结晶的必要条件。(金属不同过冷度也不同,金属纯度越高过冷度越大。过冷度的速度取决于,冷却速度越大过冷度越大实际洁净无度越低,反之) 金属结晶:孕育—出现晶核—长大—金属单晶体 2.2从液体向固体的转变使自由能下降.液态金属结晶时,结晶过程的推动力是 自由能差降低(△F)是自由能增加,阻力是自身放热

金属学与热处理试卷及答案 期末练习题

金属学与热处理期末练习题(含答案) 1、金属的机械性能主要包括强度、硬度、塑性、韧性、疲劳强度等指标,其中衡量金属材料在静载荷下机械性能的指标有____强度_______、_____硬度______、_________塑性__。衡量金属材料在交变载荷和冲击载荷作用下的指标有_______韧性____和____疲劳强度_______。 2、常见的金属晶格类型有___面心立方晶格____ 、___体心立方晶格___ ____和__密棑六方晶格_ ________。 3、常用的回火方法有低温回火、_中温回火__________ 和____高温回火_______ 。 4、工程中常用的特殊性能钢有___不锈钢______、耐热钢_________和耐磨刚。 5、根据铝合金成分和工艺特点,可将铝合金分为__变形铝合金_________和铸造铝合金两大类。 6、按冶炼浇注时脱氧剂与脱氧程度分,碳钢分为_镇静钢________、半镇静钢_________、特殊镇静钢_________和__沸腾钢_______。 7、铸铁中_________碳以石墨形式析出___________________的过程称为石墨化,影响石墨化的主要因素有_化学成分__________ 和冷却速度。 8、分别填写下列铁碳合金组织符号: 奥氏体A、铁素体F、渗碳体fe3c 、 珠光体P 、高温莱氏体ld 、低温莱氏体ld’。 9、含碳量小于%的钢为低碳钢,含碳量为的钢为中碳钢,含碳量大于% 的钢为高碳钢。 10、三大固体工程材料是指高分子材料、复合材料和陶瓷材料。 二、选择题(每小题1分,共15分) ( b )1、拉伸试验时,试样拉断前能承受的最大拉应力称为材料的()。 A 屈服点 B 抗拉强度 C 弹性极限 D 刚度 (b)2、金属的()越好,其锻造性能就越好。 A 硬度 B 塑性 C 弹性 D 强度 ( c )3、根据金属铝的密度,它属于()。 A 贵金属 B 重金属 C 轻金属 D 稀有金属 ( d )4、位错是一种()。

(完整word版)金属学与热处理(哈尔滨工业大学_第二版)课后习题答案

第一章 1?作图表示出立方晶系(1 2 3)、(0 -1-2)、(4 2 1)等晶面和[-1 0 2]、 今有一晶面在X、Y、Z坐标轴上的截距分别是5个原子间距,2个原子间距和3个原子间距,求该晶面的晶面参数。 解:设X方向的截距为5a, Y方向的截距为2a,则Z方向截距为3c=3X2a/3=2a,取截距的倒数,分别为 1/5a,1/2a, 1/2a 化为最小简单整数分别为2,5,5 故该晶面的晶面指数为(2 5 5) 4体心立方晶格的晶格常数为a,试求出(1 0 0)、(1 1 0)、(1 1 1) 晶面的晶面间距,并指出面间距最大的晶面 3?某晶体的原子位于正方晶格的节点上,其晶格常数

解:(1 0 0)面间距为a/2, (1 1 0)面间距为"2a/2, (1 1 1)面间距为"3a/3 三个晶面晶面中面间距最大的晶面为(1 1 0) 7证明理想密排六方晶胞中的轴比c/a=1.633 证明:理想密排六方晶格配位数为12,即晶胞上底面中心原子 与其下面的3个位于晶胞内的原子相切,成正四面体,如图所示 贝卩OD=c/2,AB=BC=CA=CD=a 因厶ABC是等边三角形,所以有OC=2/3CE 由于(BC)2=(CE)2+(BE)2 有(CD)2=(OC)2+(1/2C)2,即 I /T J (CU)(c)2- ' 3 2 因此c/a=V8/3=1.633 8?试证明面心立方晶格的八面体间隙半径为r=0.414R 解:面心立方八面体间隙半径r=a/2-v2a/4=0.146a

面心立方原子半径R二辺a/4,贝卩a=4R/\2,代入上式有 R=0.146X4R/ V2=0.414R 9. a )设有一刚球模型,球的直径不变,当由面心立方晶格转变为体心立方晶格时,试计算其体积膨胀。b)经X射线测定,在912C时丫-Fe的晶格常数为0.3633nm, a -Fe的晶格常数为0.2892nm,当由丫-Fe转化为a -Fe时,求其体积膨胀,并与a)比较,说明其差别的原因。 解:a)令面心立方晶格与体心立方晶格的体积及晶格常数分别 为V面、V踢与a面、a体,钢球的半径为r,由晶体结构可知,对于面心晶胞有 4r=辺a 面,a 面=2辺/2r, V 面二(a 面)3= (2辺r)3 对于体心晶胞有 4r= \3a 体,a 体=4v3/3r, V 体二(a 体)3= (4\3/3r)3 则由面心立方晶胞转变为体心立方晶胞的体积膨胀厶V为 △V=2X V体-V 面=2.01r3 B)按照晶格常数计算实际转变体积膨胀厶V实,有 △V实=2^ V体-V 面=2x(0.2892)3-(0.3633)3=0.000425nm3 实际体积膨胀小于理论体积膨胀的原因在于由丫-Fe转化为a -Fe时,Fe原子的半径发生了变化,原子半径减小了。 10. 已知铁和铜在室温下的晶格常数分别为0.286nm和0.3607nm,求

《金属学与热处理》试题库

《金属学与热处理》试题库 一、名词解释 1、铁素体、奥氏体、珠光体、马氏体、贝氏体、莱氏体 2、共晶转变、共析转变、包晶转变、包析转变 3、晶面族、晶向族 4、有限固溶体、无限固溶体 5、晶胞 6、二次渗碳体 7、回复、再结晶、二次再结晶 8、晶体结构、空间点阵 9、相、组织 10、伪共晶、离异共晶 11、临界变形度 12、淬透性、淬硬性 13、固溶体 14、均匀形核、非均匀形核 15、成分过冷 16、间隙固溶体 17、临界晶核 18、枝晶偏析 19、钢的退火,正火,淬火,回火 20、反应扩散 21、临界分切应力 22、调幅分解 23、二次硬化 24、上坡扩散 25、负温度梯度 26、正常价化合物 27、加聚反应 28、缩聚反应 四、简答 1、简述工程结构钢的强韧化方法。(20分)

2、简述Al-Cu二元合金的沉淀强化机制(20分) 3、为什么奥氏体不锈钢(18-8型不锈钢)在450℃~850℃保温时会产生晶间腐蚀?如何防止或减轻奥氏体不锈钢的晶间腐蚀? 4、为什么大多数铸造合金的成分都选择在共晶合金附近? 5、什么是交滑移?为什么只有螺位错可以发生交滑移而刃位错却不能? 6、根据溶质原子在点阵中的位置,举例说明固溶体相可分为几类?固溶体在材料中有何意义? 7、固溶体合金非平衡凝固时,有时会形成微观偏析,有时会形成宏观偏析,原因何在? 8、应变硬化在生产中有何意义?作为一种强化方法,它有什么局限性? 9、一种合金能够产生析出硬化的必要条件是什么? 10、比较说明不平衡共晶和离异共晶的特点。 11、枝晶偏析是怎么产生的?如何消除? 12、请简述影响扩散的主要因素有哪些。 13、请简述间隙固溶体、间隙相、间隙化合物的异同点? 14、临界晶核的物理意义是什么?形成临界晶核的充分条件是什么? 15、请简述二元合金结晶的基本条件有哪些。 16、为什么钢的渗碳温度一般要选择在γ-Fe相区中进行?若不在γ-Fe相区进行会有什么结果? 17、一个楔形板坯经冷轧后得到相同厚度的板材,再结晶退火后发现板材两端的抗拉强度不同,请解释这个现象。 18、冷轧纯铜板,如果要求保持较高强度,应进行何种热处理?若需要继续冷轧变薄时,又应进行何种热处理? 19、位错密度有哪几种表征方式? 20、淬透性与淬硬性的差别。 21、铁碳相图为例说明什么是包晶反应、共晶反应、共析反应。 22、马氏体相变的基本特征?(12分) 23、加工硬化的原因?(6分) 24、柏氏矢量的意义?(6分) 25、如何解释低碳钢中有上下屈服点和屈服平台这种不连续的现象?(8分) 26、已知916℃时,γ-Fe的点阵常数0.365nm,(011)晶面间距是多少?(5分) 27、画示意图说明包晶反应种类,写出转变反应式?(4分) 28、影响成分过冷的因素是什么?(9分) 29、单滑移、多滑移和交滑移的意义是什么?(9分) 30、简要说明纯金属中晶粒细度和材料强度的关系,并解释原因。(6分)

最全的金属学与热处理知识总结

钢的热处理总结 晶向指数[UVW],晶向族;晶面指数(hkl),晶面族{hkl};六方晶系晶向指数[uvw]→u=(2U-V)/3,v=(2V-U)/3,t=-(u+v),w=W→[uvtw] 1. 空间点阵和晶体点阵:为便于了解晶体中原子排列的规律性,通常将实体晶体结构简化为完整无缺的理想晶体。若将其中每个院子抽象为纯几何点,即可得到一个由无数几何点组成的规整的阵列,称为空间点阵,抽象出来的几何点称为阵点或结点。由此构成的空间排列,称为晶体点阵;与此相应,上述空间点阵称为晶格。 2. 热过冷:纯全属在凝固时,其理论凝固温度(T m)不变,当液态金属中的实际温度低于T m 时,就引起过冷,这种过冷称为热过冷。 3. 成分过冷:在固液界面前沿一定范围内的液相,其实际温度低于平衡结晶温度,出现了一个过冷区域,过冷度为平衡结晶温度与实际温度之差,这个过冷度是由于界面前沿液相中的成分差别引起的,称为成分过冷。成分过冷能否产生及程度取决于液固界面前沿液体中的溶质浓度分布和实际温度分布这两个因素。 4. 动态过冷度:当界面温度T i

6. 能量起伏:液态金属中处于热运动的原子能量有高有低,同一原子的能量也在随时间不停地变化,时高时低的现象。 7. 均匀形核:液相中各个区域出现新相晶核的几率都是相同的,是液态金属绝对纯净、无任何杂质,喝不喝型壁接触,只是依靠液态金属的能量变化,由晶胚直接生核的理想过程。临界半径 8. 非均匀形核:液态金属中总是存在一些微小的固相杂质点,并且液态金属在凝固时还要和型壁相接触,于是晶核就可以优先依附于这些现成的固体表面上形成,需要的过冷度较小。 临界半径 非均匀形核的临界球冠半径与均匀形核的临界半径是相等的。 晶核长大的微观结构:光滑界面和粗糙界面。 晶粒大小的控制:控制过冷度;变质处理;振动、搅动。 表面细晶区的形成:当液态金属浇入温度较低的铸型中时,型壁附近熔体由于受到强烈的激冷作用,产生很大的过冷度而大量非均质生核。这些晶核在过冷熔体中也以枝晶方式生长,由于其结晶潜热既可从型壁导出,也可向过冷熔体中散失,从而形成了无方向性的表面细等轴晶组织。 柱状晶区的形成:在结晶过程中由于模壁温度的升高,在结晶前沿形成适当的过冷度,使表面细晶粒区继续长大(也可能直接从型壁处长出),又由于固-液界面处单向的散热条件(垂直于界面方向),处在凝固界面前沿的晶粒在垂直于型壁的单向热流的作用下,以表面细等轴晶凝固层某些晶粒为基底,呈枝晶状单向延伸生长,那些主干取向与热流方向相平行的枝晶优先向内伸展并抑制相邻枝晶的生长,在淘汰取向不利的晶体过程中,发展成柱状晶组织。 中心等轴晶的形成:内部等轴晶区的形成是由于熔体内部晶核自由生长的结果。随着柱状晶的发展,熔体温度降到足够低,再加之金属中杂质等因素的作用,满足了形核时的过冷度要求,于是在整个液体中开始形核。同时由于散热失去了方向性,晶体在各个方向上的长大速度是相等的,因此长成了等轴晶。 10. 固溶体与金属化合物的区别:固溶体晶体结构与组成它的溶剂相同,而金属化合物的晶体结构与组成它的组元都不同,通常较复杂。固溶体相对来说塑韧性好,硬度较低,金属化合物硬而脆。 11. 影响置换固溶体溶解度的因素:原子尺寸因素;电负性因素;电子浓度因素;晶体结构因素。

金属学与热处理铸造合金期末考试题答案

本答案非标准答案,仅作参考,祝大家期末取的好成绩! 金属学与热处理铸造合金及其熔炼考试题纲 1.铁碳相图的二重性及其分析 从热力学观点上看,Fe-Fe3C相图只是介稳定的,Fe-C相图才是稳定的;从动力学观点看,在一定条件下,按Fe-Fe3C相图转变也是可能的,因此就出现了二重性。 分析:1)稳定平衡的共晶点C’的成分和温度与C点不同 2)稳定平衡的共析点S’的成分和温度与S点不同 2.稳定态和亚稳定态铁碳相图异同点 稳定平衡态的Fe-C相图中的共晶温度和共析温度都比介稳定平衡的高一点; 在共晶温度时,稳定平衡态的奥氏体的含碳量小于亚稳态平衡下奥氏体的含碳量。 3.用铁碳相图分析铸铁碳钢一二次结晶异同点 一次结晶:铁液降至液相线时,有初析石墨和初析奥氏体析出。温度继续下降,熔体中同时析出奥氏体和石墨,铸铁进入共晶凝固阶段。 当钢液温度降低至液相线时,有高温铁素体析出。温度下降至包晶温度时,发生包晶转变,生成奥氏体。温度继续下降,穿过L+γ区时,又有奥氏体自钢液中析出,此析出过程进行到固相线温度为止。 二次结晶:铸铁的固态相变即二次结晶。继续冷却,奥氏体中的含碳量沿E’S’线减小,以二次石墨的形式析出。当奥氏体冷却至共析温度以下,并达到一定的过冷度,就开始共析转变。两个固体相α与Fe3C相互协同地从第三个固体相长大(成对长大),形成珠光体。当温度下降至GS和PS线之间的区域是,有先共析铁素体α相析出。随着α相的析出,剩余奥氏体的含碳量上升。当温度达到共析转变温度时,发生共析转变,形成珠光体。结晶过程完了后,钢的组织基本上不在变化。 4.分析球状石墨形成过程 目前已基本肯定,球状石墨可以和奥氏体直接从熔体中析出。 在亚共晶或共晶成分的球墨铸铁中,首批小石墨在远高于平衡共晶转变温度就已成形,这是不平衡条件所造成的,但随着温度的下降,有的小石墨球会重新解体,而有的则能长大成球,随着这一温度的进行,又会出现新的小石墨球,说明石墨球的成核可在一定的温度范围内进行。 某些石墨球能在熔体中单独成长至一定尺寸,然后被奥氏体包围,而有的石墨球则很早的就被奥氏体包围,形成奥氏体外壳。总之,石墨球的长大包括;两个阶段,即:1)在熔体中直接析出核心并长大2)形成奥氏体外壳,在奥氏体外壳包围下成长。 5.灰铸铁的金相组织及其性能特点 灰铸铁的金相组织由金属基体和片状石墨所组成,还有少量非金属夹杂物。 特点:强度性能差;硬度特点,同一硬度时,抗拉强度有一个范围,同一强度时,硬度也有一定的范围;较低的缺口敏感性;良好的减震性;良好的减磨性。 6.流动性的概念及其影响因素

金属学与热处理期末复习

历年试题 材料成型与控制专业01级金属学与热处理试题 一. 名词解释(每小题2分,共20分): 1.晶体 2.正火 3.无限固溶体 4. 金属间化合物 5.晶界 6.相起伏 7.共晶转变 8.比重偏析 9.马氏体 10. 同素异构转变 二. 在同一个立方晶胞中画出以下晶面和晶向:(111)、(110)、(122)、[110]、[210]。(5分) 三. 晶粒大小对合金的常温力学性能有何影响?试分析其原因。(15分) 四.T8钢的过冷奥氏体等温冷却曲线如图所示,试分析以图中标明的几种冷却条件冷却之后各得到什么组织?对比这几种组织各具有什么样的力学性能特点.(10分) 五..(15分) 六.冷塑性变形后的金属,在重新加热时其组织结构和力学性能各有何变化?(15分) 七.简述T8钢的奥氏体化过程由哪几个阶段组成?分析其中奥氏体晶核长大机理。(10分) 八.具有网状渗碳体的T12钢要获得回火马氏体,应进行哪些热处理?试说明每种热处理的加热温度和冷却条件。(10分) 02级材料加工各专业金属学与热处理期末考试题B 一. 名词解释(每小题3分,共30分) 1.非自发形核 2.滑移 3.再结晶 4.间隙固溶体 5.铁素体 6.珠光体 7.本质晶粒度 8.淬火 9.各向异性 10.合金

二. 填空(每空1分,共15分) 1.一个体心立方晶胞中包含()个原子,一个面心立方晶胞中包含()个原子,一个密排六方晶胞中包含()个原子。 2. 纯铁在加热时,在912℃纯铁的晶格由()转变为(),在1394℃纯铁的晶格由()转变为()。 3.结晶过程是依靠两个密切联系的基本过程来实现的,这两个基本过程分别是()和()。 4.纯金属的最低再结晶温度和熔点的关系是()。 5.马氏体的显微组织形态主要有()、()两种。其中()的韧性比较好。 6.钢的淬透性越高,则其C曲线位置越靠(),说明临界冷却速度越()。 三. 选择(每题1分,共10分) 1.具有体心立方晶格的金属有() a)Cu b)α-Fe c)γ-Fe 2.具有面心立方晶胞的金属有()个滑移系。 a) 6 b)8 c)12 3.固溶体的晶体结构()。 a) 与溶剂相同 b)与溶质相同 c) 与溶质和溶剂都不相同 4. 铁碳两个元素可能形成的相有()。 a) 间隙固溶体 b)间隙化合物 c) 置换固溶体 5. 下列金属中塑性最好的是() a) α-Fe b)Al c) Mg 6.冷变形金属再结晶后,()。 a) 形成等轴晶,强度升高 b)形成柱状晶,强度升高 c) 形成等轴晶,塑性升高 7.与铁素体相比,珠光体的力学性能特点是()。

金属学与热处理课后习题答案第六章

第六章金属及合金的塑性变形和断裂 2)求出屈服载荷下的取向因子,作出取向因子和屈服应力的关系曲线,说明取向因子对屈服应力的影响。 答: 1)需临界临界分切应力的计算公式:τk=σs cosφcosλ,σs为屈服强度=屈服载荷/截面积 需要注意的是:在拉伸试验时,滑移面受大小相等,方向相反的一对轴向力的作用。当载荷与法线夹角φ为钝角时,则按φ的补角做余弦计算。 2)c osφcosλ称作取向因子,由表中σs和cosφcosλ的数值可以看出,随着取向因子的增大,屈服应力逐渐减小。cosφcosλ的最大值是φ、λ均为45度时,数值为0.5,此时σs为最小值,金属最易发生滑移,这种取向称为软取向。当外力与滑移面平行(φ=90°)或垂直(λ=90°)时,cosφcosλ为0,则无论τk数值如何,σs均为无穷大,表示晶体在此情况下根本无法滑移,这种取向称为硬取向。 6-2 画出铜晶体的一个晶胞,在晶胞上指出: 1)发生滑移的一个滑移面 2)在这一晶面上发生滑移的一个方向 3)滑移面上的原子密度与{001}等其他晶面相比有何差别 4)沿滑移方向的原子间距与其他方向有何差别。 答: 解答此题首先要知道铜在室温时的晶体结构是面心立方。 1)发生滑移的滑移面通常是晶体的密排面,也就是原子密度最大的晶面。在面心立方晶格中的密排面是{111}晶面。 2)发生滑移的滑移方向通常是晶体的密排方向,也就是原子密度最大的晶向,在{111}晶面中的密排方向<110>晶向。 3){111}晶面的原子密度为原子密度最大的晶面,其值为2.3/a2,{001}晶面的原子密度为1.5/a2 4)滑移方向通常是晶体的密排方向,也就是原子密度高于其他晶向,原子排列紧密,原子间距小于其他晶向,其值为1.414/a。 6-3 假定有一铜单晶体,其表面恰好平行于晶体的(001)晶面,若在[001]晶向

第九章-金属学与热处理-热处理工艺习题

第九章热处理工艺 (一)填空题 1. 淬火钢低温回火后的组织主要是;中温回火后的组织是;高温回火后的组织是,用于要求足够高的及高的的零件。 5.淬火钢低温回火后的组织是,其目的是使钢具有高的和;中温回火后的组织是,一般用于高的结构件;高温回火后的组织是,用于要求足够高的及高的的零件。 5 根据铁碳相图,碳钢进行完全退火的正常加热温度围是它仅用于钢。 6 钢球化退火的主要目的是,它主要适于钢。 7 钢的正常淬火加热温度围,对亚共析钢为;对共析和过共析钢则为℃。 8 把两个45钢的退火态小试样分别加热到Acl~Ac3之间和 Ac3以上温度快速水冷,所得组织前者为; 后者为。 9 把加热到Accm以上温度后缓冷下来的T10钢小试样重新 加热到Acl以下温度,然后快速水冷,所得到的组织为加。 10 淬火钢进行回火的目的是;回火温度越高,钢的强度与硬度越。 12.碳钢高温回火的温度一般为,回火组织为,高温回火主要适于类零件。 13.淬火钢在(250~400)℃回火后产生的脆性通常称为或或。 14 作为淬火介质,食盐水溶液(NaCl)浓度为 15.淬火应力主要包括和两种。 16.淬火时,钢件中的应力超过钢的强度时,便会引起钢件的变形;超过钢的强度时,钢件便会发生裂纹。

17.热应力的大小主要与冷却速度造成零件截面上的有关,冷却速度,截面温差,产生的热应力愈大。 19.为便利切削加工,不同钢材宜采用不同的热处理方法。 w(C)<0.5%的碳钢宜采用, w(C)超过共析成分的碳钢宜采用,w (C)=在0.5%至共析成分之间的碳钢宜采用。 20.常见淬火缺陷有、、和等。21.感应加热是利用原理,使工件表面产生而加热的—种加热方法。 25.目前生产中用得较多的可控气氛渗碳法有和两种。 (二)判断题 1.回火索氏体和过冷奥氏体分解时形成的索氏体,两者只是形成过程不同,但组织形态和性能则是相同的。 (×) 2.硬度试验操作既简便,又迅速,不需要制备专门试样,也不会破坏零件,根据测得的度值还能估计近似的强度值,因而是热处理工人最常用的一种机械性能试验方法。 (√) 5.当把亚共析钢加热到Ac1和Ac3之间的温度时,将获得由铁素体与奥氏体构成的两组织,在平衡条件下,其中奥氏体的w(C)总是大于钢的w(C)。(√) 7.表面淬火既能改变钢表面的化学成分,也能改善其心部的组织与性能。(×) 8.淬火理想的冷却速度应该是在奥氏体等温转变曲线(即C 曲线)的“鼻部”温度时要快冷, 以避免奥氏体分解,则其余温度不必快冷,以减少淬火应力引起的变形或开裂。(×) 9.高碳钢淬火时,将获得高硬度的马氏体,但由于奥氏体向马氏体转变的终止温度在0℃以下,故淬火后钢中保留有少量残余奥氏体。(×)

相关主题
文本预览
相关文档 最新文档