当前位置:文档之家› 电解电容寿命与纹波电流测试

电解电容寿命与纹波电流测试

电解电容寿命与纹波电流测试
电解电容寿命与纹波电流测试

电解电容寿命纹波电流测试

E-cap Lifetime Test

1. 工作原理/Working principle

★ 当U2为正半周并且数值大于电容两端电压Uc时,二极管D1和D3管导通,D2和D4管截止,电流一路流经负载电阻RL,另一路对电容C充电。当Uc>U2,导致D1和D3管反向偏置而截止,电容通过负载电阻RL放电,Uc按指数规律缓慢下降。

★ The diode D1&D3 work, D2&D4 cut off, the current flows through the load resistance RL in a loop and charge the capacitor C up when U2 in the positive half circuit and its value exceeding the voltage Uc which is parallel connected in the two terminals of capacitor. When Uc exceeds U2, and causes the diode D1&D3 cut off, the capacitor discharge through the load resistance RL and Uc decline slowly according to the principle of index function.

★ 当U2为负半周幅值变化到恰好大于Uc时,D2和D4因加正向电压变为导通状态,U2再次对C充电,Uc上升到U2的峰值后又开始下降;下降到一定数值时D2和D4变为截止,C对RL放电,Uc按指数规律下降;放电到一定数值时D1和D3变为导通,重复上述过程。

★ As the same reason , when U2 in the negative half circuit and the amplitude is even changed to exceed Uc ,the diode D2&D4 work due to the positive voltage and U2 charge capacitor C up again. Uc start to decline when it’s voltage rise to the peak value of U2 and to a certain value , the diode D2&D4 cut off , the capacitor C discharge to RL, Uc decline according to the principle of index function again. When the discharge to a certain value, the diode D1&D3 work again and the cycle repeats.

2.测试方法/Test Method

2.1 测试温升计算电容寿命/Life time of capacitor at testing temperature condition

计算寿命公式/Formula for calculating lifetime

△T= Kc*(Tc-Tx)

适用公司/ Corporation suited:Fcon 、KSC、TL、TEAPO、CapXon

说明/ Explanation:

Lo:is operating life of capacitance SPEC

To:is SPEC temperature of capacitor

Tx:is capacitor ambient operating temperature

Tc:is surface temperature of capacitor case

Kc:is coefficient from table below

Lx:useful life estimation

2.2 测试纹波电流计算电容寿命/Life time of capacitor at testing ripple current condition 计算寿命公式/ Formula for calculating lifetime

Lx=Lo*Kt*Kr (Kt=2^(To-Tx)/10 Kr=(5-△t)/5 △t=5*(Ix/Io)^2)

适用公司/ Corporation suited:HEC、 Jianghai

Lo:is operating life of capacitance SPEC

To:is SPEC temperature of capacitor

Tx:is capacitor ambient operating temperature

Ix:is actual value of ripple current

Io:is specified ripple current

Lx:useful life estimation

2.2.1直接测量电容纹波电流/Direct measure of E-cap ripple current

开关电路中电容纹波电流分析

C1为buck电容,其充电时间受到低频交流输入影响,而放电时间则是受到开关管Q1的高频影响。即A 点受到低频交流输入影响,频率为交流频率的2倍,100Hz左右,故A点处所测试出电流为电容C1的低频纹波电流(IL);B点受到高频开关Q1的影响,频率一般为100KHz,故B点所测试出的电流为电容C1的高频纹波电流(IH)。

C1 is the buck capacitor, its charge time lies on the low frequency Vac input, and the discharge time influenced by the high frequency of switching MOSFET Q1. The frequency of position A, lying on the Vac input, is doubled, about 100Hz. And the current flowed through just is the low frequency current of C1; similarly, the frequency of position B, lying on the Q1, is about 100 KHz, and the current is high frequency.

目前我司对电容纹波计算方法定义为/The test method defined in our company at present is:

I L: Low frequency operating ripple current I L(low Freq) (A)

I H: High frequency operating ripple current I H(low Freq) (A)

F1: Coefficient for low frequency compensation

F : Coefficient for high frequency compensation

T : Coefficient for temperature compensation

Lx: Actual current

2.2.2利用低通和高通滤波电路测量纹波电流/Measurement via low pass or high pass filter

对于输入大容量的电容,有低频(100HZ)和高频(开关频率,如100KHZ)两种电流流过,电流的测量必须串一个电流检测电阻去获得,而且低频纹波电流和高频纹波电流应分别测量。

For bulk capacitor, both low frequency (100HZ) and high frequency (switching frequency, say 100 KHz) current are flowing. The current shall be measured with a current sense resistor. As the low and high frequency ripple shall be measured separately.

低通滤波电路高通滤波电路

低通滤波电路的带宽为0~wc(wc=1/RC),高频滤波电路带宽则为>wc。

The bandwidth of low pass filter is 0~wc(wc=1/RC), and >wc in high pass filter.

★在检测电阻上并接一个RC(1k5、0.1uF)电路,(如下图所示)用有效值表测量0.1uF两端的有效电压,即可得低频纹波电流值,此时高频成分已被滤除。

Add an RC (1K5, 0.1uF) across the sense resistor, measure rms voltage across 0.1uF; this will filter out the high frequency, leaving the 100Hz ripple current.

低频纹波电流测试图

★在检测电阻上并接一个RC(0.1uF、1K5)电路,(如下图所示),用有效值表测1K5电阻两端的有效值电压,根据I=U/R即可获得高频纹波电流值,此时低频成分已被滤除。

Add a CR (0.1uF, 1K5) across the sense resistor, measure rms voltage across 1K5; this will filter out the low frequency, leaving the switching frequency ripple current. Calculate with I =U/R. (Note: R is 0.1 ohm, not 1K5)

高频纹波电流测试图

铝电解电容的耐压测试方法

电解电容器的耐压测试方法 电解电容器耐压测试及应用 电容的耐压,表示电容在一定条件下连续使用所能承受的电压。如果加在电容上的工作电压超过额定电压,电容内部的绝缘介质就有可能被击穿,造成极片间短路或严重漏电。因此,电容的工作电压不能大于其额定耐压,以保证电路可靠工作。 对于电解电容器,漏电流是性能指标中重要的一项。电解电容的漏电流与电压的关系密切,漏电流随工作电压的增高而增大。当工作电压接近阳极的赋能电压时,漏电流会急剧上升。通过测试电解电容的漏电电流,可以推算出它的极限耐压和额定耐压,对于电路中电容耐压的取值,有直接的参考意义。 根据这个原理,笔者设计并制作了~款电容耐压测试仪,其线路简单、成本低廉、制作容易,较好地解决了业余条件下电容耐压测试的问题。 变压器T1和T2型号相同,背靠背对接,提供高低压两组电源,并起到隔离作用。低压的经整流滤波后,由R1、DWl、Q1、Ral~Ral 1组成电流可调的恒流源。高压的经整流滤波后由Rbl~RblO、DW2分压,Q2输出可调的直流电压。使用时选择合适的电压Uc和电流Jc,将被测电容接到Cxa、Cxb两点上,此时会看到电压表指针缓慢偏转,达到一定的位置后静止,指针所指的电压即为该电容在漏电电流为lc时所承受的耐压。 波段开关K3、K4(各单挡11位)分别是测试电压和电流(即漏电流)选择开关,其测试量程如表1所示。表2为测试电路中的元件清单。 一、测试电路的使用方法 1.将测试电压调到比电容额定电压高一些的挡位。如测试35V的申容。可将挡位放到64V,测试50v的电容,可将挡位放到64M或96V.挡位高一些对测试结果影响不大,只是挡位越高,三极管Q1的功耗相应会大一些。 2.选择合适的测试电流。测试电流应根据电容容量来选择,容量越大测试电流也越大。对于4700μF以上的电容,可选择大于10mA的测试电流;对于1000~4700μF的电,容,可选择5mA左右的测试电流:对于10μF以下的电容,可选择0.2~1mA的测试电流。 3.红色鳄鱼夹接电容正极,黑色鳄鱼夹接电容负极。接好后看到电压表指针先匀速缓慢偏转。正常情况下偏转位置应超过额定电压,当达到某一值时其指针偏转变慢,并且越来越慢,最终静止下来,此时电容的漏电流等于Q1集电极的恒流电流,电压表所指示的电压,为此电容在漏电电流为Ic时所承受的耐压,可粗略认为是该电容的极限耐压。 4.测试完毕后将开关K2闭合,待电容放电后取下。 表3是利用附图的测试电路测量的部分电解电容器的产品实例。 二、测试经验总结 1.电容容量越大,测试电流(漏电流)也应相应变大。 国产的铝电解电容器,在额定电压6.3~450V,标称容量10~680μF时,漏电流可按下列公式计算:I≤(KxCxU)/1000公式中:I为漏电流(mA);K为系数(20℃±5℃时,K=O.03);U为额定工作电压(V);C为标称容量(μF); 2.由于电解电容器只能单向工作,如将电解电容正负端接反测试,在5mA电流下测试其电压会极低,大约只有4V 左右。 3.长期不用的电解电容器,由于氧化膜的分解,容量、耐压都有一定的衰减,在第一次使用时,应先加低压(1/2额定耐压)老化一段时间(等效电解电容器的赋能)。 4.同样的容量和耐压的电解电容器,其体积较大、分量较重的一般耐压性能更好些;同样的容量和耐压的电解电容器,其相同的测试电流,电压指针偏转快的,漏电流较小。 5.正品电解电容极限耐压一般为其额定电压的120%左右。 6.当工作电压高于额定电压时,电容就较容易击穿。因此选用电解电容时,应使额定电压高于实际工作电压,并要预留一定的余量,以应付电压的波动。一般情况下,额定电压应高于实际工作电压的10%~20%,对于工作电压稳定性较差的电路,可酌情预留更大的余量。 7.使用本电路测试电解电容器,不会造成电容的损坏。 三、测试电路的改进 1.由于没有购买到合适的电压表头,DC250V以上挡不能指示。如果能够换成DC320v表头就比较理想。表头量程也不宜太大,否则会降低分辨率,用这样的表头去测试低耐压电容时,会造成读数偏差太大。 2.为了取得更准确的测试电压,可将Rbl~Rbl0分压电阻换成相应稳压值的稳压管(加限流电阻)或多圈精密可调电阻。 3.V1若换成数字式电压表,电压读数将更加直观、精确。不过需另外加装一组DC5v浮动电源。

电解电容寿命分析

电解电容寿命分析: 以下均为简要说明,如有不同看法,请直接点评,同时也为众多LED电源制造商找到一个长寿命的理由。哪些地方不对,请多指教! 我们说一个电解的额定寿命多少小时,都是在其额定参数相同的工作环境下的实际寿命。同时也是设计寿命。 主要影响电解电容寿命的因素有以下几点:环境温度、电压、纹波电流、频率。 1、频率,首先请断定,使用的电解电容为高频电解电容。保证在频率一项不影响您电源的实际工作频率。 2、纹波电流:这个参数在电解规格书里可以查到额定的纹波电流,按照电源本身的纹波电流来选用合适的电解。 以上2项要考虑参数的余量,一般按照1.5倍计算足以。 下面是影响寿命的主要参数 3、环境温度:按照目前最普遍的电容寿命估算方法,实际工作温度比电容额定温度低10度,寿命增加1倍的理论。 额定温度105度,而实测温度为65度105-65=40度也就增加4倍。我们选用额定1万小时的电解电容,即95度时2万小时,85度时4万小时,75度时 8万小时,65度时16万小时,这16万小时暂时先记在这里。 4、工作电压:我们选用的电解额定为63V,实际工作37.2V,我们可以肯定寿命比额定要长,至于长了多少,我们先不管。 以上参数均为我公司的电解选用原则。 再分析一下电解电容的性能衰减特性。 我们说的一个电解电容的寿命结束了,其实并不是所有功能全部失效,而是开始衰减,直到满足不了电解在电路中所起到的作用。那么我们就要看电解在实际电路中所起到的作用,我先说2种用途,1是在PFC电路中,一个是在电源输出端做滤波使用,当电解性能衰减时,PF值会降低,但是即使降低到0.5(不加PFC电路),电源也是一样在工作,输出电流和电压丝毫不会受到影响。而做在输出端作为处理纹波的情况也是一样,只是输出纹波不断增大而已,而这个纹波对LED的确有很大影响,但是绝对不会立刻使LED失效。 所以,综上说述,我们做电源的要做到以下2点: 1、选用正品知名品牌的电解电容 2、设计电路时,充分考虑实际工作参数与电解参数的余量(转载)

电解电容器测试方法详解

电解电容器测试方法详解 1目的 为了规范电解电容器来料检验及抽样计划,并促进来料质量的提高,特制定该检验规范。 2适用范围 适用于本公司IQC对电解电容器来料的检验。 3准备设备、工具: 所需工具及其规格型号如表一所示: 表一(工具规格型号) 品名规格/型号数量品名规格/型号数量 调压器0V~450V/三相1台电流表UNI-T 1台 万用表FLUKE-117C 1台游标卡尺mm/inch 1把电桥测试仪Zen tech 1台双综示波器LM620C型1台高低温交变湿 1台温度计1支热试验箱 4外观物理检测 4.1首先需检查待测电容是否有正规的《产品规格说明书》,其中需包括产品名称、规格型号、安装尺寸、工艺要求、技术参数以及供应商名称、地址及其联系方式,以确保此批次产品是由正规厂商提供。电容器上的标识应包括:商标、工作电压、标准静电容量、极性、工作温度范围。4.2参考《产品规格说明书》的工艺参数,观察电容的外观、颜色、及其材质等参数是否与其所标注的工艺指标一致。 4.3用游标卡尺对电容的安装尺寸进行确认,确保电容的直径、高度以及引出端的直径与间距等参数在产品工艺的误差范围之内,且外观尺寸要符合本公司选用要求。 4.4 检查电容的外观,确保其外观整洁、无明显的变形、破损、裂纹、花斑、污浊、锈蚀等不良状况;且其标识清晰牢固、正确完整。 4.5检查其引出端子,保证其端子端正、无氧化、无锈蚀、无影响其导电性能等状况,且引出端子无扭曲、变形和影响插拔的机械损伤。 4.6 检查电解电容标注的生产日期不应超过半年,并作好记录。 5容量与损耗测试 5.1用电桥测试其实际容量与标称容量是否一致(电解电容一般会有±20%的误差范围),其损耗角正切值tanθ(即D值)大小是否符合国家标准(电解电容器tanθ≤0.25)。 5.2对Zen tech电桥测试仪的使用方法:正确连接电源以后,按“POWER”键开启测试仪的工作电压;按“LCR”键选择测试类型(L:电感,C:电容,R:电阻)。

变频器直流母线电容纹波电流计算方法

变频器直流母线电容纹波电流计算方法 各类电动机是我们发电量的主要消耗设备,而变频器作为电动机的驱动装置成为当前“节能减排”的主力设备之一。它一方面可以起到节约能源消耗的作用,另一方面也可以实现对原有生产或处理工艺过程的优化。目前应用最多也最广的是交-直-交电压型变频器,即中间存在直流储能滤波环节,一般采用大容量电解电容器实现此功能。 使用电解电容器的作用主要有以下几个: (1)补偿以电源频率两倍或六倍变化的逆变器所需功率与整流桥输出功率之差; (2)提供逆变器开关频率的输入电流; (3)减小开关频率的电流谐波进入电网; (4)吸收急停状态时所有功率开关器件关断下的电机去磁能量; (5)提供瞬时峰值功率; (6)保护逆变器免受电网瞬时峰值冲击。 电解电容器设计选型所需要考虑的主要因素有以下几个:电容器的电压、电容器量、电容器的纹波电流、电容器的温升与散热、电容器的寿命等等。这些因素对变频器满足要求的平均无故障时间(mtbf)十分重要。然而电解电容器的纹波电流的计算如何能明确给出计算依据,这是本文所要解决的问题。 直流母线电容纹波电流的计算 纹波电流指的是流过电解电容器的交流电流,它使得电解电容器发热。纹波电流额定值的确定方法是在额定工作温度下规定一个允许的温升值,在此条件下电容器符合规定的使用寿命要求。当工作温度小于额定温度时,额定纹波电流可以加大。但过大的纹波电流会大大缩短电容器的耐久性,当纹波电流超过额定值,纹波电流所引起的内部发热每升高5℃,电容器器的寿命将减少50%。因此当要求电容器器具有长寿命性能时,控制与降低纹波电流尤其重要。 但在实际设计过程中,电解电容器的纹波电流由于受变频器输入输出各物理量变化以及控制方式等的影响很难直接计算得到,一般多采用根据实际经验估算大小,如每μf电容器要求20ma纹波电流之类的经验值,或者通过计算机仿真来估算[3~6]。 本文根据对变频器电路拓扑与开关调制方式的分析,并借鉴已有文献资料,归纳出一个直接的计算电解电容器纹波电流的方法,供大家参考。

电源纹波的产生、危害、测量和抑制

1 引言 对于电子产品来说唯一不可缺少的是电源,但是它除了提供能量外,也带来了纹波、噪声等影响电子产品正常工作的影响。纹波电压对高放、本振、混频、滤波、检波、A/D变换等电路都会产生影响,在设计控制设备、电子仪器、电视、摄像机等电子产品时都要想办法尽量减小纹波。为此就要了解纹波、知道它是如何产生的、如何测量以及抑制方法。 2 电源纹波 纹波是附着于直流电平之上的包含周期性与随机性成分的杂波信号,指在额定输出电压、电流的情况下,输出电压中的交流电压的峰值。狭义上的纹波电压,是指输出直流电压中含有的工频交流成分。 纹波用示波器可以看到,在直流电压上下轻微波动,就像水平面上波动的水纹一样,所以被称为纹波(见图1)。 图1 RIGOL示波器DS1302观察的纹波信号波形 2.1 电源纹波产生 我们通常在产品中用的电源主要有线性电源和开关电源二大类,输出的直流电压是一个固定值,由交流电压经整流、滤波、稳压后得到。由于滤波不干净,直流电压中含有交流成分,这就产生了纹波。纹波是一种复杂的杂波信号,它是围绕输出直流电压上下来回波动的周期性信号,但周期和振幅不是定值,随时间而变,不同电源的纹波波形不一样。 产生电源纹波的因素有许多,即使你用电池供电也会因负载的波动而产生波纹。 线性电源

由于我国供电频率是50Hz,所以它的纹波主要来自工频50Hz变压器,纹波电压的频率常常是50nHz,n取自然数,大小取决于整流电路的类型。对于半波整流,是1;对于全波整流,是2;对于三相全波整流,是6,即300Hz。所以这种电源的输出端纹波主要是50HZ 或它的整数倍,幅值小,较易滤除,通常纹波可做到几mV。 如假定整流桥输出负载电流IL,负载电压VL,整流桥输人交流电压幅值Vm及其输人交流电压频率f,则其输出的纹波电压由表1各式计算。 表1 整流纹波电压 采用功率匹配法或等效电流源法计算纹波电压,一般表示为: △U=ILsin2wt/(2wC) (1) 从式(1)中可以看出,纹波频率为输人频率的两倍,其幅值正比于变换器的输出电流,反比于输人电压频率和平滑电容的大小。 开关电源 产生的纹波比较复杂、很难滤除且幅值较大。主要来源于五个方面:除低频纹波外还有高频纹波、共模噪声、开关器件产生的噪声和调节控制环路引起的纹波噪声。一般开关电源的纹波比线性电源的纹波要大,频率要高。 ①高频纹波。高频纹波来源于开关变换电路。开关电源的开关管在导通和截止的时候,都会有一个上升和下降时间,这时候在电路中就会出现一个与开关上升与下降时间的频率相同或者奇数倍频的噪声,一般为几十MHz。同样二极管在反向恢复瞬间,其等效电路为电阻电容和电感的串联,会引起谐振,产生的噪声频率也为几十MHz。还有高频变压器的漏感也会产生高频干扰。这些噪声一般叫做高频纹波噪声,幅值通常要比纹波大得多。

铝电解电容的寿命

铝电解电容的寿命 电源产品中经常用到铝电解电容,他的寿命往往决定了整个产品的寿命。因此,了解如何计算铝电解电容的寿命很有必要。下面将我的一些心得整理出来,供大家参考。希望有助于提高国人的知识水平。说白了很简单,只不过很多人找不到相关的资料而已。同时也希望学校的教材中能够近早讲解相关知识。我尽量少翻译,因为我的语言能力及相关的专业术语还不行。仅供参考。 Chapter 1铝电解电容的特性 1.1 Circuit model (等效模型) The following circuit models the al uminium electrolytic capacitor’s normal operation as well as the over voltage and reverse voltage behavior. (此模型包含正常运行,过压,反压时的特性) C A C c R P ESR L D = Anode capacitance (阳极电容) = Cathode capacitance(阴极电容) = Parallel resistance, due to dielectric (并联电阻) = Series resistance, as a result of connections, paper, electrolyte, ect. 等效串联电阻= Winding inductance and connections 等效串联电感 = Over and reverse voltage 等效稳压管 The capacitance Ca and Cc are the capacitance of the capacitor and is frequency and temperature depended. (Ca and Cc,它的容量是频率及温度的函数) The resistance ESR is the equivalent series resistance which is frequency and temperature depended. It also increases with the rated voltage. (ESR是频率及温度的函数,随着额定电压的增加而增加) The inductance L is the equivalen t series inductance, and it’s independent for both frequency and temperature. It increases with terminal spacing. (L是频率及温度的函数) The resistance Rp is the equivalent parallel resistance and accounts for leakage current in the capacitor. It decreases with increasing the capacitance, temperature and voltage and it increases with time. (Rp的大小决定了漏电流的大小,随着容量温度电压的增加而降低,随着使用时间的延长而增加) The zener diode D models the over voltage and reverse voltage behavior. Application of over voltage on the order of 50 V beyond the cap acitor’s surge voltage rating causes high。(D模拟过压及加反向电压时特性)Leakage current and a constant voltage-operating mode quite like the reverse conduction of a zener diode. Applications of reverse voltage much beyond 1.5 V causes high leakage current quite like the forward conduction of a diode. Neither of these operating modes can be maintained for long because hydrogen gas is produced, and the pressure built up will cause failure. (加到电容两端的反向电压不能大于1.5V) 1.2 Capacitance (电容的容量) The rated capacitance is the nominal capacitance and it is specified at 120 Hz and a temperature of 25°C. Capacitance is a measure of the energy storage capability of a capacitor at a given voltage. (额定容量:标称电压,120Hz, 25°C时测量)。 The capacitance decreases under load conditions and increases under no load conditions over time. When

电源纹波的定义和检测方法分析

电源纹波的定义和检测方法分析 来源:| 时间:2010年02月03日 纹波:纹波是指在直流电压或电流中,叠加在直流稳定量上的交流分量。 纹波的表示方法:可以用有效值或峰值来表示,或者用绝对量、相对量来表示,单位通常为:mV 。例如:一个电源工作在稳压状态,其输出为12V5A,测得纹波的有效值为10mV,这10mV就是纹波的绝对量,而相对量即纹波系数=纹波电压/输出电压=10mv/12V=0.12%。 下面对电源纹波分量检测方法进行分析。 图1给出了一个不当使用示波器测量电源纹波的实例。在这个例子中出现了几个错误,首先是使用了接地线很长的示波器探针;其二是让由探针和接地线形成的回路靠近功率变压器和开关元件;最后是允许在示波器探针和输出电容之间形成额外的电感。其结果带来的问题是在测得的纹波波形中携带了拾取的高频成分。 在电源中有许多很容易耦合到探针中的高速的、大电压和电流信号波形,其中包括来自功率变压器的磁场耦合、来自开关节点的电场耦合、以及由变压器交绕(interwinding)电容产生的共模电流。 图1:不当的纹波测量得到糟糕的结果。 采用正确的测量技术可切实改善纹波测量的结果。首先,通常会规定纹波的带宽上限,以避免拾取超出纹波带宽上限的高频噪声,应该给用于测量的示波器设定合适的带宽上限。其次,可以通过摘掉探针的“帽子”来去掉接地长引线形成的天线。如图2所示,我们把一段短线绕在探针接地引线周围,并使之与电源地相连接。这样做附带的好处是缩短暴露在电源附近高强度电磁辐射中的探针长度,从而进一步减少高频拾取。 最后,在隔离电源中,真正的共模电流是由在探针接地引线中流动的电流产生的,这就使得在电源地和示波器地之间产生电压降,表现为纹波。要抑制这个纹波,需要在电源设计中仔细考虑共模滤波问题。 此外,把把示波器引线绕在铁芯上可减小这个电流,因为这样会形成一个不影响差分电压测量、但可降低由共模电流产生的测量误差的共模电感。图2显示了采用改进测量技术对同一电路得到的纹波电压测量结果。可以看到,高频尖刺已几乎消除。

如何正确地测试纹波电压

如何正确地测试纹波电压 纹波电压在产品中是一项很重要的参数,过大的纹波电压不仅会直接影响音频电路的信噪比,甚至引起电路的误动作。在实际做设计调试和测试时,我们发现很多同事并不知道如何去测试纹波,因此收集了一些网上资料结合实际经验总结出这篇文章,借此抛砖引玉。 由于目前产品中大量应用开关电源和DC-DC等电路进行供电和电压转化,此类设计由于应用了开关技术使供电的效率有了本质上的提高,大大减小了功率耗散;但同时也增加了输出的交流成分,即我们所说的纹波和噪声(Ripple & Noise)。 一、 纹波的概念: 纹波就是一个直流电压中的交流成分。直流电压本来应该是一个固定的值, 但是很多时候它是通过交流电压整流、滤波后得来的,由于滤波不干净,就会有剩余的交流成分,即便如此,就是用电池供电也因负载的波动而产生波纹。事实上,即便是最好的基准电压源器件,其输出电压也是有波纹的。 纹波应是AC和开关频率的整倍数,用傅里叶级数展开应该是mf越高,Am越小。杂噪应该是不规则的离散波,是由非线性器件对I、V互相反复调制,在负载、输入的AC变化、温度变化都使杂噪变化,其频带可能有数十MHz到1GHz,主要以辐射的形式存在。杂噪是一种常用的通俗说法。其共性就是具有随机性。但必须注意,噪声的分布一般呈现高斯分布,即白噪声,而纹波则不是。 输出纹波和输出电流和输出电压都有关系,主要是与电流的关系。 通常输出纹波近似等于输出电流乘上输出滤波电容的ESR值。所以并不是滤波电容的容量越大输出纹波越小,而应该是滤波电容的ESR值越小输出纹波越小。 纹波是出现在输出端子间的一种与输入频率和开关频率同步的成分,用峰-峰(peak to peak)值表示,一般在输出电压的0.5%以下;噪声是出现在输出端子间的纹波以外的一种高频成分,也用峰-峰(peak to peak)值表示,一般在输出电压的1%左右。纹波噪声是二者的合成,用峰-峰(peak to peak)值表示,一般在输出电压的2%以下。 通常我们所说的纹波噪声是对电压信号而言。 二、 纹波噪声的成分分析: 测试纹波噪声,我们需要先对纹波噪声信号的成分进行区分。 如上图所示,纹波噪声可分为如下四个部分:

电解电容漏电流测试仪安全管理规定

编号:SY-AQ-05814 ( 安全管理) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 电解电容漏电流测试仪安全管 理规定 Safety management regulations of electrolytic capacitor leakage current tester

电解电容漏电流测试仪安全管理规 定 导语:进行安全管理的目的是预防、消灭事故,防止或消除事故伤害,保护劳动者的安全与健康。在安全管理的四项主要内容中,虽然都是为了达到安全管理的目的,但是对生产因素状态的控制,与安全管理目的关系更直接,显得更为突出。 一、目的:为指导和规范电解电容漏电流测试仪的安全使用。 二、范围:仅适用于本公司电解电容漏电流测试仪。 三、安全操作使用规程 1.在对仪器进行操作前,应首先详细阅读说明书,或在对本仪器熟悉的人员指导下进行操作,以免产生不必要的疑问。 2.仪器使用必须符合额定使用条件:环境温度:0-40℃;相对湿度20-80%PH;大气压强:86-106Kpa。 3.仪器应在技术指标规定的环境中工作,仪器特别是联接测试件的测试导线应远离强电磁场,以免对测量产生干扰。 4.应选择合适的电压量程档,在测量过程中不允许调节测量电压。 5.被测电容器的正负数一定要正确联接。

6.对食品通电检查和校准时,注意调整管BUS13A(BU508A)的外壳是带电的,高压大电容两极上也是带电的,应注意以防触电。 7.仪器切断电源后,高压在电容上的高电压需几分钟放完。 8.对仪器进行更换元件时,注意将电源插头拔下,以防止触及电源开关而触电。 9.仪器在接通电源之前,应将电压调节旋钮向左旋至最小,工作选择按钮置于放电位置,否则电压输出接线柱与外壳间有极化电源输出,会使连接测试夹具时触电。 10.在使用仪器过程中,转换电压量开关时,注意要将电压调节旋钮左旋至最小,以免电压受冲击而损坏。 11.严禁各类腐蚀性物品接触设备,关机后必须切断电源。 这里填写您的公司名字 Fill In Your Business Name Here

电解电容纹波及寿命测试方法

Electrolytic Capacitor Ripple Current Derating Test Method and Life Time Evaluation From:郭雪松 Date:Oct-27-04 一.SPEC 1.电解电容零件工程规格书中之Standard Rating表格,其中规定了不同规格的电解电容Rated Ripple Current值,例如:Sharp机种PWPC C904(滤波电容) 67L215L-820-15N (CNN公司KXG Series) 2.此电容用于电源输入端滤波,因此采用120Hz时的Rated Ripple Current规格715mA。 3.而用于评估电解电容Ripple Current之Spec要依据以下公式: SPEC=Spec(component)×频率系数(FM)×温度系数(TM)注:FM/TM取值方法见附表 4.OTPV 评估电解电容Ripple Current的Derating规格为85%,因此测试值

线电流的有效值(rms),测试时要调整输入电压值(90V~264V)达到纹波电流最大。见图示: Irms 三.附表(FM&TM取值方法):NCC公司产品为例 1.Multiplying Factors on KMG Series(radial lead type) Frequency Multipliers Temperature Multipliers 2. Multiplying Factors on KY Series Frequency Multipliers

开关电源的纹波和噪声测试方法

开关电源的纹波和噪声(图) 开关电源(包括AC/DC转换器、DC/DC转换器、AC/DC模块和DC/DC模块)与线性电源相比较,最突出的优点是转换效率高,一般可达80%~85%,高的可达90%~97%;其次,开关电源采用高频变压器替代了笨重的工频变压器,不仅重量减轻,体积也减小了,因此应用范围越来越广。但开关电源的缺点是由于其开关管工作于高频开关状态,输出的纹波和噪声电压较大,一般为输出电压的1%左右(低的为输出电压的0.5%左右),最好产品的纹波和噪声电压也有几十mV;而线性电源的调整管工作于线性状态,无纹波电压,输出的噪声电压也较小,其单位是μV。 本文简单地介绍开关电源产生纹波和噪声的原因和测量方法、测量装置、测量标准及减小纹波和噪声的措施。 纹波和噪声产生的原因 开关电源输出的不是纯正的直流电压,里面有些交流成分,这就是纹波和噪声造成的。纹波是输出直流电压的波动,与开关电源的开关动作有关。每一个开、关过程,电能从输入端被“泵到”输出端,形成一个充电和放电的过程,从而造成输出电压的波动,波动频率与开关的频率相同。纹波电压是纹波的波峰与波谷之间的峰峰值,其大小与开关电源的输入电容和输出电容的容量及品质有关。 噪声的产生原因有两种,一种是开关电源自身产生的;另一种是外界电磁场的干扰(EMI),它能通过辐射进入开关电源或者通过电源线输入开关电源。 开关电源自身产生的噪声是一种高频的脉冲串,由发生在开关导通与截止瞬间产生的尖脉冲所造成,也称为开关噪声。噪声脉冲串的频率比开关频率高得多,噪声电压是其峰峰值。噪声电压的振幅很大程度上与开关电源的拓扑、电路中的寄生状态及PCB的设计有关。 利用示波器可以看到纹波和噪声的波形,如图1所示。纹波的频率与开关管频率相同,而噪声的频率是开关管的两倍。纹波电压的峰峰值和噪声电压的峰峰值之和就是纹波和噪声电压,其单位是mVp-p。 图1 纹波和噪声的波形 纹波和噪声的测量方法 纹波和噪声电压是开关电源的主要性能参数之一,因此如何精准测量是一个十分重要问题。目前测量纹波和噪声

电解电容寿命

1 影响电解电容寿命的因素 电解电容的寿命取决于其内部温度。因此,电解电容的设计和应用条件都会影响到电解电容的寿命。从设计角度,电解电容的设计方法、材料、加工工艺决定了电容的寿命和稳定性。而对应用者来讲,使用电压、纹波电流、开关频率、安装形式、散热方式等都影响电解电容的寿命。 2 电解电容的非正常失效 一些因素会引起电解电容失效,如极低的温度,电容温升(焊接温度,环境温度,交流纹波),过高的电压,瞬时电压,甚高频或反偏压;其中温升是对电解电容工作寿命(Lop)影响最大的因素。 电容的导电能力由电解液的电离能力和粘度决定。当温度降低时,电解液粘度增加,因而离子移动性和导电能力降低。当电解液冷冻时,离子移动能力非常低以致非常高的电阻。相反,过高的热量将加速电解液蒸发,当电解液的量减少到一定极限时,电容寿命也就终止了。在高寒地区(一般-25℃以下)工作时,就需要进行加热,保证电解电容的正常工作温度。 电容器在过压状态下容易被击穿。电解电容的电压选择一般进行二级降额,降到额定值的80%使用较为合理。 3 寿命影响因素分析 除了非正常的失效,电解电容的寿命与温度有指数级的关系。因使用非固态电解液,电解电容的寿命还取决于电解液的蒸发速度,由此导致的电气性能降低。这些参数包括电容的容值,漏电流和等效串联电阻,影响电解电容寿命的几个直接因素:纹波电流(IRMS)和等效串联电阻值(ESR)、环境温度(Ta)、从热点传递到周围环境的总的热阻(Rth)。电容内部温度最高的点,叫热点温度(Th)。热点温度值是影响电容工作寿命的主要因素。而下列因素又决定了热点温度值实际应用中的外界温度(环境温度Ta), 从热点传递到周围环境的总的热阻(Rth)和由交流电流引起的能量损耗(PLOSS)。电容的内部温升与能量损耗成线形关系。 电容充放电时,电流在流过电阻时会引起能量损耗,电压的变化在通过电介质时也会引起能量损耗,再加上漏电流造成的能量损耗,所有的这些损耗导致的结果是电容内部温度升高。 电解液通过密封垫的蒸发决定了长寿命的电解电容工作时间。当电容的电解液蒸发到一定程度,电容将最终失效(这个结果会因内部温升而加速)。同时存放的时间越长,质量下降的比例越大。 电容寿命计算方法: Lx=L0(或者LR)*KT*KR1(或者KR2)*Kv Lx:电容预期寿命 L0/LR:电容加速寿命,可以查阅电容规格书.(如果资料提供在最高温度下的数据(如2000小时),则用L0,后面对应KR1;如果资料提供最高温度、施加可允许最大文波电流下的数据,则用LR,后面对应KR2) KT:环境温度影响系数(每升高10度,寿命降低一半) KT等于2的(T0-Tx)/10次方(公式不好编辑,这样写大家应该能明白) T0:电容最高工作温度(85或105) Tx:电容实际工作温度 KR1/KR2:纹波电流影响系数. KR1与L0对应,等于2的-T/5次方.T:纹波电流所引起的电容内部温升 KR2与LR对应,等于2的(Tm-T)/5次方,Tm:施加最大电容允许文波电流所引起的电

电解电容纹波的测试,计算及判定_ 应用报告

一、前言: 铝电解电容的工作状态及工作环境,是影响其寿命的主要因素。在众多因素中,又以环境温度的高低和 Ripple Current 纹波电流的大小对电容寿命的影响最大。所以在实际使用中,电解电容Ripple Current 有否超规格,电解电容工作温度有否超标准值,是影响电容失效爆浆的最主要原因,特别是在整机测试未对电解电容寿命进行估算计算的情况下,电解电容Ripple Current 的测试,计算及判定,尤为重要。 二、标准测试: 1、一次侧Bulk Cap.纹波电流 说明:一次侧Bulk Cap.纹波电流通常由基本频率(低频率)和高频(开关频率)电流构成,因此在计算时,要通过合成公式,利用频率系数计算出其在指定频率下的合成有效值。(如图1所示) R/C(Ripple Current) = Lowf(Low Freq.Current) +Hif(High Freq. Current) 一次侧Bulk Cap.是指:一次侧主电解电容;Lowf 是指:低频纹波电流有效值; Hif 是指:高频纹波电流有效值。 图(1) 2、二次侧Filter Cap.纹波电流 说明:二次侧Filer Cap.纹波电流通常由高频电流构成。 R/C(Ripple Current) = Hif(High Freq. Current) 二次侧Filter Cap.是指二次侧滤波电解电容。 3、温度 机种名称: 机种编号: 机种类别: 电路拓扑: 输出规格: 编写单位: 应用类别: 材料应用 受控日期: 201 年 月 日 应用编号: AR500XbcEedDFf P 应用描述: 电解电容纹波电流的测试,计算及判定

铝电解电容寿命计算公式

寿命计算式
改版
铝电容器 推定寿命计算式
http://www.chemi-con.co.jp
上海贵弥功贸易有限公司
1
CONFIDENTIAL(秘密的)

寿命计算式
寿命计算式 目录
? 寿命计算式
A) DC加载保证品 B) 纹波电流加载保证品 C) 螺丝端子型(额定电压350V以上) 螺丝端子型(额定电压 以上) D) 导电性高分子电容器
? 温度测定方法
A) 周围温度测定方法 B) 单元中心发热温度测定方法 1) 单元中心温度测定 2) 周围温度/电容器表面温度测定 3) 纹波电流测定 >>> 发热温度计算
注意事项
纹波电流频率修正系数与温度修正系数使用方法
CONFIDENTIAL(秘密的)
2

寿命计算式
推定寿命计算式
A) DC加载保证品 ) 加载保 品
Lx L = Lo × 2
Tx ? To 10
×2
? ?T 5
Lx (hrs):推定寿命 Lo (hrs):保证寿命 Tx (℃):最大可能周围温度 To (℃):实际使用周围温度 ( ) 纹波电流发热温度 ⊿T (℃):纹波电流发热温度 <应用系列> 贴片型:全般 引钱型:SRM/SRE/KRE/SRA/KMA/SRG/KRG/SMQ/SMG/ 引钱型 SRM/SRE/KRE/SRA/KMA/SRG/KRG/SMQ/SMG/ SME-BP/KME-BP/LLA
CONFIDENTIAL(秘密的)
3

纹波测试方法

纹波测试的注意事项 纹波是叠加在直流信号上的交流干扰信号,是电源测试中的一个很重要的标准。尤其是作特殊用途的电源,如激光器电源,纹波则是其致命要害之一。所以,电源纹波的测试就显得极为重要。 电源纹波的测量方法大致分为两种:一种是电压信号测量法;另一钟是电流信号测量法。一般对于恒压源或纹波性能要求不大的恒流源,都可以用电压信号测量法。而对于纹波性能要求高的恒流源则最好用电流信号测量法。 1 )、电压信号测量纹波是指,用示波器测量叠加在直流电压信号上的交流纹波电压信号。对于恒压源,测试可以直接用电压探头测量输出到负载上的电压信号。 2 )、对于恒流源的测试,则一般是通过使用电压探头,测量采样电阻两端的电压波形。整个测试过程中,示波器的设置是能否采样到真实信号的关键。 电源纹波噪声测试方法 我们今天的电子电路(比如手机、服务器等领域)的切换速度、信号摆率比以前更高,同时芯片的封装和信号摆幅却越来越小,对噪声更加敏感。因此,今天的电路设计者们比以前会更关心电源噪声的影响。实时示波器是用来进行电源噪声测量的一种常用工具,但是如果使用方法不对可能会带来完全错误的测量结果,笔者在和用户交流过程中发现很多用户的测试方法不尽正确,所以把电源纹波噪声测试中需要注意的一些问题做一下总结,供大家参考。 由于电源噪声带宽很宽,所以很多人会选择示波器做电源噪声测量。但是不能忽略的是,实时宽带数字示波器以及其探头都有其固有的噪声。如果要测量的噪声与示波器和探头的噪声在相同数量级,那么要进行精确测量将是非常困难的一件事情。 示波器的主要噪声来源于2个方面:示波器本身的噪声和探头的噪声。所有的实时示波器都实用衰减器来调整垂直量程。设置衰减以后示波器本身的噪声会被放大。比如,当不用衰减器时,示波器的基本量程是5mV/ 格,假设此时示波器此时的底噪声是500uVRMS。当把量程改成50mV/ 格时,示

电解电容漏电流测试仪安全操作规程

电解电容漏电流测试仪操作规程 一、测试前注意事项 在接通电源线前应关掉电源开关,并将调压旋钮逆时针方向调至最低端。如果220V电源的地线接地性能不良,应将仪器前面板的接地柱妥善接地。 二、操作步骤 1.接通电源,调节测试电压。通过电压调节旋钮将电压调至所需电压。 2.选择合适的漏电流值,根据产品的要求,通过电流预置的BCD 拨盘将漏电流设定值输入仪器,仪器将自动选择合适的量程。 3.选择充放电时间,根据电容量大小将充电时间放电时间置于适当的值上,通过二位BCD拨盘设置。 4.开机后充电状态灯闪烁,是等待充电的标志,当仪器选择自动测试状态(即自动开关左边的状态灯被点亮)此时接上电容(注意电容极性不可接反),仪器将自动转入充 电状态。充电结束后,自动转入测试状态。显示第一次的漏电流采样数据,仪器自动设置锁定有效,2秒钟后自动转入放电状态,放电定时结束后,仪器自动转入等待充电状态。自动测试一个循环结束。 5.如果仪器处于非自动状态,锁定处于有效状态。在等待充电时,接上电容,仪器自动转入充电状态,充电结束,自动转入测试状态,其显示的是测试状态第一次采样的漏电

流数据,并一直处于测试状态。 6.如果仪器处于非自动状态,锁定处于无效时,在等待充电时,接上电容,仪器自动转入充电状态,充电结束,自动转入测试状态,仪器将循环采集漏电流数据并显示出来。 三、保养维护 1.严禁将带电的电容接入仪器,以防损坏电流检测部份。 2.仪器在使用过程中,应定期对工作特性进行检验和校准。正常情况下,本仪器半年进行一次检定。 四、安全注意事项 1.仪器在通电后主板上两只调整管(BU508A)上始终带有较高的电压或者仪器切断电源后,高压滤波电容器需3分钟以上才能将电荷放尽,只要电容上带电,调整管上也带电。因此在实际测试操作时应该戴上绝缘手套,以防不注意在测试过程中触摸到带有较高电压的测试夹具。

纹波的测试

纹波是叠加在直流信号上的交流干扰信号,是电源测试中的一个很重要的标准。尤其是作特殊用途的电源,如激光器电源,纹波则是其致命要害之一。所以,电源纹波的测试就显得极为重要。 电源纹波的测量方法大致分为两种:一种是电压信号测量法;另一钟是电流信号测量法。 一般对于恒压源或纹波性能要求不大的恒流源,都可以用电压信号测量法。而对于纹波性能要求高的恒流源则最好用电流信号测量法。 电压信号测量纹波是指,用示波器测量叠加在直流电压信号上的交流纹波电压信号。对于恒压源,测试可以直接用电压探头测量输出到负载上的电压信号。对于恒流源的测试,则一般是通过使用电压探头,测量采样电阻两端的电压波形。整个测试过程中,示波器的设置是能否采样到真实信号的关键。 所用的仪器是:配有电压测量探头的TDS1012B示波器。测量之前需要进行如下设置。 1.通道设置: 耦合:即通道耦合方式的选择。纹波是叠加在直流信号上的交流信号,所以,我们要测试纹波信号就可以去掉直流信号,直接测量所叠加的交流信号就好。 宽带限制:关 探头:首先选用电压探头的方式。然后选择探头的衰减比例。必须与实际所用探头的衰减比例保持一致,这样从示波器所读取数才是真实的数据。比如,所用电压探头放在×10档,则此时,这里的探头的选项也必须设置为×10档。 2.触发设置: 类型:边沿 信源:实际所选择的通道,如,准备用CH1通道进行测试,则此处就应该选择为CH1。 斜率:上升。 触发方式:如果是在实时地观察纹波信号,则选择‘自动’触发。示波器会自动跟随实际所测信号的变化,并显示。这个时候,你也可通过设置测量按钮,实时地显示你所需要的测量的数值。但是,如果你想要捕捉某次测量时的信号波形,则需要将触发方式设置为‘正常’触发。此时,还需要设置触发电平的大小。一般当你知道你所测量的信号峰值时,将触发电平设置为所测信号峰值的1/3处。如果不知道,则触发电平可以设置的稍微小一些。 耦合:直流或交流…?(似乎没什么区别) 3.采样长度(秒/格): 采样长度的设置决定能否采样到所需要的数据。当所设置的采样长度过大时,就会漏掉实际信号中的高频成分;当所设置的采样长度过小时,就只能看到所测实际信号的局部,同样无法得到真实的实际信号。所以,在实际测量时,需来回旋转按钮,仔细观察,直到所显示波形是真实的完整的波形。 4.采样方式:

电解电容寿命分析

电解电容寿命分析 像其它电子器件应用一样 , 电解电容同样遵循一种被称为“Bathtub Curve”的失效率曲线。 其表征的是一种普遍的器件(设备)失效率趋势。但在实际应用中,电解电容的设计可靠性一般以其实际应用中的期望寿命( Expected Life )作为参考。这种期望寿命表达的是一种磨损失效( wear-our failure )。如下图所示,在利用威布尔概率纸( Weibull Probability Paper )对电解电容的失效率进行分析时可看到在某一使用期后其累进失效率曲线 (Accumulated Fallure Rate) 斜率要远大于 1 ,这说明了电解电容的失效模式其实为磨损失效所致。 影响电解电容寿命的因素可分为两大部分: 1) 电容本身之特性。其中包括制造材料(极片、电解液、封口等)选择及配方,制造工艺及技术(封口方式、散热技术等)。 2) 电容设计应用环境(环境温度、散热方式、电压电流参数等)。 电容器件一旦选定,寿命计算其实可归结为自身损耗及热阻参数的求取过程。 1 、寿命评估方式 电解电容生命终结一般定义为电容量 C 、漏电流( I L)、损耗角( tan δ)这三个关键参数之一的衰退超出一定范围的时刻。在众多的寿命影响因素中,温升是最关键的一个。而温升又是使用损耗的表现,故额定寿命测试往往被定为“在最大工作温度条件下(常见的有 85degC 及 105degC ),对电容施以一定的 DC 及 AC 纹波后,电容关键参数电容量 C 、漏电流( IL )、损耗角( tan )的衰竭曲线”。如下图所示: 2 、环境温度与寿命的关系 一般地(并非绝对),当电容在最大允许工作环境温度以下工作时(一般最低到 + 40degC 的温度范围),电解电容的期望寿命可以根据阿列纽斯理论( Arrhenius theory )进行计算。该理论认为电容之寿命会随温度每十摄氏度的上升而减半(每上升十摄氏度将在原基础上衰减一半)。从而可以得到如下寿命曲线以及用于计算寿命的环境温度函数 f(T ): 环境温度函数 f(T ) : 在一些纹波电流很小以致其在 ESR 上损耗引起的温升远远小于环境温度的作用时(例如与几乎无纹波的 DC 电源并联使用),即可认为电容器里面的热点温度与环境温度相等。一般可以按下式进行寿命计算: L OP=LoXf(t)

相关主题
文本预览
相关文档 最新文档