当前位置:文档之家› V-M双闭环直流可逆调速系统建模与仿真毕业设计任务书

V-M双闭环直流可逆调速系统建模与仿真毕业设计任务书

V-M双闭环直流可逆调速系统建模与仿真毕业设计任务书
V-M双闭环直流可逆调速系统建模与仿真毕业设计任务书

课程设计任务书

学生姓名:专业班级:

指导教师:工作单位:

题目: V-M双闭环直流可逆调速系统建模与仿真1

初始条件:

1.技术数据及技术指标:

直流电动机:P N=60KW , U N=220V , I N=308A , n N=1000r/min ,

最大允许电流I dbl=1.5I N,

三相全控整流装置:K s=35 ,

电枢回路总电阻R=0.18Ω,

电动势系数:C e=0.196V.min/r

系统主电路:T m=0.17s ,T l=0.012s

滤波时间常数:T oi=0.0025s , T on=0.015s,

其他参数:U nm*=8V , U im*=8V , U cm=8V

σi≤5% , σn≤10%

要求完成的主要任务:

1.技术要求:

(1) 该调速系统能进行平滑的速度调节,负载电机可逆运行,具有较宽的调速范围(D≥10),系统在工作范围内能稳定工作

(2) 系统在5%负载以上变化的运行范围内电流连续

2.设计内容:

(1) 根据题目的技术要求,分析论证并确定主电路的结构型式和闭环调速系统的组成,画出系统组成的原理框图

(2) 根据双闭环直流调速系统原理图, 分析转速调节器和电流调节器的作用,

(3) 通过对调节器参数设计, 得到转速和电流的仿真波形,并由仿真波形通过MATLAB来进行调节器的参数调节。

(4) 绘制V-M双闭环直流可逆调速系统的电气原理总图(要求计算机绘图)

(5) 整理设计数据资料,课程设计总结,撰写设计计算说明书

时间安排:

课程设计时间为一周半,共分为三个阶段:

(1)复习有关知识,查阅有关资料,确定设计方案。约占总时间的20% (2)根据技术指标及技术要求,完成设计计算。约占总时间的40% (3)完成设计和文档整理。约占总时间的40%

指导教师签名:年月日系主任(或责任教师)签名:年月日

目录

摘要 (1)

1设计任务及要求 (2)

1.1设计任务 (2)

1.2设计要求 (2)

2 V-M双闭环调速系统的设计 (3)

3系统主电路的设计 (6)

3.1电气原理图及说明 (6)

3.2平波电抗器的选择 (6)

3.3变压器的选择 (7)

3.4晶闸管的选择 (7)

3.5保护电路的设计 (7)

4电流调节器的设计 (8)

4.1电流环结构框图 (8)

4.2电流环参数的计算 (9)

4.2.1时间参数的计算 (9)

4.2.2电流调节器结构的选择 (10)

4.2.3电流调节器参数的计算 (10)

4,2,4检验近似条件 (11)

4.2.5计算调节器电阻和电容 (11)

5转速调节器的设计 (12)

5.1转速环结构框图的化简 (12)

5.2转速环参数的计算 (13)

5.2.1时间常数的计算 (13)

5.2.2转速调节器结构的选择 (14)

5.2.3转速调节器参数的计算 (14)

5.2.4检验近似条件 (14)

5.2.5计算调节器电阻和电容 (15)

5.2.6校核转速超调量 (15)

6电流环和转速环的仿真 (16)

6.1电流环的仿真 (16)

6.1.1电流环的仿真模型 (16)

6.1.2电流环的仿真结果 (16)

6.2转速环的仿真 (17)

6.2.1转速环的仿真模型 (17)

6.2.2转速环的仿真结果 (18)

7控制及驱动电路设计 (19)

8电气原理总图 (20)

9小结及体会 (22)

参考文献 (23)

摘要

转速、电流双闭环控制直流调速系统是性能很好、应用最广的直流调速系统。具有调速范围广、精度高、动态性能好和易于控制等优点,所以在电气传动系统中得到了广泛的应用。常用的电机调速系统有转速闭环控制系统和电流闭环控制系统,二者都可以在一定程度上克服开环系统造成的电动机静差率,但是不够理想。实际设计中常采用转速、电流双闭环控制系统,一般使电流环(ACR)作为控制系统的内环,转速环(ASR)作为控制系统的外环,以此来提高系统的动态和静态性能。本文是按照工程设计的方法来设计转速和电流调节器的。使电动机满足所要求的静态和动态性能指标。电流环应以跟随性能为主,即应选用典型Ⅰ型系统,而转速环以抗扰性能为主,即应选用典型Ⅱ型系统为主。本次课设为可逆调速系统,用到了正反组晶闸管控制。

关键词:直流双闭环调速系统电流调节器转速调节器 matlab

1设计任务及要求

1.1设计任务

设计V-M双闭环直流可逆调速系统1.技术数据及技术指标:

直流电动机:P

N =60KW , U

N

=220V , I

N

=308A , n

N

=1000r/min ,

最大允许电流 I

dbl =1.5I

N

,

三相全控整流装置:K

s

=35 ,

电枢回路总电阻 R=0.18Ω,

电动势系数:C

e

=0.196V.min/r

系统主电路:T

m =0.17s ,T

l

=0.012s

滤波时间常数:T

oi =0.0025s , T

on

=0.015s,

其他参数:U

nm *=8V , U

im

*=8V , U

cm

=8V

σ

i

≤5% , σ

n

≤10%

2.技术要求:

(1) 该调速系统能进行平滑的速度调节,负载电机可逆运行,具有较宽的调速范围(D≥10),系统在工作范围内能稳定工作

(2) 系统在5%负载以上变化的运行范围内电流连续

1.2设计要求

(1) 根据题目的技术要求,分析论证并确定主电路的结构型式和闭环调速系统的组成,画出系统组成的原理框图

(2) 根据双闭环直流调速系统原理图, 分析转速调节器和电流调节器的作用,

(3) 通过对调节器参数设计, 得到转速和电流的仿真波形,并由仿真波形通过MATLAB来进行调节器的参数调节。

(4) 绘制V-M双闭环直流可逆调速系统的电气原理总图(要求计算机绘图)

(5) 整理设计数据资料,课程设计总结,撰写设计计算说明书

2 V-M 双闭环调速系统的设计

改变电枢两端的电压能使电动机改变转向。尽管电枢反接需要较大容量的晶闸管装置,但是它反向过程快,由于晶闸管的单向导电性,需要可逆运行时经常采用两组晶闸管可控整流装置反并联的可逆线路,电动机正转时,由正组晶闸管装置VF 供电;反转时,由反组晶闸管装置VR 供电。如图1所示两组晶闸管分别由两套触发装置控制,可以做到互不干扰,都能灵活地控制电动机的可逆运行,所以本设计采用两组晶闸管反并联的方式。并且采用三相桥式整流。虽然两组晶闸管反并联的可逆V-M 系统解决了电动机的正、反转运行的问题,但是两组装置的整流电压同时出现,便会产生不流过负载而直接在两组晶闸管之间流通的短路电流,,称作环流,一般地说,这样的环流对负载无益,只会加重晶闸管和变压器的负担,消耗功率。环流太大时会导致晶闸管损坏,因此应该予以抑制或消除。为了防止产生直流平均环流,应该在正组处于整流状态、Udof 为正时,强迫让反组处于逆变状态、使Udor 为负,且幅值与Udof 相等,使逆变电压Udor 把整流电压Udof 顶住,则直流平均环流为零。于是

dof

dor U U -=

又由于

r do dor f

do dof U U U U ααcos cos max max ==

其中,r f αα和分别为VF 和VR 的触发延迟角。由于两组晶闸管装置相同, 两组的最大输出电压max do U 是一样的,因此,当直流平均环流为零时,应有 180

cos cos =+-=r f f

r αααα

如果反组的控制角用逆变角r β表示,则 r f βα= 按照这样控制就可以消除环流。

图1 两组晶闸管可控整流装置反并联可逆线路系统设计的一般原则为:先内环后外环。即从内环开始,逐步向外扩展。在这里,首先设计电流调节器,然后把整个电流环看作是转速调节系统中的一个环节,再设计转速调节器。

图2为转速、电流双闭环调速系统的原理图,图3为双闭环调速系统的结构图。图中两个调节器ASR和ACR分别为转速调节器和电流调节器,二者串级连接,即把电流调节器的输出作为转速调节器的输入,再用转速调节器的输出去控制电力电子变换器UPE。

两个调节器的输出都是带限幅作用的。转速调节器ASR的输出限幅电压U*im 决定了电流给定电压的最大值;转速调节器ASR的输出限幅电压Ucm限制了电力电子变换器的最大输出电压Udm。

为了获得良好的静、动态性能,转速和电流两个调节器一般都采用PI调节器。其中主电路中串入平波电抗器,以抑制电流脉动,消除因脉动电流引起的电机发热以及产生的脉动转矩对生产机械的不利影响。

图2 双闭环调速系统电路原理图

图3 双闭环调速系统结构框图

3系统主电路的设计

3.1电气原理图及说明

主电路采用转速、电流双闭环调速系统,使电流环(ACR)作为控制系统的内环,转速环(ASR)作为控制系统的外环,以此来提高系统的动态和静态性能。二者串级连接,即把电流调节器的输出作为转速调节器的输入,再用转速调节器的输出去控制电力电子变换器UPE。从而改变电机的转速。通过电流和转速反馈电路来实现电动机无静差的运行。

图3-1 系统电气原理框图

3.2平波电抗器的选择

Ud=2.34U2cosa Ud=UN=220V, a=0°

U2=Ud/2.34cos0=220/2,34=94.0171V

Idmin=(5%-10%)IN,这里取10% 则

L=0.693*U2/Idmin=0.693*94.0171/0.1*308=2.1154mH

a=U

* /n N=8/1000=0.008

nm

B=U

*/Idm=8/(1.5*308)=0.0173

im

3.3变压器的选择

变压器副边电压采用如下公式进行计算:

U=Udmax+nUt/AB(cosamin-CUsh I/I2n)

已知Udmax=220V,取Ut=1V n=2 A=2.34 B=0.9 amin=10 Ush=0.05 I/I2n=1 C=0.5 则U2=110V

因此变压器的变比近似为:K=U1/U2=3.45

一次侧和二次侧电流I1和I2的计算

I1=1.05*308*0.861/3.45=81A

I2=0.861×308=265A

变压器容量的计算S1=m1U1I1=3×380×81=92.3kVA

S2=m2U2I2=3×110×265=87.45kVA

S=0.5×(S1+S2)=0.5×(92.3+87.45)=89.9kVA

因此整流变压器的参数为:变比K=3.45,容量S=89.9kVA

3.4晶闸管的选择

晶闸管的额定电压通常选取断态重复峰值电压UDRM和反向重复峰值电压URRM 中较小的标值作为该器件的额定电压。晶闸管的额定电流一般选取其通态平均电流的1.5-2倍。在桥式整流电路中晶闸管两端承受的最大正反向电压均为

√2U2晶闸管的额定电压一般选取其最大正反向电压的2-3倍。

带反电动势负载时,变压器二次侧电流有效值I2是其输出直流电流有效值Id 的一半,而对于桥式整流电路,晶闸管的通态平均电流IVT=( √2/2)*I ,则在本设计中晶闸管的额定电流IVT(AV)=562-750A,本设计中晶闸管的额定电压UN=311-466V.

3.5保护电路的设计

对于过电压保护本设计采用RC过电压抑制电路,该装置置于供电变压器的两侧或者是电力电子电路的直流上,如图3-2所示。对于过电流保护本设计采用在电力变压器副边每相母线中串接快速熔断器的方法来保护电路.

图3-2 过压保护电路

4电流调节器的设计

4.1电流环结构框图

电流环结构图的简化分为忽略反电动势的动态影响、等效成单位负反馈系统、

小惯性环节的近似处理等环节。

在一般情况下,系统的电磁时间常数 Tl 远小于机电时间常数Tm ,因此转速的变化往往比电流变化慢得多,对电流环来说,反电动势是一个变化较慢的扰动,在按动态性能设计电流环时,可以暂不考虑反电动势变化的动态影响,即?E ≈0。这时,电流环如图4-1所示。

图4-1忽略反电动势动态影响的电流环动态结构图

如果把给定滤波和反馈滤波两个环节都等效地移到环内,同时把给定信号改 成U*i(s ) /β ,则电流环便等效成单位负反馈系统,如图4-2所示。

U d0(s ) + - U i (s )

ACR

1/R

T l s+1 U *i (s )

U c (s )

K s T s s+1 I d (s )

β

T 0i s+1

1

T 0i s+1

图4-2 等效成单位负反馈系统的电流环的动态结构图

最后,由于T s 和 T 0i 一般都比T l 小得多,可以当作小惯性群而近似地看作是一个惯性环节,其时间常数为

T ∑i = T s + T oi 则电流环结构图最终简化成图4-3所示。

4.2电流环参数的计算

4.2.1时间常数的计算

(1)整流装置滞后时间常数 T s 。按表1,三相桥式电路的平均失控时间T s =0.0017s 。

(2)电流滤波时间常数本设计初始条件已给出,即T oi =0.0025s 。 (3)电流环小时间常数之和T ∑=T s +T oi =0.0042s

+

-

ACR

U c (s )

βK s /R (T s+1)(T s+1)

I d (s )

U *i (s )

β图4-3 电流环的简化结构图

+

-

ACR

U c (s )

K s /R (T s s+1)(T l s+1)

I d (s )

U *i (s )

β

β

T 0i s+1

表1 各种整流装置的失控时间

4.2.2电流调节器结构的选择

从稳态要求上看,希望电流无静差,以得到理想的堵转特性,采用 I 型系统就够了。从动态要求上看,实际系统不允许电枢电流在突加控制作用时有太大的超调,以保证电流在动态过程中不超过允许值,而对电网电压波动的及时抗扰作用只是次要的因素,为此,电流环应以跟随性能为主,应选用典型I 型系统。 电流环的控制对象是双惯性型的,要校正成典型 I 型系统,显然应采用PI 型的电流调节器,其传递函数可以写成

式中 K i — 电流调节器的比例系数;

τi — 电流调节器的超前时间常数。

检查对电源电压的抗扰性能:857.20042

.0012

.0==∑i l T T ,参照典型Ⅰ型系统动态

抗扰性能指标与参数的关系表格,可以看出各项指标都是可以接受的。

4.2.3电流调节器参数的计算

τi =Tl=0.012s 。

电流环开环增益:要求δi <5%时,应取K I T ∑i =0.5,因此 K I =0.5/T ∑i =119.04s -1

于是,ACR 的比例系数为:

4247.00173

.03518

.0012.004.119=???==

βτs i I i K R K K

整流电路形式 最大失控时间 T smax (ms ) 平均失控时间 T s (ms )

单相半波 单相桥式(全波)

三相半波

三相桥式、六相半波 20 10 6.67 3.33

10 5 3.33 1.67

s

s K s W i i i ACR )

1()(ττ+=

4.2.4校验近似条件

电流环截止频率:ωci =K I =119.04s -1。

检验晶闸管整流装置传递函数的近似条件: 1.1960017

.03131=?=s T s -1

> ωci 满足近似条件 检验忽略反电动势变化对电流环动态影响的条件:

42.66012

.017.01313

=?=l m T T s -1<ωci ,满足近似条件 检验电流环小时间常数近似处理条件:

69.1610025

.00017.01

31131=?=oi s T T >ωci 满足近似条件

4.2.5计算调节器电阻和电容

由图4-4,按所用运算放大器取R0=40k Ω

Ω

Ω

=Ω?==k k k R K R i i 1799.16404247.00取

F

F

F R C i

i

i μμτ75.07059.01017012

.03

取=?=

=

F

F F R T C oi oi μμ25.025.010

400025

.04430取=??==

按照上述参数,电流环可以达到的动态跟随性能指标为δi =4.3%<5%,满足设计要求。

图4-4 含给定滤波与反馈滤波的 PI 型电流调节器

5转速调节器的设计

5.1转速环结构框图的化简

电流环经简化后可视作转速环中的一个环节,接入转速环内,电流环等效环节的输入量应为U i *(s),因此电流环在转速环中应等效为

用电流环的等效环节代替电流环后,整个转速控制系统的动态结构图便如图5-1所示。

和电流环一样,把转速给定滤波和反馈滤波环节移到环内,同时将给定信号改成U *n(s )/α,再把时间常数为1 / K I 和 T 0n 的两个小惯性环节合并起来,近

111

)()

()(I

cli *i d +≈

=s K s W s U s I β

β

似成一个时间常数为的惯性环节,其中

图5-1 用等效环节代替电流环的转速环的动态结构图

最后转速环结构简图为图5-2。

图5-2等效成单位负反馈系统和小惯性的近似处理的转速环结构框图

5.2转速环参数的计算

5.2.1时间常数的计算

1)电流环等效时间常数1/K

I

。由电流环参数可知K

I

T

∑i

=0.5,则

s

T

K i

I

0084

.0

0042

.0

2

2

1

=

?

=

=

2)转速滤波时间常数T

on

。根据已知条件可知T

on

=0.015s。

3)转速环小时间常数T

∑n

。按小时间常数近似处理,取

n

(s)

+

- U

n

(s)

ASR

C e T m s

R U*n(s

)

I d(s)

α

T0n s+1

1

T0n s+1

U*n(s

) 1

1

1

+

s

K

I

β

+

-

I dL(s)

on

I

n

1

T

K

T+

=

s T K T on I

n 0234.0015.00084.01

=+=+=

5.2.2转速调节器结构的选择

为了实现转速无静差,在负载扰动作用点前面必须有一个积分环节,它应该包含在转速调节器 ASR 中,现在在扰动作用点后面已经有了一个积分环节,因此转速环开环传递函数应共有两个积分环节,所以应该设计成典型 Ⅱ 型系统,这样的系统同时也能满足动态抗扰性能好的要求。由此可见,ASR 也应该采用PI 调节器,其传递函数为

式中 K n — 转速调节器的比例系数;

τ n — 转速调节器的超前时间常数。

5.2.3转速调节器参数的计算

按跟随和抗扰性能都较好的原则,取h=5,则ASR 的超前时间常数为

s hT n n 117.00234.05=?==∑τ 转速环开环增益为 2

2

22215.2190234.052621-∑=??=+=s T h h K n

N ASR 的比例系数为26

.100234

.018.0008.05217

.0196.00173.062)1(=???????=+=

∑n m e n RT h T C h K αβ

5.2.4检验近似条件

转速环截止频率为 11

64.25117.015.219-=?===

s K K n N N

cn τωω

1) 电流环传递函数简化条件为

112.560042

.004

.1193131-∑==s T K i I 满足近似条

2) 转速环小时间常数近似处理条件为

169.29015

.004

.1193131-==s T K on I 满足近似条件

s

s K s W n n

n ASR )

1()(ττ+=

5.2.5计算调节器电阻和电容

根据图5-3,取R0=40k Ω,则

;取ΩΩ

=Ω?==k k k R K R n n 4104.4104026.100

;取F F F R C n

n

n μμτ25.02854.010

410117

.03

=?=

=

;15,110

40015

.04430F F F R T C on on μμ取=??==

图5-3 含给定滤波与反馈滤波的PI 型转速调节器

5.2.6校核转速超调量

当h=5时,查询典型Ⅱ型系统阶跃输入跟随性能指标的表格可以看出

%6.37=n σ,不能满足设计要求。实际上,上述表格是按照线性系统计算的,而突加阶跃给定时,ASR 饱和,不符合线性系统的前提,应该按ASR 退饱和的情况重新计算超调量。此时超调量为:

%5.917

.00234

.01000196.018.03085.1812.02))((2*max =?????=?-?=∑m n N b n T T n n z C C λσ

能满足设计要求。

6电流环和转速环的仿真

6.1电流环的仿真

6.1.1电流环的仿真模型

电流环的仿真模型如图6-1所示。

图6-1电流环的仿真模型6.1.2电流环的仿真结果

电流环的仿真结果如图6-2所示。

图6-2电流环的仿真结果6.2转速环的仿真

6.2.1转速环的仿真模型

转速环的仿真模型如图6-3所示。

双闭环直流调速系统

题目:双闭环直流调速系统的设计与仿真 已知:直流电动机:P N=60KW,U N=220V,I N=305A,n N=1000r/min,λ=2,R a=0.08, R rec=0.1, T m=0.097s, T l=0.012s, T s=0.0017s, 电枢回路总电阻R=0.2Ω。设计要求:稳态无静差,σ ≤5%,带额定负载起动到额定转速的转速超调σn≤10%。(要求完 i 成系统各环节的原理图设计和参数计算)。 系统各环节的原理图设计和参数计算,包括主电路、调节器、电流转速反馈电路和必要的保护等,并进行必要的计算。按课程设计的格式要求撰写课程设计说明书。 设计内容与要求:1、分析双闭环系统的工作原理 2、改变调节器参数,分析对系统动态性能的影响 3、建立仿真模型

1.双闭环直流调速系统的原理及组成 对于正反转运行的调速系统,缩短起,制动过程的时间是提高生产率的重要因素。为此,在起动(或制动)过渡过程中,希望始终保持电流(电磁转矩)为允许的最大值,是调速系统以最大的加(减)速度运行。当到达稳态转速时,最好使电流立即降下来,使电磁转矩与负载转矩相平衡,从而迅速转入稳态运行。实际上,由于主电路电感的作用,电流不可能突变,为了实现在允许条件下的最快起动,关键是要获得一段使 电流保持为最大值dmI的恒流过程。按照反馈控制规律,采用某个物理量的负反馈就可以保持该量基本不变,采用电流负反馈应该能够得到近似的恒流过程。 为了使转速和电流两种负反馈分别起作用,可在系统中设置两个调节器,分别引入转速负反馈和电流负反馈以调节转速和电流,二者之间实行嵌套连接,如图1所示。把转速调节器的输出当作电流调节器的输入,再用电流调节器的输出去控制电力电子变换器。从闭环结构上看,电流环在里面,称做内环;转速环在外面,称做外环。这就形成了转速电流负反馈直流调速系统。为了获得良好的静动态性能,转速和电流两个调节器一般采用PI调节器。 2.双闭环控制系统起动过程分析 前面已经指出,设置双闭环控制的一个重要目的就是要获得接近于理想的起动过程,因此在分析双闭环调速系统的动态性能时,有必要先探讨它的起动过程。双闭环调速系统突加给定电压*nU由静止状态起动时,转速和电流的过渡过程如图4所示。由于在起动过程中转速调节器ASR经历了不饱和、饱和、退饱和三

转速电流双闭环可逆直流调速系统仿真与设计方案

《运动控制》课程设计题目:转速,电流双闭环可逆直流宽频调速系统设计 系部:自动化系 专业:自动化 班级:自动化1班 学号:11423006 11423025 11423015 姓名:杨力强.丁珊珊.赵楠 指导老师:刘艳 日期:2018年5月26日-2018年6月13日

一、设计目的 应用所学的交、直流调速系统的基本知识与工程设计方法,结合生产实际,确定系统的性能指标与实现方案,进行运动控制系统的初步设计。 应用计算机仿真技术,通过在MA TLAB软件上建立运动控制系统的数学模型,对控制系统进行性能仿真研究,掌握系统参数对系统性能的影响。 在原理设计与仿真研究的基础上,应用PROTEL进行控制系统的印制板的设计,为毕业设计的综合运用奠定坚实的基础。 二、系统设计参数 直流电动机控制系统设计参数:< 直流电动机(3> ) 输出功率为:5.5Kw 电枢额定电压220V 电枢额定电流 30A 额定励磁电流1A 额定励磁电压110V 功率因数0.85 电枢电阻0.2欧姆 电枢回路电感100mH 电机机电时间常数1S 电枢允许过载系数=1.5 额定转速 970rpm 直流电动机控制系统设计参数 环境条件: 电网额定电压:380/220V。电网电压波动:10%。 环境温度:-40~+40摄氏度。环境湿度:10~90%. 控制系统性能指标: 电流超调量小于等于5%。 空载起动到额定转速时的转速超调量小于等于30%。 调速范围D=20。 静差率小于等于0.03.

1、设计内容和数据资料 某直流电动机拖动的机械装置系统。 主电动机技术数据为: ,,,电枢回路总电阻,机电时间常数 ,电动势转速比,Ks=40,,Ts=0.0017ms,电流反馈系数,转速反馈系数,试对该系统进行初步设计。2、技术指标要求 电动机能够实现可逆运行。要求静态无静差。动态过渡过程时间,电流超调量,空载起动到额定转速时的转速超调量。 三、主电路方案和控制系统确定 主电路选用直流脉宽调速系统,控制系统选用转速、电流双闭环控制方案。主电路采用25JPF40电力二极管不可控整流,逆变器采用带续流二极管的功率开关管IGBT构成H型双极式控制可逆PWM变换器。其中属于脉宽调速系统特有的部分主要是UPM、逻辑延时环节DLD、全控型绝缘栅双极性晶体管驱动器GD和PWM变换器。系统中设置了电流检测环节、电流调节器以及转速检测环节、转速调节器,构成了电流环和转速环,前者通过电流元件的反馈作用稳定电流,后者通过转速检测元件的反馈作用保持转速稳定,最终消除转速偏差, 从而使系统达到调节电流和转速的目的。该系统起动时,转速外环饱和不起作用,电流内环起主要作用,调节起动电流保持最大值,使转速线性变化,迅速达到给定值;稳态运行时,转速负反馈外环起主要作用,使转速随转速给定电压的变化而变化,电流内环跟随转速外环调节电机的电枢电流以平衡负载电流原理图

转速电流双闭环的数字式可逆直流调速系统的仿真与设计(课程设计完整版)

湖南科技大学 信息与电气工程学院 《课程设计报告》 题目:转速电流双闭环的数字式可逆直流调速系统的仿真与设计 专业:电气工程及其自动化 班级: 姓名: 学号: 指导教师:

任务书 题 目 转速电流双闭环的数字式可逆直流调速系统的仿真与设计 时 间安排 2013年下学期17,18周 目 的: 应用所学的交、直流调速系统的基本知识与工程设计方法,结合生产实际,确定系统的性能指标与实现方案,进行运动控制系统的初步设计。 应用计算机仿真技术,通过在MATLAB 软件上建立运动控制系统的数学模型,对控制系统进行性能仿真研究,掌握系统参数对系统性能的影响。 在原理设计与仿真研究的基础上,应用PROTEL 进行控制系统的印制板的设计,为毕业设计的综合运用奠定坚实的基础。 要 求:电动机能够实现可逆运行。要求静态无静差。动态过渡过程时间s T s 1.0≤,电流超调量%5%≤i σ,空载起动到额定转速时的转速超调量%30%≤n σ。 总体方案实现:主电路选用直流脉宽调速系统,控制系统选用转速、电流双闭环控制方案。主电路采用25JPF40电力二极管不可控整流,逆变器采用带续流二极管的功率开关管IGBT 构成H 型双极式控制可逆PWM 变换器。其中属于脉宽调速系统特有的部分主要是UPM 、逻辑延时环节DLD 、全控型绝缘栅双极性晶体管驱动器GD 和PWM 变换器。系统中设置了电流检测环节、电流调节器以及转速检测环节、转速调节器,构成了电流环和转速环,前者通过电流元件的反馈作用稳定电流,后者通过转速检测元件的反馈作用保持转速稳定,最终消除转速偏差。 从而使系统达到调节电流和转速的目的。该系统起动时,转速外环饱和不起作用,电流内环起主要作用,调节起动电流保持最大值,使转速线性变化,迅速达到给定值;稳态运行时,转速负反馈外环起主要作用,使转速随转速给定电压的变化而变化,电流内环跟随转速外环调节电机的电枢电流以平衡负载电流。 指导教师评语: 评分等级:( ) 指导教师签名:

双闭环直流调速系统设计及仿真

双闭环直流调速系统设计及仿真 一转速、电流双闭环控制系统 一般来说,我们总希望在最大电流受限制的情况下,尽量发挥直流电动机的过载能力,使电力拖动控制系统以尽可能大的加速度起动,达到稳态转速后,电流应快速下降,保证输出转矩与负载转矩平衡,进入稳定运行状态[1]。这种理想的起动过程如图1所示。 n n t 图1 转速调节系统理想起动过程 为实现在约束条件快速起动,关键是要有一个使电流保持在最大值的恒流过程。根据反馈控制规律,要控制某个量,就要引入这个量的负反馈。因此很自然地想到要采用电流负反馈控制过程。这里实际提到了两个控制阶段。起动过程中,电动机转速快速上升,而要保持电流恒定,只需电流负反馈;稳定运行过程中,要求转矩保持平衡,需使转速保持恒定,应以转速负反馈为主。如何才能做到使电流、转速两种负反馈在不同的控制阶段发挥作用呢?答案是采用转速、电流双闭环控制系统。如图2所示。 图2 双闭环直流调速控制系统原理图 参考双闭环的结构图和一些电力电子的知识,采用机理分析法可以得到双闭环系统的动态结构图。如图3所示。

图3 双闭环直流调速系统动态结构图 在转速环、电流环的反馈通道和输入端增加了转速滤波、电流滤波和给定滤波环节。因为电流检测信号中常含有交流成分,须加低通滤波,其滤波时间常数按需要而定。滤波环节可以抑制检测信号中的交流分量,但同时也个反馈检测信号带来延迟。所以在给定信号通道中加入一个给定滤波环节,使给定信号与反馈信号同步,并可使设计简化。由测速发电机得到的转速反馈电压含有电机的换向纹波,因此也需要滤波,其时间常数用表示[2]。 二双闭环控制系统起动过程分析 前面已经指出,设置双闭环控制的一个重要目的就是要获得接近于理想的起动过程,因此在分析双闭环调速系统的动态性能时,有必要先探讨它的起动过程。双闭环调速系统突加给定电压由静止状态起动时,转速和电流的过渡过程如图4所示。由于在起动过程中转速调节器ASR 经历了不饱和、饱和、退饱和三个阶段,整个过渡过程也就分为三个阶段,在图中表以Ⅰ、Ⅱ和Ⅲ。 第Ⅰ阶段:0~t1是电流上升阶段。突加给定电压后,通过两个调节器的控制作用,使、、都上升,当后,电动机开始转动。由于机电惯性的作用,转速的增长不会太快,因而ASR的输入偏差电压数值较大并使其输出达到饱和值,强迫电流迅速上升。当时,,电流调节器ACR的作用使不再迅速增加,标志着这一阶段的结束。 在这一阶段中,ASR由不饱和很快达到饱和,而ACR一般应该不饱和,

双闭环直流调速系统

转速、电流双闭环调速系统 班级:铁道自动化091 姓名:陈涛 指导老师:严俊 完成日期:2011-10-31 湖南铁道职业技术学院

目录 摘要 (3) 一、直流调速介绍 (4) 1、调速定义 (4) 2、调速方法 (4) 3、调速指标 (4) 二、双闭环直流调速系统介绍 (5) 1、转速、电流双闭环调速系统概述 (5) 2、转速、电流双闭环调速系统的组成 (6) 3、PI调节器的稳态特征 (7) 4、起动过程分析 (8) 5、动态性能 (11) 6、两个调节器的作用 (11) 三、总结 (12)

摘要 随着近代电力电子技术和计算机的发展以及现代控制理论的应用,自动化电力拖动正向着计算机控制的生产过程自动化的方向迈进,以达到高速、优质、高效率地生产。在大多数综合自动化系统中,自动化的电力拖动系统仍然是不可缺少的组成部分。 本文讲述的是转速、电流双闭环直流调速系统,通过学习使我对转速、电流双闭环直流调速系统的组成、调速器的稳态特性和作用以及系统的动态特性有了一定的了解。该系统是在单闭环系统的基础上加以改进后完成的,通过对电力拖动自动控制系统的学习,我们里了解到转速、电流双闭环直流调速系统相对于单闭环调速系统的一些优势,它是通过转速反馈和电流反馈两个环节分别起作用的。 通过这次的学习,我懂得了很多,具有了通过运用理论上所掌握的知识来独立发现问题、思考问题、解决问题的能力,在这次的论文中,我有一次重新学习了转速、电流双闭环直流调速系统,使我这一系统有了更进一步的了解。

转速、电流双闭环调速系统 一、直流调速介绍 1、调速定义 调速是指在某一具体负载情况下,通过改变电动据或电源参数的方法,使机械特性曲线得以改变,从而使电动机转速发生变化或保持不变。 2、调速方法 1.调节电枢供电电压U。改变电枢电压主要是从额定电压往下降低电枢电压,从电动机额定转速向下变速,属恒转矩调速方法。对于要求在一定范围内无 级平滑调速的系统来说,这种方法最好。变化遇到的时间常数较小,能快速响应,但是需要大容量可调直流电源。 2.改变电动机主磁通。改变磁通可以实现无级平滑调速,但只能减弱磁通进行调速(简称弱磁调速),从电机额定转速向上调速,属恒功率调速方 法。变化时间遇到的时间常数同变化遇到的相比要大得多,响应速度较慢,但所需电源容量小。 3.改变电枢回路电阻 <。在电动机电枢回路外串电阻进行调速的方法,设备简单,操作方便。但是只能进行有级调速,调速平滑性差,机械特性较软;空载时几乎没什么调速作用;还会在调速电阻上消耗大量电能。 3、调速指标 1.调速范围(包括:恒转矩调速范围/恒功率调速范围),

直流电动机可逆调速系统设计 (1)要点

摘要 本次课程设计直流电机可逆调速系统利用的是双闭环调速系统,因其具有调速范围广、精度高、动态性能好和易于控制等优点,所以在电气传动系统中得到了广泛的应用。直流双闭环调速系统中设置了两个调节器, 即转速调节器(ASR)和电流调节器(ACR), 分别调节转速和电流。本文对直流双闭环调速系统的设计进行了分析,对直流双闭环调速系统的原理进行了一些说明,介绍了其主电路、检测电路的设计,介绍了电流调节器和转速调节器的设计以及系统中一些参数的计算。 关键词:双闭环,可逆调速,参数计算,调速器。

目录 1. 设计概述 (1) 1.1 设计意义及要求 (1) 1.2 方案分析 (1) 1.2.1 可逆调速方案 (1) 1.2.2 控制方案的选择 (2) 2.系统组成及原理 (4) 3.1设计主电路图 (7) 3.2系统主电路设计 (8) 3.3 保护电路设计 (8) 3.3.1 过电压保护设计 (8) 3.3.2 过电流保护设计 (9) 3.4 转速、电流调节器的设计 (9) 3.4.1电流调节器 (10) 3.4.2 转速调节器 (10) 3.5 检测电路设计 (11) 3.5.1 电流检测电路 (11) 3.5.2 转速检测电路 (11) 3.6 触发电路设计 (12) 4. 主要参数计算 (14) 4.1 变压器参数计算 (14) 4.2 电抗器参数计算 (14) 4.3 晶闸管参数 (14) 5设计心得 (15) 6参考文献 (16)

直流电动机可逆调速系统设计 1.设计概述 1.1设计意义及要求 直流电动机具有良好的起、制动性能,宜于在大范围内实现平滑调速,在许多需要调速或快速正反向的电力拖动领域中得到了广泛的应用。从控制的角度来看,直流拖动控制系统又是交流拖动控制系统的基础,所以应该首先掌握直流拖动控制系统。本次设计最终的要求是能够是电机工作在电动和制动状态,并且能够对电机进行调速,通过一定的设计,对整个电路的各个器件参数进行一定的计算,由此得到各个器件的性质特性。 1.2 方案分析 1.2.1 可逆调速方案 使电机能够四象限运行的方法有很多,可以改变直流电机电枢两端电压的方向,可以改变直流电机励磁电流的方向等等,即电枢电压反接法和电枢励磁反接法。 电枢励磁反接方法需要的晶闸管功率小,适用于被控电机容量很小的情况,励磁电路中需要串接很大的电感,调速时,电机响应速度较慢,且需要设计很复杂的电路,故在设计中不采用这种方式。 电枢电压反接法可以应用在电机容量很的情况下,且控制电路相对简单,电枢反接反向过程很快,在实际应用中常常采用,本设计中采用该方法。 电枢电压反接电路可以采用两组晶闸管反并联的方式,两组晶闸管分别由不同的驱动电路驱动,可以做到互不干扰。 图1-1 两组晶闸管反并联示意图

直流PWMM可逆调速系统的设计与仿真

基础课程设计(论文) 直流PWM-M可逆调速系统的设计与仿真 专业:电气工程及其自动化 指导教师:刘雨楠 小组成员:陈慧婷(20114073166) 石文强(20114073113) 刘志鹏(20114073134) 张华国(20114073151) 信息技术学院电气工程系 2014年10月20日

摘要 当今,自动化控制系统已经在各行各业得到了广泛的应用和发展,而直流调速控制作为电气传动的主流在现代化生产中起着主要作用。本文主要研究直流调速系统,它主要由三部分组成,包括控制部分、功率部分、直流电动机。长期以来,直流电动机因其具有调节转速比较灵活、方法简单、易于大范围内平滑调速、控制性能好等特点,一直在传动领域占有统治地位。微机技术的快速发展,在控制领域得到广泛应用。本文对基于微机控制的双闭环可逆直流PWM调速系统进行了较深入的研究,从直流调速系统原理出发,逐步建立了双闭环直流PWM调速系统的数学模型,用微机硬件和软件发展的最新成果,探讨一个将微机和电力拖动控制相结合的新的控制方法,研究工作在对控制对象全面回顾的基础上,重点对控制部分展开研究,它包括对实现控制所需要的硬件和软件的探讨,控制策略和控制算法的探讨等内容。在硬件方面充分利用微机外设接口丰富,运算速度快的特点,采取软件和硬件相结合的措施,实现对转速、电流双闭环调速系统的控制。论文分析了系统工作原理和提高调速性能的方法,研究了IGBT模块应用中驱动、吸收、保护控制等关键技术.在微机控制方面,讨论了数字触发、数字测速、数字PWM调制器、双极式H型PWM变换电路、转速与电流控制器的原理,并给出了软、硬件实现方案。 关键词:直流可逆调速数字触发PWM 数字控制器

仓库管理系统毕业设计任务书

××大学网络教育学院 毕业设计(论文)任务书 题目:仓库管理系统设计与实现 完成期限:年月日至年月日 教学中心年级及层次 专业指导教师_____________ 学生学号 接受任务日期批准日期_____________

一、原始依据(资料) 随着社会经济的迅速发展和科学技术的全面进步,计算机事业的飞速发展,以计算机与通信技术为基础的信息系统正处于蓬勃发展的时期。随着经济文化水平的显著提高,人们对生活质量及工作环境的要求也越来越高。如何通过计算机为我们完成更多的事情,进而达到办公自动化和优化日常工作的目的,也就成了一个大众化的课题。 仓库管理是与我们日常生活息息相关的问题。大到公司、超市的仓库管理,小到图书馆的藏书管理,都可以认为是各种各样的仓库管理需求。随着我国改革开放的不断深入,经济飞速的发展,企业要想生存、发展,要想在激烈的市场竞争中立于不败之地,没有现代化的管理是万万不行的,仓库管理的全面自动化、信息化则是其中极其重要的部分。为了加快仓库管理自动化的步伐,提高仓库的管理业务处理效率,建立仓库管理系统,尽可能地减少仓库管理的重复性和低效性,已变得十分必要。 数据库技术产生于60年代,40多年来数据库技术得到了迅速发展,并已形成较为完整的理论体系和一大批实用系统。并且,近年来,随着World Wide Web(WWW)的猛增及Internet技术的迅速发展,数据库技术成为最热门技术之一。面向对象软件的开发技术,也大大保障了软件开发的速度和效果。随着计算机的普及,计算机等硬件价格也已经不再是什么天文数字。因此,不管是从技术上,还是经济上,设计和开发一个仓库管理系统都已经具有较好的可行性。

双闭环调速系统课程设计

目录页 第一章绪论 (2) 1-1课题背景,实验目的与实验设备 (2) 1-2国内外研究情况 (3) 第二章双闭环调速系统设计理论 (3) 2-1典型Ⅰ型和典型Ⅱ型系统 (3) 2-2系统的静,动态性能指标 (4) 2-3非典型系统的典型化 (6) 2-4转速调节器和电流调节器的设计 (7) 第三章模型参数测定和模型建立 (9) 3-1系统模型参数测定实验步骤和原理 (9) 3-2模型测定实验的计算分析 (11) 3-3系统模型仿真和误差分析 (18) 第四章工程设计方法设计和整定转速,电流反馈调速系统 (22) 4-1 设计整定的思路 (22) 4-2 电流调节器的整定和电流内环的校正,简化 (23) 4-3转速调节器的整定和转速环的校正,简化 (25) 4-4系统的实际运行整定 (27) 4-5 关于ASR和ACR调节器的进一步探讨…………………………………… 33 第五章设计分析和心得总结 (34)

5-1实验中出现的问题 (34) 5-2实验心得体会 (35) 第六章实验原始数据 (38) 6-1建模测定数据 (38) 6-2 系统调试实验数据 (39) 第一章绪论 1-1课题背景,实验目的与实验设备 转速,电流反馈控制的调速系统是一种动静态特性优良的直流调速系统,它的控制规律是建立在经典控制规律的基础上的,用传递函数建立动态数学模型,并从传递函数模型和开环频域特性去总结其控制规律,用跟随和抗扰两个方面的指标去衡量它的动静态性能。转速,电流反馈控制的调速系统是一种串级系统,所以其整定系统参数的方法也借鉴了一般串级系统的差别,但又有不同于一般串级系统的。 本次实验的主要目的是针对一套调速系统(包括电源,电机,励磁回路等)建立模型并整定出带滤波的电流调节器和转速调节器参数,投入运行。实验正值暑期实践及国际交流周,我们将用两周的时间来完成参数测定实验,系统建模,调节器整定和系统投入运行。 本次实验的实验设备包括:

H桥可逆直流调速系统设计与实验

CDIO课程项目研究报告 项目名称:H桥可逆直流调速系统设计与实验 姓名; 指导老师: 日期:

摘要 本设计的题目是基于SG3525的双闭环直流电机调速系统的设计。SG3525是电流控制型PWM控制器,所谓电流控制型脉宽调制器是按照接反馈电流来调节脉宽的。在脉宽比较器的输入端直接用流过输出电感线圈的信号与误差放大器输出信号进行比较,从而调节占空比使输出的电感峰值电流跟随误差电压变化而变化。由于结构上有电压环和电流环系统,因此,无论开关电源的电压调整率、负载调整率和瞬态响应特性都有提高,是目前比较理想的新型控制器。如果对系统的动态性能要求较高,则单闭环系统就难以满足需要。而转速、电流双闭环直流调节系统采用PI调节器可以获得无静差;构成的滞后校正,可以保证稳态精度;虽快速性的限制来换取系统稳定的,但是电路较简单。所以双闭环直流调速是性能很好、应用最广的直流调速系统。本设计选用了转速、电流双闭环调速控制电路,本课题内容重点包括调速控制器的原理,并且根据原理对转速调节器和电流调节器进行了详细地设计。概括了整个电路的动静态性能,最后将整个控制器的电路图设计完成,并且进行仿真。 关键词:双闭环直流可逆调速系统、H桥驱动电路、SG3525信号产生电路、PI调节器、MATLAB仿真

前言 随着交流调速的迅速发展,交流调速技术越趋成熟,但是直流电动机调速系统以其优良的调速性能仍有广阔的市场,并且建立在反馈控制理论基础上的直流调速原理也是交流调速控制的基础。采用转速负反馈和PI调节器的单闭环调速系统可以在保证系统稳定的条件下实现转速无静差。但如果对系统的动态性能要求较高,如要求快速起制动、突加负载动态速降时,单闭环系统就难以满足。这主要是因为在单闭环系统中不能完全按照需要来控制动态过程中的电流或转矩。在单闭环系统中,只有电流截至负反馈环节是专门用来控制电流的,但它只是在超过临界电流值以后,靠强烈的负反馈作用限制电流的冲击,并不能很理想的控制电流的动态波形。实际工作中,在电机最大电流受限的条件下,充分利用电机的允许过载能力,最好是在过渡过程中始终保持电流转矩为允许最大值,使电力拖动系统尽可能用最大的加速度启动,到达稳定转速后,又让电流立即降下来,使转矩马上与负载相平衡,从而转入稳态运行。实际上,由于主电路电感的作用,电流不能突跳,为了实现在允许条件下最快启动,关键是要获得一段使电流保持为最大值的恒流过程,按照反馈控制规律,电流负反馈就能得到近似的恒流过程。问题是希望在启动过程中只有电流负反馈,而不能让它和转速负反馈同时加到一个调节器的输入端,到达稳态转速后,又希望只要转速负反馈,不要电流负反馈发挥主作用,因此需采用双闭环直流调速系统。这样就能做到既存在转速和电流两种负反馈作用又能使它们作用在不同的阶段。 项目预期成果: 设计一个双闭环可逆直流无静差调速系统,其稳态性能指标实现要求如下:电流超调量S≤5%调速范围 D=20;其动态性能指标:转速超调量δn=10%;调整时间时间ts=2s;电流超调量δi≤5% 。

双闭环控制系统设计

双闭环控制系统设计 课程设计报告 电力拖动自动控制系统课程设计 题目:双闭环控制系统设计学生姓名:董长青专业:电气自动化技术专业班级: Z070303 学号: Z07030330 指导教师:姬宣德 日期:2010年03月10日 随着现代工业的发展,在调速领域中,双闭环控制的理念已经得 到了越来越广泛的认同与应用。相对于单闭环系统中不能随心所欲地 控制电流和转矩的动态过程的弱点。双闭环控制则很好的弥补了他的 这一缺陷。 双闭环控制可实现转速和电流两种负反馈的分别作用,从而获得 良好的静,动态性能。其良好的动态性能主要体现在其抗负载扰动以 及抗电网电压扰动之上。正由于双闭环调速的众多优点,所以在此有 必要对其最优化设计进行深入的探讨和研究。本次课程设计目的就是 旨在对双闭环进行最优化的设计。 Summary With the development of modern industry, in the speed area, the concept of dual-loop control has been increasingly widespread recognition and application. Relative to the single closed-loop system can not arbitrarily control the dynamic

process of current and torque weakness. Double closed-loop control is very good to make up for this shortcoming of his. Double-loop speed and current control can achieve the difference of two negative feedback effect, thus get a good static and dynamic performance. The good dynamic performance mainly reflected in its anti-disturbance and anti-grid load over voltage disturbance. Precisely because of the many advantages of Double Closed Loop, so here it is necessary to optimize the design of its depth discussion and study. This course is designed to designed to optimize the double loop design. 一.课程设计设计说明书4 1.1系统性能指标 1.2整流电路4 1.3触发电路的选择和同步5 1.4双闭环控制电路的工作原理6 二. 设计计算书7 2.1整流装置的计算7 2.1.1变压器副方电压7 2.1.2变压器和晶闸管的容量8 2.1.3平波电抗器的电感量8 2.1.4晶闸管保护电路9 2.2 控制电路的计算10

H桥可逆直流调速系统设计与实验(1)

燕山大学 CDIO课程项目研究报告 项目名称: H桥可逆直流调速系统设计与实验 学院(系):电气工程学院 年级专业: 学号: 学生: 指导教师: 日期: 2014年6月3日

目录 前言 (1) 摘要 (2) 第一章调速系统总体方案设计 (3) 1.1 转速、电流双闭环调速系统的组成 (3) 1.2.稳态结构图和静特 (4) 1.2.1各变量的稳态工作点和稳态参数计算 (6) 1.3双闭环脉宽调速系统的动态性能 (7) 1.3.1动态数学模型 (7) 1.3.2起动过程分析 (7) 1.3.3 动态性能和两个调节器的作用 (8) 第二章 H桥可逆直流调速电源及保护系统设计 (11) 第三章调节器的选型及参数设计 (13) 3.1电流环的设计 (13) 3.2速度环的设计 (15) 第四章Matlab/Simulink仿真 (17) 第五章实物制作 (20) 第六章性能测试 (22) 6.1 SG3525性能测试 (22) 6.2 开环系统调试 (23) 总结 (26) 参考文献 (26)

前言 随着交流调速的迅速发展,交流调速技术越趋成熟,以及交流电动机的经济性和易维护性,使交流调速广泛受到用户的欢迎。但是直流电动机调速系统以其优良的调速性能仍有广阔的市场,并且建立在反馈控制理论基础上的直流调速原理也是交流调速控制的基础。采用转速负反馈和PI调节器的单闭环调速系统可以在保证系统稳定的条件下实现转速无静差。但如果对系统的动态性能要求较高,如要求快速起制动、突加负载动态速降时,单闭环系统就难以满足。这主要是因为在单闭环系统中不能完全按照需要来控制动态过程中的电流或转矩。在单闭环系统中,只有电流截至负反馈环节是专门用来控制电流的,但它只是在超过临界电流值以后,靠强烈的负反馈作用限制电流的冲击,并不能很理想的控制电流的动态波形。实际工作中,在电机最大电流受限的条件下,充分利用电机的允许过载能力,最好是在过渡过程中始终保持电流转矩为允许最大值,使电力拖动系统尽可能用最大的加速度启动,到达稳定转速后,又让电流立即降下来,使转矩马上与负载相平衡,从而转入稳态运行。实际上,由于主电路电感的作用,电流不能突跳,为了实现在允许条件下最快启动,关键是要获得一段使电流保持为最大值的恒流过程,按照反馈控制规律,电流负反馈就能得到近似的恒流过程。问题是希望在启动过程中只有电流负反馈,而不能让它和转速负反馈同时加到一个调节器的输入端,到达稳态转速后,又希望只要转速负反馈,不要电流负反馈发挥主作用,因此需采用双闭环直流调速系统。这样就能做到既存在转速和电流两种负反馈作用又能使它们作用在不同的阶段。 项目预期成果: 设计一个双闭环可逆直流调速系统,实现电流超调量小于等于5%;转速超调量小于等于5%;过渡过程时间小于等于0.1s的无静差调速系统。 项目分工:参数计算: 仿真: 电路设计: 电路焊接: PPT答辩: 摘要

人事管理系统毕业设计的任务书

人事管理系统毕业设计的任务书 核准通过,归档资料。 未经允许,请勿外传~心浪微博:朴恩俊丶熊猫 核准通过,归档资料。 未经允许,请勿外传~ 核准通过,归档资料。 未经允许,请勿外传~ 毕业设计任务书 学院、系: 专业: 学生姓名: 学号: 设计题目: 起迄日期: 指导教师: 系主任: 发任务书日期: 年月日 毕业设计任务书 1(毕业设计的任务和要求: 人事管理是每个公司日常管理中最重要的部分,另外,由于人事管理事务繁杂,所以也是公司耗时最多的工作。人事管理的计算机化能够大大提高工作效率。使公司领导掌握人员的动向和人员的综合素质,及时调整人才的分配,能够极大地提高人事资源管理的效率,也是企业科学化、正规化管理推进经济和社会的协调发展的重要条件。因此,本次毕业设计的课题是为庆丰发展有限公司设计适合其需要的人事管理系统。便于公司人事管理工作的顺利进行,提高企业竞争力。要求以ASP技术为基础, SQL Server数据库,设计一个符合庆丰发展公司实际需要的人事管理系统。

该系统的主要功能模块为: (1)公司人员管理(包括人员的录入,信息更新,删除等) (2)员工请销假管理(包括假条的填写,假条审批,请假情况查询等) (3)部门管理(包括部门设置,部门添加,部门更新,删除等) (4)用户登陆管理等 2(毕业设计的具体工作内容: 具体内容: (1)毕业设计前期,完成开题报告。字数在2000字以上。 (2)应用软件工程的方法实施系统的分析与设计。 (3)运用ASP、SQL Server 2000进行系统的开发。 (4)界面要求:简洁、主题鲜明、内容编排得当合理、美观、实用。 (5)应能够深入了解系统前后台的关系,搭建安全的后台数据库服务体系,掌握数据库的连接技术。 (6)能够对系统进行全面测试和调试,及时更正错误,直至系统运行稳定可靠。 (7)完成论文和必要的软件使用说明书,论文应包括综述、系统总体设计、系统实现、性能分析、结论等。参考文献数量不少于10篇。论文书写格式完全按学校规定来写。原始数据: 《数据库原理与应用》、《Java程序设计》、《ASP基础与应用》等作为前期的基础课程,要求具有一定的开发能力。硬件提供计算机一台,软件根据需要提供。此次设计的目的是使学生将大学中学到的专业知识与实际应用相结合。 毕业设计任务书 3(对毕业设计成果的要求: 用系统工程的思想和工程化的方法,按用户至上的原则、结构化、模块化、自顶向下地对系统进行分析与设计,自底向上地进行实施。 (1)严格区分工作阶段,每个阶段都有明确的任务和应得的成果。

双闭环直流调速系统工作原理

双闭环直流调速系统设计 内容摘要 电机自动控制系统广泛应用于各行业,尤其是工业。这些行业中绝大部分生产机械都采用电动机作原动机。有效地控制电.直流电动机具有良好的起动、制动性能,宜于在大范围内平滑调速,在许多需要调速或快速正反向的电力拖动领域中得到了广泛的应用。有效地控制电机,提高其运行性能,具有很好的现实意义。本文介绍了基于工程设计对直流调速系统的设计,根据直流调速双闭环控制系统的工作原理以及介绍变频调速技术的发展概况,变频调速技术的发展趋势关键词:双闭环控制系统,转速控制环,系统现状,发展趋势 英文翻译:Electrical automatic control system widely used in various industries, especially in industry. Most of the production machinery used in these industries motor as a prime mover. Effectively control electricity. Dc motor has a good start, braking performance, adaptable to smooth speed regulation in large scale, in many need to speed or fast forward and reverse has been widely used in the area of electric drive. Effectively control motor, improve its operation performance, has the very good practical significance. I ntroduced in this paper, based on the engineering design to the design of dc speed regulating system, the working principle of the double closed loop control system of dc speed regulating and also I ntroduce the development general situation and the development trend Key words: double closed loop control system, speed control loop, th e status quo,the development of trend 一:引言 矿井提升机是煤矿、有色金属矿中的重要运输设备,是“四大运转设备”之一。矿井提升系统具有环节多、控制复杂、运行速度快、惯性质量大、运行特性复杂的特点,且工作状况经常交替转换。 近几年,交流调速飞速发展,逐渐有赶超并代替直流调速的趋势。直流调速理论基础是经典控制理论,而交流调速主要依靠现代控制理论。不过最近研制成功的直流调速器,具有和交流变频器同等性能的高精度、高稳定性、高可靠性、

逻辑无环流直流可逆调速系统设计

; 课程设计任务书 学生姓名:苌城专业班级:自动化0706 指导教师:饶浩彬工作单位:自动化学院 题目: 逻辑无环流直流可逆调速系统设计 初始条件: 1.技术数据: 晶闸管整流装置:R rec=Ω,K s=40。 / 负载电机额定数据:P N=,U N=230V,I N=37A,n N=1450r/min,R a=Ω,I fn=1.14A, GD2= 系统主电路:T m=,T l= 2.技术指标 稳态指标:无静差(静差率s≤2, 调速范围D≥10) 动态指标:电流超调量:≤5%,起动到额定转速时的超调量:≤8%,(按退饱和方式计算) 要求完成的主要任务: ? 1.技术要求: (1) 该调速系统能进行平滑的速度调节,负载电机可逆运行,具有较宽的调速范围(D≥10),系统在工作范围内能稳定工作 (2) 系统静特性良好,无静差(静差率s≤2) (3) 动态性能指标:转速超调量δn<8%,电流超调量δi<5%,动态速降Δn≤10%,调速系统的过渡过程时间(调节时间)t s≤1s (4) 系统在5%负载以上变化的运行范围内电流连续 (5) 调速系统中设置有过电压、过电流等保护,并且有制动措施

2.设计内容: ! (1) 根据题目的技术要求,分析论证并确定主电路的结构型式和闭环调速系统的组成,画出系统组成的原理框图 (2) 调速系统主电路元部件的确定及其参数计算(包括有变压器、电力电子器件、平波电抗器与保护电路等) (3) 动态设计计算:根据技术要求,对系统进行动态校正,确定ASR调节器与ACR调节器的结构型式及进行参数计算,使调速系统工作稳定,并满足动态性能指标的要求 (4) 绘制逻辑无环流直流可逆调速系统的电气原理总图(要求计算机绘图) (5) 整理设计数据资料,课程设计总结,撰写设计计算说明书 时间安排: 课程设计时间为一周半,共分为三个阶段: (1): (2)复习有关知识,查阅有关资料,确定设计方案。约占总时间的20% (3)根据技术指标及技术要求,完成设计计算。约占总时间的40% (4)完成设计和文档整理。约占总时间的40% 指导教师签名:年月日 系主任(或责任教师)签名:年月日 】

毕业设计任务书模板

XXXX职业技术学院 毕业设计(论文)任务书 分院电子信息分院专业计算机信息安全班级计算机信息安全1 班 学生张三学号 123456 指导教师李四 一、课题名称: XXXXXX有限公司ERP项目实施 二、内容和要求: 通过对XXXXXXX有限公司ERP项目实施和企业调研,为了该公司的进一步发展,决定为该公司引入一套企业资源计划(ERP) 系统,实现产品的管理信息化。ERP是借用一种新的管理模式来改 造原企业旧的管理模式,是先进的、行之有效的管理思想和方法。 为了完善管理制度,增强企业的竞争力,降低制作成本等,公司决 定引进金蝶K3系统,实现产品信息化管理。把经营过程中的有关 各方如供应商、制造工厂、分销网络、客户等纳入一个紧密的供应 链中,能有效地安排企业的产、供、销活动,满足企业利用全社会 一切市场资源快速高效地进行生产经营的需求,以期进一步提高效 率和在市场上获得竞争优势。引进ERP系统并且可以解决陈旧的凭 证式管理带来的各种不必要的麻烦和降低出错率。调研和分析公 司的的生产管理流程。并结合ERP项目管理的要求,以期在库 存、准时交货率提高、采购提前、停工待料减少、制造成本降低、 管理水平提高等方面得到体现其作用。依据ERP项目实施的流 程,选型适当的信息管理系统。系统要易于操作、维护,并便于自 动化管理,而不增加或少增加附加操作。建立合理审批流程,有效 控制往来业务。ERP系统中的计划体系主要包括:主生产计划、物 料需求计划、能力计划、采购计划、销售执行计划、利润计划、财 务预算和人力资源计划等,而且这些计划功能与价值控制功能已完 全集成到整个供应链系统中。借助IT技术的飞速发展与应用,ERP 系统得以将很多先进的管理思想变成现实中可实施应用的计算机 软件系统。 ERP系统实现了对整个企业供应链的管理,适应了企业在知识经济时代市场竞争的需要。 三、参考资料: [1] 林逢升,张宪乐.企业信息化软件应用.浙江机电职业技术学院计算机应用工程系.2009 [2] 颜安.企业ERP应用研究. 成都.西南财经大学出版社.2006年6月

直流电机双闭环调速系统设计要点

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊ 目录 1 绪论 (1) 1.1课题研究背景 (1) 1.2研究双闭环直流调速系统的目的和意义 (1) 2 直流电机双闭环调速系统 (3) 2.1直流电动机的起动与调速 (3) 2.2直流调速系统的性能指标 (3) 2.2.1静态性能指标 (3) 2.2.2动态的性能指标 (4) 2.3双闭环直流调速系统的组成 (6) 3 双闭环直流调速系统的设计 (8) 3.1电流调节器的设计 (8) 3.2转速调节器的设计 (10) 3.3闭环动态结构框图设计 (12) 3.4设计实例 (12) 3.4.1设计电流调节器 (13) 3.4.2设计转速调节器 (15) 4.Matlab仿真 (17) 4.1仿真结果分析 (19) 5 结论 (20) 参考文献 (21)

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊1 绪论 1.1课题研究背景 直流调速是现代电力拖动自动控制系统中发展较早的技术。就目前而言,直流调速系统仍然是自动调速系统的主要形式,电机自动控制系统广泛应用于机械,钢铁,矿山,冶金,化工,石油,纺织,军工等行业。这些行业中绝大部分生产机械都采用电动机作原动机。有效地控制电机,提高其运行性能,对国民经济具有十分重要的现实意义。 以上等等需要高性能调速的场合得到广泛的应用。然而传统双闭环直流电动机调速系统多数采用结构比较简单、性能相对稳定的常规PID控制技术,在实际的拖动控制系统中,由于电机本身及拖动负载的参数(如转动惯量)并不像模型那样保持不变,而是在某些具体场合会随工况发生改变;与此同时,电机作为被控对象是非线性的,很多拖动负载含有间隙或弹性等非线性的因素。因此被控制对象的参数发生改变或非线性特性,使得线性的常参数的PID控制器往往顾此失彼,不能使得系统在各种工况下都保持与设计时一致的性能指标,常常使控制系统的鲁棒性较差,尤其对模型参数变化范围大且具的非线性环节较强的系统,常规PID调节器就很难满足精度高、响应快的控制指标,往往不能有效克服模型参数变化范围大及非线性因素的影响。 1.2研究双闭环直流调速系统的目的和意义 双闭环直流调速系统是性能很好,应用最广的直流调速系统。采用该系统可获得优良的静、动态调速特性。此系统的控制规律,性能特点和设计方法是各种交、直流电力拖动自动控制系统的重要基础。 20世纪90年代前的大约50年的时间里,直流电动机几乎是唯一的一种能实现高性能拖动控制的电动机,直流电动机的定子磁场和转子磁场相互独立并且正交,为控制提供了便捷的方式,使得电动机具有优良的起动,制动和调速性能。尽管近年来直流电动机不断受到交流电动机及其它电动机的挑战,但至今直流电动机仍然是大多数变速运动控制和闭环位置伺服控制首选。因为它具有良好的线性特性,优异的控制性能,高效率等优点。直流调速仍然是目前最可靠,精度最高的调速方法。 通过对转速、电流双闭环直流调速系统的了解,使我们能够更好的掌握调速系统的基本理论及相关内容,在对其各种性能加深了解的同时,能够发现其缺陷之处,通过对该系统不足之处的完善,可提高该系统的性能,使其能够适用于各种工作场合,提高其使用效率。并以此为基础,再对交流调速系统进行研究,最终掌握各种交、直流调速系统的原理,使之能够应用于国民经济各个

相关主题
文本预览
相关文档 最新文档